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Introduction

Every split epimorphism of groups is, up to an isomorphism, a semidirect
product projection. This old observation is a crucial step in establishing the
well-known category equivalences

Internal categories in Groups ∼ Crossed modules

∩ ∩
Reflexive graphs in Groups ∼ Precrossed modules

(∗)

although the top equivalence and the left-hand full embedding also use another
old idea that leads to what is now called “commutator theory” (see [12], [13]
and the references there). Having the categorical notion of semidirect product
[5], and knowing (from [5]) that the equivalence between split epimorphisms
and semidirect product projections holds in any semiabelian category (in the
sense of [11]), we extend the equivalences (*) from the category of groups and of
rings, and of some other concrete categories, for which it was known to semia-
belian categories. Thus the passage from internal categories to crossed modules
becomes a purely categorical procedure rather than an algebraic translation of
a categorical notion.

Some historical and technical remarks:
(i) As F. Borceux told me, the top equivalence in (*) was first discovered by

R. Lavendhomme. I would describe a possible reason for this reference being
missed by many authors (including myself) as follows:

• In the eyes of “pure-category-theorists”, the internal categories in the
category of groups are obviously the same as internal groups in the
category of categories, which is a very particular case of a general fact;
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however there was no use of these particular structures in pure category
theory.

• In the eyes of “homotopy-theorists” an internal group (=“group object”)
in an arbitrary category is a simple useful notion, but an internal cat-
egory a “mystery”; and as motivated by considering the first and the
second homotopy group of a connected space, there is a simple connec-
tion between the internal group structure in the category of groupoids
and the structure of a crossed module and it is hard to say now who
had noticed this connection first. R. Brown, who is certainly a leading
expert in homotopical algebra of groupoids and crossed modules, should
be the right person to be asked about this.

• . . . And so it was only a very special kind of “categorical geometry”,
where one would try to describe internal categories in the category of
groups directly, and to show that every such an internal category is a
groupoid.

(ii) Unlike the situation in past, the internal categories and many other inter-
nal categorical structures in Groups are now of interest in pure category theory
as they are simpler than the “external” ones and therefore can be used to clas-
sify those, or at least to show that some of definitions of higher-dimensional
categorical structures are not equivalent to each other.

(iii) Semiabelian categories introduced in [11] have nothing to do with semi-
abelian categories in the sense of D. Raikov introduced long time ago just like
Barr exact categories have nothing to do with the old notion of exact category
used in homological algebra. A semiabelian category (in the sense of [11]) is
a pointed Barr exact and Bourn protomodular category with finite coproducts
which in particular assumes the existence of finite limits and implies the exis-
tence of finite colimits. It was D. Bourn who first studied exact protomodular
categories and gave a number of elegant theorems and proofs in [2], but there
was an important reason for introducing a new notion by requiring just point-
edness and the existence of finite coproducts in addition: it turned out that
there is equivalence with various old systems of axioms used by many authors
(see the references in [11]), bringing “new life” to their investigations in several
branches of categorical algebra. In fact the semiabelian categories seem to be
exactly what had to be found after S. Mac Lanes famous “Duality for groups”
[15].

(iv) The categorical notion of semidirect product [5], which we use here, is a
natural generalization of the classical one. However this is not at all a straight-
forward generalization, and its full explanation for the readers not familiar with
theory of monads would also require to repeat a chapter from [16] and most of
[1].

(v) Every semiabelian category is a Maltsev category in the sense of [7] and
[6], but the converse is not true, and I see no reasonable way to extend the results
of this paper to the context of Maltsev categories (as the reader could conclude
from a remark of P. T. Johnstone [14]). However the Maltsev categories are
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exactly those for which the internal categories coincide with internal groupoids
and form a full subcategory in the category of internal reflexive graphs [8].

(vi) After describing internal reflexive graphs as (internal) precrossed mod-
ules in Section 2, and internal categories as crossed modules in Section 3, we
also describe an intermediate notion that we call a star-multiplicative graph
in Section 4. This last description involves a simplified definition of a crossed
module, and in the case of groups every star-multiplicative graph is a category.

(vii) The results of this paper slightly improve those presented in my talks
with the same title on PSSL 71 (Lovain-la-Neuve, Belgium) and Australian
Category Seminar in 1999. Meanwhile D. Bourn and M. Gran proved that the
category of connected internal groupoids in a semiabelian category is equivalent
to the category of central extensions, and then extended this result to Maltsev
categories (see [3], [4], [9]), and there is a further extension by M. Gran (not
published yet).

Throughout this paper C denotes a semiabelian category.

1. Split Epimorphisms and Object Actions

1.1. Let us recall in detail the (adjoint) equivalence

SplitEpi(C) ∼ Act(C) (1.1)

between the category of split epimorphisms and the category of object actions
in C, and at the same time introduce some useful notation:

(a) The objects of SplitEpi(C) will be written as 4-tuples (A,B, α, β), where
α : A → B and β : B → A are morphisms in C with αβ = 1.

(b) A morphism (A,B, α, β) → (A′, B′, α′, β′) in SplitEpi(C) is a pair (f, g),
where f : A → A′ and g : B → B′ are morphisms in C with gα = α′f and
fβ = β′g.

(c) The objects of Act(C) will be written as triples (B, X, ξ), where ξ :
B[X → X is a B-action on X in C defined as follows:

• the object B[X is defined together with a morphism kB,X : B[X →
B + X, as the kernel of the morphism πB,X : B + X → B, induced by
the identity morphism of B and the zero morphism X → B;

• the functor B[(−) : C → C has a canonical monad structure (see [5]
and [1]), which we will write as B[(−) = (B[(−), ηB, µB), and (X, ξ) is
defined as an algebra over that monad, i.e., ξ : B[X → X is required to
make the following diagram commute

B[(B[X)

1[ξ

²²

µB
X // B[X

ξ

²²

X
ηB

Xoo

zz
zz

zz
zz

z

zz
zz

zz
zz

z

B[X
ξ

// X

(1.2)

• we will actually need explicit descriptions of ηB and µB, and for that we
use the following commutative diagrams respectively (which determine
ηB

X and µB
X uniquely; ι′s are the coproduct injections):
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B[(B[X)

µB
X

²²

κB,B[X// B + (B[X)

[ι1,κB,X ]

²²

πB,B[X// B

B[X κB,X

// B + X πB.X

// B

X

ηB
X

OO

ι2
// B + X

(1.3)

(d) A morphism (B, X, ξ) → (B′, X ′, ξ′) in Act(C) is a pair (g, h), where
g : B → B′ and h : X → X ′ are morphisms in C with hξ = ξ′(g[1).

(e) The right adjoint G : SplitEpi(C) → Act(C) in the adjoint equiva-
lence (1.1) has G(A,B, α, β) = (B, Ker(α), ξ), where ξ is the unique morphism
making the diagram

B[ Ker(α)
κB,Ker(α) //

ξ
²²

B + ker(α)

[β,kα]

²²
Ker(α)

kα

// A

(1.4)

commute; here kα is the canonical morphism defining the kernel of α.
(f) The left adjoint F : Act(C) → SplitEpi(C) has F (B, X, ξ) = (B n

(X, ξ), B, πξ, ιξ), where the object Bn(X, ξ) is defined together with a morphism
σξ : B + X → B n (X, ξ) via the coequalizer diagram

B + (B[X)
[ι1,κB,X ]

//

1+ξ
// B + X

σξ // B n (X, ξ) (1.5)

with ιξ = σξι1 and πξ uniquely determined by πξσξ = πB,X . Note also that the
following diagram is a pushout:

B[X
κB,X //

ξ

²²

B + X

σξ=[ιξ,σξι2]

²²

X σξι2
// B n (X, ξ)

(1.6)

(and also a pullback, since the horizontal arrows are normal monomorphisms
with isomorphic cokernels).

1.2. Consider a diagram of the form

X
k // A

α // B ,
β

oo (1.7)

where αβ = 1 and (X, k) is a (the) kernel of α. Since diagram (1.6) is a pushout,
the equivalence (1.1) tells us that A in (1.7) can also be presented as a certain
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corresponding pushout. In fact it is easy to check that that pushout is

B[X
κB,X //

ξ

²²

B + X

[β,k]
²²

X
k

// A

(1.8)

where ξ is the unique morphism making this diagram commute (as follows from
1.1(e)). This gives

1.3. Theorem. Let A,B, X, α, β, k, ξ be as in 1.2 above, and C an arbitrary
object in C. Then for every two morphisms x : X → C and b : B → C there
exists at most one morphism a : A → C making the diagram

X
k //

x ÃÃA
AA

AA
AA

A A

a

²²

B
βoo

b~~}}
}}

}}
}}

c

(1.9)

commute; such an a does exist if and only if the following diagram commutes

B[X
κB,X //

ξ

²²

B + X

[b,x]
²²

X x
// C

(1.10)

Proof. The first assertion is well known from D. Bourn [2]. The existence of
a : A → C making (1.10) commute follows from the fact that (1.8) is a pushout.
What remains is to prove that if

B[X
κB,X //

ξ

²²

B + X

[b,x′]
²²

X x
// C

(1.11)

commutes, then x′ = x. This follows from the previous argument, but a direct
calculation is also easy: x′ = [b, x′]ι2 = [b, x′]κB,XηB

X = xξηB
X = x, where the sec-

ond equality follows from the definition of ηB, the third from the commutativity
of (1.11), and the fourth from the commutativity of (1.2).

2. Internal Reflexive Graphs and Precrossed Modules

2.1. We are going to use the equivalence (1.1) to describe internal reflexive
graphs in C as the actions above equipped with an additional structure. This
is very easy since

(a) an internal reflexive graph in C is nothing but an object (A,B, α, β) in
SplitEpi(C), equipped with an additional morphism γ : A → B with γβ = 1;
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(b) according to Theorem 1.3, 1(f), to give such γ is to give u : B → B and
f : X → B with

fξ = [u, f ]kB,X and [u, f ]ι1 = 1,

i.e., to give just f : X → B with fξ = [1, f ]kB,X .
Thus we arrive at

Definition and Theorem. An internal precrossed module in C is a 4-tuple
(B,X, ξ, f), in which (B, X, ξ) is an object in Act(C), and f : X → B a
morphism in C making the diagram

B[X
κB,X //

ξ

²²

B + X

[1,f ]
²²

X x
// B

(2.1)

commute. The procedure above determines an equivalence

ReflGraph(C) ∼ PreCrossMod(C) (2.2)

between the category of internal reflexive graphs and the category of internal
precrossed modules in C.

3. Internal Categories and Crossed Modules

3.1. As shown in [10] in the context of Maltsev varieties, and extended to
Maltsev categories by A. Carboni, M. C. Pedicchio, and N. Pirovano [8], an
internal category in C can be described as a diagram in C of the form

A×B A
m // A

α //

γ
// B ,βoo (3.1)

where:

• the objects A and B with the three arrows between them form an internal
reflexive graph;

• the object A×B A = A×(α,β) A is defined as the pullback of α and β;
• the morphism m makes the following diagram commute:

X
〈1,βα〉

//

HHHHHHHHHH

HHHHHHHHHH A×B A

m

²²

A
〈βγ,1〉
oo

vvvvvvvvvv

vvvvvvvvvv

A

(3.2)

– with no further conditions on m. Moreover, for a given internal reflexive graph
(A,B, α, β, γ), such m is uniquely determined whenever it exists; and if this is
the case, the graph (A,B, α, β, γ) is called multiplicative.
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3.2. Let (A,B, α, β, γ) be an internal reflexive graph, and k : X → A the
(fixed) kernel of α. Applying Theorem 1.3 to

X
〈k,0〉

// A×B A
proj2 //

A
〈βγ,1〉
oo (3.3)

(instead of (1.7)), we obtain

Lemma. In the notation above, let ξ′ : A[X → X be the A-action on X
corresponding to (3.3), i.e. the unique morphism making the diagram

A[X
κA,X //

ξ′

²²

A + X

[〈βγ,1〉,〈k,0〉]
²²

X 〈k,0〉
// A×B A

(3.4)

commute. Then the following conditions are equivalent:
(a) there exists a (unique) morphism m : A×B A → A making the diagram

X
〈k,0〉

//

k $$HHHHHHHHHH A×B A

m

²²

A
〈βγ,1〉
oo

vvvvvvvvvv

vvvvvvvvvv

A

(3.5)

commute;
(b) the diagram

A[X
κA,X //

ξ′
²²

A + X

[1,k]
²²

X
k

// A

(3.6)

commutes.

3.3. Let us compare diagrams (3.4) and (3.6). Since the commutativity of
(3.4) implies (and in fact is equivalent to) kξ′ = [βy, k]κA,X , Lemma 3.2 gives

Corollary. In the notation above, the following conditions are equivalent:
(a) there exists a (unique) morphism m : A ×B A → A making the diagram

(3.5) commute;
(b) the diagram

A[X
κA,X //

κA,X

²²

A + X

[1,k]

²²
A + X

[βγ,k]
// A

(3.7)

commutes.
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3.4. Let us now recall what we have done and explain what are we going to
do: According to Section 2, an internal reflexive graph (A,B, α, β, γ) in C can
equivalently be described as a 4-tuple (B, X, ξ, f) as in Definition and Theorem
2.1. And an internal category in C is nothing but an internal reflexive graph
(A,B, α, β, γ) in C equipped with a (uniquely determined if it exists) morphism
m : A×B A → A making diagram (3.2) commute. On the other hand, Corollary
3.3 gives a necessary and sufficient condition for the existence of a (unique)
morphism m : A ×B A → A making diagram (3.5) commute. After that in
order to obtain a complete description of internal categories in C, we are going
to show (in Subsection 3.5) that diagram (3.2) is commutative if and only if so
is (3.5), and then translate that condition in terms of (B, X, ξ, f) (in the rest
of Section 3).

3.5. Let us compare the following equalities:
(a) m〈1, βα〉 = 1;
(b) m〈1, βα〉β = β;
(c) m〈1, βα〉k = k;
(d) m〈βγ, 1〉 = 1;
(e) m〈k, 0〉 = k.
We have:

• the commutativity of (3.2) is the same as (a)&(d);
• the commutativity of (3.5) is the same as (d)&(e);
• (a) ⇔ (b)&(c) since β and k are jointly epic (as follows from the proto-

modularity of C);
• (c) ⇔ (e) since αk = 0;
• (d) ⇔ (b) since m〈1, βα〉β = m〈β, βαβ〉 = m〈β, β〉 = m〈βγβ, β〉 =

m〈βγ, 1〉β.

Hence (3.2) is commutative if and only if so is (3.5), as desired.

3.6. The following lemma is known (and in fact inexplicitly used in [11]) to be
true in any pointed exact Maltsev category; hence we omit the proof.

Lemma. Let

w

²²

// //

v

²²
u

²²// //

be a commutative diagram, whose rows are short exact sequences, and the right-
hand square is a pushout. If u and v are regular epimorphisms, then so is w.

3.7. Corollary. For every object X in C, the functor (−)[X : C → C pre-
serves regular epimorphisms.
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Proof. Given a regular epimorphism u : U → V in C, just apply Lemma 3.6 to
the diagram

U[X
κU,X //

u[1
²²

U + X

u+1
²²

πU,X // U

u

²²
V [X κV,X

// V + X πV,X

// V

3.8. For a given internal precrossed module (B,X, ξ, f) in C, consider the
diagram

(B+X)[X
κB+X,X

©1
//

κB+X,X ©2

²²

σξ[1

((RRRRRRRRRRRRR
(B+X)+X

σξ[1,ι2] (3.8)©4

²²

σξ+1

vvmmmmmmmmmmmmm

(Bn(X, ξ)[X
κBn(X,ξ)X

©3
//

κBn(X,ξ),X

²²

(Bn(X, ξ))+X

[1,σξι2]

²²
(Bn(X, ξ))+X

[ιξγ,σξι2]
// Bn(X, ξ)

RRRRRRRRRRRRR

RRRRRRRRRRRRR

(B+X)+X

σξ+1
66mmmmmmmmmmmmm

[ιξγσξι2]=σξ[ι1γσξ,ι2]=σξ[ι1[1,f ],ι2]=σξ([1,f ]+1)

©5
// Bn(X, ξ)

in which

• the parts ©1, ©2, ©4, obviously commute;
• the same is true for ©5, which uses the equality γσξ = [1, f ] that defines

γ in terms of f (or can be used to define f in terms of γ see 2.1);
• ©3 is nothing but (3.7) translated in terms of (B,X, ξ, f) with γ defined

via γσξ = [1, f ].

Corollary 3.7 tells us that σξ[1 is a regular epimorphism, and therefore the
commutativity of©3 is equivalent to the commutativity of the enveloping square,
i.e. to σξ([1, f ] + 1)κB+X,X = σξ[1, ι2]κB+X,X , which can also be expressed as
the equality of the following two composites:

(B + X)[X
κB+X,X// (B + X) + X

[1,ι2]
//

[1,f ]+1
// B + X

σξ // B n (X, ξ). (3.9)

Thus, from the previous results we obtain

Lemma. The internal reflexive graph corresponding to an internal precrossed
module (B, X, ξ, f) under the equivalence (2.2) is multiplicative (or, equivalently,
has an internal category structure) if and only if the two composites (3.9) coin-
cide.

3.9. Why should not we stop here and call Lemma 3.8 the description of in-
ternal categories in C? The reason is that as the semidirect product Bn (X, ξ)
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is defined as a coequalizer (or as a pushout), there is no simple method of ver-
ifying whether two morphisms with the codomain B n (X, ξ) are equal or not.
Fortunately, we are able make a further simplification as follows:

(a) the commutative diagram

(B + X)[X

©1

[1,ι2]∗ //

κB+X,X

²²

B[X

©2

ξ //

κB,X

²²

X

σξι2

²²
(B + X) + X

©3
[1,ι2]

//

πB+X,X

²²

B + X σξ

//

πB,X

²²

B n (X, ξ)

B + X πB,X

// B

(3.10)

in which [1, ι2]
# is defined via ©1 (which is possible since ©3 commutes) and ©2

is the same as “flipped” (1.6), presents the top composite in (3.10) as

σξ[1, ι2]κB+X,X = σξι2ξ[1, ι2]
#; (3.11)

(b) the commutative diagram

(B + X)[X
[1,f ][1

//

κB+X,X

²²

B[X

κB,X

²²

ξ // X

σξι2

²²
(B + X) + X

[1,f ]+1
// B + X σξ

// B n (X, ξ)

(3.12)

presents the bottom composite in (3.10) as

σξ([1, f ] + 1)κB+X,X = σξι2([1, f ][1); (3.13)

(c) as follows from (3.11), (3.13), and the fact that σξι2 is a monomorphism,
the equality of the two composites in (3.9) is equivalent to ξ[1, ι2]

# = ξ([1, f ][1)
yielding the following

Definition and Theorem. An internal crossed module in C is an internal
precrossed module (B,X, ξ, f) in C, for which the diagram

(B + X)[X
[1,f ][1

//

[1,ι2]#

²²

B[X

ξ

²²
B[X

ξ
// X

(3.14)

commutes. The equivalence (2.2) induces an equivalence

Cat(C) ∼ CrossMod(C) (3.15)

between the category of internal categories and the category of internal crossed
modules in C.
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3.10. Example. Let us take C =Groups, the category of groups. Then as
follows from the results of [5] (see also [1]), we have:

(a) To give an action ξ : B[X → X is the same as to give an ordinary action
h : B×X → X, i.e. a group homomorphism B →Aut(X) written as b 7→ (x 7→
bx = h(b, x))); these ξ and h determine each other via ξ(b, x,−b) = bx, using
the additive notation for the group structure and bx for h(b, x) as above.

(b) Since the group B[X is generated by elements of the form (b, x,−b),
diagram (2.1) commutes if and only if fξ(b, x,−b) = [1, f ]κB,X(b, x,−b), i.e.

f(bx) = b + f(x)− b (3.16)

for all b in B and x in X. Therefore the internal precrossed modules in the
category of groups are the same as the ordinary precrossed modules.

(c) The group (B + X)[X is generated by elements of the form
((b1, x1, ..., bn, xn), x, (−xn,−bn, . . . ,−x1,−b1)), where b1, . . . , bn are in B and
x1, . . . , xn in X (with b2, . . . , bn and x1, . . . , xn−1 nonzero and b1 and/or xn

removed if one or both of them are zero); and in diagram (3.14) we have

ξ[1, ι2]
#((b1, x1, . . . , bn, xn), x, (−xn,−bn, . . . ,−x1,−b1))

= ξ(b1, x1, . . . , xn−1, bn, xn + x− xn,−bn,−xn−1, . . . ,−x1,−b1)

= ξ(b1, x1,−b1) + ξ(b1 + b2, x2,−b2 − b1) + · · ·+ ξ(b1 + · · ·+ bn−1, xn−1,

− bn−1 · · · − b1) + ξ(b1 + · · ·+ bn, xn + x− xn,−bn · · · − b1)

+ ξ(b1 + · · ·+ bn−1,−xn−1,−bn−1 · · · − b1) + · · ·+ ξ(b1 + b2,−x2,−b2 − b1)

+ ξ(b1,−x1,−b1) = b1x1 + (b1 + b2)x2 + · · ·+ (b1 + · · ·+ bn−1)xn−1

+ (b1+. . .+bn)(xn+x−xn)−(b1+. . .+bn−1)xn−1−. . .−(b1 + b2)x2−b1x1

and

ξ([1, f ][1)((b1, x1, . . . , bn, xn), x, (−xn,−bn, . . . ,−x1,−b1))

= ξ(b1 + f(x1) + · · ·+ bn + f(xn)), x, (−f(xn)− bn · · · − f(x1)− b1))

= (b1 + f(x1) + · · ·+ bn + f(xn))x.

That is, the direct translation of the commutativity of (3.14) is the equality

b1x1 + (b1 + b2)x2 + · · ·+ (b1 +. . .+ bn−1)xn−1 + (b1 + · · ·+ bn)(xn + x− xn)

− (b1 + · · ·+ bn−1)xn−1 − · · · − (b1 + b2)x2 − b1x1

= (b1 + f(x1) + · · ·+ bn + f(xn))x. (3.17)

(d) However there is an easy way to simplify this equality: putting b1 = · · · =
bn = 0 in B, and x1 = · · · = xn−1 = 0 and xn = y in X yields

y + x− y = f(y)x, (3.18)
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and, conversely, using (3.18) we obtain

b1x1 + (b1 + b2)x2 + · · ·+ (b1 + · · ·+ bn−1)xn−1 + (b1 + · · ·+ bn)(xn + x− xn)

− (b1 + · · ·+ bn−1)xn−1 − · · · − (b1 + b2)x2 − b1x1

= f(b1x1)((b1 + b2)x2 + · · ·+ (b1 + · · ·+ bn−1)xn−1

+ (b1 + · · ·+ bn)(xn + x− xn)− (b1 + · · ·+ bn−1)xn−1 − · · · − (b1 + b2)x2)

= · · · = f(b1x1)(f((b1 + b2)x2)(. . . (f((b1 + · · ·+ bn−1)xn−1)(b1 + . . .

+ bn)(xn + x− xn))) . . . )) = (f(b1x1) + f((b1 + b2)x2) + . . .

+ f((b1 + · · ·+ bn−1)xn−1) + (b1 + · · ·+ bn))(xn + x− xn)

= (b1 + f(x1)− b1 + b1 + b2 + f(x2)− b2 − b1 + · · ·+ b1 + · · ·+ bn−1

+ f(xn−1)− bn−1 − · · · − b1 + b1 + · · ·+ bn)(xn + x− xn)

= (b1 + f(x1) + b2 + f((x2) + · · ·+ bn−1 + f(xn−1)

+ bn)(xn + x− xn) = ((b1 + f(x1) + · · ·+ bn + f(xn))x.

That is, (3.17) is equivalent to (3.18). Since (3.16) and (3.18) define the
ordinary notion of a crossed module, we conclude that the internal crossed
modules in the category of groups are the same as the ordinary crossed modules.

4. Star-Multiplication

4.1. Let C be an internal category, say, in Groups, displayed as (3.1); one
usually writes A = C1 and A×B A = C2, and we will also write

C∗1 = Ker(α) =
{
a ∈ A|α(a) = 0

}
,

C∗2 =
{
(a′, a) ∈ A×B A|α(a) = 0

}
,

calling C∗1 and C∗2 the star of morphisms and the star of composable pairs
(of morphisms) respectively. The multiplication (=composition) map m : A×B

A → A induces a map m∗ : C∗2 → C∗1, which we will call the star-multiplication
in C. It is straightforward to repeat this for an internal category in an abstract
semiabelian category C, and according to the notation of Section 3, we will have
C∗1 = X, C∗2 defined as the pullback

C∗2 = A×B X
proj2 //

proj1
²²

X

γk

²²
A α

// B

(4.1)

and diagram (3.2) “restricted to stars” becoming

X
〈k,0〉

//

IIIIIIIIII

IIIIIIIIII A×B X

m∗
²²

X
〈βγk,1〉
oo

uuuuuuuuuu

uuuuuuuuuu

X

(4.2)



INTERNAL CROSSED MODULES 111

4.2. Just like the multiplication morphism m is uniquely determined by the
commutativity of (3.2), the star-multiplication m∗ is uniquely determined by
the commutativity of (4.2). However is it possible to “have m∗ independently
of m”? In other words, we introduce

Definition. Let S = (A,B, α, β, γ) be an internal reflexive graph in C, and
k : X → A a (fixed) kernel of α. The graph S is said to be star-multiplicative
if there exists a (unique) morphism s : A×B X → X making the diagram

X
〈k,0〉

//

IIIIIIIIII

IIIIIIIIII A×B X

s

²²

X
〈βγk,1〉
oo

uuuuuuuuuu

uuuuuuuuuu

X

(4.3)

commute; here A×B X is constructed as in (4.1).

And we are going to describe the star-multiplicative graphs, essentially fol-
lowing the arguments of Section 3:

4.3. Applying Theorem 1.3 to

X
〈k,0〉

// A×B X
proj2 //

X
〈βγk,1〉
oo (4.4)

(instead of (1.7)), we obtain

Lemma. In the notation above, let ξ′′ : X[X → X be the X-action on X
corresponding to (4.4), i.e. the unique morphism making the diagram

X[X
κX,X //

ξ′′

²²

X + X

[〈βγk,1〉,〈k,0〉]
²²

X 〈k,0〉
// A×B X

(4.5)

commute. Then the following conditions are equivalent:
(a) the graph S = (A,B, α, β, γ) is star-multiplicative;
(b) the diagram

X[X
κX,X //

ξ′′
²²

X + X

[1,1]
²²

X X

(4.6)

commutes.
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4.4. Let us compare diagrams (4.5) and (4.6). Since the commutativity of
(4.5) implies (and in fact is equivalent to) kξ′′ = [βγk, k]κX,X , Lemma 3.2 gives

Corollary. In the notation above, the following conditions are equivalent:
(a) the graph S = (A,B, α, β, γ) is star-multiplicative;
(b) the diagram

X[X
κX,X //

κX,X

²²

X + X

[k,k]

²²
X + X

[βγk,k]
// A

(4.7)

commutes.

4.5. The next step is the translation of the commutativity of (4.7) in terms of
(B,X, ξ, f), which however is immediate unlike a similar translation in Section
3: (4.7) is the same (up to a canonical isomorphism) as

X[X
κX,X //

κX,X

²²

X + X

[σξι2,σξι2]=σξι2[1,1]

²²
X + X // B n (X, ξ)

[ιξγσξι2,σξι1]=σξ[ι2γσξι2,ι2]=σξ[ι1f,ι2]=σξ(f+1)

(4.8)

and so the commutativity of (4.7) is equivalent to σξ(f +1)κX,X = σξ[ι2, ι2]κX,X ,
which can also be expressed as an equality of the following two composites:

X[X
κX,X // X + X

ι2[1,1]
//

f+1
// B + X

σξ // B n (X, ξ). (4.9)

Lemma. The internal reflexive graph corresponding to an internal precrossed
module (B, X, ξ, f) under the equivalence (2.2) is star-multiplicative if and only
if the two composites (4.9) coincide.

4.6. Finally, we have to simplify our result as we did in 3.9, but only for the
bottom composite in (4.9), using the commutative diagram

X[X
f[1 //

κX,X

²²

B[X

κB,X

²²

ξ // X

σξι2
²²

X[X
f+1

// B + X σξ

// B n (X, ξ)

(4.10)

which presents it as

σξ(f + 1)κX,X = σξι2ξ(f[1). (4.11)

And again, since σξι2 is a monomorphism, the equality of the two composites
in (4.9) is equivalent to [1, 1]κX,X = ξ(f[1), yielding the following
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Theorem. An internal precrossed module (B, X, ξ, f) in C corresponds to a
star-multiplicative graph under the equivalence (2.2) if and only if the diagram

X[X
f[1 //

κX,X

²²

B[X

ξ

²²
X + X

[1,1]
// X

(4.12)

commutes.

4.7. Remark. In the case of the category of groups considered in Exam-
ple 3.10, we have [1, 1]κX,X(y, x,−y) = y + x − y and ξ(f[1)(y, x,−y) =
ξ(f(y), x,−f(y)) = f(y)x, which tells us that the commutativity of (4.12) is
equivalent to (3.16), and hence also to the commutativity of (3.14). More-
over, this suggests to replace (3.14) by the much simpler condition (4.12) in
the definition of internal crossed module in a general semiabelian category C
and the new definition will be equivalent to the one we use if and only if every
star-multiplicative graph in C is multiplicative or, equivalently, if every star-
multiplication (uniquely) extends to an internal category structure. It would
be interesting to describe semiabelian categories with this extension property.
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