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Abstract

We examine basic notions of categorical Galois theory for the adjunction beti¥igemd the
inclusion as discretein the case of simplicial complexes. Covering morphisms are characterized
as the morphisms satisfying tlhmique simplex liftingoroperty, and are classified by means of the
fundamental groupoid, for which we give an explicit “Galois-theoretic” description. The class of
covering morphisms is a part of a factorization system similar to the (purely inseparable, separable)
factorization system in classical Galois theory, which however fails to be the (monotone, light)
factorization.

0 2003 Elsevier B.V. All rights reserved.

Introduction

Out of many good books in algebraic topology, let us pick up Brown [4], Gabriel and
Zisman [8], Quillen [15], and Spanier [17]. We observe:

e The Galois theory of covering spaces, i.e., the classification of covering spaces (of
a “good” space) via the fundamental groupoid and its actions, is presented in [4]
and [8]. It can also be deduced from the results of [17], where however only connected
coverings and their canonical projections and automorphisms are considered (rather
than the wholeategory of coverings
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e The passage from covering spaces to the actions of the fundamental groupoid, in [4]
and [8], usesoverings of groupoidghese are the same discrete fibrationscalled
“coverings” byanalogywith the topological case.

e Gabriel and Zisman [8] also develop what we would call the Galois theory of covering
morphisms ofsimplicial sets This theory agrees with the topological one via the
classical adjunction betwegeometric realizatiorand thesingular complexXunctor;
here again, covering morphisms are defined by analogy with the topological ones.

e Spanier [17] does not make use of any combinatorial notion of covering, but constructs
directly the so-callededge-path groupoidf a simplicial complex(as recalled in
Remark 3.3).

e Accordingto [15,8], the mostimportant combinatorial objects for homotopy theory are
simplicial sets; however, simplicial complexes are a simpler way of codifying “good
spaces”, favored in [4,17].

Now, all the above mentioned notions of a covering are shown (see [3] and references
there) to be special cases of the categorical notion, deriveddategorical Galois theory
(CGT for short). Therefore, we became interested in the “missing case” of simplicial
complexes, for which no theory of covering morphisms has apparently been developed,
arriving to the following conclusions:

e CGT can be applied to the categ@)nC of simplicial complexes, as to any category
of abstract familiegsee [3,5]). Note tha®mC is not a topos and hence does not fit in
the framework of Barr and Diaconescu [2]; still, it is not far from a topos, of course
(see Section 1 below).

e CGT produces a reasonable notion of covering morphism (Section 2) of simplicial
complexes. Moreover, the classical edge-path groupoid of a simplicial complex is
equivalent (see Section 3) to the fundamental groupoid which we deduce here from
CGT, and hence classifies such covering morphisms.

e The class of covering morphisms 8BmC is closed under composition. Moreover,
it is a part of a factorization system (Section 3), whicmat the (monotone, light)
factorization in the sense of [6] (Section 4).

We have tried to make the paper reasonably self-contained, assuming however some
familiarity with Chapters 5 and 6 of [3]. A more detailed presentation of descent theory,
also containing a result used here, can be found in the expository paper [13]. Factorization
systems in categories are treated in many books and papers; everything we need (and much
more!) is recalled in [6]. The notatioR 4 G means, as usual, that the funct®ris left
adjoint toG.

1. Simplicial complexes
A simplicial complexs a pairA = (A, S(A)), whereA is a set andS(A) is a down-

closed set of finite non-empty parts.4f containing all one-element subsets. The elements
of S(A) are calledinked subsetsor simplexeof A.
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Simplicial complexes are related with the to;m’AOp of symmetric simplicial sets
or presheaves on the categdgy of non-zero finite cardinals (and all mappings between
them), equivalent to the category of non-empty finite sets (see [9]). We will use the
following well-known properties:
Proposition 1.1. (a) SmC is a full reflexive subcategory in the topc&ét’Aop of
symmetric simplicial setsAn objectA in SmC, regarded as a functofA°? — Set, has
A(O,....n) = A, ={(ao, ...,an) € A" | {ao, ..., a,} € S(A)}.

(b) An objectA in Set'dP s (isomorphic t9 a simplicial complex if and only if all
canonical mapsi,, — A"*1 (sending a simplex to the family of its vertirese injective.

(c) SmC is closed under subobjects and productsdatr'AOp. ThereforeSmC is regular
and a morphisnp : E — B in SmC is a regular epimorphism if and only if it is a regular
epimorphism irset!A’? e, if and only if it surjective on linked subsets.

(d) The connected components of a simplicial complete precisely the equivalence
classes under the smallest equivalence relation containing all p@dts:1) with {ag, a1} €
S(A); moreover, every simplicial complex is isomorphic to the sum of its components.
Thus,SmC is a connected locally connectazategory, in the sense that it is equivalent
to the category of families of its connected objects and its terminal object is connected.
(Categories of families will be described at the beginning of the next séction.

From (b) we easily obtain

Corollary 1.2. Let

ExgA-P2 4 1)

E—5—B
be a pullback diagram irBet!A°P; if p is a regular epimorphism ismC and E xg A is
in SMC, thenA also is inSmC (up to an isomorphisin

SinceSet'4? is an exact category, together with Proposition 1.1(d) and [13, Proposi-
tion 3.2], this gived

Corollary 1.3. A morphism inSmC is an effective descent morphisihand only if it is a
regular epimorphism.

An objectA in SmC is said to be aimplexif A € S(A); such an object is necessarily
finite and is also called an-simplexf it has exactlyn + 1 elements. From Corollary 1.3
and the characterization of regular epimorphisms in Proposition 1.1(b) (or using simplicial
sets) we obtain

3 This observation has been extended to more general relational structures by A.H. Roque [16], a Ph.D student
of the second named author.
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Corollary 1.4. (a) A connected object i®MC is projective with respect to the class of

effective descent morphisifas regular epimorphismsn SmC if and only if it is a simplex.
(b) For every objectB in SmC, there is an effective descent morphismE — B with

E projective. Moreover, there is a canonical choice for such a morphism: Eateebe the

coproduct of all linked subsets iB considered as simplexes, apd E — B induced by

the inclusion maps.

An obvious but surprising conclusion of Corollaryl.4(a) is

Corollary 1.5. Every quotient of a connected projective objecBnC is projective.

2. Covering maps of simplicial complexes
We are going to apply categorical Galois theory to the adjunction
Iy
SmC =<—= Set ([0 D), (2)

where ITp(A) is the set of connected components of a simplicial complexvhile D
embedsSet into SmC regarding sets adiscrete simplicial complexe@.e., simplicial
complexes with na-simplexes fom # 1).

Now, we already noted, in Proposition 1.1(d), tatC is equivalent to the category
FamA) of families on the categor of connected simplicial complexds this light, the
previous adjunction appears to be a special case of the basic adjunction of the Galois theory
of abstract families

FamA) # Faml)=Set (I 4 H) 3)

whereA is an arbitrary category with terminal object and Famhas pullbacks. We recall
from [5,3] that sends a family to its set of indices, or—equivalently—to the set of its
connected components. Thus, an object of @ntan (and will) be written as a family
A = (A))ici(a), While a morphismx: A — B consists of a mappinj(«) : 1 (A) — I(B)
together with a familyd; : A; — Bj()(i))ier(a) Of morphisms ofA.

We recall

Proposition 2.1. The following conditions on a morphism: A — B in FamA) are
equivalent

(a) « is atrivial covering i.e., the diagram
A—">HI(A) @)
o iH!(a)
B—>HI(B)

in whichn is the unit of the adjunctio), is a pullback
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(b) eache; in the presentation of as the familye; : A; — Bj)(i))ie1(a) Of morphisms
in A, is an isomorphism.

Corollary 2.2. The following conditions on a morphism A — B in SmC are equivalent
(a) « is atrivial covering, i.e., the diagram

A—""~ DIy(A) (5)
ﬁl J/Ho(ﬁ)
B —5 DIIy(B)

is a pullback
(b) for every connected componéiitin A, «(C) is a connected component By anda
induces an isomorphisfi = «(C).

After that we are ready to describe all coverings:

Theorem 2.3. Suppose&€ = Fam(A) satisfies the following conditions

(i) itis a regular category in which every regular epimorphism is an effective descent
morphism
(ii) it has enough projective@vith respect to the class of regular epimorphisme).,
every object irC is a quotient of a projective object
(iii) every quotient of a connected projective object in it is itself projective.

Then the condition&)—(d)below on a morphism : A — B in C are equivalent to each
other and imply(e):

(a) « is a covering, i.e., there exists a pullback diagrai, in which p is an effective
descent morphism, and@rE xp A — E is a trivial covering

(b) for every morphisnp : E — B with projectiveE, the morphisnpry: E xp A — E is
a trivial covering

(c) for every morphisnp : E — B with E connected projective, the morphigm : E x
A — E is atrivial covering

(d) for every connected projective subobjécin B, the morphism from the inverse image
of E to E induced by is a trivial covering

(e) (The unique connected projective subobject lifting propeity)every connected
projective subobjecE in B and every connected subobj&ctin A whose image is
contained inE, there exists a unique connected projective subolijeatA containing
C such thaix induces an isomorphisi = E.

Proof. (a)= (b) follows from the fact that the class of trivial coverings is pullback stable.
(b) = (a) follows from (ii) and the fact that every regular epimorphisn€iis an effective
descent morphism. The implications &) (c) = (d) are trivial. (c)= (b) can easily be
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shown using the fact th& is a category of families. (d (c) follows from (iii) and the
regularity ofC. (d) = (e) can easily be shown using Proposition 2.ta

Corollary and Remark 2.4. Theorenm?.3applies toC = SmC, and moreover, in this case
the condition(e) clearly implies(d), and hence all the other conditions. Note also that
it can be equivalently reformulated as the followingique simplex lifting propertyfor
every simpleXt in B and every point in A whose image is contained i, there exists a
unique simplexD in A containinga such thatr induces an isomorphisi = E.

Corollary 2.5. The class of covering morphisms 8mC is the second component of a
factorization system.

Proof. As follows from Corollary 1.4 and the results of [12] (see poifir2Introduction

and Theorem 4.2 there), the category of coverings of an arbitrary oBjéstSmC is
reflective in GmC | B). After that, since the class of covering morphisms is pullback
stable, we only need to check that it is closed under composition—which however can
easily be deduced from Theorem 2.33

3. Thefundamental groupoid

Let B be a fixed simplicial complex, and: E — B be what we called the canonical
effective descent morphism (with projecti#s in Corollary 1.4(b). In other words:

e E is the set of pairgb, s) with b € s € S(B);
e asubsef(bo, s0), ..., (by,sy)}in E islinked ifand only ifsg="--- = sy,;
e pisdefined byp(b, s) =b.

As follows from the fundamental theorem of categorical Galois theory [11] (see also [3])
and Corollary 1.4(b), there is a canonical category equivalence

CoV(B) ~ SetCaE.p), (6)
where CoyB) is the category of coverings &, and the precategory

GalE, p) = (Mo(E x5 E x5 E) = Mo(E x5 E) = Mo(E)) )
is theITg-image of the kernel pair gf considered as an internal precategor$mC. The

precategory G&F, p) has an obvious explicit description, as soon as we make

Observation 3.1. Since two elements it belong to the same connected component if
and only if they are linked, it is easy to see thaf{(E x g - - - x p E) can be identified with
the set of all sequences (of the appropriate length) of elemeiBinhaving non-empty
intersection.

Let
L :Precat — Cat (8)
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be the left adjoint of the inclusion functor from the category of precategories to the category
of categories. We define now tifigndamental groupoidi;(B) of the simplicial complex

B aslT1(B) = L(Gal(E, p)), whereE andp are as above. Since for every precategPry

and every categorg we haveS” ~ SL(P) | (6) gives

Cov(B) ~ Set/T1(B), (9)

From the obvious description @f and Observation 3.1 we obtain:
Theorem 3.2. The fundamental groupoiff1(B) can be described as follows

(a) the objects in11(B) are all simplexes irB;

(b) a morphisms — s’ in IT1(B) is the equivalence class of a finite sequenge.(., s,)
of simplexes iB with sg =s, s;_1 Ns; non-empty for each=1,...,n, ands, = s/,
where

(c) the sequences compose by concatenafias in the free categojy and their
equivalence is defined as the smallest congruence under which,(s2) is congruent
to (so, s2) Whenevesg N s1 N s2 is not empty; the composition of equivalence classes
is induced by the composition of sequences.

Remark 3.3. () In the groupoidT;(B), an object (i.e., a simplex @) is isomorphic to

each of its points, and we can equivalently use the full subgroupoid of points. The latter is
plainly isomorphic to the classicallge-path groupoidf B [17], which can be constructed

as follows:

(i) the objects are the points &,
(ii) a morphism po, ..., b,]:bog — b, is the equivalence class of a finite sequence of
points of B, where each subsé@h; 1, b;} is linked,
(iii) such sequences compose by concatenation, and their equivalence is the smallest
congruence under whidl, b', b1 = [b, b"'] whenever the subséh, o', "} is linked.

(b) One can find in [10] an equivalent construction, based on an intrinsic homotopy
theory for simplicial complexes that also deals with their higher homotopy groups. Higher
fundamental groupoid,, of symmetricsimplicial sets have been studied in [9], together
with higher fundamentalategoriedor simplicial sets.

(c) Similar geometrical constructions, one of which uses simply connected open subsets
in the same way as we use simplexes (and goes back at least to Artin and Mazur [1]), are
discussed by Kennison [14].

4. Stabilization fails

Let (E,M) be the reflective factorization system (see [7] or [6])Gn= Fam(A)
associated with the adjunction (3); accordin@yconsists of all morphisms in C, for
which I(e) is a bijection, andM is the class of trivial coverings. Restricting ourselves
to the cas&C = SmC, we could try to comparée, M) with the new factorization system
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(E*, M*) obtained from Corollary 2.5. Sindé*, the class of covering morphisms3mcC,

is what was described in [6] as tleealizationof M, the results of [6] suggest that might

be thestabilizationof E. However, this is not the case, as follows from [6, Theorem 6.9]
and Proposition 4.1 and Example 4.2 below:

Proposition 4.1. Suppose there exists a pullback diagram
0——V (10)

L

U——F
in C = Fam(A), with 0 denoting the initial object= the empty family U and V non-
initial, and E connected projective. Then the reflective factorization syst€&ragsociated
with the adjunctior(3) is not locally stable in the sense {#].

Proof. Let me be the(E, M)-factorization of the morphisn¥ — E in (7). SinceE is
projective,meis locally stable if and only if it is stable. Therefore it suffices to show that
it is not stable. Indeed, we have:

(i) sinceV is notinitial, so is the codomain ef which is the same as the domainof

(ii) since E is connected, ana is a trivial covering with non-initial domaing is a split
epimorphism;

(iii) therefore the pullback:’ of m alongU — E also is a split epimorphism;

(iv) sinceU is not initial, we conclude that the domainsaf is not initial;

(v) the pullbackm’e’ of the factorizationme alongU — E has therefore’ with non-
initial codomain but the domain initial (since (7) is a pullback);

(vi) thereforel (¢’) is not a bijection, i.e.¢’ is notinE, as desired. O

Example 4.2. It is a triviality to find a pullback of the form (7) i®mC; for instance, take

U =V =1, E = codiscrete 4= 2-simplex), and use the two maps from 1 to 2. Thus the
reflective factorization system BmC associated with the adjunction (2) is not locally sta-
ble, or, equivalently, the adjunction (2) does not yield the (monotone, light) factorization
system.

Remark 4.3. (a) Since products of connected objectSmC are connected, it is easy to
show that the adjunction (d)as stable unitsn the sense of [7]. Henc8mC provides
one more example where the stable-unit-property does not imply the existence of the
(monotone, light) factorization system.

(b) Proposition 4.1 and Example 4.2 also show that the &&s$s SmC is not pullback
stable.
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