N. INASSARIDZE AND E. KHMALADZE

Non-abelian (Co)Homology of Lie Algebras

The main goal of current work is to construct and investigate non-abelian homology in all dimensions and second cohomology of Lie algebras, basically using ideas from [6, 5, 3], and generalizing the classical Chevalley–Eilenberg (co)homology and extending Guin's low-dimensional non-abelian (co)homology of Lie algebras [2].

Throughout this note all Lie algebras are considered over a commutative ring Λ with identity. We denote byLie the category of Lie algebras.

Let \mathfrak{A}_N denote, for a fixed Lie algebra N, the category whose objects are all Lie algebras M together with an action of M on N and an action of N on M and introduce the free Lie algebra (over Λ -modules) cotriple \mathbb{F} in this category in a reasonable way (see [7]).

The non-abelian tensor product of Lie algebras introduced in [1] is a basic tool for constructing of non-abelian homology of Lie algebras. Let us consider the non-abelian left derived functors $\mathcal{L}_{k}^{\mathbb{F}}(-\otimes N), k \geq 0$ of the covariant functor $-\otimes N : \mathfrak{A}_{N} \rightarrow$ Lie relative to the cotriple \mathbb{F} .

Proposition. Let M be a Lie algebra and N be a module over M thought as an abelian Lie algebra acting trivially on the Lie algebra M, then there are natural isomorphisms

$$\mathcal{L}_{k}^{\mathbb{F}}(-\otimes N)(M) \approx H_{i+1}^{CE}(M,N) , \qquad k \ge 1 ,$$

Ker $\nu \approx H_{1}^{CE}(M,N) ,$ Coker $\nu \approx H_{0}^{CE}(M,N) ,$

where $\nu: M \otimes N \to N$ is a Lie homomorphism given by $\nu(m \otimes n) = {}^{m}n, m \in M, n \in N$ and H^{CE}_{*} denotes the Chevalley-Eilenberg homology of Lie algebras.

Using this proposition we make the following

Definition. Let M and N be Lie algebras acting on each other. Then the non-abelian homology of M with coefficients in N are defined by the following way:

$$H_k(M, N) = \mathcal{L}_{k-1}^{\mathbb{F}}(-\otimes N)(M) , \qquad k \ge 2 ,$$

$$H_1(M, N) = \operatorname{Ker} \nu , \qquad H_0(M, N) = \operatorname{Coker} \nu ,$$

where $\nu: M \otimes N \to N \nearrow H$, $\nu(m \otimes n) = |mn|$, and H is the ideal of the Lie algebra N generated by the elements ${}^{(n}m)n' - [n', {}^mn]$ for all $m \in M, n, n' \in N$.

Main result obtained on non-abelian homology of Lie algebras is the long exact homology sequence relating cyclic homology and Milnor cyclic homology, correcting the result of [2]. In particular, for a unital associative Λ -algebra A we introduce the definition of the first Milnor cyclic homology $HC_1^M(A)$ of A as the quotient of $A \otimes_{\Lambda} A$ by the relations

$$\begin{split} & a\otimes b+b\otimes a=0 \ , \\ & ab\otimes c-a\otimes bc+ca\otimes b=0 \ , \\ & a\otimes bc-a\otimes cb=0 \end{split}$$

²⁰⁰⁰ Mathematics Subject Classification: 17B40, 17B56, 18G10, 18G50.

Key words and phrases. Non-abelian tensor product, non-abelian (co)homology of Lie algebras, cyclic homology.

¹²³

for all a, b, $c \in A$ (this coincides with the definition in the sense of [8] when Λ is a field of characteristic zero) and have the following

Theorem. Let A be a non-commutative associative Λ -algebra with identity. Then there is an exact sequence of Λ -modules

$$\cdots \longrightarrow H_2(A, V(A), [A, A]) \longrightarrow H_2(A, V(A)) \longrightarrow H_2(A, [A, A]) \longrightarrow$$
$$\longrightarrow H_1(A, V(A), [A, A]) \longrightarrow H_1(A, V(A)) \longrightarrow H_1(A, [A, A]) \longrightarrow$$
$$\longrightarrow HC_1(A) \longrightarrow HC_1^{M(A)} \longrightarrow [A, A]/[A, [A, A]] \longrightarrow 0,$$

where [A, A] is the additive commutator of A, V(A) is defined as the quotient Lie algebra of the non-abelian tensor product $A \otimes A$ by the ideal generated by the elements $a \otimes b + b \otimes a$, $ab \otimes c - a \otimes bc + ca \otimes b$, $a, b, c \in A$ and $HC_1(A)$ is the first cyclic homology of A.

In order to introduce the second non-abelian cohomology of Lie algebras we define P-crossed R-module (M, μ) in the context of Lie algebras (the group theoretic analogue is given in [3], [4]) and construct the Lie algebra of derivations $\text{Der}(P, (M, \mu))$, which coincides with the Lie algebra $\text{Der}_R(R, M)$ from [2] when (M, μ) is a crossed R-module viewed as an R-crossed R-module.

Consider the following diagram of Lie algebras

$$P \quad \frac{l_0}{l_1} F \xrightarrow{\tau} R, \tag{(*)}$$

where F is a free Lie algebra over some Λ -module, R acts on F and also on itself by Lie multiplication, τ has Λ -module section preserving the actions, $P = \{(x, y) \in F \times F \mid \tau(x) = \tau(y)\}$, $l_0(x, y) = x$ and $l_1(x, y) = y$. Then any crossed R-module (M, μ) can be viewed as a P-crossed R-module induced by τl_i (i = 0, 1) and a F-crossed Rmodule induced by τ . Denote by $\widetilde{Z}^1(P, (M, \mu))$ the subset of $\text{Der}(P, (M, \mu)$ consisting of all elements of the form $(\alpha, 0)$ satisfying the condition $\alpha(\Delta) = 0$, where $\Delta = \{(x, x) \mid x \in F\} \subseteq P$. Clearly $\widetilde{Z}^1(P, (M, \mu))$ is Λ -submodule of $\text{Der}(P, (M, \mu))$.

Denote by $\widetilde{B}^1(P, (M, \mu))$ the Λ -submodule of $\widetilde{Z}^1(P, (M, \mu))$ consisting of all elements $(\alpha, 0)$ for which there exists $(\beta, h) \in \text{Der}(F, (M, \mu))$ with $\beta l_0 - \beta l_1 = \alpha$. Then $\widetilde{Z}^1(P, (M, \mu))/\widetilde{B}^1(P, (M, \mu))$ is unique up to isomorphism of choosing the diagram (*) for crossed *R*-module (M, μ) . Moreover, one has the following

Proposition. Let R be a Lie algebra and (M, μ) a crossed R-module.

(i) There is a canonical $\Lambda\text{-module epimorphism}$

 $\vartheta: H^2_{CE}(R, \operatorname{Ker} \mu) \longrightarrow \widetilde{Z^1}(P, (M, \mu)) / \widetilde{B^1}(P, (M, \mu)) ,$

(ii) If $r \in Z(R)$ for any element $(\alpha, r) \in Der(F, (M, \mu))$, then ϑ is an isomorphism.

Note that the condition (ii) of this proposition is always satisfied when either R is an abelian Lie algebra or M is an R-module thought of as crossed R-module (M, 0). This assertion motivates the following

Definition. Let R be a Lie algebra and (M, μ) a crossed R-module. Then the Λ -module $\widetilde{Z}^1(P, (M, \mu))/\widetilde{B}^1(P, (M, \mu))$ will be called the second non-abelian cohomology of R with coefficients in (M, μ) and will be denoted by $H^2(R, M)$.

Finally using our second cohomology module of Lie algebras we prolong Guin's sixterm exact cohomology sequence [2] to nine-term exact cohomology sequence.

Theorem. Let R be a Lie algebra and

$$0 \longrightarrow (L,0) \stackrel{\xi}{\longrightarrow} (M,\mu) \stackrel{\theta}{\longrightarrow} (N,\nu) \longrightarrow 0$$

124

an exact sequence of crossed R-modules, having a A-module section. Then there is an exact sequence of A-modules

$$\begin{split} 0 &\longrightarrow H^0(R,L) \xrightarrow{\xi^0} H^0(R,M) \xrightarrow{\theta^0} H^0(R,N) \xrightarrow{\delta^0} H^1(R,L) \xrightarrow{\xi^1} H^1(R,M) \\ &\xrightarrow{\theta^1} H^1(R,N) \xrightarrow{\delta^1} H^2(R,L) \xrightarrow{\xi^2} H^2(R,M) \xrightarrow{\theta^2} H^2(R,N) \;. \end{split}$$

where θ^1 is a Lie homomorphism and δ^1 is crossed homomorphism with the action of $H^1(R, N)$ on $H^2(R, L)$ induced by the action of R on L.

References

1. G. J. Ellis, A non-abelian tensor product of Lie algebras. Glasgow Math. J. ${\bf 33}(1991),\,101{-}120.$

2. D. Guin, Cohomologie des algèbres de Lie croisées et K-théorie de Milnor additive. Ann. Inst. Fourier, Grenoble **45**(1995), No. 1, 93–118.

3. H. Inassaridze, Non-abelian cohomology of groups. Georgian Math. J. 4(1997), No. 4, 313–332.

4. H. Inassaridze, Higher non-abelian cohomology of Groups. *Glasgow Math. J.* (accepted for publication).

5. H. Inassaridze and N. Inassaridze, Non-abelian homology of groups. K-Theory ${\bf 18} (1999), \, 1{-}17.$

6. N. Inassaridze, Non-abelian tensor products and non-abelian homology of groups. J. Pure Applied Algebra **112**(1996), 191–205.

7. N. Inassaridze, E. Khmaladze, and M. Ladra, Non-abelian tensor product of Lie algebras and its derived functor. *Extracta Math.* **17**(2002), No. 2, 281–288.

8. J.-L. Loday, Cyclic homology. Grundlehren der Mathematischen Wissenschaften, 301, Springer-Verlag, 1992.

Authors' address: A. Razmadze Mathematical Institute Georgian Academy of Sciences 1, Aleksidze St., Tbilisi 0193 Georgia