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EXTENSIONS WITH ABELIAN KERNELS IN
PROTOMODULAR CATEGORIES

D. BOURN AND G. JANELIDZE

Abstract. As observed by J. Beck, and as we know from M. Barr’s and his
joint work on triple cohomology, the classical isomorphism Opext = H? that
describes group extensions with abelian kernels, can be deduced from the
equivalence between such extensions and torsors (in an appropriate sense).
The same is known for many other “group-like” algebraic structures, and
now we present a purely-categorical version of that equivalence, essentially
by showing that all torsors are extensions with abelian kernels in any pointed
protomodular category, and by giving a necessary and sufficient condition for
the converse.
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INTRODUCTION

The set Ext(B, K') of isomorphism classes of extensions of a group B with an
abelian kernel K splits into disjoint union

Ext(B, K) = | |Opext(B,K.¢),

£e=

where Z is the set of all B-module structures on K, and each Opext(B, K, ¢)
has (a group structure and) a cohomological description

(see S. Mac Lane [19] for details and references, where however the symbol
“Ext” is used only for an abelian category). This and several other similar
classical theories (for associative or Lie algebras and for some other “group-like”
structures) have a unified treatment by G. Orzech [20], which was suggested by
M. Barr and in fact is based on the fact that, in all categories of interest, we
have:

The elements of Opext(B, K, &) are the same as torsors over the semidirect
product of B and (K,§), considered as an (abelian) group in (C | B), where C
is the ground category; or, briefly, that estensions=torsors. It was J. Beck! who
first discovered this fact for groups and who realized, as also M. Barr explained

1'J. Beck’s Ph.D. Thesis (1967) is now available as [J. M. Beck, Triples, algebras and
cohomology, Repr. Theory Appl. Categ. No. 2 (2003), 1-59; http://www.tac.mta.ca/tac/].
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in his talk [1], that a B-module in a general category C is to be defined as an
abelian group in (C | B).

Our aim in this paper is to make “extensions=torsors” a purely-categorical
theorem, using the categorical notion of a semi-direct product introduced in
[10]. In particular it follows that what M. Gerstenhaber [13] calls Baer extension
theory is a special case of the general theory of torsors.

The main reason for “extensions=torsors”, as one can see in Section 2 below,
is that, for every split epimorphism, its kernel and its splitting are jointly epic; it
is a consequence of Split Short Five Lemma, which in fact says that the category
of split extensions of a fixed object with a fixed kernel is a groupoid, and which
also plays a crucial role by itself. This suggests that the right categorical context
for our constructions is the context of (pointed finitely complete) categories
satisfying Split Short Five Lemma, i.e., of (pointed) protomodular categories in
the sense of [4] (see also [2]). The comparison with Gerstenhaber theory then
suggests to ask, how far are his Moore categories from the protomodular ones?

The answer is a long story, which involves semi-abelian categories defined in
[16] as pointed finitely complete and finitely complete protomodular categories
that are Barr exact. The main theorem of [16] asserts that this list of condi-
tions is equivalent to the list of Old Categorical Axioms, which essentially are
all (first order) categorical conditions used in homological algebra and radical
theory in fifties and sixties, that hold in any variety of groups with multiple
operators in the sense of P. Higgins [14]. Gerstenhaber’s definition of a Moore
category (see also [24]) requires almost all these axioms, plus also a stronger
one, which holds in many classical-algebraic categories, but unfortunately not
in every variety of groups with multiple operators. We knew about this dis-
agreement of definitions already in 1997 when we almost finished this paper.
We, however, postponed publishing it, because, not having yet understood the
connection with pregroupoid/commutator theory, we used more complicated
arguments that we felt were to be simplified, and we did not know how to do
that. This problem is solved now, and our present version is very simple:

Let C be a Mal’tsev category, B an object in C, and G a group in (C | B).
The equivalence between the category of all torsors over groupoids in C and the
category of pregroupoids in C (due to A. Kock [17] and [18]) induces an em-
bedding of the category of G-torsors in (C | B) into the category of extensions
of B. This follows from the fact that any span in a Mal’tsev category has at
most one pregroupoid structure (by commutator theory, but originally from [12,
Proposition 3.5]). If, moreover, the category C is pointed protomodular, then
the morphisms of torsors admit better description in terms of kernels of the cor-
responding extensions, and we arrive to the desired presentation of Extc (B, K)
as the disjoint union of all Opextc(B, K,&). We should also mention that we
in fact need protomodularity (more precisely even the stronger property of the
existence of semidirect products) once more in order to have a good definition
of actions & above.

According to this approach, torsors correspond to those extensions o : A —
B = A/R, for which the Pedicchio commutator [R, R] is trivial, as in 1.1 below.
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Here R is the equivalence relation that appears as the kernel pair of «, and
the abovementioned strong axiom used in the definition of a Moore category is
exactly what makes the triviality of [R, R| equivalent to the abelianness of the
(usual) kernel of « (see [7]). Moreover, as follows from our results, it is the only
reason why Gerstenhaber’s theory needs that axiom.

Another thing is that since our ground category is not (required to be) semi-
abelian, and not even regular, but merely protomodular, our definition of an
extension is different from the usual one in homological algebra: instead of
asking its epi-part to be a cokernel of its kernel, i.e., a normal epimorphism, we
are asking it to be an effective descent morphism. In the case of a semi-abelian
category there is no difference of course.

Finally, we would like to point out the following: Although we assume here
familiarity with some recent categorical-algebraic developments, the rest of the
paper is in fact “more categorical” than this Introduction — in the sense that all
new theorems we prove are first formulated in Section 2 in terms of categories
of extensions (or torsors) rather than the corresponding set-valued functors
Opext, as, say, in Mac Lane’s book [19]. However we return to Opext functors
in Section 3.

1. PREGROUPOIDS AND COMMUTATORS IN MAL’TSEV CATEGORIES

The notion of commutator of two congruences in a Mal'tsev variety was in-
troduced by J. D. H. Smith [25], and then generalized in various ways by many
authors. The first categorical definition, in the context of exact Mal'tsev cat-
egories with coequalizers, is due to M. C. Pedicchio [21], [22] (see also [23]).
It was later extended to spans in a category with finite limits and arbitrary
intersections of subobjects in [15] (which has first appeared as a Trieste Uni-
versity preprint in 1998), although [15] mainly deals with varieties of universal
algebras. Commutator theory in arbitrary (non-exact) Mal’tsev categories was
then systematically developed in [8], [9], [6], [7], using also the older results of
[12]. We are interested here in the following special case which certainly agrees
with all definitions ever used:

Definition and Theorem 1.1. Let a: A — B be a morphism in a finitely
complete Mal’tsev category C, and R = A xg A the corresponding equivalence
relation on A (=the kernel pair of o). We say that the commutator [R, R] is
trivial, or that R centralizes itself, if the following equivalent conditions hold:

(a) the span B <-— A —== B admits a pregroupoid structure (in the sense
of A. Kock [18]);

(b) the morphism a : A — B, considered as an object in (C | B), admits a
unique Mal’tsev operation, i.e., a ternary operation p satisfying p(x,y,y) = x =
p(y,y,x) (in the standard-algebraic notation);

(c) the morphism o : A — B, considered as an object in (C | B), admits an
associative Mal’tsev operation, where the associativity means p(x,y, p(z,u,v)) =
x = p(p(x,y, z),u,v) in the notation above;
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(d) the morphism o : A — B, considered as an object in (C | B), is abelian
in the sense of commutator theory, i.e., its largest commutator is trivial; here
again, since (C | B) is a Mal’tsev category, all notions of (the triviality of)
commutator agree.

Whenever C s pointed, the conditions above imply the abelianness of the
kernel of A — B, and the converse is true when C is strongly protomodular
(7], which (together with Barr exactness) is essentially the same as to be a
Moore category in the sense of M. Gerstenhaber [13] (see also Introduction).
The precise relationship of these two notions is described in details by the first
author’s student D. Rodelo [24].

Let us also mention the following reformulation (essentially due to M. C. Pe-
dicchio) of the equivalence (b)<(c) of 1.1 in the more general context of arbi-
trary spans:

Theorem 1.2. The forgetful functor from pregroupoids to spans in a finitely
complete Mal’tsev category is full and faithful, and full on subobjects.

In order to distinguish pregroupoids with the underlying spans of the form

B<2— A—> B from general ones, we will call them endo-pregroupoids; if
in addition A — B was an effective descent morphism, then we will use the
expression regular endo-pregroupoid. That is, “regular” has the same meaning
as in [17] and [18].

2. TORSORS AS EXTENSIONS

Definition 2.1. An internal group action h : G x X — X in a finitely
complete category C is said to be a torsor, if it satisfies the following conditions:

(a) the morphism (h,pry) : G x X — X x X induced by h and the second
projection G x X — X is an isomorphism,;

(b) the morphism X — ¢, where t denotes a terminal object of C, is an
effective descent morphism.

When G is fixed, we will also say that (X, h) is a G-torsor. We will need to
consider the G-torsors in (C | B), for an arbitrary “base” object B in C and an
arbitrary group G in (C | B). Putting all these torsors together, and defining
appropriate morphisms between them using the fact that a group in (C | B)
can always be considered as a groupoid in C, we obtain a category, which we will
denote by Torsc. Specifically, a morphism from a torsor h : Gx (A, a) — (A4, «)
in (C | B)toatorsor i : G’ x (A, o) — (A,&/) in (C | B’) is a pair (¢, f), in
which ¢ = (@9, 1) : G — G’ is an internal functor and f : A — A’ a morphism
in C, making the standard diagram

Gy xpA—LsA—~B=0,

et | lf |

Gi xp A —> A —= B' =G,



EXTENSIONS WITH ABELIAN KERNELS 649

commute. On the object level Torsc coincides with the disjoint union of the
categories Torsc(B,G) of G-torsors in (C | B), for all objects B in C and
all groups G in (C | B). However this disjoint union has less morphisms of
course: in fact a morphism (¢, f) in Torsc between two objects in the same
Torsc (B, G) belongs to Torsc(B, G) if and only if ¢ = 1.

Definition 2.2. (a) An extension in a pointed finitely complete category C
is a diagram in C of the form

where « is an effective descent morphism, and ¢ is a kernel of a. Assuming B
and K fixed, we will also say that (A, «, ») is an extension of B with kernel K,
and the category of such extensions will be denoted by Extc (B, K).

(b) A splitting for an extension above is a morphism 5 : B — Awithaf = 1; a
split extension is an extension equipped with a specified splitting, and therefore
morphisms of split extensions are supposed to commute with splittings.

Consider the functor

(I)B,G,K,L : TOFSC(B, G) — ]'_—GXt(;(B7 K),

constructed as follows:

e we begin with an arbitrary object B in a pointed finitely complete category
C;

e then take G to be a group in (C | B), and its underlying object in (C | B)
will be written as (G, d);

e we will take K, equipped with a fixed morphism ¢ : K — G, to be a fixed
kernel of d;

o for every G-torsor ((A, a), h), the morphism « has the same kernel K, more
precisely its kernel can be presented as the composite » =

K4><L70> Gixp A - A,
and we put ®p o . ((A a), h) = (A, a, ).

Theorem 2.3. If the ground category C is (pointed and) protomodular, then
the functor ®p ¢ i, above is full and faithful.

Proof. We have to prove that if ((A,«),h) and ((A’, o), k') are G-torsors and
f:A— A" a morphism making the diagram

(¢,0)
4>G1 XBA4>A4>B

d

KHGl xBA’HA’HB
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commute, then the diagram

G1 XBA*}Z)A

et lf

Gl XBA/?A/

also commutes. For, consider the diagram

(¢,0) bra
K— G1 X B A a— A,
(ea,1)
where e : B — (1 is the unit of the group G. Since (¢, 0) is a kernel of the second
projection pry : Gy xg A — A and (eq, 1) splits this projection, the morphisms
(¢,0) and (e, 14) are jointly epic by protomodularity [4, Proposition 11]. Since
we also have

fh{t,0) = h'(t,0) = h'(1 x f){¢,0) and
fh<60é, 1> =f= h/<€(1//, 1>f = h,<60/f, f> = h/(l X f)(eav 1>7
we conclude that fh = h/(1 x f), as desired. O

Now consider the same construction but with variable B and G, which is
nothing but the forgetful functor

® : Torsc — Extc, P®((4,a),h) = (4, a)

from Torsc to the category Extc of effective descent morphisms in C. Again,
on the object level Extc can be identified with the union (which is “almost”
disjoint!) of all Extc(B, K), but this union has less morphisms of course.

Theorem 2.4. If the ground category C is a (pointed) Mal’tsev category, then
the functor ® above is full and faithful, and an effective descent morphism A —
B is contained in its image if and only if it satisfies the equivalent conditions
of 1.1.

Proof. The functor ® is nothing but the composite of the following two functors:
(1) the category equivalence

Torsc ~ REPc,

where REP is the category of regular endo-pregroupoids in C (see the end of
Section 1; the equivalence easily follows from the results of A. Kock [17], [18]);

(ii) the full and faithful forgetful functor from REP¢ to Extc (see Theorem
1.2). O

Note that one could deduce Theorem 2.3 from Theorem 2.4, but the direct
proof we gave is much simpler of course; on the other hand, for a protomodular
C, one could also deduce 2.4 from 2.3. Furthermore, although each ®p ¢k,
can be considered as a restriction of ®, one more theorem is needed to see the
relationship between all these functors.
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Theorem 2.5. Let Pp ¢ i, be as in Theorem 2.3 and ®p ¢k, another similar
functor with the same B and K. Then the following conditions are equivalent:

(a) the functors ®p ¢k, and Pp ¢ i have the same images (in Extc(B, K));

(b) the images of the functors ®p ¢k, and ®Pp g k. have a nonempty inter-
section;

(c) the category Extc(B, K) has a connected component that has nonempty
intersections with each of the images of ®p ¢k, and Ppa k.5

(d) there exists an (iso)morphism 6 =

d
K*)G1<;B

.
KHG —=B

of split extensions.

Proof. Since the implications (a)=-(b)=-(c) are trivial, it suffices to prove
(c)=(d) and (d)=(a).

(¢)=(d): As follows from protomodularity and the results of [10], the category
Extc(B, K) is a groupoid. Therefore the condition (¢) means that there exist
a G-torsor ((A4,a),h), a G'-torsor ((A’,a’), k'), and an isomorphism f =

K*>G1 XBA*>A*>B

d

G’ xg A HA’HB

in Extc(B, K). Since f is also an isomorphism in Extc, Theorem 2.4 tells us
that there exists an isomorphism ¢ = (¢g, 1) : G — G’ such that the pair
(¢, f) is an isomorphism from the torsor h : G x (A, a) — (A, «) to the torsor
G x (A,d) — (A, ). Moreover, ¢y = 1 according to the construction of
® in Theorem 2.4. After that we take § = ¢, and all we will have to prove is
that 10 = ¢/. We observe:

(i) Since (¢, f) is a morphism of torsors, we have h/(¢1 x f) = fh.

(ii) Since the (left-hand square of the) diagram above commutes, (i) implies
h' (1 x f)(¢,0) = h'(/,0).

(iii) For the second projection pr, : G| xg A" — A’, we also have pry(p1 X f)
<Lv O> = pr2<Ll, O>

(iv) Since (A’,a/) is a G'-torsor, h' and pr, are jointly monic, we conclude
(o1 x [){t,0) = (/',0), and then 10 = pri(p1 x f){,0) = pri(/,0) = /', as
desired.

(d)=(a): Suppose (d) holds, and ((A, «),h’) is a G’-torsor. We observe:

(i) It is well known and follows, for example, from [12, Proposition 3.5], that a
pointed object in a Mal’'tsev category admits at most one group structure. Since
6 is an isomorphism from the underlying pointed object of G to the underlying
pointed object of G’, we conclude that it is a group isomorphism.
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(ii) As follows from (i), there exists a unique G-torsor structure h : G x
(A o) — (A, ) such that ((0,1),1) is a torsor isomorphism from h : G x
(A,a) = (A,a) to M : G x (A, a) — (A, «).

(iii) Since ((0, 1), 1) is a torsor isomorphism, h(c,0) = h'(0x1){t,0) = h'{(//,0).
Therefore (I)B,G,K,L((A7 Oé), h) = (I)B,G,K,L’<<A7 Oé), h/)

Since both ®p ¢ i, and p ¢ i are fully faithful, and since the condition (d)
is symmetric with respect to them, this means that they have the same images,
as desired. U

3. THE FUNCTOR Opext

In this section we assume the ground category C to be a pointed protomodular
category with semidirect products in the sense of [10]; in particular it could
be any semi-abelian category. We will write Torsc(B,G) and Extc(B, K)
for the sets of isomorphism classes of objects in Torsc(B, G) and Exte(B, K)
respectively, and freely use the notation from Section 2.

Let Ker : Pt(B) — C be the functor from the category Pt(B) of triples
(A, «, ), consisting of a split epimorphism « : A — B and a splitting 5 : B — A
of it, to C, sending an (A, «, 3) to a specified kernel of a. We recall from [10]
that this functor is monadic, and we will write T for the corresponding monad
on C. TB-algebras will be called B-objects, and T#-algebra structures will be
called a B-actions, as in [3], where these actions were studied systematically.
Let us also recall that a semidirect product B x (X&) of the object B and
a B-algebra (X, ¢) is defined in [10] as the object in Pt(B) corresponding to
(X, €) under the canonical equivalence between Pt(B) and the category C? of
TPB-algebras (= B-objects). If (X,€) was a group in C?, then B x (X,¢) is a
group in Pt(B), and hence also a group in (C | B). Let us recall again that a
group in a pointed Mal’tsev category is nothing but an abelian object.

We define the functor

Opextg(B, —) : [Abelian objects in C®] — [Abelian groups|

as follows:

We take Opextc(B, (X, €))=Torsc(B, Bx(X, ¢)), which makes Opextc(B, —)
a functor into the category of sets. General theory of torsors also tells us that
this functor preserves (finite) products, and so sends groups to groups. And
then we observe that since every abelian object in a pointed Mal’tsev category
is also an abelian group in the category of its abelian objects, such a functor
can also be considered as a functor into the category of abelian groups.

From the results of Section 2 we obtain:

Theorem 3.1. For every object B and every abelian object K in C, the
canonical map
| |Opext(B, (K. £)) — Ext(B, K),
¢c=
where = is the set of all B-actions on K that make (K, &) an abelian object in
C?, is injective, and an extension K — A — B is in its image if and only if
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A — B satisfies the equivalent conditions of 1.1. In particular that canonical
map is bijective whenever C is strongly protomodular (in the sense of [7]).

Remark 3.1. (a) Originally we followed Gerstenhaber and described the im-
age above as consisting of all extensions K — A — B in which the induced
monomorphism K — A X g A is normal, but then the first author has shown [5]
that it is the same condition an in the present Theorem 3.1 above.

(b) As follows from the results of [11], the varieties of universal algebras to
which Theorem 3.1 applies are precisely the BIT speciale varieties in the sense of
A. Ursini [26] that are pointed. Much weaker but still a very useful description
of extensions satisfying 1.1 in as arbitrary Mal’tsev variety was obtained by
J. D. H. Smith [25]. As essentially follows from our Theorem 2.4, this result
certainly extends to Mal’tsev categories.
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