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Abstract

We examine basic notions of categorical Galois theory for the adjunction betweenΠ0 and the
inclusion as discrete, in the case of simplicial complexes. Covering morphisms are characte
as the morphisms satisfying theunique simplex liftingproperty, and are classified by means of
fundamental groupoid, for which we give an explicit “Galois-theoretic” description. The cla
covering morphisms is a part of a factorization system similar to the (purely inseparable, sep
factorization system in classical Galois theory, which however fails to be the (monotone,
factorization.
 2003 Elsevier B.V. All rights reserved.

Introduction

Out of many good books in algebraic topology, let us pick up Brown [4], Gabriel
Zisman [8], Quillen [15], and Spanier [17]. We observe:

• The Galois theory of covering spaces, i.e., the classification of covering spac
a “good” space) via the fundamental groupoid and its actions, is presented
and [8]. It can also be deduced from the results of [17], where however only conn
coverings and their canonical projections and automorphisms are considered
than the wholecategory of coverings).
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• The passage from covering spaces to the actions of the fundamental groupoid, in [4]
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and [8], usescoverings of groupoids; these are the same asdiscrete fibrations, called
“coverings” byanalogywith the topological case.
• Gabriel and Zisman [8] also develop what we would call the Galois theory of cov

morphisms ofsimplicial sets. This theory agrees with the topological one via
classical adjunction betweengeometric realizationand thesingular complexfunctor;
here again, covering morphisms are defined by analogy with the topological one
• Spanier [17] does not make use of any combinatorial notion of covering, but cons

directly the so-callededge-path groupoidof a simplicial complex(as recalled in
Remark 3.3).
• According to [15,8], the most important combinatorial objects for homotopy theor

simplicial sets; however, simplicial complexes are a simpler way of codifying “g
spaces”, favored in [4,17].

Now, all the above mentioned notions of a covering are shown (see [3] and refe
there) to be special cases of the categorical notion, derived fromcategorical Galois theory
(CGT for short). Therefore, we became interested in the “missing case” of simp
complexes, for which no theory of covering morphisms has apparently been deve
arriving to the following conclusions:

• CGT can be applied to the categorySmC of simplicial complexes, as to any catego
of abstract families(see [3,5]). Note thatSmC is not a topos and hence does not fit
the framework of Barr and Diaconescu [2]; still, it is not far from a topos, of co
(see Section 1 below).
• CGT produces a reasonable notion of covering morphism (Section 2) of simp

complexes. Moreover, the classical edge-path groupoid of a simplicial comp
equivalent (see Section 3) to the fundamental groupoid which we deduce here
CGT, and hence classifies such covering morphisms.
• The class of covering morphisms inSmC is closed under composition. Moreove

it is a part of a factorization system (Section 3), which isnot the (monotone, light
factorization in the sense of [6] (Section 4).

We have tried to make the paper reasonably self-contained, assuming howeve
familiarity with Chapters 5 and 6 of [3]. A more detailed presentation of descent th
also containing a result used here, can be found in the expository paper [13]. Factor
systems in categories are treated in many books and papers; everything we need (a
more!) is recalled in [6]. The notationF � G means, as usual, that the functorF is left
adjoint toG.

1. Simplicial complexes

A simplicial complexis a pairA = (A,S(A)), whereA is a set andS(A) is a down-
closed set of finite non-empty parts ofA, containing all one-element subsets. The elem
of S(A) are calledlinked subsets, or simplexesof A.
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Simplicial complexes are related with the toposSet!∆op
of symmetric simplicial sets,
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or presheaves on the category!∆ of non-zero finite cardinals (and all mappings betwe
them), equivalent to the category of non-empty finite sets (see [9]). We will us
following well-known properties:

Proposition 1.1. (a) SmC is a full reflexive subcategory in the toposSet!∆op
of

symmetric simplicial sets. An objectA in SmC, regarded as a functor!∆op→ Set, has
A({0, . . . , n})=An = {(a0, . . . , an) ∈An+1 | {a0, . . . , an} ∈ S(A)}.

(b) An objectA in Set!∆op
is (isomorphic to) a simplicial complex if and only if al

canonical mapsAn→An+1 (sending a simplex to the family of its vertices) are injective.
(c) SmC is closed under subobjects and products inSet!∆op

. Therefore,SmC is regular
and a morphismp :E→ B in SmC is a regular epimorphism if and only if it is a regula
epimorphism inSet!∆op

, i.e., if and only if it surjective on linked subsets.
(d) The connected components of a simplicial complexA are precisely the equivalenc

classes under the smallest equivalence relation containing all pairs(a0, a1) with {a0, a1} ∈
S(A); moreover, every simplicial complex is isomorphic to the sum of its compon
Thus,SmC is a connected locally connectedcategory, in the sense that it is equivale
to the category of families of its connected objects and its terminal object is conn
(Categories of families will be described at the beginning of the next section.)

From (b) we easily obtain

Corollary 1.2. Let

E ×B A
pr2

pr1

A

α

E p B

(1)

be a pullback diagram inSet!∆op; if p is a regular epimorphism inSmC andE ×B A is
in SmC, thenA also is inSmC (up to an isomorphism).

SinceSet!∆op
is an exact category, together with Proposition 1.1(d) and [13, Pro

tion 3.2], this gives3

Corollary 1.3. A morphism inSmC is aneffective descent morphismif and only if it is a
regular epimorphism.

An objectA in SmC is said to be asimplexif A ∈ S(A); such an object is necessar
finite and is also called ann-simplexif it has exactlyn+ 1 elements. From Corollary 1.
and the characterization of regular epimorphisms in Proposition 1.1(b) (or using sim
sets) we obtain

3 This observation has been extended to more general relational structures by A.H. Roque [16], a Ph.D
of the second named author.
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Corollary 1.4. (a) A connected object inSmC is projective with respect to the class of
.
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effective descent morphisms(= regular epimorphisms) in SmC if and only if it is a simplex
(b) For every objectB in SmC, there is an effective descent morphismp :E→ B with

E projective. Moreover, there is a canonical choice for such a morphism: takeE to be the
coproduct of all linked subsets inB considered as simplexes, andp :E→ B induced by
the inclusion maps.

An obvious but surprising conclusion of Corollary1.4(a) is

Corollary 1.5. Every quotient of a connected projective object inSmC is projective.

2. Covering maps of simplicial complexes

We are going to apply categorical Galois theory to the adjunction

SmC
Π0

Set (Π0 �D),
D

(2)

whereΠ0(A) is the set of connected components of a simplicial complexA, while D

embedsSet into SmC regarding sets asdiscrete simplicial complexes(i.e., simplicial
complexes with non-simplexes forn = 1).

Now, we already noted, in Proposition 1.1(d), thatSmC is equivalent to the categor
Fam(A) of families on the categoryA of connected simplicial complexes. In this light, the
previous adjunction appears to be a special case of the basic adjunction of the Galois
of abstract families

Fam(A)
I

Fam(1)= Set (I �H)
H

(3)

whereA is an arbitrary category with terminal object and Fam(A) has pullbacks. We reca
from [5,3] thatI sends a family to its set of indices, or—equivalently—to the set o
connected components. Thus, an object of Fam(A) can (and will) be written as a famil
A= (Ai)i∈I (A), while a morphismα :A→ B consists of a mappingI (α) : I (A)→ I (B)

together with a family (αi :Ai→ BI(α)(i))i∈I (A) of morphisms ofA.
We recall

Proposition 2.1. The following conditions on a morphismα :A→ B in Fam(A) are
equivalent:

(a) α is a trivial covering, i.e., the diagram

A
ηA

α

HI (A)

HI(α)

B ηB
HI (B)

(4)

in whichη is the unit of the adjunction(3), is a pullback;
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(b) eachαi in the presentation ofα as the family(αi :Ai→ BI(α)(i))i∈I (A) of morphisms
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in A, is an isomorphism.

Corollary 2.2. The following conditions on a morphismα :A→B in SmC are equivalent:

(a) α is a trivial covering, i.e., the diagram

A
ηA

β

DΠ0(A)

Π0(β)

B ηB
DΠ0(B)

(5)

is a pullback;
(b) for every connected componentC in A,α(C) is a connected component inB, andα

induces an isomorphismC ∼= α(C).

After that we are ready to describe all coverings:

Theorem 2.3. SupposeC= Fam(A) satisfies the following conditions:

(i) it is a regular category in which every regular epimorphism is an effective des
morphism;

(ii) it has enough projectives(with respect to the class of regular epimorphisms), i.e.,
every object inC is a quotient of a projective object;

(iii) every quotient of a connected projective object in it is itself projective.

Then the conditions(a)–(d)below on a morphismα :A→ B in C are equivalent to each
other and imply(e):

(a) α is a covering, i.e., there exists a pullback diagram(1), in whichp is an effective
descent morphism, and pr1 :E×B A→E is a trivial covering;

(b) for every morphismp :E→ B with projectiveE, the morphismpr1 :E ×B A→ E is
a trivial covering;

(c) for every morphismp :E→B with E connected projective, the morphismpr1 :E ×B

A→E is a trivial covering;
(d) for every connected projective subobjectE in B, the morphism from the inverse ima

of E to E induced byα is a trivial covering;
(e) (The unique connected projective subobject lifting property)for every connecte

projective subobjectE in B and every connected subobjectC in A whose image is
contained inE, there exists a unique connected projective subobjectD in A containing
C such thatα induces an isomorphismD ∼=E.

Proof. (a)⇒ (b) follows from the fact that the class of trivial coverings is pullback sta
(b)⇒ (a) follows from (ii) and the fact that every regular epimorphism inC is an effective
descent morphism. The implications (b)⇒ (c)⇒ (d) are trivial. (c)⇒ (b) can easily be
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shown using the fact thatC is a category of families. (d)⇒ (c) follows from (iii) and the
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regularity ofC. (d)⇒ (e) can easily be shown using Proposition 2.1.✷
Corollary and Remark 2.4. Theorem2.3applies toC= SmC, and moreover, in this cas
the condition(e) clearly implies(d), and hence all the other conditions. Note also t
it can be equivalently reformulated as the followingunique simplex lifting property:for
every simplexE in B and every pointa in A whose image is contained inE, there exists a
unique simplexD in A containinga such thatα induces an isomorphismD ∼=E.

Corollary 2.5. The class of covering morphisms inSmC is the second component of
factorization system.

Proof. As follows from Corollary 1.4 and the results of [12] (see point 20 in Introduction
and Theorem 4.2 there), the category of coverings of an arbitrary objectB in SmC is
reflective in (SmC ↓ B). After that, since the class of covering morphisms is pullb
stable, we only need to check that it is closed under composition—which howeve
easily be deduced from Theorem 2.3.✷

3. The fundamental groupoid

Let B be a fixed simplicial complex, andp :E→ B be what we called the canonic
effective descent morphism (with projectiveE) in Corollary 1.4(b). In other words:

• E is the set of pairs(b, s) with b ∈ s ∈ S(B);
• a subset{(b0, s0), . . . , (bn, sn)} in E is linked if and only ifs0= · · · = sn;
• p is defined byp(b, s)= b.

As follows from the fundamental theorem of categorical Galois theory [11] (see als
and Corollary 1.4(b), there is a canonical category equivalence

Cov(B)� SetGal(E,p), (6)

where Cov(B) is the category of coverings ofB, and the precategory

Gal(E,p)=
(
Π0(E ×B E ×B E)

−→−→−→Π0(E ×B E)
−→←−−→Π0(E)

)
(7)

is theΠ0-image of the kernel pair ofp considered as an internal precategory inSmC. The
precategory Gal(E,p) has an obvious explicit description, as soon as we make

Observation 3.1. Since two elements inE belong to the same connected componen
and only if they are linked, it is easy to see thatΠ0(E×B · · · ×B E) can be identified with
the set of all sequences (of the appropriate length) of elements inS(B) having non-empty
intersection.

Let

L : Precat→Cat (8)
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be the left adjoint of the inclusion functor from the category of precategories to the category
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of categories. We define now thefundamental groupoidΠ1(B) of the simplicial complex
B asΠ1(B)= L(Gal(E,p)), whereE andp are as above. Since for every precategoryP ,
and every categoryS we haveSP ≈ SL(P ), (6) gives

Cov(B)� SetΠ1(B). (9)

From the obvious description ofL and Observation 3.1 we obtain:

Theorem 3.2. The fundamental groupoidΠ1(B) can be described as follows:

(a) the objects inΠ1(B) are all simplexes inB;
(b) a morphisms→ s′ in Π1(B) is the equivalence class of a finite sequence (s0, . . . , sn)

of simplexes inB with s0= s, si−1 ∩ si non-empty for eachi = 1, . . . , n, andsn = s′,
where

(c) the sequences compose by concatenation(as in the free category), and their
equivalence is defined as the smallest congruence under which (s0, s1, s2) is congruent
to (s0, s2) whenevers0 ∩ s1 ∩ s2 is not empty; the composition of equivalence clas
is induced by the composition of sequences.

Remark 3.3. (a) In the groupoidΠ1(B), an object (i.e., a simplex ofB) is isomorphic to
each of its points, and we can equivalently use the full subgroupoid of points. The la
plainly isomorphic to the classicaledge-path groupoidof B [17], which can be constructe
as follows:

(i) the objects are the points ofB,
(ii) a morphism [b0, . . . , bn] :b0→ bn is the equivalence class of a finite sequence

points ofB, where each subset{bi−1, bi} is linked,
(iii) such sequences compose by concatenation, and their equivalence is the s

congruence under which[b, b′, b′′] = [b, b′′] whenever the subset{b, b′, b′′} is linked.

(b) One can find in [10] an equivalent construction, based on an intrinsic hom
theory for simplicial complexes that also deals with their higher homotopy groups. H
fundamental groupoidsΠn of symmetricsimplicial sets have been studied in [9], toget
with higher fundamentalcategoriesfor simplicial sets.

(c) Similar geometrical constructions, one of which uses simply connected open s
in the same way as we use simplexes (and goes back at least to Artin and Mazur [
discussed by Kennison [14].

4. Stabilization fails

Let (E,M) be the reflective factorization system (see [7] or [6]) inC = Fam(A)

associated with the adjunction (3); accordinglyE consists of all morphismse in C, for
which I (e) is a bijection, andM is the class of trivial coverings. Restricting ourselv
to the caseC= SmC, we could try to compare(E,M) with the new factorization system
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(E∗,M∗) obtained from Corollary 2.5. SinceM∗, the class of covering morphisms inSmC,
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is what was described in [6] as thelocalizationof M, the results of [6] suggest thatE∗ might
be thestabilizationof E. However, this is not the case, as follows from [6, Theorem
and Proposition 4.1 and Example 4.2 below:

Proposition 4.1. Suppose there exists a pullback diagram

0 V

U E

(10)

in C = Fam(A), with 0 denoting the initial object(= the empty family), U and V non-
initial, andE connected projective. Then the reflective factorization system inC associated
with the adjunction(3) is not locally stable in the sense of[6].

Proof. Let me be the(E,M)-factorization of the morphismV → E in (7). SinceE is
projective,meis locally stable if and only if it is stable. Therefore it suffices to show
it is not stable. Indeed, we have:

(i) sinceV is not initial, so is the codomain ofe, which is the same as the domain ofm;
(ii) sinceE is connected, andm is a trivial covering with non-initial domain,m is a split

epimorphism;
(iii) therefore the pullbackm′ of m alongU→E also is a split epimorphism;
(iv) sinceU is not initial, we conclude that the domain ofm′ is not initial;
(v) the pullbackm′e′ of the factorizationme alongU → E has thereforee′ with non-

initial codomain but the domain initial (since (7) is a pullback);
(vi) thereforeI (e′) is not a bijection, i.e.,e′ is not inE, as desired. ✷
Example 4.2. It is a triviality to find a pullback of the form (7) inSmC; for instance, take
U = V = 1,E = codiscrete 2(= 2-simplex), and use the two maps from 1 to 2. Thus
reflective factorization system inSmC associated with the adjunction (2) is not locally s
ble, or, equivalently, the adjunction (2) does not yield the (monotone, light) factoriz
system.

Remark 4.3. (a) Since products of connected objects inSmC are connected, it is easy
show that the adjunction (2)has stable unitsin the sense of [7]. HenceSmC provides
one more example where the stable-unit-property does not imply the existence
(monotone, light) factorization system.

(b) Proposition 4.1 and Example 4.2 also show that the classE∗ in SmC is not pullback
stable.
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