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SOME ASPECTS OF HOMOTOPIC ALGEBRA
AND NON-ABELIAN (CO)HOMOLOGY THEORIES

N. Inassaridze UDC 512.66

ABSTRACT. This monograph is devoted to the study of homological and homotopic properties of vari-
ous algebraic structures. The problems considered and line of investigation taken fall under the general
headings of non-Abelian homological algebra and simplicial methods in category theory, with applica-
tions to K-theory and cyclic homology.
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INTRODUCTION

This monograph is devoted to the study of homological and homotopic properties of various algebraic
structures. The problems considered and line of investigation taken fall under the general headings
of non-Abelian homological algebra and simplicial methods in category theory, with applications to
K-theory and cyclic homology. Work in these areas has had fundamental applications in diverse fields
of mathematics and has made a significant impact on the development of many areas of mathematics.

Homotopical algebra, in particular, simplicial algebra, including its non-Abelian and categorical
aspects, is inspired by geometrical and topological constructions and plays a crucial role in the rapidly
expanding areas of K-theory—cyclic homology and homotopy theory. While in classical (Abelian)
homological algebra additive functors from Abelian (or additive) categories to Abelian categories are
investigated, one powerful tool of simplicial algebra is the notion of derived functors of nonadditive
functors, called non-Abelian derived functors, which has been applied to the simplicial-group approach
to algebraic K-theory developed by Swan [120] and Keune [82] and advanced in non-Abelian homolog-
ical algebra by Inassaridze [60] and others. On the other hand, most of the well-known (co)homology
functors are described in terms of non-Abelian derived functors as (co)triple (co)homology (see the
works of Barr and Beck [4, 5] and Duskin [40]).

The proposed results of this work are concentrated around homotopical algebra and (co)homology
theories with special attention to the approach based on non-Abelian derived functors to (co)homology
theories, their g-modular analogs, and n-fold Cech derived functors. It is a continuation of the author’s
previous investigations described in [68-70].

The main aims of this paper are to state and develop a general theory of n-fold Cech derived
functors, £74T of group-valued functors T : U — ®r, generalizing to that of Cech derived
functors introduced some 30 years ago by Pirashvili [103] (see also [60]) as an algebraic analog of the
Cech (co)homology of open covers of topological spaces, and to illustrate the methods of this theory
to generalize further the Brown—Ellis higher Hopf formulas for integral group homology [14].

Homology groups are the derived functors of the abelianization functor, which, of course, kills the
commutator subgroup of a group. Our generalization handles the derived functors of the functors
that kill higher commutators. More precisely, the “nilization of degree k” functor, Z;(G), k > 2, is
given by Zp(G) = G/Tk(G), where {I'y(G), k > 1} is the lower central series of a given group G.
These Z;, are endofunctors on the category of groups and generalize the abelianization functor, so their
non-Abelian left derived functors, L¥ Z, n > 0, with P a projective class of free groups, generalize
the group homology functors H,, n > 1 (cf., e.g., [5]). Namely, one of the main result of the paper
(Theorem 3.9) says that for a given group G, its free exact n-presentation § (see Definition 1.15) and
k > 2, there is an isomorphism

N RiNT(F)
i€(n)
Dk(F;Rl,...,Rn)’

1%

LY Z,(G) = £rd z.(@) n>1,

where (F; Ry, ..., Ry) is the normal (n + 1)-ad of groups induced by §.
Moreover, applying our results, we obtain the following Hopf type formula in algebraic K-theory.



Let R be a ring with unit and (F,d), GL(3R)) be a free pseudo-simplicial resolution of the general
linear group GL(fR). Then there is an exact sequence of Abelian groups

N Kerd?l)ﬂf‘j(Fn)>

(1) <i6<n+1>
0 = L&n Dj(Fn;Kerd?,....Ker dr)
J

- n+1(%) - L Dj(Fn_l;Kerd(T)Hl,...7Kerd2:i)
J

( N Kerd! ")l (Fu1)
) -0
for n > 1.

Particular attention in this paper is paid to the investigation of elegant algebraic models of connected
CW-spaces whose homotopy groups are trivial in dimensions greater than n+1 introduced by Ellis and
Steiner in [49] and called crossed n-cubes of groups. These models are more combinatorial algebraic
systems, but equivalent to that previously invented by Loday in [87] and called catn-groups. The
origin of these notions comes from the late 1940s by the notion of crossed modules first given by
Whitehead in [127] as a means of representing homotopy 2-types. A number of papers of the last
years are dedicated to the investigation of homological properties of these objects. We mentioned here
the papers [6, 21, 23, 46, 56, 85].

We study the diagonal of the n-simplicial multinerve E£n) of crossed n-cubes of groups in connection
with the n-fold Cech complexes and with the abelianization of crossed n-cubes of groups 2. In
particular, here we distinguish the following result for crossed n-cubes, which plays an essential role
in obtaining generalized Hopf type formulas for the homology of crossed n-cubes.

Let n > 0, m > 1, and M be a crossed (n 4+ m)-cube. Then there is an isomorphism of simplicial
crossed n-cubes

A6 B (M), = EMp+m) (M),

The universality of our new purely algebraic methods of n-fold Cech derived functors provides
motivation to investigate other cotriple homology theories from a Hopf formula point of view. In
fact, we study the tripleability of the category of crossed n-cubes (cf. [23]) and the leading cotriple
homology of these homotopy (n + 1)-types. Namely, there is an isomorphism

N RN T E@)sX@)
i€(m) BUC=(n)

Hm-l—l(M) = m > 17

n( o [nepnE])

AC(m) “ BUC=(n) “icA ¢ A
for any crossed n-cube M and its projective exact m-presentation X, where R = Ker(X(9) —
X({i})) for i € (m). This result generalizes to that of Brown—-Ellis [14] and the Hopf formula for the
second CCG-homology of crossed modules [21].

The non-Abelian homology of groups with coefficients in groups was constructed and investigated
in [67, 68] using the non-Abelian tensor product of groups of Brown and Loday [17, 18] and its
non-Abelian left derived functors, generalizing the classical Eilenberg—MacLane homology of groups
and extending Guin’s low-dimensional non-Abelian homology of groups with coefficients in crossed
modules [53], which has an interesting application to the algebraic K-theory of noncommutative
local rings [53, 68]. In [61-63] Inassaridze developed a non-Abelian cohomology theory previously
defined by Guin in low dimensions [53] generalizing the classical Eilenberg-MacLane cohomology of
groups. In this paper, we continue the investigation of non-Abelian group homology theory establishing
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some interesting functorial properties and making some explicit computations of low-dimensional non-
Abelian homologies.

Another goal of this paper is to set up a similar non-Abelian (co)homology theory for Lie algebras,
stating and proving several desirable properties of this (co)homology theory.

In [45] Ellis introduced and studied the non-Abelian tensor product of Lie algebras, which is a
Lie structural and purely algebraic analog of the non-Abelian tensor product of groups of Brown
and Loday [17, 18]. Applying this tensor product of Lie algebras, Guin defined the low-dimensional
non-Abelian homology of Lie algebras with coefficients in crossed modules [55].

We construct a non-Abelian homology H, (M, N) of a Lie algebra M with coefficients in a Lie algebra
N as the non-Abelian left derived functors of the tensor product of Lie algebras, generalizing the
classical Chevalley—Eilenberg homology of Lie algebras and extending Guin’s non-Abelian homology
of Lie algebras [55]. We give an application of our long exact homology sequence to cyclic homology
of associative algebras, correcting the result of [55]. In fact, for a unital associative (noncommutative)
algebra A we obtain a long exact non-Abelian homology sequence

= Hy(A,V(A),[A, A]) > Hy(A,V(A)) > Hy(A,[A, A)) >
>H1(A7V(A)7[A7A]) >H1(A7V(A)) >H1(A7 [A7A]) =
= HCy (A) = HC{V[(A) = [A7 A]/[A7 [A7 AH >0.

Following [55] and using ideas from [61], we introduce the second non-Abelian cohomology H?(R, M)
of a Lie algebra R with coefficients in a crossed R-module (M, 1), generalizing the classical second
cohomology of Lie algebras. Then, for a coefficient short exact sequence of crossed R-modules

0o (&0 >WMp =@N,v) >0,

having a module section over the ground ring, we give a nine-term exact non-Abelian cohomology
sequence

0 =HYR L) =HR,M) >=H°R/N) =HYR/L) =HY R M) =
-H'R,N) =H*R,L) ~H*(RM) =H*R,N),

extending the seven-term exact cohomology sequence of Guin [55], which exists under the aforemen-
tioned additional necessary condition on the coefficient sequence of crossed modules.

During the last twenty years many important works appeared investigating the mod ¢ versions of
algebraic and topological topics.

For example, in [101] Neisendorfer, following F. P. Peterson [102], constructed and studied a ho-
motopy theory with Z/q coefficients (primary homotopy theory) having important applications to
K-theory and homotopy theory.

In [9] Browder defined and investigated a mod ¢ algebraic K-theory called the algebraic K-theory
with Z/q coefficients.

In [119] Suslin and Voevodsky calculated the mod 2 algebraic K-theory of the integers as a result
of Voevodsky’s solution of the Milnor conjecture [124].

In [32] Conduché and Rodriguez—Fernandez introduced and studied non-Abelian tensor and exterior
products modulo ¢ of crossed modules, generalizing definitions of Brown [13] and Ellis and Rodriguez
[48] (see also [47, 112]) and having properties similar to the Brown-Loday’s non-Abelian tensor product
of crossed modules [17, 18].

In [81] Karoubi and Lambre introduced the mod ¢ Hochschild homology as the homology of the
mapping cone of the morphism given by the ¢ multiplication on the standard Hochschild complex.
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Then they constructed the Dennis trace map from mod ¢ algebraic K-theory to mod ¢ Hochschild
homology and found an unexpected relationship with number theory.

The final goals of this work are to investigate the non-Abelian tensor (exterior) product modulo
g of Conduché and Rodriguez—Ferndndez [32], to introduce and study mod ¢ group homology and
cohomology theories, and to unify them into a mod ¢ Tate—Farrell-Vogel group cohomology theory.

We show that the “absolute” tensor product modulo ¢, G ® YH, of two groups G and H with
compatible actions is the quotient of non-Abelian tensor product G ® H by ¢(H1(G, H) N Hy(H,G)),
where H; is the first non-Abelian group homology. We generalize Guin’s isomorphism [12][12] for the
tensor product modulo ¢ by giving the short exact sequence of groups

0 >G4 >I1(G,q®:A >qZ®cA =0, q=>0,

where G is a group, A is G-module, and I(G, q) is the kernel of the morphism € : Z[G] — Z,.

We give an application of tensor product modulo ¢ to algebraic K-theory with Z, coefficients [9] of
noncommutative local rings. In particular, for a noncommutative local ring A such that A/ Rad A # Ty
and ¢ > 1, there is an exact sequence of groups

((A*)® @7 Ko(A))/q @ Tor(K2(A),Z/q) > Ker Epyay T Ker&ly 4q -

> Ko(A;Z)q)  >Sym(A;Z/q) > ([A% A]/[A% [A%, A%]]) /g >0

This result is a ¢-modular analog of Guin’s six-term exact sequence relating the non-Abelian homology
of groups with Milnor’s K3 and the symbol group Sym (see [53]).

We introduce mod ¢ homology, H.(G, A;Z/q), and cohomology, H*(G, A;Z/q), of a group G with
coefficients in a G-module A, naturally inspired in the study of non-Abelian left derived functors of the
“absolute” tensor product modulo ¢ of groups, and which are the homologies of the mapping cones of
the ¢ multiplication on the standard homological and cohomological complexes, respectively, as in the
case of the mod ¢ Hochschild homology [81]. We have the following short exact sequences (universal
coefficient formulas) for mod ¢ group (co)homology relating them to classical group (co)homology:

0 - H,(G,A)®7Z/q - H,(G,A;Z/q) > Tor(H,—1(G,A),Z/q) =0,
0 ~H"YG,A) ®Z/q ~H"(G,A;Z/q) > Tor(H"(G,A),Z/q) >0,

for n > 0.

We introduce the notions of mod ¢ version torsors and extensions to describe the first and second
mod ¢ cohomologies of groups, respectively.

We express the mod ¢ cohomology of groups in terms of cotriple (right) derived functors of the
kernels of higher dimensions of the mapping cone of the ¢ multiplication on the standard cohomological
complex. In fact, for a given group G and a G-module A we have the isomorphisms

REZMG, A;Z/q) = ZM(G, A 2/ g),
R}ZM(G, A;Z/q) = H'NG, A Z/g),

for k > 1 and n > 0.

We give an account of the Vogel cohomology theory [125]. In [52] Goichot gave a detailed exposition
of Vogel’s homology theory and its relations to Tate and Farrell theories. We shall give here the
cohomological approach (see also [128, § 5]). Then the mod ¢ Tate-Farrell-Vogel cohomology of
groups is introduced unifying mod ¢ homology and cohomology of groups. Finally we show how the
periodicity properties of finite periodic groups extend to mod g Tate cohomology.

The results of this paper were published in [24, 31, 39, 65-67, 71-75].



Notation and Conventions. We denote the categories of sets, groups, and Abelian groups by Set,
®r, and Ab®r, respectively.

For any set A, its cardinality is denoted by |A|.

For a nonnegative integer n, we denote by (n) the set of first n natural numbers {1,--- ,n}.

Given a group G and n normal subgroups, Ry,..., R,, the tuple, (G;Ry,...,Ry), will be called a
normal (n + 1)-ad of groups, while Z(G) and [G, G| denote the center and the commutator subgroup
of G, respectively. Moreover, for any elements a,b € G, [a,b] is the commutator aba~1b1.

Given a (pseudo)-simplicial object X, and a (pseudo)-simplicial morphism f, in a category U and
a functor T : U — &r, denote by T'(X.) and T(f.) the (pseudo)-simplicial group and (pseudo)-
simplicial group morphism obtained by applying the functor 7" dimensionwise to X, and to f,, respec-
tively.

CHAPTER 1

DERIVED FUNCTORS

In this chapter, we give a brief introduction to non-Abelian and Cech derived functors. For a fuller
account of these derived functors, we refer the reader to [60]. We pay particular attention to Cech
derived functors and develop its n-fold analog.

In Sec. 1, we recall the well-known notions and results on the non-Abelian derived functors of
group-valued functors with respect to projective classes and cotriples.

In Sec. 2, we give a brief introduction to Cech derived functors (see also [60]); then their n-fold
analogs are examined. The Cech derived functors of group-valued functors were introduced in [103]
(see also [60]) as an algebraic analog of the Cech (co)homology construction of open covers of topo-
logical spaces with coefficients in sheaves of Abelian groups (see [115]). It is well known that the
Cech cohomology of topological spaces with coefficients in sheaves is closely related to the sheaf co-
homology of topological spaces; in particular, this relation is expressed by spectral sequences [115].
Some applications of Cech derived functors to group (co)homology theory and K-theory are given
in [103-105).

The notion of Cech derived functors is generalized to that of the n-fold Cech derived functors of a
group-valued functor, and their relationship to the non-Abelian derived functors is given in terms of
spectral sequences. Later in Chap. 3, based on this notion, we get a new purely algebraic method for
the investigation of higher integral group homology from a Hopf formula point of view and the further
generalizations of these formulas. This method is universal and is valid for other algebraic structures.

1. Non-Abelian Derived Functors

In this section, we recall some well-known notions and results about derived functors of nonadditive
functors from [60, 103, 123].

1.1. Pseudo-simplicial objects. First some terminology and notation on pseudo-simplicial ob-
jects in a category are examined.

Definition 1.1. Let U be a category. By a pseudo-simplicial object X, in U is meant a nonnegatively
graded object with face morphisms d' : X,, — X,,_1 and pseudo-degeneracy morphisms s} : X,, —
Xn+1, 0 <@ < n, satistying the following conditions:

d?_ld? =d" Y for i< j,

j—1""1
d?“s? = 8?__11(1? for i<y,



iy =1=dyllst, At =0T for 0>+ 1

The following identity on pseododegeneracies:

n+l n _ n+l n - -
Sy =858 for i<

S; g

is possibly not fulfilled. Otherwise we obtain the notion of a simplicial object in the category U.

A morphism f, : X, — X/ of pseudo-simplicial objects is a morphism of degree zero of graded
objects that commutes with the face and the degeneracy morphisms, i.e., a nonnegatively graded
family of morphisms {f, : X,, — X,, n > 0} with f,_1d} =d!'fn, n > 0, and fp115" = s'fn, n >0
for all 0 < i <n.

Definition 1.2. Let f, and g, be two morphisms from X, to X.. We say that f, is pseudo-homotopic
to g., denoted by fi ~ g, if there exist morphisms hl" : X,, — X/, 41, 0 <7 < n, such that the
following conditions hold:

d8+lhn = fny dZI%hZ = On,

d;”lh? = h;f‘__lld? for i< j,

diEng =iy, ATy = RN for >+ 1

If, in addition, the conditions
+lpn _ pntl S
s; " hy = hilysy for i<,
+1 +1 S
siTh =hyT sy for P>

are satisfied, we say that f, is homotopic to g..

An augmented pseudo-simplicial object (X,,d}, X) in the category U is a pseudo-simplicial object
X, with a morphism dJ : Xo — X such that d}d) = did}. It is (left) contractible if there exist
morphisms A, : X,, — Xp41, n > 0, and h : X — X, such that d}h = 1, dg“hn =1,n>0,
diho = hdl, and d} ' hy, = hyqd? | forn > 1,1 <i<n+1.

Now consider the pseudo-simplicial objects in the category &t (cf. [60] for the general theory). For
examples of pseudo-simplicial groups, see [90].

n—1
Let G, be a pseudo-simplicial group, N, (Gx) = () Kerd?, n > 0, and 0, the restriction of d} to
i=0
N,(Gy), n > 0. Then ImJ, is a normal subgroup of G,_1, and Im 9,41 C Kerd,, for n > 0. This
determines the Moore chain complex [96] N(G,) = {N,(Gx), 0}, which clearly is independent of the
pseudo-degeneracies and depends only on the face morphisms.

Definition 1.3. The nth homology group of the chain complex N(G,) is called the nth homotopy
group m,(Gy) of the pseudo-simplicial group G, n > 0.

According to [96, Proposition 17.4] the nth homotopy group of a simplicial group coincides with the
group m,(Gy). We also note that if an augmented pseudo-simplicial group (G, d3, G) is contractible
then 7,(Gx) = 0, n > 1, and dY induces an isomorphism mo(G,) = G.

Given a pseudo-simplicial group G, it is easy to verify that there are other chain complexes
N'(G,) = {N}(G.),0,} where N}(G,) = () Kerd!', A = {0,....,n} \ k, 0 < k < n, and 9, is

€A
the restriction of d} to N},(Gx), n > 0. Then the nth homology group of the chain complex N'(G.)
coincides with the group 7,(G.), n > 0 (see [60]).

Let fy, : G, — G’ be a morphism of pseudo-simplicial groups. Then it is easy to see that it

naturally induces group homomorphisms m,(f.) : 7, (Gs) — 7, (G%), n > 0.



Theorem 1.4. The homotopy groups m,(Gy) are Abelian for n > 1. If the morphisms of pseudo-
simplicial groups f«, g« : Gx — G, are pseudo-homotopic, then m,(f«) = 7n(g«), n > 0.

Definition 1.5. A morphism f, : G, — G, of pseudo-simplicial groups is called a fibration if the
homomorphism f, : G,, — G/, is surjective for all n > 0.

Theorem 1.6. If f. : G, — G, is a fibration, then the sequence of homotopy groups
>7Tn+l(G:<) >7rn(Kerf*) >7Tn(G*) >7Tn(G:<) > ..

is exact, where Ker f, is the following pseudo-simplicial group {Ker f,, n > 0}.

1.2. Comparison of non-Abelian and cotriple derived functors. Let U be an arbitrary cat-
egory, and P a projective class of objects in U in the sense of Eilenberg—Moore. This is a class of
objects in U such that for every object X € U there exists a P-epimorphism 7 : P — X, where
P belongs to the class P; a morphism f : X — X’ in U is said to be P-epimorphic if the map
Homy (P, f) : Homy (P, X) — Homy, (P, X') is surjective for every P € P.

Let X and Y be objects in the category U, and

do
>
Yy X
o>
dn,
be sequence of n + 1 morphisms, n > 0, in U. A simplicial kernel of (do,...,d,) is a sequence
ko
>
K .Y
>
kn41

of n + 2 morphisms in U satisfying d;k; = d;_1k; for 0 < ¢,5 < n + 1 and universal with respect to
this property. That is, if

do
>
Z Y
o>
dyia
is any other sequence satisfying did;- = d;j_1d; for 0 < 4,5 < n+ 1, then there exists a unique

0:Z — K such that k;,0 =d;, 0 <i<n+ 1.

For any object X € U we consider a P-projective resolution (X, d8, X) in the sense of Tierney—Vogel
(see [123]). A nonnegatively graded object X, with face morphisms d} : X, — X,,—1, 0 < i < n,
and a morphism dj : Xo — X, satisfying the condition d?_ld;‘ = d;‘__lld?, 0<i<j<n,is called
P-projective if each X,, belongs to the class P and is called P-exact if each natural morphism from
X1 to the simplicial kernel of (d%,...,d") is P-epimorphic. (X,dJ, X) is called the P-projective
resolution of X if it is P-projective and P-exact. We note that any P-projective resolution admits
pseudo-degeneracy morphisms s : X,, — X411, 0 < i < n (see [123]), which was the reason to
consider the theory of pseudo-simplicial groups in [59].

If in the category U there exist finite limits, then every object admits such a resolution.



Theorem 1.7. Let (X,,d},X) be P-projective and (X.,d},X') be P-exact. Then any morphism
f:X — X" inlU can be extended to a morphism f.: X, — X over f, i.c., the diagram

dO
X, =X
A
X! > X'

is commutative. Furthermore, any two such extensions are pseudo-homotopic.
According to this theorem, we have the following definition of non-Abelian left derived functors.

Definition 1.8. Let U be a category with finite limits. For an arbitrary covariant functor T : U —
®t, define the nth left derived functor LET U — G, n > 0, relative to the projective class P, by
choosing for each X € U, a P-projective resolution (X, d8, X) and setting

LYT(X) = m(T(X)) and  LEYT(f) = ma(T(f.))
for any object X € U and any morphism f € U.

A cotriple F = (F,7,d) in a category U is an endofunctor F' : U — U together with natural
transformations 7 : F — 13y and 6 : F — F?, satisfying the commutativity conditions

F 5>F2 F 6>F2
1Fl/ TFllFT’ 61 lFé :
F F o =

Then the cotriple F induces the projective class P: X € P if and only if there exists a morphism
¥ : X — F(X) such that 7x9¥ = 1x. In fact, F(X) € P and the morphism 7x : F(X) — X is a
P-epimorphism for any object X € U.

Given an object X € U, consider the augmented simplicial object (Fi.(X),dJ, X) in the category U,
where

Fo(X) = F""Y(X) = F(F"(X)), d! = FirF"™' s = F'§F"", 0 < i < n, which is called the cotriple
resolution of X (see [120]).

Definition 1.9. Let T : Y — &t be a covariant functor. We define the nth left derived functor
LIT :U — &t, n > 0, relative to the cotriple F, by setting

L7T(X) = mp(T(Fu(X))) and  L7T(f) = mo(T(F™1(f)))
for any object X € U and any morphism f € U.
Now we compare these derived functors giving the following result of [103].
Proposition 1.10. Let T : U —> &r be a covariant functor. There is an isomorphism
LPT=L7T, n>0.

In spite of Proposition 1.10 the preferable usage of one of these derived functors is given in Chap. 4,
Theorems 4.17 and 4.19 (derived functors relative to cotriple), and Theorem 4.23 (derived functors
relative to projective class).



2. N-Fold Cech Derived Functors

In this section, U always denotes a category with finite limits and P a projective class in the category
U, unless otherwise stated.

2.1. Cech derived functors. Given an object X and a morphism « : P — X in the category U,
denote by P xx --- xx P the limit of the finite diagram {o : P — X}, ,, in the category U with
D e — )
(n+1)-times
natural morphisms o; : P Xx --- xx P — P, 0 <7 < n, such that ao; = aa; for all 0 < 4,5 < n.
—_——
(n+1)-times

An augmented simplicial object (C(a)4,, X) in the category U, where C(a), = P xx --- Xx P
—_——

(n+1)-times
for n > 0, the face morphism d} : C(a), — C(a)p—1, 0 < i < n, is induced by the morphisms
(ag,...,Q4,...,0p), and the degeneracy morphism s : C(a), — C(a)nt1, 0 < i < n, is induced
by the morphisms (ag, ..., a;, &, Qiq1,...,q,), will be called the Cech augmented complex for a (see
also [60, 103]). If P belongs to the projective class P and « is a P-epimorphism, (C(a)s, o, X) will
be called a Cech resolution of X. Note that the objects C(a),, n > 1, do not usually belong to the

projective class P.

Definition 1.11. Let 7 : f — &r be a covariant functor. Define the ith Cech derived functor
LT U — Br, i > 0, of the functor T" by choosing, for each object X € U, a P-epimorphism
a: P — X with P € P and setting

LT(X) =m(TC(a)y).

The next lemma shows that this definition does not depend on the choice of a P-epimorphism
«a: P — X with P € P, and the functors £;T, i > 0, are well defined.

Lemma 1.12. Leta: P — X, 8:Q — Y, and A : X — Y be any morphisms in the category
U, and fy, gs : é(a)* — é(,@)* be morphisms of simplicial objects over A. Then f, and g, are
pseudo-simplicially homotopic, fy > gs.

Proof. We only construct the pseudo-simplicial homotopy. In fact, the morphism h; : C(a), —
C(B)n+1, 0 < i < n, is naturally induced by the morphisms (g, . .., g, fay, ..., fay), where g = go
and f = fy. |

The prime usage of the Cech derived functors are in the classical group (co)homology theory [103—
105]. Here is an illustration. It is a classical fact that the nth non-Abelian derived functor of the
functor Hy : &r — Ab®r is isomorphic to (n + 1)th group homology. So the functor H; determines
all higher homologies. With the use of Cech derived functors, the following beautiful result of [105]
leads one to think that the functor Hs : &r —> Ab®r determines also all higher homologies.

Proposition 1.13. Forn > 1, there are isomorphisms
Ho, = L,H, and Hyp1 = LyHyyn,
where P is the projective class of free groups in the category &r.

In Chap. 3 the Cech derived functors of the group abelianization functor enlighten our motivation
to develop the n-fold analog of some of this theory.
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2.2. Construction of n-fold Cech derived functors. In this section, we generalize the notion
of the Cech derived functors to that of the n-fold Cech derived functors of group-valued functors.

The subsets of (n) are ordered by inclusion. This ordered set determines in the usual way a category
Cp. For every pair (A, B) of subsets with A C B C (n), there is the unique morphism p’é :A— B
in C,,. It is easy to see that any morphism in the category C,,, not an identity, is generated by pj% for
all AC (n), A# (n), B=AU{j}, j ¢ A.

An n-cube in the category U is a functor §: C, — U, A —> Fa, pj% — aj%. A morphism between
n-cubes §,Q : C,, — U is a natural transformation s : § — Q.

Let A C (n) and consider two full subcategories of the category C,: C2 is the category of all subsets
of (n) containing the subset A and C is the category of all subsets of (n) having the trivial intersection
with the subset A. For a given n-cube in the category U, and A as above, denote by 4 and 4 the
functors induced by the restriction of the functor § to the subcategories C/* and C4 respectively. For
a given morphism of n-cubes x : § — £ in the category U denote by k? : 4 — Q4 the natural
transformation induced by restriction of the natural transformation x.

Example 1.14.

(a) Let (G;Ry,...,Ry) be a normal (n + 1)-ad of groups. These data naturally determine an n-
cube of groups § as follows: for any A C (n), let §4 = G/ [] Ri; for the inclusion A C B, let
€A
a’é : §4 — §B be the natural homomorphism induced by 1r. This n-cube of groups will be
called the n-cube of groups induced by the normal (n + 1)-ad of groups, (G; Ry, ..., Ry).
(b) Let (X.,d}, X) be an augmented pseudo-simplicial object in the category U. A natural n-cube
XM . ¢, — U, n>1,in U is defined as follows:

X =X, 1y forall AC (n),

aﬁu{j} = dz:i_‘Al for all A# (n), j ¢ A,

where X_; = X, §(k) = j,and 6 : (n — |A|) — (n) \ A is the unique monotone bijection.

Given an n-cube § in the category U. It is easy to see that there exists a natural morphism
Fa a>AlimBDASB for any A C (n), A# (n).

Definition 1.15. Let X be an object in the category U. An n-cube § will be called an n-presentation
of X in the category U if §(,y = X. An n-presentation § of X will be called P-projective if the object
§4 belongs to the projective class P for all A # (n) and will be called P-ezact if the morphism a4 is
P-epimorphic for all A # (n).

Note that for any object of U we can construct step by step its P-projective P-exact n-presentation
(see also fibrant n-presentations of a group in the sense of Brown—Ellis [14]). Moreover, we have the
following proposition.

Proposition 1.16. Let (X, d8,X) be an augmented pseudo-simplicial object in the category U.
(i) (X.,d9, X) is a P-projective resolution of X if and only if the n-cube X in U is a P-exact
n-presentation of X for alln > 1.
40
(ii) If U = &r and the group morphism d) induces a natural isomorphism mo(Xx) '~ X,
then the n-cube of groups X, n > 1, is induced by the normal (n + 1)-ad of groups
(Xp—1,Ker dg_l, ... ,Kerdz:%), i.e.,
Xj(qn) ~ X, 1/ HKerd?__ll, A C (n).
€A
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Proof. (i) is proved by a straightforward calculation. (ii) is implied by the following well-known fact
on pseudo-simplicial groups:

-1 . .
dj (Ker dj') = Ker d}f for n>0, 0<i<j<n

The proposition is proved. [l

Now let § be an n-presentation of the object X in the category . Applying C in the n-independent
directions, we see that this construction leads naturally to an augmented n-simplicial object in U.
Taking the diagonal of this augmented n-simplicial object gives the augmented simplicial object
(C’(”)(S)*,a,X), called an augmented n-fold Cech complezx for §, where a = a% 8 — X, If
¥ is a P-projective P-exact n-presentation of X, then (C'"(F),, a, X) is called an n-fold Cech reso-
lution of X.

Let X, Y € U, § and Q be n-presentations of X and Y respectively, and A : X — Y be a morphism
in Y. A morphism £ : §F — Q of n-cubes will be called an eztension of the morphism A if r,) = A.

Theorem 1.17. Let § and Q be P-projective and P-exact n-presentations of given objects X and Y
i U, respectively. Then any morphism A : X — Y inlU can be extended to a morphism k : § — Q
of n-cubes that naturally induces a morphism K, of simplicial objects

X
£
Y

over X. Furthermore, any two such extensions k,w : § —> Q of X induce pseudo-simplicially homotopic
morphisms K, Ts of simplicial objects, Ky ~= Ty.

cm @), -

y

) (Q)* 5 >

Proof. We begin by showing the existence of a morphism of n-cubes k : §F — Q in U extending the
morphism A : X — Y.
Since § is P-projective and Q is P-exact, there exists a morphism &,y (53 @ S\ i} — Qmy\fi} for

all i € (n), such that O‘EZ;\{Z}“@%)\{Z} = )\aEZ;\{Z}. Assume that for some A C (n) and for all B D A,
B C (n), there exists a morphism kp : §g — Qp such that agﬁB = licag, C D B. Then as an
immediate consequence we have the induced morphism « : limp~4 §g — limp~4 Qp. Using again
the facts that § is P-projective and £ is P-exact, we see that there exists a morphism k4 : §4 — Qa
such that aaxa = kay. Clearly, the constructed morphism of n-cubes k : § — Q naturally induces
a unique morphism of augmented n-simplicial objects, and applying the diagonal gives a morphism of
simplicial objects &y : C™ (F), — C™(9Q), over the morphism .
We need to prove the remaining part of the assertion first in a particular case.

Particular Case. Let k, m: §F — Q be two extensions of the morphism A : X — Y and | € (n).
Let kb = 7l . g — Q. then the respective induced morphisms of simplicial objects Ry, s :
CM(F). — C(Q), over X are pseudo-simplicially homotopic.

The construction of C'™ directly implies that for any n-cube of groups §, C (”)(3)* is the diagonal
of a bisimplicial object X,, induced by applying the ordinary Cech complex construction C' to the
morphism of simplicial objects C"~ D (FH), — C—1(Fi),.

12



By assumption, the extensions x and 7 of the morphism A induce a commutative diagram of
simplicial objects

=

Co-D(F), = e,

Dy, = et (i),

=
*

where k! = 7/, which implies there are morphisms of simplicial objects of simplicial objects in I/

Kok

IR
DEW). |, @),

"'II ="
Ky =T,

over the morphism of simplicial objects k! = 7/ in U.
The following lemma will be needed.

Lemma 1.18. Let X,., Yi. be bisimplicial objects in the category U and Cusx, Bssx : Xsx —> Yiu be
morphisms of bisimplicial objects. Let there exist a vertical (horizontal) pseudo-simplicial homotopy
hY (hh) between the induced morphisms of simplicial objects cmu, Bmx @ Xmsx — Vs (Qum, Bam :
Xim — Yium) for all m >0, such that the following conditions hold:

hyv v jh v h h v

Then the induced morphisms of simplicial objects o, B* : AX, — AY, are pseudo-simplicially homo-
topic, ay = By, where AX, and AY, are the diagonal simplicial objects of Xux and Yi., respectively.

Proof. We can construct the required homotopy in the following way: hl = hfsi’ : Xom — Yogint1,
0<s<n.

Now we must verify the standard identities for pseudo-simplicial homotopy (see Definition 1.2). In
fact,

dsdbhgsh = dShydhst = dSh8 = ann,
Ao dl B s = U hd s = AU BY = B,

h;-’_ldf L dh = hi_y 1d dr, i<,

dVdPhYsh = dPhidl st = i
e e hidy_ys hdhl_h”hdfldz Lo 1>J+1,
h oh h
dv+1d]+1hg+15g+1 di 1 b dipsig = djpahg = di by d]+15 = d§+1d]+1h
The lemma is proved. [ ]

Returning to the main proof, using Lemma 1.12, it is easy to see that there exists a vertical homotopy
h' between the induced morphisms of simplicial objects Km«, Tmx : Fx — Qms for all m > 0, such
that d;-lhf = hfd;-l. Applying Lemma 1.18, we see that there is a pseudo-simplicial homotopy between
the morphisms of simplicial objects &y, 7y : C™(F), — C(Q), in the category U.

Now we return to the general case, showing for any two extensions x, 7 : § — Q of amorphism
A : X — Y the existence of extensions k1,...,kn_1 : § — £ of X such that K, ~ Ky, kK1, ~
Ko,y vy Rn_9, ™~ Kn_1,, kn_1, = T which, of course, implies that k, ~ 7,. In fact, we can construct
an extension k1 : § — 2 in the following way: let /@{ b — k1) and m@\{l} = 7\ {1} We complete
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the construction of xq using the technique above and the facts that § is a P-projective and £ is an
P-exact n-presentation of the objects X and Y in U, respectively.

We construct an extension x; for all 2 <7 <n —1 as follows: let HZ{Z} = mz{i}l and mgm & @)
We complete again the construction of k; using the above technique and the facts that § is P-projective
and £ is P-exact.

The construction of x;, 1 < ¢ <n — 1, and our already proved particular case imply that kK, ~ k1,

Rl, = R2,y.. s Bn—2, = Kn—1,, Kn—1,, = Tx. |l
Using this comparison theorem, we state the following definition.

Definition 1.19. Let T': U« — &r be a covariant functor. Define the ith n-fold Cech derived functor
£l .y — &r, i > 0, of the functor T by choosing for each X in U, a P-projective P-exact
n-presentation § and setting

LINT(X) = m(TCM™(F).),
where (C™(§),, o, X) is the n-fold Cech resolution of X.

Later, in Chap. 3, we provide explicit calculations of the n-fold Cech derived functors of “nilization
of degree k” functor, Zi, k > 2, and of the crossed n-cube abelianization functor.

2.3. Some properties of n-fold Cech derived functors. We recall the notion of cosheaf in
the sense of [103] (see also [60]). A functor T : Y — &r is called cosheaf over (U, P) if for any
P-epimorphism « : Y — X the sequence of groups

T(Y xxY) =T(V) “Lrx)y -1,

is exact. An important example of cosheaf is the functor Zp : Y — &r, P € P, defined as follows:
for an object X € U let Zp(X) be the free group generated by the set Homy (P, X). Let us denote
the category of cosheaves over (U,P) by CS(U,P) and Q be the projective class in the category
CS(U,P) generated by the cosheaves Zp, which means that any object of Q is a retract of coproducts
of cosheaves of the form Zp (see [103] and [60, Proposition 2.29]). Then, for any object X € U, we
can define the section functor I'y : CS(U, P) — &r by I'x(T') = T'(X) for all T € CS(U,P). The
non-Abelian derived functors of this I'x functor will be considered in Chap. 4, Sec. 3.

Proposition 1.20 (see [103]). The following conditions are equivalent:
(i) T is a cosheaf over (U,P);
(ii) for any P-epimorphism P — X there is an eract sequence of groups
T(P xx P) zT(P) >T(X) >1,

where P € P,
(iii) the natural transformation T : LZ))T — T is an equivalence of functors.

We recall the following notion from [103]. Given an object X € U, an augmented pseudo-simplicial
object (X, dg,X ) is called a contractible P-resolution of X if for all P € P the augmented pseudo-
simplicial set (Homy, (P, X, ), Homy, (P, d))), Homy (P, X)) is contractible.

The next lemma is useful. The proof is routine.

Lemma 1.21. Let § be a P-exact n-presentations of a given object X in the category U. Then an
augmented n-fold Cech complex (C™(F).,, X) is a contractible P-resolution of X.

The following propositions establish a reasonable link between n-fold Cech derived functors and
non-Abelian derived functors for a given cosheaf functor in terms of spectral sequences.
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Proposition 1.22. Let T : U — &r be a cosheaf over (U, P), X € U and n > 1. Then there exists
a spectral sequence
2 -fold( pP P
E} = Lol LPTY(X) = LT, T(X).
Moreover, for an =0, q > 0, there are an isomorphism

LX) = £PT(X)

and an epimorphism
LYT(X) — Lok X).

Proof. The existence of such spectral sequence directly follows from Lemma 1.21 and [60,
Theorem 2.35]. The rest of the assertion is obvious. [

Using Proposition 1.22, we easily see that for a cosheaf T : U — &r there is an isomorphism
gl o pln=lfoldp -y > o)

Moreover, we have a natural connection between the higher n-fold and (n — 1)-fold Cech derived
functors. In fact, we have the following proposition.

Proposition 1.23. Let T : U —> &r be a cosheaf over (U, P), X € U and n > 2. Then there is a
spectral sequence

-fold
B2, = L T(X),

where qu =0,¢>0 and Ego = Ez(,n_l)'ﬁ)ldT(X), p > 0.

Proof. By the construction, for any P-projective P-exact n-presentation § of G, C (")(S)* is the diag-
onal of a bisimplicial object X,, induced by applying the ordinary Cech complex construction C' to
the morphism of (n — 1)-fold Cech complexes 6, : C*~D (g}, — C=D(F"h), | where 6;, i > 0, is
a P-epimorphism.

Now applying the cosheaf 7" dimensionwise, we denote the resulting bisimplicial object by T'(X..).
By [107], there is a spectral sequence

By, = LpoT(X).

(n— l)-foldT

Using Proposition 1.20, we have the isomorphism Ezo =L, (X), p > 0. Moreover, since X

belongs to the projective class P, we have qu =0,q>0. | ]

Let U be a variety of groups with operators. This means that the objects are groups together with
some additional operations satisfying some identities. Examples are the category of groups, nilpotent
groups, or solvable groups of given degree, as well as rings, Lie algebras, and their subcategories of
nilpotent or solvable objects.

Let T : U — &r be a functor such that T'(0) = 0. We recall (see [105]) that the simplicial degree
of the functor T is less than or equal to d if for any n > 0 and any simplicial object X, whose length
is <n, denoted by I(X,) < n and which means that NX; = 1 for i > n, we have [(T'(X,)) < dn. In
this case we write sdeg(7") < d.

Corollary 1.24. Let U be a pointed variety of groups with operators, T : U — &1 a cosheaf over
(U, P) whose simplicial degree is equal to 1, sdeg(T) =1, and X € U. Then E?‘fOZdT(X) =0,i>n
and for the spectral sequence of Proposition 1.23, there are an exact sequence of groups

0 =EZ,, -LrRerxy s om0y -

n-fo n—1)-fold
B2, = =EBY =LylMrxy - o0V -0
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and an isomorphism
E?m—l,l > Lol (X).

Proof. Since sdeg(T') =1, qu = 0 either for p > n — 1 or ¢ > 1, which completes the proof. [

We refer, as a good example, to Corollary 1.24 when U/ = &r and T is the ‘nilization of degree k’
functor, Z, k > 2, which we examine in Chap. 3.

CHAPTER 2

HOMOTOPY (n+1)-TYPES AND HOMOLOGY

In the 1940s Whitehead [127] introduced the algebraic notion of a crossed module as a means of
representing connected CW-spaces whose homotopy groups are trivial in dimensions >2 for solving
some homotopical problems. Subsequently, MacLane and Whitehead used it to represent the third
group cohomology [94]. Later, in [87], generalizing the notion of crossed modules, Loday gave the
foundation of a theory of algebraic models of connected CW-spaces whose homotopy groups are trivial
in dimensions greater than n + 1, called cat n-groups. These algebraic structures have nice properties
and satisfy a form of generalized Van Kampen theorem [18, 19]. Other equivalent algebraic models of
homotopy (n + 1)-types are more combinatorial algebraic systems, crossed n-cubes, invented by Ellis
and Steiner in [49].

A number of papers of the last years are dedicated to the investigation of homological properties
of these objects. Ellis [46] and Baues [6] introduced and investigated the (co)homology of crossed
modules as the (co)homology of its classifying space, neglecting its algebraic structure. In [85] Ladra
and Grandjedn gave the first approach to an internal homology theory of crossed modules taking into
account its algebraic structure. Later, in [21] Carrasco, Cegarra, and Grandjedn made the observation
that the category of crossed modules is an algebraic category, that is, there is a tripleable “underlying”
functor from the category of crossed modules to the category of sets, implying a purely algebraic
construction and study of cotriple (co)homology theory. In [56], Grandjedn, Ladra, and Pirashvili gave
a connection of these two homology theories of crossed modules by the dimension shifting isomorphism,
while Casas, Ellis, Ladra, and Pirashvili in [23] have recently generalized this result to higher patterns
for cat n-groups.

This chapter is devoted to the investigation of crossed n-cubes, equivalently cat n-groups, in various
aspects.

In Sec. 1, investigating the diagonal of the n-simplicial multinerve, E(™ (=), of crossed n-cubes of
groups, we relate naturally this construction to the n-fold Cech complexes. Moreover, for an inclusion
crossed n-cube of groups, M, given by a normal (n + 1)-ad of groups, we construct a new induced
crossed n-cube Bi(M), k > 2 (Proposition 2.7) and show the existence of an isomorphism of simplicial
groups Z,EM (M), = E™ (B (M))., where E(™ (M), denotes the diagonal of the n-simplicial nerve
of the crossed n-cube of groups M (see Proposition 2.9). We provide a more general result, namely the
commutation of the crossed n-cube abelianization functor 2b(™ with the diagonal of the m-simplicial
multinerve E(™) (see Proposition 2.10), which plays an essential role in obtaining generalized Hopf
type formulas for the homology of crossed n-cubes.

We study some properties of the mapping cone complex of a morphism of (non-Abelian) group com-
plexes introduced in [87]. In particular, for a given morphism of pseudo-simplicial groups « : G, — H,
the natural morphism & : NM,(a) — Cy(a) induces isomorphisms of their homology groups, where
Cy(@) is the mapping cone complex of the induced morphism of the Moore complexes and N M, («)
is the Moore complex of a new pseudo-simplicial group constructed using « (see Proposition 2.11).
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(Similar results have recently been found by Conduché, [29].) Using this result, we derive purely
algebraically the result of [87, Proposition 3.4], giving for a crossed n-cube of groups M an isomor-
phism between the homotopy groups of E™ (M), and the corresponding homology groups of a chain
complex of groups Cy(M) (see Proposition 2.13). In particular, we give an explicit computation of
the nth homotopy group of the simplicial group E™ (M),.

In Sec. 2 we show that the category Crs” is an algebraic category (see also [23]), that is, there
is a tripleable forgetful functor from Crs™ to Set (Proposition 2.15). The leading cotriple homology
of these homotopy (n + 1)-types is constructed, which will be investigated in Chap. 4 from a Hopf
formulas point of view.

Section 3 is devoted to the investigation of homological properties of precrossed modules pursuing
the line of Conduché and Ellis [30]. Homology groups modulo ¢ of a precrossed P-module in any
dimensions are defined in terms of non-Abelian derived functors, where ¢ is a nonnegative integer.
The Hopf formula is proved for the second homology group modulo g of a precrossed P-module
(Theorem 2.24). Some other properties of homologies of precrossed P-modules are investigated.

1. Crossed n-Cubes and cat n-Groups

We begin by recalling the following algebraic concept of Whitehead [127].
A precrossed P-module (M, p) over the group P is a group homomorphism p : M — P together
with an action of P on M, satisfying the following condition:

w®m) = pu(m)p~t forall dme M, pcP.
If, in addition, the precrossed module (M, p) satisfies the Peiffer identity
M) ! = mm'm=" for all m, m’ € M,

then it is said to be a crossed P-module. Given a crossed module (M, i), the image of u is necessarily
an ideal in P and the kernel of u is a P-invariant ideal in the center of M. Moreover, the action of P
on Ker p induces an action of P/Im u on Ker p, making Ker 1 a P/ Im p-module.

A morphism (¢, ) : (M, ) — (N,v) of (pre)crossed modules is a commutative square

M "sp
S
N =0,

with p(Pm) = Y@ y(m) for all m € M, p € P. Let us denote the category of crossed (precrossed)
modules by CM (PCM) and its subcategory of crossed (precrossed) P-modules with fixed group P
by CM(P) (PCM(P)).

Now we examine two equivalent algebraic models of homotopy (n+1)-types, cat n-groups and crossed
n-cubes [49, 87], generalizing the notion of crossed modules, and recall some well-known results and
notions for our future purpose.

1.1. catn-group. A catn-group is a group G together with 2n endomorphisms s;, t; : G — G,
1 <1 < n, such that
tisi = s;, sit; =t;, [Kers;,Kert;]J=1 forall i,
82'8]' = sjsz-, titj = tjti, Sitj = tjsz- for 1 75 ]

A morphism of catn groups f : (G,s;,t;)) — (G, s, t}) is a group homomorphism f : G — G’

satisfying s.f = fs; and t.f = ft; for 1 < i < n. We obtain the category of cat n-groups denoted by
Cat".
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Later, in [49], the higher-dimensional analogs of crossed modules were introduced, called crossed n-
cubes. These generalize normal (n+ 1)-ads of groups in the same way that crossed modules generalize
normal subgroups.

1.2. Crossed n-cube. A crossed n-cube of groups is a family M = {M4 : A C (n)} of groups
together with homomorphisms p; : My — My for i € (n), A C (n) and functions h : My x
Mp — My for A, B C (n), such that if “b denotes h(a,b) - b for a € M4 and b € Mp with
A C B, then for all a,a’ € My, bt/ € Mp, c € M¢, and i,j € (n), the following conditions hold:

wila) =a if i¢ A,
pipi(a) = pipi(a),
pih(a, b) = h(pi(a), pi(b)),
h(a,b) = h(p;(a),b) = h(a,u;(b)) if i€ ANB,
h(a,a’) = [a,d'],
h(a,b) = h(b,a)™?,
h(a,b) =1 if a=1 or b=1,
h(aa',b) = “h(a’,b)h(a,b),
h(a,bb’) = h(a,b)’h(a,b),
“h(h(a™',b),c)h(h(c™",a),b)’h(h(b~ ", c),a) =1,
“h(b,c) = h("d,"c) if ACBNC.

Warning: A crossed n-cube of groups gives an n-cube on forgetting structure, but note that there
is a reversal of the role of the index A. The top corner of a crossed n-cube is M, and that in an
n-cube is §5. This is due to the fact that an n-cube of groups naturally yields a crossed n-cube as a
sort of generalized kernel, as we have seen earlier.

A morphism of crossed m-cubes, a« : M — N, is a family of group homomorphisms
{aag: My — Ny, AC (n)} commuting with the p; and the h-functions. The resulted category
of crossed n-cubes of groups will be denoted by Crs™.

Now we give the notion of a crossed n-subcube, which is consistent with the categorical notion
of subobject in the category Crs". We say that a crossed n-cube M’ is a crossed n-subcube of
M if M/, is a subgroup of M4, and the homomorphism y} : M/, — M;l\ (iy and the function
h o My x Mg — My g are the restrictions of p; : Mg — M\ gy and h: Ma x Mp — Maup
respectively for every i € (n), A, B C (n).

Moreover, a crossed n-subcube M’ of M is said to be a normal crossed n-subcube if h(a,b') € My 5
and h(a',b) € My g for all a € My, v/ € Mg, a' e My, b e Mp.

Let a : M — N be a morphism of crossed n-cubes and Ker o denote the family {Kera 4 : A C (n)}
of groups, which essentially is a normal crossed n-subcube of M.

Example 2.1.

(i) A crossed 1-cube is the same as a crossed module, Crs' = CM.
(ii) A crossed 2-cube is the same as a crossed square (for the definition, see [18]). The detailed
reformulation is easy.

(iii) Let G be a group and N7y, ..., IV, be normal subgroups of G. Let M4 = (| N; for A C (n) (here
€A

M is understood to mean G); if i € (n), define p; : My e M \giy to be the inclusion and
given A, B C (n), let h: M4 x Mp — Mayup be given by the commutator: h(a,b) = [a,b]
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for a € My, b € Mp (here, of course, M, = M4 N Mp). Then {My: A C (n), p;, h}is
a crossed n-cube, called the inclusion crossed n-cube given by the normal (n + 1)-ad of groups
(G;Nl,... ,Nn)

(iv) Let A be a crossed n-cube and R!,...,R™ be normal crossed n-subcubes of N. Let
AC (m+mn), Ay = An{n+1,--- ,n+m}, Ao = AN (n) and consider My = [) Rf;‘;"

JEAL
(here N RZ” is understood to mean Ny, ); define u; : My A Mgy to be the inclu-
JjED
. J—n ¢ - J—m ¢ - . . pi—n Jj—n :
sion jgl Ry, jEAO\{i} R, if i € Ay and to be induced by u; : Ry~ — RA2\{Z.} if

1€ Ag; let h: Mg x Mp — M aup be defined naturally by commutators and h-functions of
the crossed n-cubes N, RY,...,R™. Then {My4 : A C (n), p;, h}is a crossed (m + n)-cube,
called the crossed (m + n)-cube of groups induced by the normal (m + 1)-ad of crossed n-cubes
(NGRYE...,R™).

Remark 2.2. Note that for n = 0 the construction of (iv) agrees with that of (iii) if we assume that
a crossed 0O-cube is just a group.

According to [87] the category of cat 1-groups is equivalent to that of crossed modules, and the
category of cat2-groups to that of crossed squares. One of the main result of [49] says that the
categories Crs” and Cat” are equivalent. Namely, we have the following

Theorem 2.3. There are inverse equivalences of categories

(bn
Crs" _ ~ Cat"
\I]TL

given by

O"(M) = \/ MA/{h(a,b) = [a,b] for alla € My, be Mp, A,B C (n)}, M € Crs"
AC(n)
and
U (G)a = ﬂ Kers; N ﬂ Ims;, G e Cat", AC(n).
icA igA
Throughout this work, we mainly prefer to use crossed n-cubes instead of cat n-groups, except for
those cases where using cat n-groups will make things easier to understand.

1.3. Nerve of crossed n-cubes. Given a crossed module, M = ( M Yop ), the corresponding
cat!-group is (M x P, s,t), where s(m,p) = p and t(m,p) = u(m)p. This cat'-group has an internal
category structure within the category &t, and the nerve of its category structure forms the simplicial
group E(M),, where E(M),, = M x (--- (M x P)---) with n semidirect factors of M, and the face
and degeneracy homomorphisms are defined by

do(mi,...,mp,p) = (Ma,...,mp,p),

di(ma,...,mp,p) = (M1,...,MiMit1,...,My,p), 0<i<mn,
dp(mi,...,mp,p) = (M1,...,mp_1, 1(Mmy)p),

si(mi,...,mp,p) = (m1,...,my, Lmggr, ... ,mp,p), 0<1i<n.

The simplicial group F(M), is called the nerve of the crossed module M, and its Moore complex
is trivial in dimensions >2. In fact, its Moore complex is just the original crossed module up to
isomorphism with M in dimension 1 and P in dimension 0.
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For a given crossed n-cube M, there is an associated cat”-group and hence on applying the crossed
module nerve structure E in the n-independent directions, this construction leads naturally to an
n-simplicial group, called the multinerve of the crossed n-cube M and denoted by Dter(M). Taking
the diagonal of this n-simplicial group gives a simplicial group denoted by E(™ (M), (see [106]).

Given a crossed n-cube of groups M = {My:AC (n),u;,h}, and any i € (n), by [106,
Proposition 5], there is a morphism pu; : M; — My of crossed (n — 1)-cubes of groups, where
My ={My:AC(n), i€ A} and My = {My : A C (n), i ¢ A}, such that for each B C (n — 1),
Ker ;g is central in My p and Im y; g is normal in M; g. Moreover, there is an exact sequence of
crossed (n — 1)-cubes in the obvious sense

0 =M =M "My =Ny =1, (2.1)

where N7 = {Kerp; p: B C (n—1)} and Ny = {Coker y1; g : B C (n—1)} with the natural structure
of crossed (n — 1)-cubes.
The following result will be helpful in the sequel.

Proposition 2.4. There is an exact sequence
0 > Tp_o(EMD(N),) > Tp_1(EM™(M),) > 1 (B D (N)y) >
= mp3(EMD(N)L) = = m(EMTYN)) -

=m(E" (M) = m(BM(M).) =m(BMTD(N)) =0
and isomorphisms
mo(E™M(M),) = mo(ECV(N)L),  mn(BT(M).) 2 w1 (BT (N).).

Proof. By the construction, E(™ (M), is the diagonal of the bisimplicial group M, induced by ap-
plying the crossed module nerve construction E to the morphism of simplicial groups E(”_l)(ui) :
EC=D(M;), — E™ 1 (My).. Moreover, applying Lemma B [106] to the exact sequence (2.1) of
(n — 1)-cubes, we have the following exact sequence of simplicial groups

BT ()

0 ~ECDW). = EeD(My), SECD(Mo), BV, -1 (22)

Hence by [107] there is a spectral sequence
Epy = mpia(E(M),),

where E2) = my(E®"Y(Np).) and E2 = m,(E™~Y(M).), p > 0. Proposition 2.13 implies that
qu = 0 either for p > n —1 or ¢ > 1, which completes the proof. [

Now we present a fresh view of the n-fold Cech complexes, relating them to the diagonal of the
n-simplicial multinerve of crossed n-cubes of groups, which leads to some ideas that will be useful
throughout the next chapter.

Given an n-cube of groups §, the normal (n + 1)-ad of groups (F; Ry, ..., R,), where F' = §5 and
R; = Ker a{@i}, i € (n) will be called the normal (n + 1)-ad of groups induced by §.

Lemma 2.5. Let § be an n-presentation of a group G in the category &r. There is an isomorphism
of simplicial groups

EM(M). = CM(F).,
where M is the inclusion crossed n-cube of groups given by the normal (n + 1)-ad of groups
(F;Ry,...,R,) induced by §.
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Proof. For n = 1, we only construct the following isomorphism:
M: E(R—=F), — =C(a),

where FF “>G is a group homomorphism and R = Kera. In fact, define \g = 1p and
M1y, f)=(r1--rofyre--rnfyooyrnf, f)yn > 1, forall (ry,...,7m,, f) € E(R — F),.

As the constructions are natural, we get, on repeated application, an isomorphism of n-simplicial
groups. Applying the diagonal clearly gives the result. [ ]

Now define the functor
E™) . Crs" — SimplCrs™™™  (simplicial crossed (n — m)-cubes), (2.3)

1 < m < n, as follows: given a crossed n-cube M, consider an associated catn-group G, which is
equivalent to a crossed (n —m)-cube endowed with m compatible category structures. Then, applying
the nerve structure E to the m-independent directions, we see that this construction leads naturally
to an m-simplicial crossed (n — m)-cube. Then the simplicial crossed (n — m)-cube E(™) (M), is the
diagonal of this m-simplicial crossed (n — m)-cube.

Note that this construction depends upon the sequence of the m-independent directions.

An m-cube of crossed n-cubes X determines a normal (m + 1)-ad of crossed n-cubes
(X(@); RY,--- ,R™), where R' = Ker.’{(p{@i}), i € (m). This (m + 1)-ad will be called the normal
(m+1)-ad of crossed n-cubes induced by X.

The following assertion follows directly from Lemma 2.5.

Corollary 2.6. Let X be an m-presentation of a crossed n-cube M in the category Crs"™. There is
an isomorphism of simplicial crossed n-cubes

O (%), = EM(N),,

where N is the crossed (m + n)-cube of groups given by the normal (m + 1)-ad of crossed n-cubes
(X(2); R, ..., R™) induced by X.

1.4. Abelianization and related functors. It is well known that for an algebraic category C
the obvious inclusion functor of the category of Abelian group objects AbC — C has left adjoint
Ab . C — AbC, called the abelianization functor, which plays a fundamental role in the description
of homology of objects in the category C. Namely, the kth homology of an object X € C is defined
to be £,Ab(X), where £,2b denotes the kth derived functor of b in the sense of Quillen [109].

An Abelian group object in Crs™, an Abelian crossed n-cube, is a crossed n-cube whose h maps are
trivial. The abelianization functor

2A6™ : Crs” — AbCrs™, (2.4)
is given as follows:
(a) for A C (n)
My
A6 (M) 4 = :
BUC=A

where Dp ¢ is the subgroup of M4 generated by the elements h(b,c), h : Mp x Mg —
Mpuc=a for all b € Mp, c € Mc;

(b) if i € (n), the homomorphism 7; : A6 (M), — A6 (M) 4\sy is induced by the homomor-
phism 13

(c) for A, B C (n), the function h : A6 (M) 4 x A6 (M)g — AL (M) aup is induced by h
and therefore is trivial,
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for any M = {My: AC (n), pi, h} € Crs™.
The functor Ab™ is left adjoint to the inclusion functor i : AbCrs™ — Crs™, as is easily checked.
The equivalent Abelian group object to an Abelian crossed n-cube in the category Cat™ is just a
cat n-group whose underlying group is Abelian, which is called an Abelian cat n-group (see also [23]).
Moreover, the abelianization functor

A6 : Cat” — AbCat™ (2.5)
sends a catn-group G = (G, s;,t;) to the Abelian cat n-group (G/[G,G], s;,t;), where s; and t; are
induced by s; and ;.

Proposition 2.7. Let M be an inclusion crossed n-cube given by a normal (n + 1)-ad of groups
(F;Ry,...,Ry) and k > 2. Then there is a crossed n-cube By(M) given as follows:
(a) for AC (n)
Bi(M)a = (] Ri/Di(F; A),

where <
Dy(F; A) = I1 [QR[QR[ N RQR}H A C (n);
ALUAsU—-UAR=A i€A; i€ Ay i€AL_, Q€A

(b) if j € (n), the homomorphism pi; : By(M)a — Bp(M)a\y is induced by the inclusion
homomorphism yuj;

(c) representing an element in Br(M)a by x, where x € () R; (the bar denotes a coset), for
i€A
A, B C (n), the map

h: Bg(M)a x Bp,(M)p — Br(M)aus

s given by

h(z,y) = h(z,y) = [z,y]
for all x € Bx(M)a, y € Bx(M)p.

Proof. Since

[ﬂ Ri,[ﬂ R[ N RN R}H

i€A1 i€Ao 1€EAL_1 IEAL
cl N e[ N Ree| N R N R
i€A\{j} i€ A2\ {5} €A\t €A}
for AjU---UA, = A C (n), the inclusion
pis (VR = ()] R
€A i€A\{7}
induces the homomorphism fi; : Bx(M)a — Br(M) 4\y;; for all j € (n).
Now, what is left is to show that the function
h: Bi(M) g x By(M)p — Br(M)aun

for A, B C (n) is well defined. In fact, let 2’ € (| R;, v € [\ R; be such that
icA ieB
/=1

whe I [N RN EBeoos| N B VR

A1U-UAr=A i€A; 1€A2 i€Ap_1 i€AL
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and

wre I [N&E|N R N R R

A1U--UAL=B i€A; 1€A2 i€Ap_1 €A
The inclusion
[ﬂRiamRz}g m R;
i€A  ieB icAUB

for all A, B C (n) implies that

[,y /]! = ayaly Y2ty
-1 7

— xy/ [y/—ly’x—l]y/—lx—lx[y/’x T ]m

e II [N&E[NE-] N R R

AjU--UA,=AUB i€A; 1€A2 1€AE 1 1€AL

-1

so h(z,y) = h(z’,y') and h is well defined. The verification that Bz(M) is a crossed n-cube is now
routine and is omitted. I

Remark 2.8. The functor By coincides on the subcategory of inclusion crossed n-cubes with the
abelianization functor 2Ab™).

For any inclusion crossed n-cube M given by a normal (n + 1)-ad of groups (F; Ry,...,R;) and
k > 2, there is a natural morphism of crossed n-cubes M — Bj(M) inducing the natural fibration

n,k
of simplicial groups E™ (M), A EM(Bj(M)), defined by
AF (. m) = (2, ..., 3)
for all (21,...,21) € E®(M)y, = ( | Ri) x---x( | R;) and m > 0, where Ay,...,A4; C (n) and
iGAl iEAl

l=(m+1)". It is easy to see that Ker AR = Dy(F; A1) X -+« x Dp(F; Ap).

Proposition 2.9. Let M be an inclusion crossed n-cube given by a normal (n + 1)-ad of groups
(F;R1,...,R,) and k > 2. Then there is an isomorphism of simplicial groups

ZLEM (M), = EM (B (M))..

Proof. For any inclusion crossed module R — F, It is easy to verify the following equalities in the
group Rx--- x Rx F":

[(1,...,1,7‘,1,...,1),(1,...,1,7“',1,...,1)} _ (1,...,1, [, ] ,1,...,1)
t min{s, t}
for all z,2’ € F, r,7’" € R.

There are further generalizations of these equalities, namely for any inclusion crossed n-cube M
given by the normal n + 1-ad of groups (F, Ry, ..., R,) we have the following facts, the proof of which
is routine and will be omitted.

(A) Let s and t be any fixed elements of the set ((m+1)"). Then there exists a unique A = A(s,t) €

((m 4 1)") such that Ay = A, U A; and in the group E™ (M),, the equality

(1,...,1,3:,1,...,1),(1,...,1,y,1,...,1)} - (1,...,1,[$,y],1,...,1)
S t A

23



holds for all x € () Ri, y € () R;.
1€As 1€A:
(B) Let s € ((m+1)") and A,B C A, with AU B = A,. Then there exists p,q € ((m + 1)") such

that A, = A, A, = B, and A(p,q) = s.
We must only show the equality

T (EM™(M),,) = Ker ATF, (2.6)

which will be done by induction on k, using facts (A) and (B) above.
Let k = 1; then it is clear that I';(E™ (M),,) = Ker A"
Proceeding by induction, we assume that (2.6) is true for £ — 1 and we will prove it for k.
First, we will show the inclusion Ker A% C T',(E™(M),,). It suffices to show that

1 x1xDp(F,A) % 1x--x1CTEMM),,) forall se((m+1)").

In fact, any generator w of Dy(F, As) has the form w = [z, y], where x € (| R;, y € Dy_1(F, B) and

€A
AUB = A,.
Now (B) implies that there exist p,q € ((m+1)") such that A, = A, A; = B and A(p,q) = s. Thus
we have

(1,...,1,x,1,...,1),(1,...,1,y,1,...,1)} —(1,...,Lwl,...,1),
p q

which means that
131X Dy(F,As) x1x--x1C [E(n)(M)m,KerAZ{k_l}.
Therefore, by the inductive hypothesis we obtain

Ix-X1XDp(F,A) x1x---x1C [E(”)(M)m,Fk_l(E(”)(M)m)] = TH(E™ (M)).

Finally, we will show the inverse inclusion Iy(E(™(M),,) C Ker Al*. In fact, any generator
w of Tp(E™(M),,) can be written in the form w = [wi,ws], where w; € EM™(M),, and wy €
[_1(E™(M),,). Using again the inductive hypothesis, we have wy € Ker AL Thus,

(m+1)"

wi= ] @Q....Lzs1,...,1), z.€ () R
s=1 s i€AS
(m+1)"

wy =[] (1,...,1,%,1,...,1), y € Dy_1(F, Ay).
t=1

We know that [xg, 3] € Di(F, As U A), so (A) implies that we have

[(1,...,1,3}8,1,...,1),(1,...,l,yt,l,...,l)} _ (1,...,1,[a:s,yt],l,...,l)
s t A(s.)

e1>4...>41NDk(F,AA(&t))xlx---mngerAﬁgk.

and the Witt—Hall identities on commutators imply that w € Ker A%k. [

From Proposition 2.9 we can deduce that the abelianization of a crossed module commutes with its
nerve. We provide a more general result for functors (2.4) and (2.3), which plays an essential role in
obtaining generalized Hopf-type formulas for the homology of crossed n-cubes.
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Proposition 2.10. Letn >0, m > 1 and M be a crossed (n+m)-cube. Then there is an isomorphism
of simplicial crossed n-cubes

A6 EM (M), = EMAp+m™ (M),
where E™) functors in both sides of the isomorphism are applied to the same directions.

Proof. To simplify things, according to Theorem 2.3, instead of the crossed (n + m)-cube M we use
its equivalent object, the cat (n + m)-group, G = (G, s;,t;) = ®"T™(M). The proof will be done by
induction on m.

Let m = 1 and n = 0; then the assertion reduces to Proposition 2.9. This case plays the key role in
the whole proof.

In fact, for m = 1, n > 1 and for the cat (n + 1)-group G, let us fix some k£ € (n 4+ 1) and apply
the functor EM) to this “direction.” By the definition, the simplicial cat n-group, E(l)(/\/l)*, is just
the simplicial group E(¥!(G, sg, 1))« endowed with n compatible category structures induced by the
respective structural endomorphisms s;, t; (0 < j <n+1, j # k) of the cat (n + 1)-group G. The fact
that the abelianization of a cat n-group is just the abelianization of the underlying group endowed
with the induced structural endomorphism and our key fact above completes the assertion in this case.

Proceeding by induction, we assume that the assertion is true for m — 1, and we will prove it for m.

By the construction, E™) (M), is the diagonal of the bisimplicial crossed n-cube induced by ap-
plying the crossed module nerve construction E() to the simplicial crossed (n + 1)-cube E(™=1(M),.
Hence we have

EM™ (M), = ED(EMD(M)y)
for all k¥ > 0. Using the inductive hypothesis, we have the isomorphisms
26 EM (M), = A6 D) (E(m_l)(M)k)k o~ p(g(p(nt+1) (E(m_l)(M)k)

= g (=D (26t (M)),), = EM (26T (M),

k

1.5. Non-Abelian mapping cone complex. This section is devoted to the investigation of some
properties of the mapping cone complex of a morphism of (non-Abelian) group complexes as introduced
in [87].

A complex of (non-Abelian) groups (Ax, ds) of length n is a sequence of group homomorphisms

d d —1 dl
Ap > A R > Ao

such that Imd;; is normal in Ker d;. Now we recall the following definition from [87].
Let f: (A4, dy) — (B, d.,) be a morphism of chain complexes of groups. Let f satisfy the following

conditions (x):

each f;: A; — B; is a crossed module
and

the maps (d;,d;,) form a morphism of crossed modules.
Then the mapping cone of f is a complex of (non-Abelian) groups (Ci(f), 0«) defined by C;(f) = A;—1 %
B;, where the action of B; on A; 1 is induced by the action of B; 1 on A; 1 via the homomorphism
d}; and

9i(a,b) = (di—1(a)™", fi1(a)d; (b))

for all a € A;—1, b € B;. By [87, Proposition 3.2], there is a long exact sequence of groups
= Hi(A)  =Hi(B.) =H(C(f) =Hi-1(A) >--. (2.7)



Now let us consider a morphism of pseudo-simplicial groups « : (G, df, sf) — (H,, d*, si*) satis-
fying the following conditions (xx):
each oy : G, — H, is a crossed module
and
the maps (df,d*) and (sf

. d; s*) form morphisms of crossed modules.

Z”L

Define a new pseudo-simplicial group M, («) as follows:

My(a) = Gp X Gy ¥ -+ X Gy X Hy,
nt;;nes

o ) = (di(92), - dj(gn), dg' (h)),

P91 gne h) = (4 (91), -5 A7 (90) 7 (gin1)s - - - A} (gn), 4 (R)), 0 <i<m,
iy ( ) = (d(91), -, dp(gn-1), ctn 1d( n)dy (),

2 (g1y- -y gnyh) = (s?(gl),...,si (9i), 1,87 (Git1)s- -+ 55 (gn)s ;”(h)), 0<i<n.

It is easy to see that the induced morphism « : NG, — NH,, where NG, and NH, are the
Moore complexes of G, and H, respectively, satisfies the conditions (x). Therefore, we can consider
the mapping cone complex Ci(a) of a.

Q&

Proposition 2.11. The natural morphism of complexes v : NM.(a) — Ci(@), given by
k(91,925 -y gn,s h) = (d(gn), h), n > 0, induces an isomorphism of groups

(M (a)) =2 Hy(Cu(a)), n>0.
Proof. The verification that k,, m > 0 is a homomorphism and commuting with differen-

tials is easy. Let (g,h) € NG,—1 x NH, = Cy(a); then it is easy to verify that
(s57 M)V .. "N (g) 7L, s 1(g), h) € NM,,(a), where e(i) = (—1)°. Tt is clear that

(5719, i Th ()i (9) k) = ().

Hence x,, is surjective for all n > 0.
Consider the kernel complex (&,,d,) of k. Note that Im 9, is not normal in Ker d,,_1 in general,
&y =1 and

s — (91,92 .90) € Gu X G x - % Gy | di(g5) = &} (9:)d} (gi+1) = 1, 1<i<n-1,
o =

n-times | 1< ] <n and 1 75] - 1,j;

| dp(gn) =1
Furthermore, it is easy to verify that for an element (g1,...,9,-1) € Kerd,_1, the element
(Ghy---59_1,9,), defined by the formulas
— e(n—i—1 e(n—1 e(n—1 ..
Sp— 1(9@) Sp— 2(91 ) sy l(gi(n ' )) 8;1 (Qz(n Z)giinl Z)-"gn(fl Z)), 1 is even,

/
9i = e(n—1 e(n—1i) e(n—1i n— e(n—i— n— ..
P g s g Y)Y s (g s (i), i is odd,

3 K3

forall 1 <i<mn-—1and g, =1, belongs to &,, and

811,(9&7 cee 7911—179;1) = (glv cee 7gn—1)'
Now the proposition follows from the long exact homology sequence induced by the short exact se-
quence of complexes 1 > &, > NM,(a) " >C.(aQ) >1. I
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Given a pseudo-simplicial group G, we will say that the length of G is < n, denoted by I(G,) < n,
if NG; =1 for i > n.

Remark 2.12. Let a: (Gy,df, sf) — (Hy, d;", s*) be a morphism of pseudo-simplicial groups satis-

fying the conditions (xx) and n > 2. Assume I(G4) < n — 1 and I(H,) < n — 1. Consider an element
(917927 -5 9k h) € NMk(a)v k> n; then

d(g)) =1, 2<j<k,
d¥(g;) = d¥(gi)d¥ (giv1) =1, 1<i<k—1, 1<j<k and i#j—1,
dF(h)y=1, 0<i<k-1.

Using the well-known result given as Lemma 3.5 below, we can easily show that g; =1, 1 <4 < k and
h=1,s0 NMi(«a) =1 for k > n. Thus I[(M.(«a)) < n.

Now using the mapping cone construction, for a given crossed n-cube M, we construct inductively
a complex of groups Cy(M) of length n, always having in mind that M is thought of as a crossed

module of crossed (n — 1)-cubes, M; — M. In fact, forn =1, and M = ( M fop ), Cu(M)
is the complex M — P of length 1. Let n = 2 and M be a crossed square, considered as a crossed
module of crossed modules or a morphism of complexes of length 1 satisfying the conditions (x). The
construction above gives a complex C, (M) of length 2. (It has a 2-crossed module structure, [27], as
noted by Conduché; see also [100].) Proceeding by induction, assume that for any crossed (n—1)-cube
M, we have constructed a complex C,(M) of length n — 1. Now let M be a crossed n-cube and
consider it as a crossed module of crossed (n — 1)-cubes M; — M. This implies that there is a

morphism of complexes of groups C\ (M) ’.c, (My) of length n—1 satisfying the conditions ().

So using again the above-mentioned construction, we obtain a chain complex of groups Cy (M) = C,(9)
of length n.

Proposition 2.13 (see [87]). Let M be a crossed n-cube of groups. Then [(E™(M),) < n and there
is a natural morphism of complezes NE™ (M), — C,(M) that induces isomorphisms of groups

(BT (M),) = Hy(Co(M)), i>0.

Moreover,

Ta(EM(M).) = () Ker (Mg
=1

1=

Hq

= M iy) -

Proof. This is obvious for n = 1. Let n = 2 and M be a crossed square. If we consider M
as a crossed module of crossed modules M; — Mg, inducing the natural morphism of sim-

plicial groups EM(M;), > EW (M), , which satisfies the conditions (¥x), then by definition

E® (M), = M,(a), and by Proposition 2.11 and the corresponding remark, [(E®) (M),) < 2, and

there exists a natural morphism of complexes N E®) (M), — C,(@) inducing an isomorphism
(E®(M),) = Hy(Cy(d)), i>0.

Clearly, Cy(a) = C(M).

Proceeding by induction, we assume that the assertion is valid for n — 1 and we will show it for n.
Let us consider any crossed n-cube M as a crossed module of crossed (n — 1)-cubes M; —

M. This implies a morphism of simplicial groups E™D(M;), “>E® D (M), satisfying the

conditions (**) and a morphism of complexes C,(M;) o Cy(My) satisfying the conditions (x). By
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definition, E™ (M), = M,(c); hence Proposition 2.11 and Remark 2.12 imply that [(E™ (M),) < n

K

and there exists a natural morphism of complexes N E™ (M), > Cy(a) inducing isomorphisms

(B (M),) = H;(C(d)), i>0.

Using the inductive hypothesis, we see that there exist natural morphisms of complexes

NE®D(My), "=CuM;) and NECD(Mg), ">Ci(Mo),
that induce isomorphisms
mi(ECD(Ma),) = Hi(Cu(M)),
mi(ETD (Mo),) = Hi(Cu(Mo)),

for i > 0. It is easy to verify that x”"& = 0k’ and that (k}, !

', k) is a morphism of crossed modules for
all 4 > 0. Then the natural morphism of complexes

Hl >4 I{”

C.(a) = C4(6) = CL(M),

by (2.7) and the five lemma, induces H;(Ci(a)) = H;(Cy(M)), @ > 0. Therefore the morphism of
complexes

NEM (M), " CUM)
induces isomorphisms
(B (M),) = Hy(Co(M)), i>0.
These isomorphisms and the construction of C,(M) imply that

2. Homology of Crossed n-Cubes

In this section, we give the construction of the (cotriple) homology of homotopy (n+1)-types, which
will be investigated in the next chapter from a Hopf formulas point of view.

First, we show that the category Crs” is an algebraic category (see also [23]), that is, there is a
tripleable forgetful functor from Crs™ to Set. In fact, we need only to construct a ‘free’ cotriple in
the category Crs".

U
We begin by constructing the adjoint pair of functors Crs™ < F> Gr.

Assume that the functor U : Crs™ — Gr assigns to any crossed n-cube M = {M 4 : A C (n)} the
direct product of groups M4, A C (n), i.e.,

UM)= ] Ma.
AC(n)

Now define the functor F' : Gr — Crs” as follows: for any group G, let F(G) denote the inclu-

sion crossed n-cube induced by the normal (n + 1)-ad of groups ( \VV Ga;Kerpy,...,Ker pn) (see
AC(n)
Example 2.1), where \/ G4 is the sum of groups G4 = G, A C (n) and
AC(n)

Di \/ Gy — \/ Gg, i€ (n),
AC(n) BC(n—1)
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are natural projections given by

lg:Gqg — Gp if AC (n)\{i},
bi = :
0 otherwise,

where ¢; : (n) \ {i} — (n — 1) is the unique monotone bijection.
Proposition 2.14. The functor F is left adjoint to the functor U.

To prove this proposition we use the following easily verified facts requiring only care over the
notation. Given a crossed n-cube M = {M4: A C (n)}, for any B C (n) denote by MP and M?B
the families {M4: A C (n), BC A} and {M4: A C (n), BN A= @}, respectively. Then M? and
MP have the structure of crossed (n — |B|)-cubes (see [106, Proposition 5]).

Proof of Proposition 2.14. We claim that for any group G, the homomorphism
u={us}l:G— [] F(G),=UF(G),
AC(n)
where uy : G — F(G) 4, = () Kerp; is given by the identity from G to G 4, is a universal arrow from
€A
G to the functor U.
Let M be a crossed n-cube and let ay : G — My, A C (n) be homomorphisms defining a

homomorphism « : G — [[ My = U(M). Then there is a commutative diagram with splitting
AC(n)
short exact sequences of groups:

Kerp;, > V Ga "= V Gp
Cln) BC(n-1)

AC(n
%—j vl %‘i )
oMY = et (M) = eI M)

where ®* is the equivalence given in Theorem 2.3, 7; is induced by Gp > My with A C (ny\ {i}

such that §;(A) = B, ~ is induced by Gg4 MMy, AC (n), and 7; is the restriction of . It is

easy to see that the homomorphisms 7; induce the homomorphisms 74 : () Kerp; — ®"~14(MA).
1€A
Now define the homomorphism 74 : (| Kerp; — My, A C (n) as the composition of 74 and
i€A

Ba: CIJ”_‘A|(MA) — M4 given by Mp e My for B O A, where pip 4 is the composition of the
j—1

homomorphisms p;;, j = 1,...,[B\ A|, with any i; € (B\ A) \ kL_Jl{zk} Finally, it is easy to verify

that 7 = {% 4} F(G) — M is the unique morphism of crossed n-cubes with U (%)u = a. ||

We denote by Uy : Gr — Set the usual forgetful functor and by F} : Set — Gr its left adjoint,

the free group functor. Composing these two adjunctions,

U Ui

Crs" _ ~Gr_ ~ Set,

F I3
we deduce the following proposition.
Proposition 2.15. The underlying set functor U = Uy o U : Crs" — Set has a left adjoint F =
FoF;:Set — Crs”.
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It is routine to verify that the category Crs", n > 2, similarly to that of crossed modules (i.e.,
n = 1) [21], has kernel pairs and coequalizers preserved and reflected by the functor &. Then by
Proposition 2.15 and Linton’s criterion on tripleability [86] the underlying set functor ¢ : Crs" — Set
is tripleable.

Now we construct the cotriple homology of crossed n-cubes (cat n-groups). We refer the reader to
the work of Barr and Beck [5] for the background on cotriple (co)homology.

f
The above constructed pair of adjoint functors Set . = Crs™ induces the cotriple F = (F, J, 7)
u

on the category Crs" by the obvious way: F = FUf : Crs" — Crs”, 7 : F — 1{, is the counit and
§ = Fuld : F — F?, where u : 1get —> UF is the unit of the adjunction.
Using the general theory of cotriple homology due to [5], we have the following definition.

Definition 2.16. Let M be a crossed n-cube. Define the kth homology of M by setting
He(M) = L A6™M(M), k> 1.

Let P be the projective class induced by the “free” cotriple F (see Chap. 1, Sec. 1.2). According to
Proposition 1.10 the derived functors relative to the cotriple are isomorphic to the derived functors
relative to the projective class induced by the cotriple [60]. Thus there is an isomorphism

Liap™ =~ lorp™.

Recall also that an object P of a category C is projective if, given a regular epimorphism f :
X =Y  each morphism g : P — Y can be lifted to a morphism h : P — X such that fh = g.
We say that C has enough projective objects if any object X admits a projective presentation, i.e., there
exists a regular epimorphism P — X with P a projective object. If C is a tripleable category with

F
the adjunction Set _ =~ C , then F(X), X € Set, is a projective object and the natural morphism
U

FU(C) — C, C € C, is a regular epimorphism in C, implying that C has enough projectives. It is
also known that the projective class of all projective objects in the algebraic category C coincides with
the projective class P induced by the adjunction, and regular epimorphisms are just P-epimorphisms.

It is easy to verify that if M, is a F-cotriple resolution of a crossed n-cube M, then /\/lim\A is a

projective resolution of M{\A for A C (n), A # (n). Hence

Hip(M)a = Hk(M<n>\A)<‘A|>, k> 1.

Therefore, the interest of our investigation is the group Hy(M),y, which we denote by Hy(M). If
we define the functor o : Crs" — Gr by o(M) = M, for M € Crs", then

Hy(M) = LF [ (cA6™)(M), k> 1.

3. Homology of Precrossed Modules

Precrossed modules form a model of homotopy type in dimensions 1 and 2 for connected CW-
complexes. Precisely, Kan’s G functor establishes an equivalence relation between the category of
connected CW-complexes and the category of free simplicial groups [79] and the first two terms of the
Moore chain complex associated to the simplicial group gives a precrossed module.

The homology of precrossed modules was introduced by Conduché and Ellis in [30]. The aim of
this section is to pursue their line of investigation of homological properties of precrossed modules.

Let (M, ) be a precrossed P-module. The following type elements in M

_ ~1
(m,m’) = mm'm Lm) =t m! € M,
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are called Peiffer commutators, and now we give some identities for them from [7]

(m,m'm"y = (m, m/ Y™ ! (m, m/ Y (2.8)
(mm!,m"y = m(m',m"ym™" (m, ™)), (2.9)
P(m,m’) = (Pm,Pm’), (2.10)
< m) = kmk~tm™L, (2.11)
(k,m)(m, k) = kP =1 (2.12)

for all m,m’,m” € M, p € P and k € Ker p.
The Peiffer commutator subgroup (M, M), which is a subgroup of the group M generated by the
Peiffer commutators, plays the same role for precrossed modules as the commutator subgroup plays for

groups. Analogously, as a lower central series in a group, a lower Peiffer central series in a precrossed
P-module is defined by Baues and Conduché [7]:

MY =M > M 5

This series has properties similar to classical central series, giving one hope to generalize some methods
of Curtis [34, 35] and Quillen [108] for nonsimply connected spaces.

The crossed P-module p’ : M/{M, M) — P associated to the precrossed P-module p: M — P,
where M /(M, M) is a factor group of M by the Peiffer commutator subgroup, and the homomorphism
p' and the action of P on M/(M, M) are induced by p and the action of P on M, respectively, are
further called Peiffer abelianization. As an analog of the classical first group homology, Conduché and
Ellis [30] defined the first homology of a precrossed P-module (M, ) by Peiffer abelianization,

Hy(M)p = M/(M, M).

We point out that despite its name, the Peiffer abelianization can be non-Abelian.
Let X be a set and 6 : X — P a map to the group P. Then the free precrossed P-module
0 : F — P with base (X, J) is defined as follows: F' is the free group generated by the set X x P, 0 is
defined on generators by d(x,p) = pé(z)p~!, and the action of P on F is given by P(x,p') = (z,pp’).
Conduché and Ellis in [30] also defined the second homology group of a precrossed P-module (M, )
by the Hopf formula

Hy(M)p = R0 (F, F)/((F, R)),

where 1 — R — F' — M — 1 is a short exact sequence of precrossed P-modules, and (F,0) is a
free precrossed P-module with some base (X, ), which is called the free presentation of the precrossed
P-module (M, p). They studied some properties of so-defined low-dimensional homology groups of
precrossed P-modules and hoped that higher homologies could be defined analogously using Hopf
formulas for higher homology groups (see [14]). Using this method to define all homology groups of
a precrossed P-module (M, u), H,(M)p, one encounters some difficulties, for n > 3, in proving that
the definition does not depend on the free presentation of the precrossed P-module (M, u).

We have another concept to define all homology groups of a precrossed P-module, particulary the
use of non-Abelian derived functors.

We consider all treatments with homology of precrossed P-modules in the ¢ modular aspect, where ¢
is a nonnegative integer, and for ¢ = 0 this gives the homology groups of precrossed modules introduced
in [30]. Thus, for nonnegative integer ¢, we define homology groups modulo ¢ of precrossed P-module
(M, ) in any dimension n > 1, denoted by H,(M,q)p, and study their properties generalizing the
classical homology of groups with coefficients in Z, = Z/qZ. Note that ¢ modular aspects of some
other theories will be treated in Chap. 6.
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3.1. Construction. Let us denote by Set(P) the category of sets over the group P, whose objects
are all sets with a map to P and whose morphisms are all maps of sets such that the corresponding
triangles are commutative.

Consider the functor F : Set(P) — PCM (P) defined as follows: for an object X © > P of the
category Set(P), let F( X “ > P) be a free precrossed P-module with base (X, a); for a morphism

X "> X' let F(r) be the canonical homomorphism induced by .

It is known that the forgetful functor from the category PCM(P) to the category Set(P) is a right
adjoint of the functor F. This adjunction induces the cotriple (F,7,0) in the category PCM(P). Let
P be the projective class in the category PCM(P) induced by the cotriple (F,7,d) (see [60, 123]).

First, we describe the projective class P and the corresponding P-epimorphisms.

Proposition 2.17. A morphism M AN of the category PCM(P) is a P-epimorphism if and
only if ¢ is surjective (as map of sets).

Proposition 2.18. In the category PCM(P) the following conditions are equivalent:
(i) A precrossed P-module (Q,v) belongs to the projective class P;

(i) (Q,v) is a free precrossed P-module with base (X,q) for some object X “ =P of the cate-
gory Set(P).

The proof of these propositions is easy and we omit it.

A precrossed P-module (N,v) is a precrossed P-submodule of a precrossed P-module (M, u) if N
is a subgroup of M, the action of P on N is induced by the action of P on M, and v is the restriction
of pon N. If, in addition, N is a normal subgroup of the group M, then we write N <p M.

Let (M,p) be a precrossed P-module, N, N’ be two subgroups of M, and ¢ be a nonnegative
integer. We denote by (N, N}, the subgroup of M generated by the elements (n,n) and k¢ for all
neN,n" €N, ke NNN' NnKerpu. Let ((N,N'))g = (N, N')(o)(N', N) 5. We have the following
lemma.

(g

Lemma 2.19.

(i) If N and N’ are precrossed P-submodules of M, then (N, N') ) and ((N,N')) ) are precrossed
P-submodules of M.
(ii) IfN <p M, then (M,N>(q) <p M, <N, M>(q) <p M, <<M,N>>(q) <p M.

Proof. (i) Follows from relation (2.10) and the equality P(k?) = (Pk)?, p € P, k € NN N'nKer p.
(ii) follows from relations (2.8) and (2.9) and the equality mk9m="' = (mkm=1)9, m € M, k €
N N Ker p. [l

Using Lemma 2.19, we can define a covariant functor T, from the category PCM(P) to the
category &t of groups by the following way: for any precrossed P-module (M, pu), let Tiy(M) =

M/{(M,M))qy = M/{(M, M) q); for a morphism (M, u) s (M', i), et Tig) () be a group homo-
morphism induced by ¢. Note that for ¢ = 0 the functor T, is the Peiffer abelianization functor.

In the category PCM(P), there exist finite limits (easy to show). Let us consider the non-Abelian

left derived functors EfT(q), n > 0, of the functor T\, : PCM(P) — &t relative to the projective

class P induced by the cotriple (F,7,d) in the category PCM(P) (see [60]).

Definition 2.20. Let P be a group, (M, 1) be a precrossed P-module, and ¢ be a nonnegative integer.
Define the nth homology group modulo ¢ of the precrossed P-module (M, i) by

Hy(M,q)p = L] Ty(M), n>1.
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Proposition 2.21. Let p: M — P be a precrossed P-module such that u(m) =1 for all m € M.
Then we have

H,(M,q)p=Hp(M,Zy), n>1.

Proof. Consider a P-projective pseudo-simplicial resolution (see Chap. 1, Sec. 1.2) of (M, u) in the
category PCM (P)

R "svi R "sY, zR =M, (2.13)

——
where F,, € P and Y}, is a simplicial kernel in the category PCM(P). By Propositions 2.17 and 2.18
all F,, are free groups and all k,, are surjective group homomorphisms, implying that (2.13) is a
projective resolution of the group M in the category ®t. Since p is a trivial group homomorphism,
Tig)(Fn) = F® /qF%. Using [5] we obtain the assertion. ||

3.2. Main properties. We investigate the functor T{,) and prove a Hopf type formula for the
second homology modulo ¢ of precrossed P-modules, generalizing the classical one (see [3, 47]).

Lemma 2.22. Let P be a group and q be a nonnegative integer. Then the functor Ty : PCM(P) —
&t is a cosheaf over (PCM(P),P), where P is the projective class induced by the cotriple (F,,0).

Proof. 1t is easy to verify that for a short exact sequence of precrossed P-modules
1 > L M >N >1
there is an exact sequence of groups

Consider a P-epimorphism @ > M in the category PCM(P). We must show that the diagram
of groups

d()> T(q) (Oc)
Ty @xmu Q)  zTy(Q) =Tiy(M) =1

dy

is exact. In effect, we have the following commutative diagram of groups:

T T Tl o o

@(R)  =Tp(Q) = Tig(M)  >1
J | H ’

Ker dy e T (Q) T (@) = Ty (M) >1

where R is the kernel of o : Q —> M, X is a homomorphism induced by the inclusion R — @Q X @,
r — (r, 1), and the top row is exact by (2.14). Hence the bottom row of this diagram is also exact. | |

Proposition 2.23. Let P be a group, (M, 1) be a precrossed P-module, and q be a nonnegative integer.
Then there is a natural isomorphism

Hy(M,q)p = M/(M, M) ).
Proof. The proposition follows from Lemma 2.22 and Proposition 1.20. [ ]

Theorem 2.24 (Hopf’s formula). Let P be a group, (M,u) be a precrossed P-module, and q be a
nonnegative integer. Then there is an isomorphism

HQ(M’ Q)P ~ RN <F7 F>(q)/<<F7 R>>(q)7
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where 1 >R -F =M > 1 is any free presentation of the precrossed P-module (M, 1)
i.e., using Propositions 2.17 and 2.18, we have that F' is an object of the projective class P and ¢ is
a P-epimorphism.

Proof. Consider the augmented Cech resolution (C(¢), @, (M, u)) of (M, u) € PCM(P) for p: F —
M.
By Lemma 2.22, T|,) is a cosheaf over (PCM (P),P), and using [103] or [60, Theorem 2.39(ii)], we
see that there is an isomorphism
ﬁfT(q)(M) = 7T10*,
where C, is the following simplicial group
- TQ(dO) - Tq(dO)
C*E gT(q)(FXMFXMF) ;T(q)(FXMF) iT(q)(F)
TIZ(dQ) Tq(dl)
The Moore complex NC, of the simplicial group C, has length 1, i.e., (NCy), = 0, n > 2. This
follows from the fact that the Moore complex of the Cech resolution has length 1. Hence

mCy = Ker T, (do) N Ker Ty (dy).

Furthermore, we have the following isomorphism of precrossed P-modules F' xp; F S -RxF ,
defined by (7, f) — (rf, f), where the precrossed P-module structure on the group R x F' is given by
the following way: a homomorphism R x F' — P is defined by (r, f) — ue(f) and an action of P

do
on Rx FbyP(r,f)y=FrPf)forallpe P,r € R, f € F. We obtain R x F ZF ,do(r,f)=F,

d1
dl (T7 f) = Tf'
It only remains to prove that the homomorphism
a: (R/((F,R)) ) x F/(F,F)g — Tig)(Rx F),
defined by «a([r], [f]) = [(r, f)], is an isomorphism. ||
Remark 2.25. For p = 0, Theorem 2.24 generalizes the classical Hopf formula from [3] and for
q = 0 Proposition 2.23 and Theorem 2.24 show that we can obtain the first and the second homology

of precrossed P-modules of Conduché and Ellis [30] as non-Abelian derived functors of the Peiffer
abelianization functor.

3.3. Some other properties. In this section, we investigate low-dimensional, first and second,
homologies modulo ¢ of precrossed P-modules, always having in mind Proposition 2.23 and Theo-
rem 2.24, and give some results generalizing, in the ¢ modular aspect, the results of Conduché and
Ellis (see [30]).

Proposition 2.26. Let P be a group, ¢ be a nonnegative integer, and
1 > L M >N >1
be a short exact sequence of precrossed P-modules. Then there is an exact sequence of groups

Hy(M,q)p  =Ha(N.q)p  >L/((M,L)) >Hi(M,q)p >Hi(N,q)p >1. (2.15)
Proof. Assume 1l — R — F — M — 1 is a free presentation of the precrossed P-module M, and
hence 1 — R’ — F — N — 1 is a free presentation of the precrossed P-module N. Therefore,

R C R/, implying RN (F, F) ) C R'N(F, F) ), ((F,R))q C ((F,R')) (), and there is the canonical
group homomorphism Hy(M, q)p — Ha(N,q)p.
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The following commutative diagram of groups with exact rows

1 > R > I >N >1

.

1 >L > >N >1

induces a homomorphism Hy(N,q)p — L/{(M, L)) ()
Other homomorphisms are defined naturally and it is easy to verify that the sequence (2.15) is
exact. | ]

Remark 2.27. We can extend the sequence (2.15) to any dimensions using the long exact sequence
of the non-Abelian derived functors and recover for p = 0 the eight-term exact homology sequence of
groups with coefficients in Z, (see [48]).

The following result generalizes the classical group result and uses the standard proof, originally
due to [116].

For any precrossed P-module (M, ;1) and any nonnegative integer ¢, there is the following family of
precrossed P-submodules:

1) _ (2) _ (n+1) (n)
Mgy = M, My = (M, M) (g), -, Migy™ = ((M, M) -

Theorem 2.28. Let P be a group, q a nonnegative integer, and @ : M — N be a morphism of
precrossed P-modules such that the following properties hold:

(i) the natural homomorphism Hi(M,q)p — Hi(N,q)p, induced by ¢, is an isomorphism;
(ii) the natural homomorphism Ho(M,q)p — Ha(N,q)p, induced by ¢, is a surjection.

Then ¢ induces a natural isomorphism of precrossed P-modules

M/M((;)) = >N/N((;)) for n>2.

Proof. By induction. For n = 2, the theorem is obvious. Assume that it is valid for n. By Proposi-
tion 2.26 and the commutative diagram of groups with exact rows

1 >M((:)) =M >M/M(n >1

l <p | l ’
_Nm _ NN o
1 Ny N N/Ng 1

we have the following commutative diagram of groups with exact rows

Hy(M,q)p  =Ho(M/M"),q)p =M /MY =H(M,q)p  =H\(M/M), q)p =1

| | | | |

Hy(N,q)p  =Ho(N/NW.q)p =N /NOY =l (Nq)p = H(N/N),

@ N g o 71
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Using the five-lemma, we see that M ((:)) /M ((n)H) is isomorphic to N, ((:)) /N ((:)H). Then the commutative

diagram of groups

U= MM sy (Y M) -1

| | |

1 q /N(n-H N/N(n-i-l . N/N(n -1

gives the result for n + 1. | ]

For any precrossed P-module p: M — P, let M A% M be the group generated by the symbols
m Am’ and {k}, m,m’ € M, k € Ker 1 subject to the following relations:

mAm'm” = (m Am')(m Am")((m,m”)"" AP, (2.16)
mm' Am” = (m Am/m"m'™1) (“mm’ A “mm"), (2.17)
(m,m'y A (n,n’y = (m Am)(n AnY(mAm) HnAn)" (2.18)
({m,m"y Am")(m" A (mym!)) = (m A m')(*7 m A m!) 7 (2.19)
EAk=1, (2.20)
{EY(m Am){E}Y = (k%m Am) (kT AP™m!) 7 (2.21)
-1
{kKk'} = {k}h (K=" AR (R R K, (2.22)
i=1
{RHKEHEY R = KT AK, (2.23)
{{m,m")} = (m Am)? (2.24)

for all m,m’,m”,n,n’ € M, and k, k' € Ker p.

Note that (2.16)—(2.20) are the defining relations for the group M Ap M defined in [30]. Furthermore,
when P =1 or u = 0, the group M /\?D M coincides with the non-Abelian exterior product modulo ¢,
M AT M, introduced by Conduché and Rodriguez—Fernandez [32] (see Chap. 6 and also [13, 47, 48]).

There is an action of the group P on the group M A% M given by P(mAm') =Pm APm/ and P{k} =
{Pk} for all m,m’ € M, k € Keru. Moreover, there exists a P-equivariant group homomorphism
05 : M A% M — M defined by 9(m Am/) = (m,m/) and 05({k}) = k9. It is clear that

O (M A, M) = M),

g

0.
Note that the complex of groups M /\;1_-, M =M " =P isa 2-crossed module in the sense of
Conduché [27].

Proposition 2.29. Let (M, u) be a precrossed P-module, ¢ > 0, and
©
1 >R > F > M >1

be a short exact sequence of precrossed P-modules, where (F,v) is a free precrossed P-module. If the
homomorphism 93 : F /\?D F — F is injective, then the group M /\?D M is isomorphic to the group

F& [UFR)) ).
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Proof. Let Lp (respectively, Lys) be the free group generated by the set (F' x F')UKer v (respectively,
(M x M) UZKer p). There is a commutative diagram of groups

Lp > Ly

TF l lﬂ'l\l s

FANLF  =MAL M
where the horizontal homomorphisms are surjective and 7r and my; are canonical homomorphisms
defined by 7r(f, f') = f AN [, 7r(9) = {g} and wp(m,m') = m Am/, mp(k) = {k} for all f,f" € F,
g € Kerv, mym’ € M and k € Kerp. It is easy to obtain that Ker(F A% F — M A% M) is the
homomorphic image of Ker(Lr — Ljs) by 7p. It is also easy to verify that Ker(Lr — Ljy) is the
normal subgroup of L generated by the elements (f1, f2)(f'1, f'2) "' and f3f'3" such that ¢ f; = ¢ f';,
fi, f1 € F (i=1,2) and of3 = ¢f’s, f3, f's € Kerv. Thus, its image in F A% F' is the normal subgroup
generated by the elements (f1 A f2)(f'1 A f'2) 7! and {f3}{f’s} !, which by the formulas (2.16), (2.17),

and (2.23) coincides with the normal subgroup of F /\‘}3 F' generated by the elements f Ar, r A f and
{r}, f € F, r € R. Then the image of this subgroup by the isomorphism FA%L F = 03(F AL F) = F((;))

is ((F, R))(q) and thus F{) /((F, R))() = M A% M. N

Lemma 2.30. Let h: A — B and g : B — C be group homomorphisms. If h is surjective, then
the following sequence of groups is exact:

1 > Ker(h) > Ker(gh) > Ker(g) > 1.
Theorem 2.31. Let p: M — P be a precrossed P-module, ¢ > 0, and
1 >R > F 4 > M >1

be a short exact sequence of precrossed P-modules, where F is a free precrossed P-module. If the
homomorphism 83 : F N\, F — F((;)) is an isomorphism, then there is an isomorphism of groups

Hy(M,q) = Ker (M AN, M — M).
Proof. By Lemma 2.30, we have the following exact sequence of groups:
1 >Ker(prhy) =Ker(@l(pAby) >Kerd! =1
From the commutative diagram of groups

PABP

F /\?D F > M /\qP M
L
(2) Vi)
F(Q) 2) M(Q)
®(q)
we obtain , ,
Ker (03 (¢ A% @) = Ker @Eq; =RN F((q)).
Then

Ker(0§ : M A M — M) = RN F) J((F, R)) () = Ha(M, q)p.

Finally, we give an example showing that there exists a group P and a free precrossed P-module F'
such that the homomorphism 95 : F AL F — F is injective.
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Lemma 2.32. Let (M,p) be a precrossed P-module and q a nonnegative integer. Then there is an
exact sequence of groups

MApM “>MALM  >kerp/(M,M)  >1.

Proof. The homomorphism ¢ is given by ¢(m A m’) = m A m’. The required exactness can be easily
verified. ||
Proposition-Example 2.33. Let P be a free group, i : F —> P a free precrossed P-module and

q > 0. Then the homomorphism 83 : F /\‘}3 F— F((;)) s an isomorphism.

Proof. Using Lemma 2.32, we have the following commutative diagram of groups with exact rows:

1 =FApF P>FALF  skerp/F® -1

02 l 85 l Oll 5
o) At = 72 (2) .
1 F Fg Figp /¥ 1
where F(®) = (F, F), 0, is an isomorphism [7], proved by applying a theorem of Whitehead [126] on
2-dimensional CW-complexes and the theorem of Kan [79] (see above), and hence ¢ is injective. We

can directly check that « is an isomorphism, and so is 95. [l

CHAPTER 3

HOPF-TYPE FORMULAS

One of the basic results of the theory of group homology is the well-known Hopf formula for the second
integral group homology, relating homology to an elementary formula involving a presentation of the
group being studied. In particular, it asserts that for a given group G there is an isomorphism

Hy(G) = R;[};]F]’

where R> >F > (G is a free presentation of the group G.

Several alternative generalizations of this classical Hopf formula to higher dimensions were made in
various papers (see, e.g., [33, 111, 117]), but perhaps the most successful one, giving formulas in all
dimensions, was by Brown and Ellis [14]. They used topological methods, in particular, the Hurewicz
theorem for n-cubes of spaces (see [19]), which itself is an application of the generalized van Kampen
theorem for diagrams of spaces [18]. The final result is as follows.

Theorem (see [14]). Let Ry, ..., R, be normal subgroups of a group F such that
Hy(F) =0, HT(F/HRZ) =0 for r=|A+1, r=|A]+2,

€A
where A is a nonempty proper subset of (n) = {1,...,n} (for example, if the groups F/ [| R; are free
€A
for A (n)) and F/ || R; = G. Then there is an isomorphism
1<i<n
N RN [F, F]
Hn-i-l(G) = =

AC(n) i€A  igA
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Later Ellis [44] gave a purely algebraic proof of the formula using hyper-relative derived functors.
His results are clearly related to those presented here, and a comparison between them may yield
some general links between the two theories of derived functors being used. In the original paper [14]
and in the paper with an algebraic approach [44], a technical assumption was omitted. An erratum is
available from Ellis’ homepage.

In this chapter, using the general theory of n-fold Cech derived functors, we establish a new purely
algebraic method for investigating higher integral group homology from a Hopf formula point of view
and the further generalizations of these formulas. This method is universal and is valid for other
algebraic structures.

Section 1 is devoted to the study of normal (n+ 1)-ads of groups arising from simplicial groups and
shows how we pass naturally from simplicial groups to Hopf type formulas (Theorem 3.6).

Our generalization, in Sec. 2, handles the non-Abelian derived functors of the “nilization of degree k”
functor, Zy(G) : &r — &r, k > 2, where Z, coincides with the group abelianization functor 20b. We
give Hopf type formulas for these derived functors (Theorems 3.8 and 3.9). Finally, we apply these
results to algebraic K-theory and obtain Hopf type formula for algebraic K-theory (Theorem 3.14).

In Sec. 3, the m-fold Cech derived functors of group-valued functors from the category of crossed
n-cubes is treated. In particular, we calculate the mth m-fold Cech derived functor of the certain
abelianization functor o2b from the category of crossed n-cubes to the category of groups (The-
orem 3.15), implying the expression of the cotriple homology of crossed n-cubes (catn-groups) as
generalized Hopf type formulas (Theorem 3.16).

1. From Simplicial Groups to Hopf-Type Formulas

We start by developing some techniques for handling (n+1)-ads of groups, relating them to iterated
commutators.

Definition 3.1. Let j be given, 1 < j < n. A normal (n + 1)-ad of groups (F; Ry,...,R,) is called
simple relative to R; if there exists a subgroup F’ of the group F such that

FaRr=1, (R=(R0F)((RNE)
1A i€A 1A
for all AC (n)\ {j}.

For a given (n + 1)-ad of groups (F; Ry,...,R,), A C (n), and k > 1 recall that we have denoted
above by Dy (F'; A) (see Proposition 2.7) the following normal subgroup of the group F:

11 [ﬂRZ,[ﬂRZ,..[ﬂRz,ﬂR] 1)
AjUAU--UAL=A icA; i€ Ao 1€AL_1 i€Ay
Sometimes, we write Dy (F; Ry, ..., Ry) instead of Di(F';(n)).

Lemma 3.2. Let (F;Ry,...,Ry) be a normal (n + 1)-ad of groups which is simple relative to Rj,
1<j<nandletk>1. Then

Dy(F; A) = (Dy(F; A) N F')Dy(F; AU {5})
forall AC (n)\ {j}.
Proof. We use induction on k. Let k& = 1; then

Di(FiA) = (VRi= (RO F) (N RAR) = ()R F)Di(F AU {G})

i€EA €A €A €A
for AC (n)\ {j}.
Proceeding by induction, we assume that the assertion is true for £ — 1 and we will prove it for k.
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The inclusion (Dg(F;A) N F')D(F; AU {j}) C Dy(F;A) is obvious. It is easy to see that a
generator of Dy (F; A) has the form [z, w], where z € (| R;, w € Dy_1(F;C), B,C C A C (n)\ {j},

1€B
and BUC = A. There exist elements y € (| B;NF’ and z € (| R; N R; such that z = yz. We have
i€B i€B
[, w] = [yz, w] = ylz, wly™ [y, w].

Clearly,

[2,w] € Dp(F; BUCU{j}) = Dp(F; AU{j})
and hence y[z, w|y~! € Dy(F; AU{j}). By the inductive hypothesis, there exist w’ € Dj_1(F;CU{j})
and 2’ € Dy_1(F;C)N F’ such that w = 2’w’. We have

[y, w] = [y, 2'w'] = [y, 2]2"y, W]~
Clearly,
[y, w'] € Di(F; BUC U{j}) = Dp(F; AU{j})
and hence
a'ly, w'la’™ € Dy(F; AU {j}).
Therefore, there is an element w” € Di(F;A U {j}) such that [z,w] = [y,2'|w” where [y,z'] €
Dy(F; A) N F. N

For a given group G, the (lower) central series (I'y, = I'y(G))
G=T12T22--- 2T} 2+

of G is defined inductively by
Ty =[] T Tyl
i+j=k
The well-known Witt—Hall identities on commutators (see, e.g., [7]) imply that I'y = [G,Tx_1].
Let us define the nilization of degree k functor Zj, : &r — &r, k > 2 by Zi(G) = G/T'x(G) for
any G € &r and where Zi(a) is the natural homomorphism induced by a group homomorphism .
Of course, Z; is the ordinary abelianization functor of groups.

Proposition 3.3. Let (F;Ry,...,R,) be a normal (n + 1)-ad of groups and k > 2. Assume that
(F; Ry, ..., Rj) is a simple normal (j + 1)-ad of groups relative to R; for all 1 < j <n. Then
[ RinTw(F) = Dp(F; (j)), 1<j<n.
i€(j)
Proof. Since the inclusion
Di(F;(j)) € () RiNTk(F)
i€(j)
is clear, we must only show the inclusion
(] R:iNTk(F) C Dy(F; (5)),
i€(j)
which will be done by induction on j.

Let 7 = 1, then there exists a subgroup F; of the group F' such that Ry N F; =1 and F = F1R;.
Let w € Ry NT(F) C Tk (F) = Dy(F;@). Using Lemma 3.2, we have elements 2’ € Dy (F; &) N Fy
and w' € Dy(F; (1)) such that w = 2’w’. But 2/ = ww'~' € R; and hence 2’/ = 1. Thus,

Ry NT(F) C Dg(F5(1)).

Proceeding by induction, we assume that the result is true for j — 1 and we will prove it for j.
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There exists a subgroup Fj of the group F such that R; N F; =1 and
Nr=(NrRNE)(NROR)
i€A €A €A

forall AC{1,...,j —1}. Let
we () RiNT(F)C (] RinTw(F).

i€(j) i€(i—1)
Using the inductive hypothesis, we have the equality

[ RiNTw(F) = Di(F;(j - 1)).

ic(j-1)

By Lemma 3.2, there are elements 2’ € D(F;(j — 1)) N F; and v’ € Dy (F; (j)) such that w = 2w’
Certainly, 2/ = ww' ! € R; and hence 2’ = 1. Therefore,

() RiNTk(F) C Dyp(F;(j)).
i€(j)

The proposition is proved. [ ]

These conditions of “simplicity” may seem rather restrictive, but the following observation shows
that examples of simple normal (n + 1)-ads of groups appear naturally, and that moreover these
examples satisfy the conditions of Proposition 3.3.

Proposition 3.4. Let F, be a pseudo-simplicial group. Then (F,;Kerdy,..., Ker d?_l) is a simple
normal (j + 1)-ad of groups relative to Ker dj_y for all1 < j <mn.

: m n—1 __
Proof. Since alj_lsj_1 =1,

s'{(Fa1) NKerd} =1, s'7{(F,1)Kerd} , = F,

for all n > 1. Hence for j = 1, (F,,; Kerdf) is a simple normal 2-ad of groups relative to Ker dj and
the F’ of the definition of simplicity is 38_1(Fn_1).
Now assume that j > 1. We will show the following equality:
ﬂ Kerd} = ( ﬂ Kerd; N 3;7‘__11(Fn_1)> ( ﬂ Ker di N Ker d?_1>
€A €A €A
for all A C{0,...,j —2} and A # &, so again the F’ of the definition of simplicity is s?__ll(Fn_l).
Let
x = s?__ll(a:n_l)rj_l € ﬂ Ker d?,
€A
where x,,_1 € Fj,_1, rj_1 € Ker d;L_l. Thus

di (x) = d}'s7 " (xn—1)d} (rj1) = 1

for all i € A. Since i < j — 1, we have
d (rj-1) = 83 d} " (@n1) 7"
Hence
L= 7 (1) = BNy ) = A () ™ = A o)

Therefore, d'(r;j—1) =1 and d?s?__ll(a:n_l) =1 for all 7 € A. ||

The next lemma is well known but very useful. The proof is routine.
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Lemma 3.5. Let G, be a pseudo-simplicial group and A C (n), A # (n). Then
dﬁ( ﬂ Ker d?_1> = ﬂ Kerd! ', n>2.
icA icA
Now we give the main result of this section.
Theorem 3.6. Let (F*,dg,G) be an aspherical augmented pseudo-simplicial group. Then there is a

natural isomorphism

n

—1
Kerd! ' NTx(F,-1)

T TV L k>2 n>1.
nZk(F) Dy(Fn1;Kerdy™,... Kerdp—})" B

Proof. Let us consider the short exact sequence of augmented pseudo-simplicial groups

1 1 1 1
dV(T)L (fjlvl "'O
> > > 0> dy
r(Fy) 0 - > Tt (F1) Z T (Fo) > T (G)
> o> > at
dn !
> 4 > > d(l) d8
Fh : >‘FH ;‘Fb >(;
> ; > > %
dy,
Zi(Fn) =Zy(Fy)  ZZp(Fo) > Zk(G)
> >
1 1 1 1

By the induced long exact homotopy sequence, we have isomorphisms of groups
n—1 -
N Ker d?_l
TnZi(Fy) = i:(;_l , n>1.
di( N Kerdy)
i=0

Since (El? is the restriction of d' to I'y(F},), Kercz” = Kerd! NI'y(F;,). Hence

n—1 n—1
ﬂ Kerd?! = ( ﬂ Kerd! ') n Fk(Fn_1)
i=0 i=0
and
n—1 _ n—1
(M Kerd? = ( N Kerd?) A TW(F,).
i=0 i=0

Using Propositions 3.3 and 3.4, we have

( ﬂ Kerd?_l) NIk (F,) = Dp(Fn; Kerdy, ..., Kerd),_;), n>1.
1€(n)
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Since (F, d8, G3) is an aspherical augmented pseudo-simplicial group,

dZ( ﬂ Kerd?_l) = ﬂ Kerd!', n>1.
i€(n)

1€(n)

Using this fact and Lemma 3.5, it is now easy to see that we have an equality

n—1
JZ( m Kerg?) = d)} (Dy(Fn; Kerdg, ..., Kerdp_)))
=0
= Dy (Fn_l; Ker dg_l, ..., Ker dgj).

In the case where (F*,dg, @) is a free pseudo-simplicial resolution of G, the homotopy groups of
Z(F,) will be the left non-Abelian derived functors L? Zi(G) of Zj, evaluated at G, where P is the
projective class of free groups (see Chap. 1, Sec. 1.2). We thus have the following formal result.

Corollary 3.7. Let G be a group and (F*,dg,G) an aspherical augmented pseudo-simplicial group
and k > 2. If F,, is a free group for alln > 0, i.e., (F*,dg, G) is a free pseudo-simplicial resolution of
the group G, then there is a natural isomorphism

n—1

N Kerd! ' NTk(F,-1)

LPZ4(G) = =0 . on> 1.
n Zr(G) Dk(Fn_l;Kerdg_l,...,Kerdﬁj) -

2. Generalized Hopf-Type Formulas

In this section, we focus our attention on the investigation of the n-fold Cech derived functors of
the functor Zj, : &r — &r, k > 2. Our method gives the possibility of finding a new purely algebraic
proof of the generalized Hopf formula of Brown and Ellis; moreover, we express L” Z,(G), n > 1,
k > 2 by a Hopf type formula, where P is the projective class of free groups.

Note that a P-projective P-exact n-presentation § of a group G is called a free exact n-presentation
of the group G.

The Quillen algebraic K-functors K, 11, n > 1, are described in terms of a short exact sequence
including the higher Hopf-type formulas for free exact n-presentations induced by a free simplicial
resolution of the general linear group.

2.1. Hopf-type formulas for derived functors of the functors Z;. Using the fact that Z; is
a right exact functor, we easily show that L’g‘f"lek = 7. Moreover, Propositions 2.9 and 2.13 and
Lemma 2.5 or alternatively Corollary 1.24 imply that E?'f"lek = 0 for ¢ > n. Then the following
theorem gives the nth n-fold Cech derived functor of the functor Zj : &r — &r, k > 2.

Theorem 3.8. Let G be a group and k > 2. Then there is an isomorphism

N RiNTw(F)
rn-foldy (1) i€(n) >
WG S Ry Ry MY
where (F; Ry,. .., Ry) is the normal (n+ 1)-ad of groups induced by some free exact n-presentation §

of the group G.
Proof. By their definition and Lemma 2.5 we obtain an isomorphism

ﬁz_fOIde(G) [ ﬂn(ZkE(n) (M))*7
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where M is the inclusion crossed n-cube of groups given by the normal (n + 1)-ad of groups
(F;Ry,...,R,). Hence using Proposition 2.9 we have an isomorphism

£rfl 7, (G) = m, (EM By(M).).
Then, by Proposition 2.13,

B, (n)

Lz, (@) 2 () Ker(By(M)g > B (M) my\1)- (3.1)

le(n)
Now we set up the inductive hypothesis. Let n = 1, then

Ry F ) . Ry ﬂFk(F)

1-fold o~
L17°Z(G) = Ker (Dk(p; R TwF)) = Du(F:Ry)

Proceeding by induction, we assume that the result is true for n — 1 and we will prove it for n.

Let us consider [ € (n) and the restriction FU of F to the subcategory of C,, consisting of those
A C (n) not containing I (recall the discussion in Chap. 1, Sec. 2.2). It is easy to verify that F is a
free exact (n — 1)-presentation of the free group S my\{13- Here we use the fact that if G is a free group,
then £PUT(G) =0, i > 0 and LT (G) = T(G) for any functor T : &r — &r. Thus, because of
our inductive hypothesis,

N RiNIk(F)
Ln—1)-fold ~ A = 0. 3.2
n—1 k(g<n>\{l}) Dy(F;Ry,...,R_1,Ri11,...,Ry) 2
Now from (3.1) and (3.2) we can easily deduce that there is the isomorphism
N RiNTy(F)
i€(n)

En—fole G ~ )
n k(G Dy(F;Ry,...,Ry)

Now we are ready to express, by generalized Hopf type formulas not only the non-Abelian derived
functors of the functor Zs, i.e., group homology functors, but also the derived functors of all the
functors Zy, k > 2.

Theorem 3.9. Let G be a group, § be a free exact n-presentation of G and k > 2. Then
N RiNDy(F)

LPZ.(G) = oy, gy = "€
nZ(G) = Ly k(G) Dy(F;Ry,...,Ry)’

n>1,
where (F'; Ry,...,Ry) is the normal (n + 1)-ad of groups induced by §.
Proof. Tt directly follows from Corollary 3.7, Proposition 1.16(i), and Theorem 3.8. [

Remark 3.10. One technical condition was omitted in the statement of the generalized Hopf formula
as originally formulated in [14]. The result here corrects and generalizes that Brown—Ellis higher Hopf
formulas.

Proposition 3.11. There is an isomorphism

Lpeldz, o gDty g <i<n 1.
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Proof. Assume that GG is a group and § a free exact n-presentation of G. By Definition 1.19, Propo-
sition 2.9, and Lemma 2.5,

£rfldz (@) = m(EMBL(M),), >0,

where M is the inclusion crossed n-cube of groups given by the normal (n + 1)-ad of groups
(F;Rl,...,Rn).
Now applying Proposition 2.4 to the crossed n-cube of groups Bi(M) we have an exact sequence

0 >ma(BEMDMN)) = LEZ(G) = maa(BUTD(NG)) >
= mpg(EMDN)L) =0 =m(ECTDNG)) -
=mo(EMD(M).) = LM Z(G) = m (BT (N)) >0
and isomorphisms
LEZ(G) = mo(BM D (No)a), L2k (G) = w1 (BT D ().,
Since Zy, k > 2, is a right exact functor, we easily show that
(B D (Np),) = ez @), i o.

)

It only remains to show that m;(E =D (N),) = 0 for 0 < i < n — 2. In fact, by the construction,
the crossed (n — 1)-cube of groups Nj is the kernel of the morphism of crossed (n — 1)-cubes py :

B (M)1 — B (M)o. It is easy to verify that F"™\4 is a free exact m-presentation of the free group
§a where m = |A|. Using Theorem 3.8 we have

N RiNTy(F)
Lz (Fa) = ZGADk(F; A - 0 for A#(n),
which implies that N1 g = Ker g =0 for all B C (n —1) and B # (n — 1) and
N1y = Ker iy o1y = L Z(G).

Hence m;(E™ D (N).) =0for 0<i<n—2. ||

Now from Theorem 3.9 and Proposition 3.11 we deduce the following result.
Theorem 3.12. There is an isomorphism

Lz = Pz 0<i<n.
We obtain an interesting formula for n = 2. For this we need the following lemma.

Lemma 3.13 (see [28, 100]). Let

L =M
M = )\’l n
N > P

v

be a crossed square. Then
Hy(Cy(M)) = P/ImpImv,
Hy(C.(M)) = M xp N/ Tmx,
H(C(M)) = Ker AN Ker X,
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where C(M) is the mapping cone complex of groups

L “~MxN "-p
with o(l) = (A1), N(1)), B(m,n) = p(m)v(n) for alll € L, (m,n) € M x N, and & is the natural
homomorphism from L to M xp N.

Proof. We only prove that Hy(Cy(M)) = M x pN/Im k. It is easy to verify that f : Ker 8 — M xpN,
given by f(m,n) = (m~1,n) for all (m,n) € Ker 3, is an isomorphism and Im foa = Im x. The other
results are as easy as this part to verify. [

Using Theorem 3.12 and Lemma 3.13, for a given group G and k£ > 2, we see that there are
isomorphisms of groups
erk(F) N Rng(F)

(Ry N Ro)Tk(F) 7
where (F'; Ry, R2) is a normal 3-ad of groups induced by some free exact 2-presentation § of G.

Note that for group-abelianization functor 2b = Z5 we have the following apparently new interpre-
tation of the second integral group homology:
Ri[F,F| N Ry[F, F|

(R1 N Ry)[F, F]

LT Z,(G) =

1%

Hy(G)

2.2. Hopf-type formulas in algebraic K-theory. In this section, we will give an application of
our generalized Hopf type formulas to algebraic K-theory.
First, recall the well-known definition of yﬂl( ), the first derived functor of the functor L inverse

limit in the category of groups)(see, for example, [60]). Let {Ay, pf. }x be a countable inverse system
of groups; then

(1)
M{Aka pllz—i-l} = HAk/ ~,
k
where ~ is an equivalence relation on the set [| Ay defined as follows: {ay} ~ {a}} if there exists {hs}

k
such that {hk}{ak}{pﬁﬂ( k+1)} = {a,}.

Theorem 3.14. Let R be a ring with unit and (Fy,d}, GL(R)) be a free pseudo-simplicial resolution
of the general linear group GL(R). Then there is an exact sequence of Abelian groups

(€<ﬂ+l Kerd )NT';(Fx)
0 >L < Dj(Fn;Kerd?,....Ker dp) > .

( N Kerd! HNC;(Fr-1)
. i€(n)

- Kn+l(m) - @1 <Dj(Fn_l;Kerdg_l,...7Kerdz_i)> =0
J

forn > 1.
Proof. Using [60, Theorem 2.15], we see that there is a short exact sequence of groups

0 = P_ LR Z(GL(R)) > L Zeo(GL(R®)) > Im L Z(GL(R)) >~ 0 (33)
k

for all n > 0, where the functor Z, : &r — &r is given by Z(G) = @Zk(G), G € &r.
k
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It is known from [82] (see also [60]) that the values of the non-Abelian left derived functors L7 Z,
of the functor Z,, : &r — &r on GL(R) are isomorphic to Quillen’s K-groups. Thus from (3.3) we
deduce that there is a short exact sequence of Abelian groups

0 > lIm LY Z(GL(R)) > Kni1(R) > lim L] Zy(GL(R)) ~ 0, n>0.
k k

Now Corollary 3.7 directly implies the result. [ ]

Note that using Theorem 3.9 and Remark 3.10, we can express K,41(R) in data coming from exact
(n+ 1) and n-presentations of the group GL(R).

3. Hopf Type Formulas for the Homology of Homotopy (n + 1)-Types

The aim of this section is to investigate the homology of the homotopy (n + 1)-types, given in
previous chapter, from a Hopf formulas point of view, using our purely algebraic method of m-fold
Cech derived functors.

Now we consider the m-fold Cech derivatives of functors from the category of crossed n-cubes to the
category of groups, while the general situation has been dealt in Chap. 1, Sec. 2. In particular, we give
an explicit computation of the m-fold Cech derived functors of the functor oA6™ : Crs” — AbGr,
implying a purely algebraic approach to the homology groups of crossed n-cubes from a Hopf type
formula point of view.

The following theorem gives the calculation of the mth m-fold Cech derived functors of the functor

oAb™ . Crs” — ALGr C Gr.

Theorem 3.15. Let M be a crossed n-cube and X its P-projective P-exact m-presentation, where P is
the projective class induced by the “free” cotriple F in the category Crs™ (see Chap. 2, Sec. 2). Then
there is an isomorphism

N ’,,n I [X(@)s,X(@)c]
i€(m) BUC=(n)

Il
AC(m
where R' = Ker(X(@) — X({i})) fori € (m).

m>1,

(I nmenrl)

BUC=(n) i€A i¢A

LmFold (o6 (M) =

Proof. Using Corollary 2.6, we have
LR (96 (M) = 7, (026 EM(N),),

where N is the crossed (n + m)-cube of groups induced by the normal (m + 1)-ad of crossed n-cubes
(X(2); R',..., R™). Hence Proposition 2.10 implies an isomorphism

E%-fold(aglb(n))(M) o ﬂm(O.E(m)Q[[,(n-i-m) (N)s).
Then, by Proposition 2.13 (see also [87, Proposition 3.4]),
ﬁ%-f(ﬂd((jmb(n))(M) o~ m Ker(ﬂb(nﬂ-m) (N) (n+m) > Q{f}l(n-i-m) (N<n+m>\{l}) (34)
le(m)

Now we set up the inductive hypothesis. Let m = 1; then

L1916y (M)
R} x(2)
= Ker {n) . ) —_— ()
=h <n( I [NE,NRD T m@mx@mﬁ
AC(1) BUC=(n) i€A igA BUC=(n)

47



w0 I [X(9)B, X(9)c]
BUC=(n)

[T ( I [NARgNRL)
AC(l) BUC=(n) i€A  i¢A

Proceeding by induction, we assume that the result is true for m — 1 and we will prove it for m.

Let us consider [ € (m) and denote by ¥/ the restriction of the functor X : C,,, — Crs" to the
subcategory of C), consisting of all subsets A C (m) with [ ¢ A. It is easy to check that ¥} is a
projective exact (m — 1)-presentation of the crossed n-cube X((m) \ {l}), which itself is a projective
crossed n-cube. Since the values of m-fold Cech derived functors of any functor for an object belonging
to the projective class are trivial, our inductive hypothesis implies that

. <Q\{z} R, ﬁB g[< >[3€(@)B,3€(@)C]
ﬁ(m—l)-fold . (n) m ~ 1e(m UC=(n 4 '

AC(m)\{I} BUC=(n) i€A it A

—1.  (3.5)

Now from (3.4) and (3.5) we can easily deduce the required isomorphism. ||

Now we give the result which expresses the homology of crossed n-cubes as Hopf type formulas
generalizing the Hopf formula for the second CCG-homology of crossed modules [21].

Theorem 3.16. Let M be a crossed n-cube and X its P-projective P-exact m-presentation. Then
there is an isomorphism

N Ry T [%@)s.X(@)]
m > 1,

I CII [NRgNR]) S

AC(m) BUC=(n) i€A i¢A
where R' = Ker(X(2) — X({i})) for i € (m).

Proof. Let (F,d3, M) be a P-projective pseudo-simplicial resolution of M in the category Crs™ and
consider the short exact sequence of augmented pseudo-simplicial groups

1 1 1 1
> gom,m) > > gé’<"> d~8,<n>
D(Fn) @ - ~D(F)  ZD(R) = D(M)
m,(n)
> d0m7<n> > dé (n) dg (n) ’
> Fm,(n) Z F1’<”> dql = F0’<"> = M)
A ny 1in)
o™ () = Z oA6™ (Fy > oA6™ (Fy) = oA6™ (M
> > l
1 1 1 1

where D(M) denotes the group [[ [Mp, Mc] for any crossed n-cube M.
BUC=(n)
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By the induced long exact homotopy sequence, we have the isomorphisms of groups

m—1 -
N Kerd;.”(;;
Tmo b (F,) = Zzom_l ., m>1. (3.6)

dy <n>( Z,DO Ker sz(n>)

Since (me is the restriction of dj"),, to D(F,,), Ker sz(m = Kerd,, N D(F,,). Hence

m Kerdm 1 ( ﬂ Kerdm< >1) ﬁD(Fm 1)

and

ﬂ Kerd ( ﬂ Kerd; ) D(F,,).

Since the shift of pseudo—snnphmal object Fj is the contractible augmented pseudo-simplicial object
(Dec(F,),d}, Fy) (see [40]), by Proposition 1.16(i) the m-cube of crossed n-cubes Dec(F)(™) is a
projective exact m-presentation of Fy. Hence, by Theorem 3.15 we have

4 O >Kerdﬁl’<n> N 5 CH< >[Fm7B,Fm,C]
ﬁz-fOld(Ole(n))(Fo) ~ 1€E(m uC= = 17
H ( H [ m Kerdz 1,p’ m Kerdz 1 C])

AC(m) BUC=(n) i€A i¢A

implying the equality

ﬂ Kerd’i” H Fon. > Fin.
i€(m) BUC=
= H < H [ﬂ Kerdi"; 5, n Kerd?ﬁlc}), m>1. (3.7)

AC(m) \BUC=(n) i€A i¢A

Since (Fy “(n)> dO 0,(n)" M<n>) is an aspherical augmented pseudo-simplicial group,
( ﬂ Kerd" > ﬂ Kerd m > 1.

Using this fact and Lemma 3.5, by (3.7) it is easy to see that we have an equality

m—1
an <n>< irjo Kercz-?(m) = d$’<n>< H < H [ﬂ Kerdi”y ., m Kerd?ﬁl,o}>>

AC(m) “BUC=(n) icA i¢A
= H ( H [ﬂKerdﬁ‘l}B,ﬂKerdrllc}>
AC(m) \BUC=(n) i€A i¢ A

Thus by (3.6) we have

m—1
( no Kerd )N I [Fm-1,p Fn-1,0]
i= BUC=(n)
H,, = .
#(M) I1 (I [N Kera™ ! ﬂ Kerd7' 1)

i—1, B? i—1,
AC(m)  BUC=(n) i€A B ¢

Using again Proposition 1.16(i) and Theorem 3.15, we complete the proof. [
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CHAPTER 4

NON-ABELIAN HOMOLOGY OF GROUPS

The non-Abelian homology of groups with coefficients in any group in any dimension was introduced
in [68] as the non-Abelian left derived functors of the non-Abelian tensor product of groups. It
generalizes the classical Eilenberg—MacLane homology of groups [41, 42] and extends Guin’s low-
dimensional Hy and H; non-Abelian homology groups with coefficients in crossed modules [53], which
has important applications in the algebraic K-theory of noncommutative local rings.

The non-Abelian tensor product of groups was introduced by Brown and Loday in [17, 18] following
the works of Lue [92] and Dennis [37]. It arose in applications in the homotopy theory of a generalized
Van Kampen theorem. It was defined for a pair A, B of groups which act on themselves by conjugation
and on each other such that the certain compatibility conditions hold. During the last twenty years
the non-Abelian tensor product has been the subject of a number of papers. We refer to here the web
page of Brown for a full account of this subject.

In [61-63], H. Inassaridze developed a non-Abelian cohomology theory previously defined by Guin
in low dimensions [53] that differs from the classical first non-Abelian cohomology pointed set of
Serre [114] and from the setting of various papers on non-Abelian cohomology [7, 26, 37] extending
the classical exact non-Abelian cohomology sequence from lower dimensions [114] to higher dimensions.
This non-Abelian cohomology theory of groups will not be treated in this work.

This chapter is devoted to the investigation of the non-Abelian homology of groups.

In Sec. 1, we give a short review of the results on the non-Abelian tensor product of groups of
Brown-Loday [17-19] and its generalization in the sense of [68], which will be useful in the sequel.

Section 2 is devoted to the construction of the non-Abelian homology of groups with coefficients in
any groups, which generalize the classical Eilenberg—MacLane group homology theory.

In Sec. 3, some properties on the non-Abelian homology of groups are established. In particular,
various exact sequences of the non-Abelian homology H,(G, A) of groups with respect to the both
variables are given (Theorems 4.15, 4.17, and 4.19 (Mayer—Vietoris sequence)). Then non-Abelian
homology groups are described as the non-Abelian left derived functors of the functor Hy(—, A) (The-
orem 4.20), as well as of the section functor I' in the category of cosheaves (Theorem 4.22). Sufficient
conditions are established for the non-Abelian homology groups to be finitely generated, finite, p-
groups, torsion groups, or groups of exponent ¢ (Theorem 4.23).

In Sec. 4, special attention is given to the investigation of the second and third non-Abelian homol-
ogy of groups. In particular, the explicit formulas for them are obtained by using Cech resolutions
(Theorems 4.24, 4.25, and 4.28).

1. The Non-Abelian Tensor Product of Groups

Let a pair G, H of groups act on themselves by conjugation (*y = xyz~!) and on each other such
that the following compatibility conditions hold:

Ch(gy=9"@"g)), COw)y=rEC ) (4.1)
for all g,¢' € G and h,h' € H.

Example 4.1. Let « : G — P and 8 : H — P be crossed modules over a group P. Let G
and H act on each other via P and on themselves by conjugation. Then these actions satisfy the
conditions (4.1).

Now a slightly modified version of the non-Abelian tensor product of groups will be given, which
was studied in [68-70], in order to construct its non-Abelian derived functors.

50



Let G and H be arbitrary groups that act on each other and on themselves by conjugation. The
compatibility conditions (4.1) are not assumed to hold.

Definition 4.2. The non-Abelian tensor product G ® H is the group generated by the symbols g ® h,
g € G, h € H, subject to the relations

99' @h = (g’ ®h)(g ® h), (4.2)
g@hh' = (goh)("go""h), (4.3)
(9@ h)(g ®h') = (W"g @) (g @ h) (4.4)
for all g,¢' € G and h,h' € H, where [g,h] = ghg *h™' € G* H.

Remark 4.3.
(a) If the groups G and H satisfy the compatibility conditions (4.1) then this definition coincides
with that of given by Brown-Loday [17, 18].
(b) In [67-70] the relation
(g @h)(g©h) = (g©h)("g o Mn)
was included in the definition of G ® H. It is easy to check that this relation is redundant (it
directly follows from (4.4)).
Assume that © : G — A, & : H — B are homomorphism of groups, A and B act on each other,
and © and ® preserve the actions in the sense that
®(h) = %(@h), O("g) = *"(Oy)
for all g € G, h € H. Then there is a unique homomorphism © ® ® : G ® H — A ® B such that

(ORP)(g®h) =0g® Ph for all g € G, h € H. Further, if ©, & are onto, so also is © ® ®.
It is easy to verify that there are natural isomorphisms

GOH=H®G, gvenby gh+— (h®g)~
and, if G and H act trivially on each other [18],
G®H%G“b®ZHQb, given by ¢g® h+— [g] ® [h].

The following properties of the non-Abelian tensor product of groups are well known but useful in
the sequel, and the relevant proofs are omitted.

1

Proposition 4.4 (see [18]). Let M and N be groups equipped with compatible actions on each other.
(a) The free product M «+ N acts on M & N so that
Pim@n)=Pm®@Pn, meM, neN, peMxN.
(b) There are homomorphisms
A M&N-—M, N:M®N-—N
such that A(m ®@n) =m-"m~, N(m®n) ="nn"1
(¢) The homomorphism X\, X', with the given actions, are crossed modules.
(d) Ifle M@ N, m' € M, n’ € N, then
A)@n' =1-"1""m' @ (N1) ="' 1"
(e) The actions of M on Ker \', N on Ker A, are trivial.
(f) If I, ¢ M ® N, then
(1,1 = (\) @ (N'T)
'l /—1)‘

and, in particular, [m @n,m' @n'] = (m-"m~ 1)@ (" n'n
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Proposition 4.5 (see [16]). Let G be any group and let

1 A 'K TG > 1

be a central extension. Then there is a homomorphism £ : GRG — K such that w€ is the commutator
map k. If G is perfect (G = [G,G]), then & is unique, i.e., k: G® G — G is the universal central
extension of the perfect group G.

The non-Abelian tensor product of groups is a right exact functor. In particular, the following
theorem holds.
Theorem 4.6.

(a) Assume that

1 =4 '-B ‘-0 -1

is a short exact sequence of groups, D is an arbitrary group that acts on A, B, and C, the groups
A, B, and C also act on D, and f and g preserve the actions. Then we have the following exact
sequence of groups:

I’ g’

D®A >D®B D C >1,
where f'=1® f, ¢ =1®g.
(b) Assume that
1 >~ A f>B e > 1, (4.5)
1 =D ¢>E w>F >1 (4.6)

are short exact sequences of groups, where A and D, B and E, and C and F act on each other,
and f and ¢ and g and v preserve the actions. Then the sequence of groups

(Ao E)x (BeDff =BoE % cer -1
is exact, where a is a map of sets.
Later the following calculation of the non-Abelian tensor product of groups will be needed.

Proposition 4.7. Let A be any group acting trivially on Z and Z acts on A such that the compatibility
conditions (4.1) hold. Then there is a natural isomorphism

ZoA " =A% nwar— ["ld]- "2 ['a] - [d].
Proof. By [18, Proposition 2.3], Z ® A is an Abelian group and n ® *a’ = n ® a’. Therefore,
n®ad = (n®a)(n®ad). (4.7)
Let define a homomorphism f : Z ® A — A® as follows:
n®@a— ["a)-["2a]---[ta] - [a].

We must show that this map preserves the defining relations of the non-Abelian tensor product. In
fact,

f(n+m)®@a)=[""""a]---['a] - a],

f(m,"a) =" (")l ['("a)] - ["a] = """ a] - ["Fla] - ["al].
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Therefore, f((n+m)®a) = f(m®"a)f(n® a). Next,
f(n®aa’) = [""Y(ad") - [*(aa’)] - [ad’],
fln®®d)=[""d]---['d][d].
Therefore, f(n® ad') = f(n®a)f(n ® %’).

Now define g : A? — Z®A by [a] — 1®a. It is easy to see that g is a well-defined homomorphism.
We must show that gf is the identity map. In effect, by (4.7) and the formula

n+l)®ae=(1®"a)(n®a)
we have
gfn@a)=10(""ata-a)=(1®" 1) (1@ a)(1®a)
=mead((n-1)@a™ - (n-1@a((n-2)2a) - 22a) - 1®ad'(1®a =nca.
It is easy to see that fg is also the identity map. [ ]

Example 4.8. Let A be a metabelian group and the action of Z on A be defined by inner automor-
phism, i.e., "a’ = a"a’a™" for all n € Z, a’ € A for some a € A. If A acts on Z trivially, then in this
case the groups Z and A act on each other compatibly, and Proposition 4.7 can be applied.

Proposition 4.9. Let A be a metabelian group acting on Z trivially and Z act on A by inner auto-
morphism (see above). Then there is a natural isomorphism

72 @ A= (A%)2
Proof. Check the conditions of [16, Proposition 10] in our case. We have
(a): m(na/) — n(ma/).

(b)—(c): "(m ®d’) =m ® ™a’ is an action and since = m ® a"a’a™"

=m®ad, it is trivial.
Therefore by [16, Proposition 10] and Proposition 4.7 we have natural isomorphisms
ZPQAX (Z®A) x (Z®A) = (A®)?,

The proposition is proved. [ ]

2. Construction of Non-Abelian Homology of Groups

Let A denote a group. Let A4 denote the category whose objects are all groups G together with
an action of G on A by automorphisms of A and an action of A on G by automorphisms of G.
Morphisms in the category A4 are all group homomorphisms « : G — H that preserve the actions,
namely a(%g) = “a(g) and 9a = *@gq, for all a € A and g € G.

Let F: Ay — A4 be the endofunctor defined as follows: for an object G of A4, let F(G) denote
the free group generated by G with actions: 191 19:1 ¢ = 9! (---(%"a)---), and *(|gy|* - - - |gs|) =
|%g1|€t - - - |*gs|® where a € A, |g1]|t -+ |gs| € F(G) and ¢; = £1; for a morphism o : G — G’ of Ay,
let F() be the canonical homomorphism from F(G) to F(G') induced by «.

Let 7 : F — 14, be the obvious natural transformation and let § : F — F? be the natural
transformation induced for every G € Ay by the injection G — F(G). We obtain a cotriple F =
(F,7,0), which we call the free cotriple in the category A 4. Let P be the projective class induced by
the free cotriple F (see Chap. 1, Sec. 1.2).

First we describe in the category A4 the projective class P induced by the free cotriple F and the
corresponding P-epimorphisms.
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Proposition 4.10. A morphism o« : G — G’ of the category A4 is a P- epimorphism if and only if
there exists a section map 8 : G' — G that preserves the actions of A, i.e., B(*g’) = *B(¢") for all
ac A, gded.
Proposition 4.11. In the category Aa the following conditions are equivalent:

(i) F belongs to the projective class P.

(ii) F is a free group generated by a set X such that “x € X for alla € A and x € X.

(i) For any morphism o : G — G’ that has a section map 3 : G' — G preserving the actions of

A and any morphism k' : F — G', there exists a morphism k : ' — G such that ak = K/'.

The proof of these propositions is easy and is omitted.

The non-Abelian tensor product of groups defines a covariant functor — ® A from the category A4
to the category ®r. Consider the non-Abelian left derived functors L” (— ® A), n > 0, of the functor
— ® A relative to the projective class P induced by the free cotriple F.

It is easy to verify that there is a natural isomorphism L (— ® A) & — ® A [68] and by Proposi-
tion 1.20 the functor — ® A is a cosheaf over (A4, P). The following result is given in [68].

Theorem 4.12. If A is an Abelian group that acts trivially on a group G € A4, then we have natural
isomorphisms

LP(G® A)= Hy1(G,A), n>1,
Ker N = H (G, A), Coker N = Hy(G, A),
where N : G A — A, N(g®a) =9%a-a 1.
Proof. Let A be a G-module, let Bt be the category of groups over G, and let Diff (W) = Z[G] @w
IW for W be a group over G. By Guin’s Proposition 3.2 [53] L7 (— ® A) is isomorphic to the nth left

derived functor of A ®z(q Diffg(—) : &tg — Gt that gives the Eilenberg-Maclane homology group
H,:1(G,A) if n > 1 (see [5]). ||

This theorem enables us to introduce non-Abelian homology of groups. In fact, we have the following
definition.

Definition 4.13. Let G and A be groups acting on each other. Then we define
HTL(G7 A) = LZ"L)—l(G ® A)7 n2 27
Hi(G,A) =Ker ), Hy(G,A)= Coker\,

where N : G® A — A/H', N(9 ® a) = [Yaa™!], and H' is the normal subgroup generated by the
elements (“9)a/999 ¢/~ for each a,d’ € A, g € G.

It is easy to see that if G and A are any groups acting on each other trivially, then H,(G,A) =
H, (G, A®™) for n > 1, where A® is the abelianization of the group A.

Remark 4.14. It is clear that the groups H, (G, A) are Abelian for n > 2. We will show that Im )\
is a normal subgroup of A/H’, and when for the actions of G and A the compatibility conditons (4.1)
hold, then H;(G, A) is also Abelian.
3. Some Properties of the Non-Abelian Homology of Groups
We begin this section by setting exact sequences of the non-Abelian homology H.(G, A) of groups

with respect to both variables.
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Theorem 4.15. Let G, Ay, A, Ay be arbitrary groups, and G act on Ay, A, and Ay, which act on

G. Let 1 > Aq . A s Ay >1 be an exact sequence of groups, where f and g homomor-
phisms preserve the actions. Then there exist exact sequences of the non-Abelian homology

- Hy(G,As) = Ho(G, A As) = Ho(G,A) =
S Ho (G, As) s HUG A AS) P - HI(GA) -

S H(G,Ay) U= Ho(GL A Ay) = Ho(G,A) = Ho(G,As) =1, (4.8)

where

Hn(Gv Av AQ) = 7Tﬂ—l(I{er(ll:'*(G) ® g))7 n =2,

Ker(1p, (@) ® g) = { Ker(lpn(gy ® g), n > 1};
Ker(1p1(c) ® ¢) N8 (Ker(1g © g) NKer X
Hi(G, A, Ay) = R P@ © 0N (Kerlla 2.) nRer X))
01 (Ker(1p2(g) ® g) N Ker d;)

Ho(G, A, Ag) =Ker(9)/N (Ker(lg ® g)) (the set of left cosets),

and

- H3(G, A, A)) = Ho(G, AL A) = Ha(G,Ay) =
- Hy(G, A, A)) = Hy(G, AL A) = H(G,A)  =Hi(G A A) =
- Ho(G, A, A) = Hy(G,A) = Ho(G, A Ay) =1, (4.9)
where the groups Hy (G, A1, A) are defined analogously.

Remark 4.16.

(a) The sequence (4.8) generalizes the well-known classical exact sequence of the homology of groups
with Abelian coefficients. If Ay, A, As are G-modules, then the groups H, (G, A1, A) are trivial.

(b) If G and A act on each other compatibly (in this case G, A; and G, Ay act on each other
compatibly), then Hy(G, A, A2) = Ho(G, A1).

(c) Let 1 — (A1,1) — (A, ) — (A2,A) — 1 be an exact sequence of crossed G-modules.
Then Guin has obtained [9] the following exact sequence of the non-Abelian homology

Hl(G,Al) > Hl(G,A) >H1(G, AQ) >
> Hy(G, Ay) > Hyo(G, A) > Hy(G, Ag) =1. (4.10)

The first five terms of the sequence (4.8) coincide with the sequence (4.10).
(d) we have a natural homomorphism H;(G, A1) — H1(G, A, A2) such that the diagram

Hi(G, Ay) = Hi(G,A)

| |

Hy(G, A, As) >H1 G, A)

is commutative. When the actions are compatible, this natural homomorphism is surjective.
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For noncommutative local rings, the relationship of Milnor’s algebraic K-functor Ko with the sym-
bol group Sym is given in terms of a long exact sequence of non-Abelian homology of groups [6§]
extending Guin’s six-term exact sequence [53]. In fact, let R be a noncommutative local ring such
that R/ Rad R # Fy. Then we have the following exact sequence of groups

> H3(R*,[R*, R*]) > Hy(R",U(R),[R",R*]) > Hy(R,U(R) >
> Hy(R*, [R*, R*]) > Hi(R",U(R),[R",R"]) >Hi(R,UR)) >
> Hi(R"[R",R"])  >Ky(R) >Sym(R) >[R",R/[R",[R",R"]] >1.
Theorem 4.17. Let G, G, Ga, A be arbitrary groups. Assume that A acts on G1, G, and G, and

all groups act on A. Let 1 -G, *>G . Go >1 be an exact sequence of groups such
that the homomorphisms « and [ preserve the actions. Then Ho(G,A) = Hy(Ge,A) and there is a
long exact sequence of non-Abelian homology groups

> Hy(G2,A) > H3(G,G2,4) > H3(G,A) >
> H3(Ga, A) > Hy(G,Ga, A) > Hy(G, A) > Hy(Ga, A) >
> Hi(G,G, A) > H(G,A) > Hi(Gy, A) ~1, (4.11)
where Hy (G, G2, A) = mp_1(Ker(Fi () ® 14)) and Ker(Fy () ® 14) = {Ker(F"(5) ® 14) forn > 1.
Proof. The proof follows from the commutative diagram of groups

o

“Ker(F2(B)®14)  ZKer(FY(8) ®14)

l . l
o} 0

> o) ’
PG @A “F @) A ° =GeA Y =A/H .
> 81

lF2(,3)®lA 11 lFl(ﬁ)@@lA lﬁ@u H
- 80 o9 ’
PGy ® A SFY G ®A ° =Gy®A Y = A/H,

Remark 4.18. In the exact sequence (4.11) the groups H;(G, A) and H;(G2, A) can be replaced by
the groups m(Fix(G) ® A) and 7o(Fi(G2) ® A) respectively.

Let
Go

D= laz (4.12)
G , -G

be a diagram in the category A4 with surjective ay. Let L.(D, A) be the pullback of the induced
diagram

«

lF*(OCZ)@]-A .

F.(G A ~F.(G)® A
(G Fi(a1)®14 @) &
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Define H,,(D, A) = mp—1L«(D, A), n > 2.

Theorem 4.19 (Mayer—Vietoris sequence). For any diagram (4.12) there is a long exact sequence

> H,11(G, A) > H,(D, A) > H,(G1,A) ® H,(G2, A) > H,(G, A) >
=+ =Hy(D,A)  =Hy(G1,A) ® H(Go, A) = Ha(G,A) >
> moL.«(D, A) > 7o(Fu(G1) ® A) X mo(Fi(G2) ® A) >m(Fu(G) ® A) >1. (4.13)
Proof. We have the following commutative diagram of simplicial groups with exact rows:

1 =7, “%L.D,A P

|k

1 > T, >F*(G1)®A

> F,(G2) ® A >1
lF*(OQ)@lA ) (4.14)
>F(G)® A >1

Fy (a1)®1A

where Z,, = Ker(F,(a1) ® 14). Diagram (4.14) induces the following commutative diagram with exact
rOws

>771(F*(G2) ®A) >7TO(I*) >7TOL*(D7A) >7TO(F*(G2)®A) >1

T T e

~m(R(G)®A)  =m(L)  =m(R(G)®A) mm(RG)e4) =1

1

The connecting homomorphism 7, (F,(G) ® A) — m,_1L«(D,A), n > 1, is the composite map
Tn—1(04)0n. The homomorphism m,(L.(D,A)) — 7,(Fi(G1) ® A) X 7, (Fi(Ga) ® A), n > 0, is
induced by 7, (g«) and 7, (p«). The map 7, (Fi(G1) ® A) X mp(Fi(G2) ® A) — 7 (Fu(G) ® A), n > 0,
is given by 7, (Fy(a1) ® 14)m,(Fy(a2) ®14)7 . To get the exactness of the sequence (4.13), it remains
to apply diagram (4.15). [

Note that if the group Gy is trivial, then we recover the sequence (4.11) (see Remark 4.13).

Let G and A be any groups that act on each other. Let us consider Hi(—, A) as a functor from the
category A4 to the category &t of groups and its left derived functors L (H;(—, A)) relative to the
projective class P induced by the free cotriple F. Then we have

Theorem 4.20. There is a natural isomorphism
H,(G,A) =LY [(H(G,A), n>1
Proof. We have a short exact sequence of groups
1 =H(GA4) =GeA Y =ImXN =1,
and for any surjective morphism « : G — G’ of A4 the commutative diagram of groups

GoAd ¥ ~A/H

|

G'oA N ~ A/H'
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where H = H and N (G® A) = N(G'® A). Then the assertion follows from the long exact sequence of
homotopy groups of the following short exact sequence of simplicial groups with ' : G® A — A/H:

1 1 1

TF(G) @A g FX(G)® A “FG)®A (4.16)
T Im N ZTIm N > Tm \
1 1 1

I
Note that Theorem 4.20 generalizes the well-known fact that the integral homology can be obtained

as the left derived functors of the abelianization functor.
Proposition 4.21.
(i) Hi(—,A) is a cosheaf over (Aa,P) (for the definition see Chap. 1, Sec. 2.3).

(ii) If the actions satisfy compatibility conditions (4.1), then H1(—, A) is a right exact functor.

Proof.

(i) From the commutative diagram of groups (4.16) it follows that Hy(—, A) = LY Hy(—, A). Then
the assertion follows by Proposition 1.20.

(ii) Follows from the commutative diagram of groups

1 =Hi(Go,A) =Go®A =A

1 >~ Hi(G,A) G A >~ A

1 >H1(G1,A) ~G1® A > A

Now a new description of the non-Abelian homology of groups will be given in terms of the non-
Abelian left derived functors of the section functor I' : CS( A4, P) — &r (see Chap.1, Sec. 2.3).

Theorem 4.22. Let G and A be groups acting on each other. Then there are isomorphisms
Ho(G,A) 2 L% Ta(—® A), n>2 and H,(G,A) = LY Tg(Hy(—,A)), n>1.

Proof. Since Theorem 4.6(a) and Proposition 4.21(i) say that the functors (— ® A) and Hi(—, A) are
cosheaves over (Ay4,P), respectively, the isomorphisms follow from [60, Theorem 2.34] and Theorem
4.20. | ]
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Theorem 4.23. Let G and A be any groups. Let A act on G trivially and G act on A.

(i) If G is a finite group and A is a finite group (or p-group or finitely generated group), then
H,(G,A), n>2,1is a finite group (or p-group or finitely generated group);

(ii) If A is a torsion group (or a group of exponent q), then H,(G,A), n > 2, is a torsion group
(or a group of exponent q).

80
Proof. Let us consider a P-projective pseudo-simplicial resolution X, >~ @G of G in the category

A 4. Apply the Quillen’s construction [60, 107]
1 > 0X, > FEX, > X, > Cmp X, >1

to the pseudo-simplicial group X,. We obtain the commutative diagram of groups

n+1
80

82
> > > 0
. Ker(d)--- oyt ~Ker(9l02)  ZKer(8}) = EX.
. . > 5
> it > 82
opti G5 o}
ag 81
> > 0 .
Xn . > Xl > XO = X*
> : > o1
on 1
> > > -
G : -G ZG=CrpX,
> : >
1 1 1

where CmpX, is the constant simplicial group. Therefore we have the following commutative diagram
of groups:

1 1 1
g Ker(@ﬁill ®14) ” z Ker(02 ® 14) Z Ker(9f ® 14)
8g+1®1A 83@1,4
> > >
. Ker(@)---90 ™Y@ A ~Ker(3§02)® A ZKer(d})® A
L . - > 8%®1A
M®14
ati®la 2®14 0t ®1a (4.17)
> 8S®1A > > 83@1’4
X, ® A : X1 A ZXo®A
g 0 ®14 g oi@la
TGeA : gy G A “GeA
1 1 1
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Thus the sequence of simplicial groups

9 .
1 ~Ka(@®ly) ~EX,®@A % ~x.04 "M iornx.ead -1,
is exact, where ¥,, : (FX,), — X, is induced by the homomorphism 8211 : Xpy1 — X, and

n i Xn — (OmX,) is the composite homomorphism 933} - - 9%. Therefore, we obtain two long
exact sequences of groups:

> i1 Ker(j @ 14) >y, Ker(¥ @ 14) > (EX, ® A) >
>y, Ker(j ® 14) > mp—1 Ker(9 @ 14) ... >m Ker(j ® 14) >

> mo Ker(9 ® 14) > mo(EX. ® A) >moKer(j ®14) >1

and
> Tpt1 (CmoXe @ A) >, Ker(j @ 14) > (X @ A) >
> T (Cmp X ® A) > 11 Ker(j @ 14) > > m (CrpXs @ A) >
>mo Ker(j ® 14) > 7o(Xy ® A) > 7o(Cmo Xy @ A) =1.

But the homotopy groups m,(EX, ® A), n > 0, are trivial, since the augmented pseudo-simplicial
group (EX,,¢€,1) is right contractible with contractions h = 0 and h,, = SZI% for n > 0 [60, 107]. This
implies that
Hy 1 (GA) =m(Xi @A) Zmp1(Ker(W®@14)), n>1. (4.18)
Assume now with no loss of generality that A acts on X, trivially. Any Ker(d] - 8"“), n > 0,
acts trivially on A and since it is a free group, by [18, Proposition 2.4] we have

Ker(dy---90™) @ A= Ker(d} -~ 95™)% @ A% =~ Z A, (4.19)

where « runs over the basis of Ker(d} ---95™1).

First, we prove (i): If G is a finite group and A acts trivially on G then we can construct a new
P-projective simplicial resolution G, of the object G in the category A4 such that every G,, will be a
finitely generated free group [70]. This can be done as follows.

Recall the definition of the loop functor G from the category of reduced complexes to the category
of simplicial groups [78].

Let K be a reduced complex (i.e., K is a simplicial set that has only one 0-simplex ¢). Then we
define a simplicial group GK as follows: the group of the n-simplices is a group that has

(i) one generator o for every n + l-simplex o € K, 1,
(ii) one relation s7 = e, for every n-simplex 7 € K.

The face and degeneracy homomorphisms 9 : G, K — G,_1K and s} : G, K — G, 11K are
given by the formulas

Oj'oc = 0o, 0<i<n,
Oyo = oo - 8+10 ,
siazsia, 0<?<n.

Clearly, the groups G, K are free and from [78] it is known that m,(K) = m,_1(GK) for n > 0.
Let G be a category that has only one object O and Hom(O, O) = G, and consider the nerve M, (G)
of the category G. It is easy to see that M,(G) is a reduced complex. It is known that 71 (M, (G)) = G
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and m,(M.(G)) = 0, n # 1. Let us consider the simplicial group GM,(G). Then my(GM.(G)) =

80
(M. (@) = G and m,_1(GM,(G)) = m,(M,(G)) = 0, n > 1. Hence GM,(G) '>G isa P-
projective simplicial resolution in the category of groups, where 88 is the natural epimorphism, and

P is the projective class in the category of groups induced by the free cotriple.
Thus, if we define the action of A on G, M, (G) trivially and the action of G,, M, (G) on A as follows:

0A9l...9n
0%-%mg, m e G, M, (Q),

ma —
80

then by Propositions 4.10 and 4.11 we deduce that G, M,(G) ’~ G is the P-projective simplicial

resolution in the category A4.

Therefore the group Ker(d] - - - 83“) is the subgroup with finite index of the finitely generated free
group and by [113] Ker(} - - 93!) is also a finitely generated free group. Hence by (10) if A is finite
group (or p-group or finitely generated group) so is Ker(9} --- 951 ® A, n > 0. By (4.17) and (4.18)
it follows that H, (G, A), n > 2 is a finite group (or p-group or finitely generated group).

(ii) is proved analogously by (4.17)—(4.19) and the fact that the property of a group to be torsion
(or of exponent q) is stable under coproducts, subgroups, and quotient groups. [ ]

4. Second and Third Non-Abelian Homologies of Groups

Now new descriptions of the second and the third non-Abelian homology of groups will be given
using the Cech derived functors (see Chap. 1, Sec. 2.1).

Let G and A be arbitrary groups that act on each other. Let P be an object of the projective class P
and o : P — G be a P-epimorphism in the category A 4. Consider the Cech resolution (C(a),, o, G)
of G. The actions of A and C’(a)n =P Xqg---xXg P, n>1, on each other are induced in a natural

(n+1)-times
way by the actions of A and P on each other.
Denote by C ()« ® A the simplicial group obtained by applying the functor — ® A dimension-wise
to the simplicial group C(a)s.

Theorem 4.24.
(i) There is an isomorphism

Hy(G, A) = Ker(dy ® 14) NKer(d] ® 14) /[ Ker(dj ® 14), Ker(d} ® 14)];
(ii) there is an epimorphism

Hy(G, A) — () Ker(d? @ 14) / T] 1K1, Ko)
i€2] I,J

where @ # I, J C [2] = {0,1,2} with TUJ = [2], K; = ( Ker(d?®14) and K; = Ker(d?@

iel JjEJ
1a).
Proof. By [103] (see also [60, Theorem 2.39(ii)]) we know that there is an isomorphism
Hy(G,A) = LT(G® A) = m(C(a), ® A) (4.20)
and an epimorphism
H3(G,A) = LY (G ® A) — m(C(a), @ A). (4.21)
Now we must show that C'(a)s ® A and C(a)3 ® A are generated by degenerate elements. In fact,

for any (z,y,2) € C(a)2 and a € A we have
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(z,y,2) ®a = (z,z,z)(1,z y, 27 y)(1, 1,y 1 2) @a =
= ((r’m’m)(l,m_ly,x_ly) . (r’r’m)(l 1 y_lz) ® o‘(w)a)((m T, r)®a) =
= ((1,ya;_1,ya:_1)(1,1,xy_lzm 1) )((m T, r)®a) =
= ((l’ym_l’yr_l)(l,1,a:y_lza;_1) ® 2@ a)((1,yz " yz ™ H® () a)((z,2,2) ®a) =
= ((1,1, 2y ) ® “@a) ((1,yz L yz ™) @ “@a) (2, 2,2) ® a) =
= (s0® 1) ((1,2y7") @ “Wa) - (s1 @ 14) ((Lyz ") @ “Wa) - (50 @ 1a)((w, 2) @ a).
For C(a)3 ® A the proof is similar.
By [18, Lemma 5.7] and [99, Theorem 4.1] there are equalities
Im 9 = [Ker(dp ® 14), Ker(d; ® 14)],
mds = [ [[Kr, K], (4.22)

1,J
where @ # I,J C [2] ={0,1,2} with TU J = [2],
Kr = ﬂKer(d? ® 14),
iel
Ky = ﬂ Ker(d? ®14),
jeJ

and 8y and 83 are Moore complex homomorphisms of C'(a), ® A.
From (4.20)—(4.22) follows the assertion. ||

Let us consider an exact sequence of groups
1 =R °>F =@ =1,

where F' € P and « is a P-epimorphism. We have commutative diagrams of groups with exact rows
and columns

1 1
R R
g1 o
1 =R “=FxgF -1 -1, (4.23)
R
1 >R s, = F o =G >1
1 1
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1 > Ker(o; ® 14) . Ker(o ® 14) > Coker
R®A R® A >
o1®1a o®14 . (4.24)
o O

RoA M (FxgFleoA ™ Fea 1

H d1®1p a®l
R® A ool ~>F® A @l ~>G®A >1

1 1

Define a homomorphism
d:Ker(dy ® 14) NKer(dy ® 14) — Coker j3,
by §(z) = [y] for all x € Ker(dy®14)NKer(dy ®14) and with (01 ®14)(y) = z. It is easy to verify that

0 is correctly defined and is an isomorphism. From Theorem 4.24(i) we obtain the following theorem.

Theorem 4.25. Let G and A be any groups acting on each other. Then
Hy(G,A) = Cokerﬁ/d([Ker(do ®14),Ker(d; ® 1A)]).

Corollary 4.26. If A acts trivially on G, G acts on A and the actions are compatible, then there is
an isomorphism
Hy(G, A) = Coker .

Proof. Tt is obvious, since by [18, Proposition 2.3] in this case the group (F xg F) ® A is Abelian. | |

Note that if G acts on A and A acts on G trivially such that the actions are compatible, then
H,(G,A) = H,(G,A™), n > 2, since G ® A= G® A,

Let Z,, act on a group A and A act on Z, trivially such that the actions are compatible. Further
we assume that Z acts on A via the canonical homomorphism « : Z — Z, and A acts trivially on

Z. Consider the isomorphism x : A% — nZ ® A given by a — n ® a and the homomorphism
01®14:nZRA— (Z xqZ)® A (see diagram (4.24)). Then we have

Proposition 4.27. There is an isomorphism
Hy(Zp, A) 25 (A%)/ Ker((0 ® 14)K),

where ny(A%™) = Ker N, N : A% — A% with N([a]) = > *[a].
TELn

Proof. 1t is clear that a is a P-epimophism (see Proposition 4.10). Using Proposition 4.7 we have the
following commutative diagram:

nZ@ A" = Adb

e

Z®A ~ Aab

It remains to apply Corollary 4.26. [
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Let us consider the category Agpep of A-modules. In this category consider the following projective
class 3:

An object of P is a free Abelian group having a basis X such that %x € X for any x € X, a € A.

It is clear that the projective class 33 includes all free A-modules. For any additive functor T :
Agnep —> AbBt consider its left derived functors L;?T, n > 0.

For any short exact sequence of A-modules 0 > B "-B - By >0, where j is a -

epimorphism, i.e., with an action preserving section, we have a long exact sequence of the left derived
functors L%T of T.
Consider the following commutative diagram of groups with exact rows:

g

1 - R -F % =@ =1

A

1 > Ker(a®) > Fab ke G >1,

loa o

where G € Ay, F is an object of the projective class P in the category A4 (see above) and « is a
P-epimorphism.

Theorem 4.28. Let G be an Abelian group acting on a group A trivially, and A act on G. Then we
have an ezxact sequence of groups

(Ker(o ® 14) NKer(7' ©14))® = Hy(G,A)  >Tor (G, IA) >0,
where T A is the augmentation ideal of A.

Proof. 1t is easy to show that in this case 7’ is surjective. So we obtain the following commutative
diagram of groups with exact rows and columns:

[F,F]® A [F,F]® A
1 > Ker(oc ® 14) ~R®A @l ~F®A W L GeAa >1
)\l T'®14 H
1 > Ker(o! ®14) > Ker(a®) ® A ~F® @ A ~G®A >1
o’'®14 Olab®lA
1 1

It will be shown that the natural epimorphism
A :Ker(o®14) — Ker(o/ @ 14)
reduced to Ker(o; ®14) (see diagram (4.24)) and to 6([Ker(dj ®14), Ker(d} ®14)]) is trivial. In effect,

the commutative diagram with exact rows

1 - R NS FxgF ~F ~1

| .

1 =Ker(d™) =(FxgF)® =Fb -]

1ab
dl
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induces the following commutative diagram:

ReoA M FxcF) oA FoAd =1 (4.25)

C e

Ker(d%ab)@)A ~(FxgF)*®® A ~F® @ A > 1

dr*’®1,4
which maps to the diagram
RoA ““Mirga “aoa -1 (4.26)
o] e |
Ker(a®) ® 14UI®1A> Fo g Aaab®1j G®A >1

using the triple (1g,d}, @) (see diagram (4.23)).
To this end we need the fact that the homomorphism Ker(d%ab) ®A — (FxgF)®® A is injective.
The short exact sequence of A-modules

1ab

1 =Ker(d”) =(FxgF)® ' =Fb o]

has a section v given by v[f] = [(f, f)] that preserves the actions of A. Therefore it induces a long
exact sequence of the left derived functors of — ®y4] [ A with relative to the projective class P

- TOI‘?B(Fab, [A) > Ker(d%ab) ®Z[A] IA >
>(F XgF)ab ®Z[A} TA ~ Fab ®Z[A] TA > 0.

Since F% belongs to the projective class B, we have Tor?(F @ TA) = 0. By Guin’s isomorphism [53]
the groups Ker(d%ab) ®za1 LA, (F xg F)eb ®@z14) A and Fab ®z4] [ A are naturally isomorphic to the
groups Ker(d%ab) ®A, (FxgF)®® A and F® ® A respectively. This implies that the homomorphism
Ker(d%ab) ® A — (F xg F)® ® A is injective.

From diagrams (4.25) and (4.26), the triviality of A on Ker(o; ® 14) and §([Ker(dy ® 14), Ker(d; ®
14)]) is now clear.

By the same reason the short exact sequence of A modules

0 > Ker(a®) - pb g >0,

which has a natural needed section, gives the following exact sequence

aab®1A

7@l = F @ A ~GRA > 0.

0 > Torgf(G, IA) > Ker(a®) @ A

It follows by Theorem 4.25 that A\ induces a natural epimorphism Hy(G, A) on Torrf(G, IA), and
by the homomorphism § the group (Ker(o ® 14) N Ker(7' ® 14)) maps on its kernel. ||

Note also that Torrf(G, IA) = Coker Tory(a®, TA).
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CHAPTER 5

NON-ABELIAN (CO)HOMOLOGY OF LIE ALGEBRAS

The purpose of this chapter is to set up a similar non-Abelian (co)homology theory for Lie algebras
and mainly dedicated to state and prove several desirable properties of this (co)homology theory.

In [45] Ellis introduced and studied the non-Abelian tensor product of Lie algebras which is a Lie
structural and purely algebraic analog of the non-Abelian tensor product of groups of Brown and
Loday [17, 18], treated slightly in Chap. 4, Sec. 1.

Applying this tensor product of Lie algebras, Guin defined the low-dimensional non-Abelian homol-
ogy of Lie algebras with coefficients in crossed modules [55].

In Sec. 1, we recall the notion of the non-Abelian tensor product of Lie algebras due to Ellis [45]
and give some needed properties.

In Sec. 2, we construct a non-Abelian homology H,.(M,N) of a Lie algebra M with coefficients
in a Lie algebra N as the non-Abelian left derived functors of the tensor product of Lie algebras,
generalizing the classical homology of Lie algebras and extending Guin’s non-Abelian homology of Lie
algebras [55] (Proposition 5.6 and Definition 5.7).

In Sec. 3, we investigate the non-Abelian homology of Lie algebras in various aspects, establishing its
some functorial properties. In particular, long exact non-Abelian homology sequences are established
(Theorems 5.9, 5.11 and Corollary 5.12). Moreover, the non-Abelian homology of Lie algebras is
expressed in terms of first non-Abelian homology (Theorem 5.13) and its compatibility with direct
limits of Lie algebras is established (Proposition 5.14). Some explicit formulas for the second and the
third non-Abelian homology of Lie algebras are obtained using Cech derived functors (Theorem 5.15).

In Sec. 4, we give an application of the long exact non-Abelian homology sequence of Lie algebras
to cyclic homology of associative algebras (Theorem 5.18), correcting the result of [55].

Sections 5 and 6 are dedicated to the non-Abelian cohomology of Lie algebras. Following ideas
from [55, 61], using the generalized notion of the Lie algebra of derivations (Definition 5.20 and
Proposition 5.21), we introduce the second non-Abelian cohomology H2(R, M) of a Lie algebra R
with coefficients in a crossed R-module (M, pu) (Proposition 5.26, Definition 5.28), generalizing the
classical second cohomology of Lie algebras (Propositions 5.24 and 5.27). Then, for a coefficient short
exact sequence of crossed R-modules having a module section over the ground ring, we give a nine-
term exact non-Abelian cohomology sequence extending the seven-term exact cohomology sequence
of Guin [55], which exists under the aforementioned additional necessary condition on the coefficient
sequence of crossed modules (Proposition 5.29).

Further generalizations of non-Abelian cohomology of Lie algebras is possible pursuing the line
of [62, 63], in particular, in the direction of making a definition in any dimension and for a wider class
of coefficients.

In this chapter, we denote by A a unital commutative ring unless otherwise stated. We shall use
the term Lie algebra to mean a Lie algebra over A and [ , ] and | | to denote the Lie bracket and the
coset of the quotient Lie algebra respectively. We denote the category of Lie algebras over A by Lie.

We mean under the classical (co)homology of a Lie algebra M with coefficients in an M-module N
the (co)homology groups in the sense of Chevalley—Eilenberg (see, e.g., [22]) that are the homology
of the complexes obtained by applying the functors Homg(yy(—, N) and — @) IV to the following
standard complex of U (M )-modules

SVaM) P P T V(M) = A,

66



where U (M) is the universal enveloping algebra of M, V,,(M) = U(M) @5 E,(M), n >0, E, (M) =
MAp---AAM, n>1, and Ey(M) = A, and the chain boundary is given by the formula
—_————

n-times
n .
ar,. o ywn) = 3 (1) lailwy, .. &, 20+
i=1
+ Z (—1)7:+j<[gji’$j]7l‘17...,@7...,35\]‘,.--,$n>,
1<i<j<n
and e( ) =1.

1. The Tensor Products of Lie Algebras

Let P and M be two Lie algebras. By an action of P on M we mean a A-bilinear map Px M — M,
(p,m) — Pm satisfying the following conditions:
¥l = 20" m) =¥ ('), P} = P, ')+ [m, P

for all m, m’ € M and p, p’ € P. For example, if P is a subalgebra of some Lie algebra @, and if M
is an ideal in @), then Lie multiplication in @ yields an action of P on M.
Now we give the definition of the tensor product of Lie algebras due to Ellis [45] (see also [25, 55]).

Definition 5.1. Let M and N be two Lie algebras acting on each other. The tensor product M ® N
of the Lie algebras M and N is the Lie algebra generated by the symbols m ®n, m € M, n € N, and
subject to the following relations:
(i) A(m®n)=Am@n=m® An,
(i) (m+m)@n=men+m'n,
menm+n)=men+maen,
(i) [m,m|@n=m® ("'n)—m @ ("n),
m® [n,n]="m)on—("m)en,
(iv) [(m®@n),(m @n)] = =("m) ("'n')
forall A\ e A, m,m’ € M, n,n' € N.
Assume that ¢ : M — A, ¢ : N — B are Lie homomorphisms, A, B act on each other, and ¢, 9
preserve the actions in the following sense:
o("m) =Y We(m), P("n) ="p(n), meM, neN.

Then, by [45], there is a unique homomorphism ¢ ® 1 : M @ N — A® B such that (¢@¢Y)(m®@n) =
d(m) @ (n) for all m € M, n € N. Furthermore, if ¢, ¢ are onto, so also is ¢ ® 1.

The tensor product of Lie algebras is symmetric in the sense of the isomorphism M @ N — N Q@ M
given by m @ n — —n ®@ m [45].

A precrossed P-module (M, p) is a Lie homomorphism p : M — P together with an action of P
on M satisfying the following condition:

u®m) = [p,u(m)] forall meM, peP.
If in addition the precrossed module (M, i) satisfies the Peiffer identity:
#(m) ! = [m,m'] forall m,m’ € M,

then it is said to be a crossed P-module. Note that, as in the group case, for a crossed module (M, 1)
the image of p is an ideal in P, the kernel of y is a P-invariant ideal in the center of M, and the action
of P on Ker p induces an action of P/Im p on Ker p, making Ker p a P/Im p-module.
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In [45] the results on the tensor product M @ N are obtained assuming the actions of M and N on
each other compatible, i.e.,

Cmp! = [0/, ™n] and  "Mm! = [m/,"m)] (5.1)

for all m,m’ € M and n,n’ € N. This is the case, for example, if (M,u) and (NV,v) are crossed
P-modules, M and N act on each other via the action of P. These compatibility conditions are not
assumed to hold except the following

Proposition 5.2. Let M and N be Lie algebras acting on each other such that the compatibility
conditions (5.1) hold. Then there is a natural isomorphism of Lie algebras

M®N = (M®xN)/D(M,N),
where D(M, N) is the A-submodule of M @z N generated by the elements
m,m'l@n—me ("n)+m @ ("),
m® [n,n'] — ("'m)@n+ ("m)@n,

P, ™' m/l @ (™" + [V m!,V m" @ (M) + [ m”Mm] @ (n')
for allm, m’, m" € M andn, n’, n” € N.
Proof. Let us introduce in the A-module (M ®5 N)/D(M, N) a Lie structure by the following formula:
m@n,m @n]=—"m)x (™n).

To show that this multiplication can be extended from generators to any elements of (M ®p
N)/D(M, N), we must verify its compatibility with the defining relations of (M ®x N)/D(M,N),
which is routine and will be omitted. Now it is easy to see the required isomorphism of Lie alge-
bras. [ ]

The interesting properties of the tensor product of Lie algebras, in particular its compatibility with
the direct limits and the right exactness, will be given.

Proposition 5.3. Let {M,, ¢>§, a < B} be a direct system of Lie algebras. Let N be a Lie algebra,
and let for every a the Lie algebras M., N act on each other and the homomorphisms qbg preserve
the actions. Then there is a natural isomorphism of Lie algebras

(@{Ma}) ® N = lim{M, @ N}.
Proof. We only define the actions of @{Ma} and IV on each other by the following way:

Imaly — map  and "lmel ="

Ma|

for all m, € My, n € N, and the natural isomorphism of Lie algebras
£ (Im{Ma}) © N — lim{Mo @ N} by f(mal ©n) = ma @ nl.
(0% (0%

The details of the proof are straightforward. [ ]
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Proposition 5.4. Assume that 0 = M’ . M v M >0 is a short exact sequence of
Lie algebras, and N is an arbitrary Lie algebra acting on M', M and M"; the Lie algebras M', M,
M" act on N and ¢, ) preserve these actions. Then there is an exact sequence of Lie algebras

M'®@N >M® N ~M"® N > 0.

Proof. Similarly to the proof of [45, Proposition 9], since it does not use compatibility conditions
(5.1). I

2. Construction of Non-Abelian Homology

We begin this section by recalling the well-known construction of the free Lie algebra on some
A-module.

Let M be a A-module. Let A;(M) = M, Ax(M) = > Ai(M) @r Ap—i(M) and A(M) =
0<i<k
> Ap(M). The inclusion maps A;(M) @ Ap(M) — A1 (M) give rise to a nonassociative multi-
0<k
plication on A(M), turning it into an algebra over A.

Let B(M) be the two-sided ideal of A(M) generated by the elements
zzx and  x(yz) + y(zz) + 2(zy),

for all z,y,z € A(M).

We obtain the Lie algebra F(M) = A(M)/B(M) which is the free Lie algebra on the A-module
M satisfying the following universal property: there is a natural A-homomorphism i : M — F(M)
such that for any Lie algebra L and a A-homomorphism « : M —— L there exists a unique Lie
homomorphism « : F(M) — L such that xi = .

Let N be a Lie algebra and e : M — Der(N) a A-homomorphism, where Der(N) is the Lie algebra
of derivations of N. Then there exists a unique Lie homomorphism & : F(M) — Der(N) such that
ki = «, which means there is an action of the Lie algebra F(M) on the Lie algebra N.

Now if in addition M is an N-module, then the module action of N on M yields an N-module
structure on Ag(M): if z @y € A;(M) @z Ax_;(M) and n € N then, inductively, we define

nx®@y) =nrQy+xny,

and this extends linearly to an action of n on an arbitrary element of Ag(M). The action of N on
Ai(M) extends linearly to an action of N on A(M), making A(M) an N-module. Since B(M) is
N-invariant, the action of N on A(M) induces a Lie action of N on F(M).

Let 2y denote, for a fixed Lie algebra N, the category whose objects are all Lie algebras M
together with an action of M on N by derivations of N and an action of N on M by derivations of
M. Morphisms in the category 2y are all Lie homomorphisms a : M — M’ preserving the actions,
namely a("m) = "a(m) and "n = *™p for all m € M, n € N.

Let F : 2y — An be the endofunctor defined as follows: for an object M of Ay, let F(M) denote
the free Lie algebra on the underlying A-module M with the above-mentioned actions of N on F (M)
and F(M) on N; for a morphism « : M — M’ of Ay, let F(«) be the canonical Lie homomorphism
from F(M) to F(M') induced by a.

Let 7 : F — 1g, be the obvious natural transformation and let § : F — F? be the natural
transformation induced for every M € 20y by the natural inclusion of A-modules M — F(M). We
obtain the cotriple F = (F,7,6). Let P be the projective class in the category 2y induced by the
cotriple F. It is easy to see that in the category 2y there exist finite limits. Therefore every object M
of the category 2y has a P-projective pseudo-simplicial resolution (F,dJ, M) (see Chap. 1, Sec. 1.2).
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Let T : Jy — Lie be a covariant functor. Applying 7 dimension-wise to F yields the simplicial
Lie algebra T F. Define the kth derived functor EE’T : Ay — Lie, k > 0, of the functor T relative
to the projective class P as the kth homotopy of T F,. Note that EIET(M ), k> 1, is an Abelian Lie
algebra and will be thought as a A-module. Hence, forgetting the Lie algebra structure, we see that
Proposition 1.10 implies that there is an isomorphism of functors

LET=LET, k>0,
where L'I,ET is kth cotriple derived functor of the functor 7.

The next lemma is useful. The proof is easy and is omitted.

Lemma 5.5. A morphism o : M — M’ of the category Ay is a P-epimorphism if and only if there
exists a A-linear splitting 8 : M' — M that preserves the actions of N, i.e., B("m) = "B(m) for all
méeM,neN.

The non-Abelian tensor product of Lie algebras defines a covariant functor —® N from the category
Ay to the category Lie. Consider the left derived functors £} (— ® N), k > 0, of the functor — ® N
relative to the projective class P.

Proposition 5.6. Let M be a Lie algebra and N a module over the Lie algebra M. Then there are
natural isomorphisms

‘C]IICD(_®N)(M)2HIC+1(M7N)7 kZ 17
Kerv = H{(M,N), Cokerv= Hy(M,N),
where N is regarded as an Abelian Lie algebra acting trivially on M and v : M @ N — N is a Lie

homomorphism given by v(m ®n)="n, me M, n € N.

Proof. Let Lieps denote the category of Lie algebras over M, and Diffy, : Liepyy — U (M) — mod
(category of U(M)-modules) a functor given by
Diff o (W) = I(W) @y w) U(M),

where U(M) and U(W) are the universal enveloping algebras of M and W respectively and I(W) is
the augmentation ideal. By [25, Proposition 13], £Y(— ® N)(M) are isomorphic to the values of the
non-Abelian left derived functors of the functor Diff ps(—) @y (ary) N : Lieyy — A — mod (category of
A-modules) for the object 17 of the category Lieys, which give the classical homology H, (M, N) of Lie
algebras with the usual dimension shift, similarly to the cases of group (co)homology and Hochschild
(co)homology described as cotriple (co)homology [4, 5]. ||

Using this proposition we make the following

Definition 5.7. Let M and N be Lie algebras acting on each other. Define the non-Abelian homology
of M with coefficients in N by setting
Hy(M,N) =L (=@ N)(M), k>2,
H{(M,N)=Kerv, HyM,N)= Cokerv,
where v: M @ N — N/H, v(m ®n) = |"n|, and H is the ideal of the Lie algebra N generated by
the elements ("™n/ — [n/,™n] for all m € M, n,n’ € N.
Remark 5.8.

(a) It is clear that Hy(M,N), k > 2, are only A-modules, while H;(M,N) and Ho(M, N) are Lie
algebras. If the actions of M and N satisfy the compatibility conditions (5.1), then Hy (M, N)
is also an Abelian Lie algebra.
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(b) Let N be a crossed M-module; then Ho(M, N) and Hy(M, N) coincides with zero and first non-
Abelian homology A-modules of the Lie algebra M with coefficients in the crossed M-module
N introduced by Guin [55].

We can define another non-Abelian homology theory of Lie algebras using the non-Abelian left
derived functors of the non-Abelian tensor product relative to the cotriple over sets which coincides
with our theory for Lie algebras being free A-modules.

3. Some Properties of Non-Abelian Homology

In this section we give some functorial properties of the non-Abelian homology of Lie algebras.
Now several long exact non-Abelian homology sequences with respect to both variables will be
given.

Theorem 5.9. Let o : N — N’ be a surjective Lie homomorphism, M an arbitrary Lie algebra
acting on N and N’ which act on M and o preserve the actions. Then there is a long exact sequence
of non-Abelian homology

- Hy(M,N') " Hy(M,N,N') "~ Hy(M,N) "= Hy(M,N') ™~

Vo H(M,N,N) "= Hy(M,N) "= Hy(MN) "~

" Hy(M,N,N'* = Hy(M,N) “>Ho(M,N') =0, (52)
where
a)), k=2,
{Ker(lpapy ® @ (d8®1N)_1(Ker(1M®a)ﬂKer1/)}
(df @ 1n)(Ker(1z2(pn) ® ) N Ker (dj ® 1x)) ’
Ho(M,N,N’) = Kera/v(Ker(ly @ a)),

Hy(M,N,N') = mp_1(Ker(1z-(a) ®
H\(M, N, N') — )N

(F*(M),d3, M) is the F cotriple resolution of the object M of the category 2y, and & : NJH — N'/H’
is the homomorphism induced by .

Proof. The following commutative diagram of Lie algebras with exact columns

0 0 0 0
g Ker(1z2n ® a) Z Ker(Lpi(ay ® @) > Ker(1y ® «) > Ker a
> d1®lN d0®1N
FX(M)® N ZFY(M)® N ~Mo®N " >N/H
> di®ly
Ly (ar)®a Lyt (an)®a 1y Qo a
. d(1)®1N’ 01 s Y,
}-2(M)®N/ i}-l(M)®N, - ® N’ >N//H,
> di®1
0 0 0 0
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immediately induces the exactness of the sequence

- Hy(M,N') "> Hy(M,N,N") > Hy(M,N) "> Hy(M,N).

Using the “snake lemma” in the last two columns of this diagram we have the following exact sequence:

H(M,N) "~ H(MN) "~Hy(MN,N) ~Hy(M,N) “=Ho(MN) ~0.
We define the homomorphisms j; and ds by
ji(lz]) = (dy @ 1v)(z)
for 2 € {Ker(1zi(p) ® a) N (dy @ 1n) " (Ker(1y ® o) NKerv)} and
82(lyl) = |(di ® In)(y') — (dp ® 1n)(y')]

for y € Ker (df ® 15) N Ker (dy ® 1n7), where ¢ € F*(M) ® N such that (1r2n @ a)(y') = y. It is
easy to verify that j; and dg are well defined and that the sequence (5.2) is exact in terms Ho(M, N'),
Hy{(M,N,N’) and H,(M, N) by virtue Proposition 5.4. ||

Remark 5.10.

(a) If the actions of M and N satisfy the compatibility conditions (5.1), then Ho(M,N,N’) =
Ho(M,N"), where N"” = Ker a.

(b) Let 0 — (N",0) — (N, u) — (N’,v) — 0 be an exact sequence of crossed M-modules.
Thanks to the result in [55], there is a six-term exact non-Abelian homology sequence
HI(M7N”) >H1(M7N) >H1(M7N,) =
> Ho(M,N") > Hy(M,N) > Ho(M, N'") >0. (5.3)

The first five terms of the sequence (5.3) coincide with the first five terms of the sequence (5.2)
and there is a natural homomorphism of A-modules

Hi(M,N") = H;(M,N,N).
Let
Mo
D= l% (5.4)
My =M

be a diagram in the category 20y with surjective ;. Let L.(D,N) be the pullback of the induced
diagram

F*(My) ® A
lf"‘(ag)@ljv .
(M N >F*(M)® N
F ( 1) ® F*(a1)®1 N F ( )®
Define Hy(D, N) = mp_1L+(D, N), k > 2.

Theorem 5.11 (Mayer—Vietoris sequence). For any diagram (5.4) there is a long exact sequence of
A-modules

>H/<3+1(M7N) >Hk’(D7N) >Hk(M17N)@Hk’(M27N) >H/<3(M7N) =
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> > Hy(D,N) > Ho(My,N) ® Ho(Ma, N) > Hy(M, N) >moL.(D,N) >
>7T0(.F*(M1)®N)EB7T0(.F*(M2)®N) >7T0(.F*(M)®N) > 0. (55)
Proof. There is a commutative diagram of simplicial Lie algebras with exact rows

Px

0 >Z. 7'>L.D,N)

|k

0 =7, =F(DM)QN

~F*(My))®N =0

l]‘-*(a2)®1N )

F*(« 1
@SN mM)e N =0

where Z, = Ker(F*(a1) ® 1n). Hence we have the following commutative diagram with exact rows

>m(F*(M2) ® N) > mo(Zs >moL«(D, N) =mo(F*(Mz) ® N) >0

T 7

>7T1(.F*(M)®N)6l > 1o (Zy >7T0(.F*(M1)®N) >7T0(.F*(M)®N) >0

The connecting homomorphism 7, (F*(M) ® N) — m,_1L«(D,N), k > 1, is the composite map
Tk—1(04)0k. The homomorphism 7 (L.(D,N)) — mp(F*(My) @ N) & 7 (F*(M2) ® N), k > 0,
is induced by mr(g«) and mg(ps). The homomorphism 7 (F*(M;) @ N) & mp(F*(Ma) ® N) —
Te(F*(M)® N), k >0, is given by 7 (F* (1) ® 1) — mp(F*(a2) ® 1n). To get the exactness of the
sequence (5.5), it remains to apply the diagram (5.6). [
Corollary 5.12. There is a long exact sequence of the non-Abelian homology of Lie algebras with
respect to the first variable.

Proof. 1t follows by applying Theorem 5.11 for My = 0. [

Let us consider Hi(—, N) as a functor from the category Ay to the category Lie of Lie algebras
and its non-Abelian left derived functors £ (Hy(—, N)) relative to the cotriple F.

Theorem 5.13. There is a natural isomorphism
Hy(—,N)= Ly [(H((—,N)), k>1.

Proof. 1t follows from the long exact homotopy sequence of the following short exact sequence of
simplicial Lie algebras

0 0 0
CH(FM)N) ZH(FO.N) L (F(M),N)
_FM)eN R (M) @ N - FUM)® N
:Im: ilm: iImll//
0 0 0

where the bottom simplicial Lie algebra is a constant simplicial Lie algebra and v : M @ N — N/H
is a homomorphism given in Definition 5.7. | ]
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Proposition 5.14. Let {M,, (;Sg, a < B} and {N,, ng, a < B} be direct systems of Lie algebras.
Let M and N be Lie algebras and for every o the Lie algebras M., N and M, N, act on each other
and the homomorphisms ¢§, wg preserve the actions. Then there are natural isomorphisms

Hy (M, i {No}) = lim{Hy(M, No)}, k>0,
Hy(limg{ Mo}, N) = lig{ Hy (Mo, N}), k> 0.

Proof. The constructions of both isomorphisms are similar, and only the first one will be given. In
fact, for £ = 0 the homomorphism

f+ Ho (M. limy{Na}) — tiny { Ho(M, No)}

is defined by f([{na}|) = {|nal}, {na} € liﬂ{Na}, and the homomorphism

g+ liny { Ho(M, Na)} — Ho (M, lim{Na})
is induced by the homomorphisms
ga + Ho(M, No) — Ho (M, lim{N,}),

[nal — [{na}l-

It is easy to see that these homomorphisms are well defined and fg and gf are identity maps.
For k = 1 the isomorphism

Hy (M lim(No}) = = Tim{Hy (M, Na)}

is induced by the isomorphism M ® liﬂ{Na} = - hﬂ{M ® Ny} (see Proposition 5.3).
Finally, for k > 2 the required isomo(;rphism can be gbtained applying the well-known assertions
F(tim{Na}) = lim{F(Na)}
and
i (lim{Da}) 2 lim{me(Da)},
where D, is a simplicial Lie algebra. ) ) [ ]

We end this section with explicit descriptions of the second and the third non-Abelian homology of
Lie algebras using Cech derived functors.
Let M and N be Lie algebras acting on each other. Let F' be an object of the projective class P and

F  °>M be a P-epimorphism in the category 2y. Let us consider the augmented Cech resolution
(C(€)«,e, M) of the object M in the category 2y (see Chap. 1, Sec. 2.1), where

Cle)y=Fx---xF, k>0,
M M

e —’
(k+1)-times
k ~ .
di (xoy...,xk) = (Toy ooy iy ..y xg), k>1, 0<i<k,
k .
si(xoy ..y xk) = (Toy .o oy iy iy ooy xg), k>0, 0<i<k.
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Applying the functor —@ N dimension-wise to the Cech resolution of M yields the augmented simplicial

Lie algebra (C(¢)s ® N,e ® 1y, M ® N).
Theorem 5.15.

(i) There is an isomorphism of A-modules

Hy(M,N) = {Ker(dj ® 1y) NKer(di ® 1n)}/[Ker(dy ® 1n), Ker(d] ® 1n)];

(ii) there is an epimorphism of A-modules

2
Hy(M, N) — [ Kex(@ @ 1y) | S [K1, Ky)
i=0 1,7

where @ # I,J C {0,1,2} such that I UJ = {0,1,2} and K; = () Ker(d? ® 1y), K; =

1€l
N Ker(d? ®1n).
JjEJ
Proof. We have an isomorphism
Hy(M,N) =LY (— @ N)(M) = m(C(e) @ N) (5.7)
and an epimorphism
H3(M,N) = L3(— ® N)(M) — m(C(). ® N) (5.8)

(see e.g. [60, Theorem 2.39(ii)]).
The Lie algebra C(e)2 ® N coincides with its ideal generated by the degenerate elements. In fact,
for any (x,y,z) ® n € C(e)y ® N there is an equality

(z,y,2) @n = (z,z,2) @n+ 0,y —z,y —z) ®n+(0,0,z —y) @n
= (sp @ 1n)((z,2) @n) + (5] @ 1n)((0,2 — y) ®n) + (sp @ 1n)((0,2 — y) @ n).
It is easy to verify the similar fact for C'(¢)3 ® N. Then by [1, Theorem 1]
Im 8, = [Ker(dj ® 1y), Ker(dj @ 1y)],
Imds = > [K1, K],
1,J

where 0, and 95 are differentials of the Moore complex of C'(), ® N. Hence the assertion follows from
(5.7) and (5.8). ||

4. Application to Cyclic Homology

In this section the relation of cyclic homology to Milnor cyclic homology of associative algebras is
established in terms of the long exact non-Abelian homology sequence of Lie algebras.

It is well known from the result of Loday and Quillen [88, 91] that for a unital associative algebra
A over a characteristic zero field A the cyclic homology HC,_1(A) of A is the primitive part of the
Hopf algebra H,(gl(A), A) of the Lie algebra gl(A) of matrices with coefficients in A. Analogously, the
rational algebraic K-theory of A is the primitive part of the homology H.(GL(A),Q) of the general
linear group GL(A) of A, which makes one think that cyclic homology is an additive version of the
algebraic K-theory.

The following stabilization result is also known [88, 91] for the homology of Lie algebra gl;(A) for
any unital associative algebra A over a characteristic zero field A:

Hy(gl;(A),A) = Hy(gl; 1 (A),A), >k,
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and for the computation of the first obstruction to stability
Coker (Hy,(gh—1(A), A) — Hy(glx(A),A)) = HCL (A),
where HCM | (A) are the Milnor cyclic homlogy groups [88], which coincides with Q*ATAL / dQ*ATf for

commutative A, where {2} A are the Kahler differentials forms of A. Similar results on the homology
of the linear group GL;(A) of a ring A under certain conditions (see [54, 118])
Hi(GL;(A),Z) = H,(GL;i41(A),Z), i>k
and
Coker (Hy(GLy,-1(A),Z) — Hi(GLi(A),Z)) = K;;' (A),

where KM (A) denotes the Milnor K-theory of A, give one thought to consider Milnor cyclic homology
as the additive version of the Milnor K-theory.

Using the non-Abelian group homology, we establish the relation of algebraic K-functor Ks to Milnor
K-functor K37 for noncommutative local rings [53, 68]. Now we give an additive version of this result.
In particular, the relation of the first cyclic homology HC and the first Milnor cyclic homology HCM
of unital associative algebras is expressed in terms of a long exact non-Abelian homology sequence of
Lie algebras, which corrects and extends the six-term exact sequence of [55, Theorem 5.7].

First we introduce the definition of the first Milnor cyclic homology.

Definition 5.16. Let A be a unital associative A-algebra. The first Milnor cyclic homology HC?(A)
of A is the quotient of A ®5 A by the relations
a®b+b®a=0,
ab®@c—a®@bc+ca®b=0,
a®@bc—a®cb=0
for all a,b,c € A.
Our definition of HCM(A) coincides with the definition in the sense of [88] when A is a field of
characteristic #2.

It is well known that the first cyclic homology HC4(A) of a unital associative A-algebra A is the
kernel of the homomorphism of A-modules

Aep AJJ(A) — [A,A],
a®br— ab— ba,

where [A, A] is the additive commutator of A and J(A) is the submodule of A ® A generated by the
elements

a®b+b®a,

ab®c—a®bc+ca®b

for all a,b,c € A.

It is clear that HC™M(A) coincides with HC;(A) when A is commutative.

Given a unital associative (noncommutative) A-algebra A, consider A as the Lie algebra with the
usual induced Lie structure [a,b] = ab—ba, a, b € A. Denote by V(A) the quotient Lie algebra of the
non-Abelian tensor square A ® A by the ideal generated by the elements

a®b+b®a,
ab®c—a®@bc+ca®b

for all a,b,c € A. We compile the results of [55] on the Lie algebra V(A) into the following proposition.
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Proposition 5.17. Let A be a unital associative A-algebra.

(i) There is an action of the Lie algebra A on the Lie algebra V(A) defined by the formula
(a@b)=d,ad @b+a®[d,b]

and a homomorphism p : V(A) — A given by a ® b — [a,b] has the structure of a crossed
A-module;

(ii) There is a natural isomorphism of A-modules
V(A) = Axp AJJ(A);
(iii) A acts trivially on HC1(A);
(iv) There is a short exact sequence of crossed A-modules of Lie algebras
0 >~ HC(A) =V (A) > [A, A] >0.

Proof. For the proof of (i) and (iii), see [55]. To prove (ii), we can show that J(A) D D(A, A) and then
examine similar arguments as in Proposition 5.2. The proof of (iv) is straightforward from (i)—(iii). ||

We have the following assertion.

Theorem 5.18. Let A be a unital associative (noncommutative) A-algebra. Then there is an exact
sequence of A-modules

= Hy(A,V(A),[A 4])  =H(AV(4) > Ha(A A 4]) =
= Hi1(A,V(A),[A4])  =Hi(AV(4) >Hi(A4[A4]) =
- HCi(A) = HCM(A)  =[AA]J[A[A, 4] =0,

Proof. Proposition 5.17, Theorem 5.9, and Remark 5.10 yield the following long exact sequence of
A-modules

= Hy(A,V(A),[A, A]) > Hy(A,V(A)) > Hy (A, [A, A]) >
= Hi1 (A, V(A),[A, A]) > Hi1(A,V(A)) > Hi(A,[A, A]) >
> Ho(A, HC1(A)) > Hy(A,V(A)) > Hy(A, [A, A]) > 0.
It is easy to see that

Ho(A, HC,(A)) = HC(A),
HO(A’ [Av A]) = [A’A]/[Av [A’AH

Moreover, Hyo(A,V(A)) = Coker v, where v : A® V(A) — V(A) is the Lie homomorphism given
by a ® (b® ¢) = *(b® ¢). Calculations in the Lie algebra V(A) [55, Lemma 5.4] say that

‘b®c)=a®bc]=a®bc—a®cbh, a,bceA.
Now we easily deduce that there is a natural isomorphism of A-modules

Hy(A,V(A)) = HCM(A).
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5. The Lie Algebra of Derivations

In the remaining two sections of this chapter we deal with the non-Abelian cohomology of Lie alge-
bras. In particular, we construct the second non-Abelian cohomology of Lie algebras with coefficients
in crossed modules extending Guin’s low-dimensional non-Abelian cohomology of Lie algebras. For
this we need to modify the Lie algebra of derivations introduced in [55].

We begin this section by introducing the extended notion of crossed modules of Lie algebras in the
following sense.

Definition 5.19. Let P and R be Lie algebras acting on each other, and (M, ) a (pre)crossed R-
module. (M, p) will be called a P-(pre)crossed R-module if the following conditions hold:

(i) UPly' =", Pr], r,7' € R, p € P;
(ii) P acts on M and p is a P-equivariant Lie homomorphism, i.e.,

p(Pm) =Pu(m), me M, peP;
(iii) *m =P("m) —"(Pm) = -"Pm,r € R,p€ P, m € M.

It is easy to see that any (pre)crossed P-module in a natural way can be thought as a P-(pre)crossed
P-module, P acting on itself by Lie multiplication.

A morphism f : (M,u) — (N,v) of P-(pre)crossed R-modules is a morphism of (pre)crossed
R-modules such that f(Pm)=Pf(m),p€ P, m & M.

Definition 5.20. Let (M, pu) be a P-crossed R-module. Denote by Der(P, (M, ;1)) the set of pairs
(v,7), where v : P — M is a crossed homomorphism (or derivation), which means that v is a
A-homomorphism satisfying the equality

v(p,?) =) = "v(p), p.p € P,

and r is an element of R such that

py(p) =—Fr, peP. (5.9)
This set is called the set of derivations from P to (M, u).

We introduce on Der (P, (M, 1)) the following operations:

(7774) + (7/7 8) = (’7 + 7/7T + 8)7
Aly,r) = (A, Ar),
[((v,m), (s 8)] = (v 4/, [, 8]),

for all (v,7), (v, s) € Der(P,(M,u)) and XA € A, where v %+ is given by (v x+')(p) = v(°p) — 7' ("p),
p e P.

Proposition 5.21. Under the aforementioned operations Der(P, (M, 1)) becomes a Lie algebra.

Proof. We only show that (y x4/, [r,s]) € Der(P,(M,u)). First, we prove that v * 7/ is a crossed
homomorphism. In fact,

(v *v)([p, ) =vClp,a) =~ ([, a]) = v(Pp, al) +([p,°adl) =~ ("2, al) = ([p,"q)) =
= P5(g) = (p) +27(C0) = ") = P () + 99/ (p) =P () + U0 ().
On the other hand,
Ply 9" )(q) = (v x4")(p) =Pv(Pq) =4 ("q) = 7 (°p) + 19/ ("p).
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Moreover, using (iii) of Definition 5.19 and (5.9) we have
Py (q) = COy(p) = Py (g) + V9 (p) = 0,
implying (7 #7)([p, q]) = (v *7")(@) = Uy *7)(p)-
Further, by (i) of Definition 5.19 we have
p(y 7 )p) = wy(°p) — 7' ('p) = =P + P = —[1, 7] + [5,7r] = —P[r, s].
Thus (v *7/,[r, s]) € Der(P, (M, ).
The details are easy to verify and is omitted from the text. [

Remark 5.22. Let (N,v) and (M, i) be precrossed and crossed R-modules respectively. Then (M, 1)
is an N-crossed R-module induced by v, and Der(N, (M, i) coincides with the Lie algebra Der (N, M)
defined in [55]. In particular, it coincides with the Lie algebra Derg(R, M) from [55] when (M, p) is
viewed as an R-crossed R-module.

At the same time, assume that (M, pu) is a P-crossed R-module and a P’-crossed R-module and
f : P/ — P is a Lie homomorphism such that

T =V, S =V ' eP| reR, meM.
Then there is a A-homomorphism
f : Der(P, (M, p)) —s Der(P', (M, 11))
given by f(v,7) = (vf,r), (7,7) € Der(P, (M, ). If, in addition, f satisfy the condition
fCo)="f0), v eP, reR,
then fis a Lie homomorphism.

Now assume that P and R act on each other compatibly, i.e., the conditions (5.1) hold. Then there
is an action of P on Der(P, (M, u)) defined by

Plv,r)=('Pr), peP,  (v.r)€ Der(P,(M,p)), (5.10)
where v'(¢) = %y(p), ¢ € P. There is also an action of R on Der(P, (M, u)) given by
(v,7) = (", [s,7]), s€R, (v,r)€ Der(P,(M,p)), (5.11)

where v"(q) = *v(q¢) — v(°q), ¢ € P. Tt is routine to show that the elements (v/,Pr) and (v”,[s,7])
belong to Der(P, (M, 1)) and that (5.10), (5.11) define Lie actions.

Proposition 5.23. Let (M, u) be a P-crossed R-module and the actions of P and R on each other
satisfy the compatibility conditions (5.1). Then the Lie homomorphism & : Der(P,(M,u)) — R
given by (vy,r) — r with the aforementioned actions of P and R on Der(P, (M, u)) is a P-precrossed
R-module.

Proof. We show only the following equality:
U (y,5) =P("(7,5)) =" (*(7,9))

for all € R, p € P and (v, s) € Der(P, (M, i)).
In fact,

(pT)('% 8) = (7/7 [pn 8])7
where
¥ (@) = "v(q) = (") = “v(g) — (g, "p)) = “v(@) = 9y ("p) + "Ply(g) = —9v("p).
On the other hand,

PO 8) =" (8)) = (v, Pl 8]) = (92, [ 8]) = (71 = 72, [P, 8]),
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where

T

(1 —22)(@) = () =7(p) =" (1(p)) + (Vv(p) = ="9("p).

The remaining details are omitted as they are routine. [ ]

6. Non-Abelian Cohomology

Before introducing our original definition of the second non-Abelian cohomology of Lie algebras, we
recall the definitions of Guin [55] of the first and the zero non-Abelian cohomologies of Lie algebras
with coefficients in crossed modules.

Let R be a Lie algebra and (M, ) a crossed R-module. Define the zero non-Abelian cohomology
as an ideal of M of all R-invariant elements,

H'(R,M)={me M| "m=0for all r € R}.

The crossed module relation “™m/ = [m, m'] implies that H°(R, M) is contained in the center of M
and therefore has only a A-module structure.
The first non-Abelian cohomology is a Lie algebra defined by

H'(R,M) = Derg(R, M) /3,
where J is the following ideal of the Lie algebra Derg (R, M):
J= {(TIW—N(m) +c¢)|meM,ce Z(R)},

Nm 18 the principal crossed homomorphism (or derivation) induced by m, namely n,,(z) = *m, = € R,
and Z(R) is the center of the Lie algebra R.

We need the following characterization of the second classical cohomology H?(R, M) of the Lie
algebra R with coefficients in an R-module M.

Let us consider the diagram of Lie algebras

P ZF ‘>R, (5.12)

where F'is a free Lie algebra over some A-module, € is a Lie homomorphism having a A-linear splitting
and (P,dp,d;) is a simplicial kernel of € in the category Lie, i.e., P = {(z,y) € F x F | e(x) = €(y)},
do(z,y) = x, and dy(z,y) = y. Assume that A denotes the Lie subalgebra {(x,2) € F x F |z € F}
of P.

Let us claim M as an R-module; then M is also an F-module and P-module via the Lie homo-
morphisms e and ed; (i = 0,1) respectively. Denote by Der(P, M) (resp. Der(F, M)) the A-module
of crossed homomorphisms from P to M (resp. from F to M). Let Der(P, M) be a submodule of
Der(P, M) of all crossed homomorphisms 7 such that v(A) = 0. There is a A-homomorphism

k:Der(F,M) = Der(P,M),
given by g +—— Bdy — Bd;.
Proposition 5.24. There is a natural isomorphism

H*(R, M) = Coker k.

Proof. As in Proposition 5.6, the classical cohomology of the Lie algebra R with coefficients in
the R-module M is isomorphic, up to dimension shift, to the non-Abelian right derived functors
REDer(—, M)(R), k > 0, of the contravariant functor Der(—, M) : %y — A — mod (here we mean
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that M is an Abelian Lie algebra acting trivially on each object of ;). Hence we only need to
construct an isomorphism of A-modules

RipDer(—, M)(R) = Coker .

Let us consider a P-projective simplicial resolution of the object R in the category 2y,

_ @ d} .
Fy = Ik >R
> d2 di V , (5.13)
y A

P

where Fy = F and d is the unique Lie homomorphism such that d} = d;d (i = 0,1), which by
Lemma 5.5 is surjective.
Applying the functor Der(—, A) to (5.13) yields a cochain complex of A-modules

Der(FO, A) % > DeI‘(Fl, A) o > Der(F% A) 92 - ...

Now define a A-homomorphism ¢ : ﬁe/r(P, M) >Ker0, by ¢(v) = 1d, v € [Te/r(P, M). To
show that the crossed homomorphism ~d : F; —> A belongs to Ker d;, we need only to examine the
following lemma.

Lemma 5.25. For v € I/)\e/r(P, M) there is an equality

7(337 y) = 7(337 Z) + ’Y(Z, y)
for all x,y,z € F such that e(x) = €(y) = €(2).

Proof. 1t is straightforward. [

Returning to the main proof, construct a A-homomorphism
¢:Kerdy > Der(P,M)

by ¥(8) = v, f € Kerd;, where the map v : P — A is given by y(z,y) = p(z), (z,y) € P, and
z € Fy such that d(z) = (x,y).

We show that + is well defined. In fact, let 2’ € F} such that d(z’) = (z,y). Using again Lemma 5.5
implies that there exists an element w € Fy such that d3(w) = d3(w) = 0 and d3(w) = z — 2’. Hence,

Y(2) = 7(2') = yd3(w) = 1 (8)(w) = 0.

It is easy to show that v is a crossed homomorphism and ¥y, @y are identity maps. Moreover, it
is clear that the above-given isomorphism induces the isomorphism H?(R, M) = Coker k. I

Now we are ready to construct our second non-Abelian cohomology of Lie algebras.

Assume that in the diagram (5.12) R acts on F', and € preserves the actions (here we mean that
R acts on itself by Lie multiplication), implying the induced action of R on P. Note that all these
conditions are satisfied when F' = F(R) is the free Lie algebra on the underlying A-module R with
canonical Lie homomorphism € = 7p : F(R) — R and the above-defined action of R on F(R) (see
Sec. 2 of this chapter). Hence, with no lose of generality, we can assume that the center Z(R) of R
acts trivially on F' (see Theorem 5.29).

Let (M, p) be a crossed R-module. Then (M, p) can be viewed as a P-crossed R-module induced
by ed; (i = 0,1) and a F-crossed R-module induced by e. Denote by I/)\e/r(P, (M, p)) the subset of
Der (P, (M, 1)) consisting of all elements of the form (v, 0) satisfying the condition v(A) = 0. Clearly
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5e/r(P, (M, p)) is a A-submodule of Der(P, (M, p)), since in it the Lie multiplication of Der(P, (M, p))
is killed. -

Let us consider the A-submodule B(P, (M, 1)) of Der(P, (M, 1)) consisting of all elements (-, 0) for
which there exists (5, h) € Der(F, (M, p)) such that fdy — fdy =

Proposition 5.26. The A-module ﬁe/r(P, (M, pn))/B(P, (M, p)) is unique up to isomorphism of choos-
ing the diagram (5.12) for the crossed R-module (M, ).

Proof. Consider the commutative diagram of Lie algebras

do .

P ZF >R
dy
d'o

P > F ° >R
d'y

where the bottom row is another diagram of the form (5.12). The existence of such w; and w; (¢ =0, 1),
not preserving the actions of R in general, is clear.

As noted in Sec. 5, we have the induced A-homomorphisms, which will be denoted by w; :
Der (P, (M, p)) — Der(P, (M, 1)), wi(v,7) = (v@;,7), i = 0, 1.

It is casy to see that (7&;,0) € Der(P, (M, 1)) if (v,0) € Der(P', (M, 1)) Let (v,0) € B(P', (M, 1)),
i.e., there exists (8,h) € Der(F’, (M, p)) such that 3dy — Bd} = 7; then

"}/&v}l = (,Bd6 — ,Bdll)(:cvjl = ,Bwido — ﬂwidl.

Thus (yw;,0) € B(P,(M,pn)). Hence we have the natural homomorphisms of A-modules Y,
Der(P', (M, 1))/ B(P', (M, n)) — Der(P, (M, )/ B(P, (M, ), i = 0,1, induced by w;.

Now we show that x, = x,. Take the Lie homomorphism s : F — P’ given by s(z) =
(wi(x),ws(x)). For (,0) € I?e/r(P’, (M, 1)) we have (vs,0) € Der(F, (M, u)) and the equality

(ysdo — ysd1)(z,y) = vs(x) —vs(y) = y(wi(x),wa(x)) — v(wi(y), wa(y)) =

= y(w1(z) —wi(y),w2(x) —w2(y)) +7 ( 1(y) — wa(z),wi(y) —wa(x)) =
= y(wi(x) — wa(x), wi(y) —wa(y)) = (Y& —Y@2) (2, y)
B(

for (x,y) € P. Therefore (ywy,0) — (yw2,0) € B(P, (M, pn)) and x, = X,-
The rest of the proof is standard. | ]

Proposition 5.27. Let R be a Lie algebra and (M, ) a crossed R-module.
(i) There is a canonical epimorphism of A-modules
¥ : H2(R, Ker ;1) — Der(P, (M, 11))/B(P, (M, 1)),
given by 9(|8]) = |(x(B),0)|, |8] € H*(R,Ker uu) (for the definition of 1 see Proposition 5.24).
(ii) Ifr € Z(R) for any element (o, r) € Der(F, (M, p)), then ¥ is an isomorphism.
Proof. 1t directly follows from Proposition 5.24. [

Note that the condition of Proposition 5.27 (ii) is fulfilled when either R is an Abelian Lie algebra or
M is an R-module thought of as the crossed R-module (M, 0). This assertion motivates our definition
of the second non-Abelian cohomology of Lie algebras with coefficients in crossed modules.

Definition 5.28. Let R be a Lie algebra and (M, ) a crossed R-module. Then the A-module
Der(P, (M, u))/B(P, (M, pn)) will be called the second non-Abelian cohomology of R with coefficients
in (M, ;1) and will be denoted by H?(R, M).
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It is easy to see that a morphism of crossed R-modules 6 : (M, ) — (N, v) induces a A-homomor-
phism
6> : H*(R,M) — H*(R,N), 6°(|(a,0)[) = |(6, 0)].

Finally, using our second non-Abelian cohomology of Lie algebras, we obtain a nine-term exact
cohomology sequence that prolongs Guin’s seven-term exact cohomology sequence but under one

additional necessary condition on the coefficient of the short exact sequence lacking in [55, Theorem
2.8].

Theorem 5.29. Let R be a Lie algebra and 0 > (L,0) ‘s (M, p) b (N,v) >0 an exact

sequence of crossed R-modules, having a A-linear splitting. Then there is an exact sequence of A-
modules

0 ) 01

0 & o °_ 170 O &
0 > HY(R,L) > HY(R, M) > HY(R,N) > H"(R,L) > H" (R, M) >

6 0

2
" R.N) " -HYRL) *-HARM) "~ HYRN),

where 0% is a Lie homomorphism and 6 is a crossed homomorphism with the action of H'(R,N) on
H?(R, L) induced by the action of R on P.

Proof. According to Theorem 2.8 [55] there is an exact sequence of A-modules

50

* . HOR,N) ¥~

0
0  =HYR,L) °~HOR,M)

0

50 ¢t 1
>H1(R,L) >H1(R,M) >H1(R,N),

where 0! is a Lie homomorphism. Note that the A-linear splitting on coefficient sequence is needed to
construct the connecting map 6°.

We must only define the crossed homomorphism §' and the action of the Lie algebra H!(R, N) on
the A-module H?(R, L) (in our setting), and then show the exactness of the following sequence:

0 é

1 1 &2 92
HY(R,M) ° ~H'R,N) ° >H*(R,L) ~ >H*R,M) ° >H*R,N). (5.14)

Let us take an element |(a,7)| € H'(R, N) and consider the diagram

do c
P *F ‘=R

d

' lg la, (5.15)
L =M =N

¢ 0

where 8 : F — M is a crossed homomorphism such that 5 = «e. The existence of such 3 follows
from the following fact: let F' be a free Lie algebra (over some A-module X) acting on a Lie algebra
M; then any A-linear map from X to M could be naturally extended to a crossed homomorphism
from F to M.

Then there is a (unique) crossed homomorphism « : P — L such that &y = fdy — Sdy. It is clear
that 7(A) = 0. Define

()| = |(7,0)]-
We must verify the correctness of 6*. Let ' : F — M be another crossed homomorphism such that
03 = ae, and hence v/ : P — L be the induced crossed homomorphism satisfying &7/ = 8'dy — f'd;.
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Then 03" = 6 and there is a crossed homomorphism o : F' — L such that 8/ = 8+ £o. Thus we
have

&y = pB'dy— B'dy = Bdy + Eody — Bdi — Eody = &y + Eody — Eody,

implying |(v,0)| = (7', 0)].

Now, if (¢/,7') is another representative of the class |(«,r)|, then there exists n € N such that
o = a+n,. Take 8’ : F — M such that 5’ = 8 + n,,, where m € M with 8(m) = n and 63 = «e.
It is clear that 03" = o’e. Moreover,

&y = p'dy — B'dy = Bdo + nmdo — Bdy — nmdy = Bdy — Bdy = .

Whence 7' =~ and the connecting map 4! is correctly constructed.
Now define the action of H'(R, N) on H?(R, L) by the formula

@Nj(3,001 = (3,00, |(asr)| € HY(R,N), |(,0)] € H*(R, L),
where ¥(x,y) = v("z,"y), (z,y) € P. The following equality in the Lie algebra Der(P, (M, u)):
(5’77 0) = [(5’7’ 0)’ (/Bd07 T)] )

where § : F — M is the mentioned crossed homomorphism (see diagram (5.15)), implies that
v : P — L is a crossed homomorphism. Furthermore, it is obvious that 7(A) = 0. We must verify
that this action is correctly defined. Assume that |(o/,7')| = |(a,7)] € H'(R, N); hence o/ = a — 1,
and 7’ =r +v(n) — ¢ for some n € N and ¢ € Z(R). We have

V(") = (Ca,Ty) (M, y) — ().
As was mentioned above, we can assume, without loss of generality, that Z(R) acts trivially on F;

hence v(°z,“y) = 7(0,0) = 0. Now we can deduce the correctness of such defined action from the
following lemma.

Lemma 5.30. A map B : F — L given by B(z) = v(*™x, [uv(n),z]) is a crossed homomorphism,
where u : R — F is the required A-linear splitting, and there is an equality

y("Ma,Yy) = (Bdy - Bdi)(x,y),  (,y) € P.
Proof. To show that 8 is a crossed homomorphism we make the following calculations:
"Bly) = YB) = "y (" My, [uv(n), y]) = Y7 (" Mz, [uv(n), 2]) =
= By (“My, [uv(n), y]) — Oy ("M, [uv(n), 2]) =
= [ @), ("D, fur(m), y]) | = 7| w.y), (O, luv(n), ) | =
= (12, "), [o, v (), 1] ) = (I, ", [y, [wv(n), 2] ) =3 (", ), [uv(n), [z, 9] ) = Ble vl
Let m € M such that 6(m) = n. Then
v([uv(n), 2], [uv(n), y]) = y[(uv(n), uv(n)), (z,y)] =
="y (z,y) = COy(uv(n), uv(n)) = "y (z,y) = [m,y(z,y)] =0,

since L is contained in the center of M.
Thus by lemma 5.25 we have

(Bdo — Br)(z,y) = B(x) — By) = v("™a, [ur(n), z]) —v("™y, [ur(n),y]) =
="Mz, [uv(n),z]) +7([ur(n), z], [uv(n), y]) + 7 (fuv(n),y],"My) = y(* Mz, ®y).
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Now we verify the exactness of the sequence (5.14).

Let |(a,7)| € HY(R,M). Then §'0!|(a,r)| = 6 (8, )| = |(7,0)], where &y = aedy — aed; = 0.
Therefore Im 61 C Ker 6.

Let |(a,7)| € HY(R,N) such that 6'|(a,7)| = |(7,0)] = 0, where &y = Bdy — Bd; (see diagram
(5.15)). Then there exists a crossed homomorphism 7 : F — L satisfying v = ndy — nd;. Hence we
obtain that (8 — &n)dy = (B — &n)d; implies the existence of («,r) € Derg(R, M) with 5 — &n = ae.
It is obvious that 6'|(c,r)| = |(,7)|. Hence Ker ' C Im 1.

Let |(a,7)| € HY(R,N), then £25'|(a,7)| = €%|(7,0)| = |(&7,0)| = 0, since there exists (3,r) €
Der(F, (M, 11)) such that &y = 3dg — Bdy. Therefore Im §! C Ker £2.

Let |(7,0)] € H?(R,L) such that |[(£7,0)] = 0 € HZ?(R,M). Then there exists (3,s) €
Der(F, (M, u)) such that &y = Bdy — Bdy, whence 08dy = 05dy. It follows that there is a unique
crossed homomorphism « : R — N such that ae = 0. It is easy to verify that the pair («,s)
belongs to Derg(R, N) and §'|(c, s)| = |(v,0)|. Therefore Ker £2 C Imdt.

The rest of the exactness of the sequence (5.14) is similar to the group theoretic case (see [61,
Theorem 13]) and will be omitted. ||

CHAPTER 6

MOD ¢ NON-ABELIAN TENSOR PRODUCTS
AND (CO)HOMOLOGY OF GROUPS

The aim of this chapter is to study of some mod ¢ theories. In particular, the non-Abelian tensor and
exterior product modulo g of Conduché and Rodriguez—Fernéndez [32] of crossed modules, generalizing
definitions of Brown [13] and Ellis and Rodriguez [48] (see also [47] and [112]) and having properties
similar to the Brown-Loday non-Abelian tensor product [18] (see Chap. 4, Sec. 1), is investigated in
various aspects. Mod ¢ group homology and cohomology theories are introduced and studied as the
homologies of the mapping cones of the ¢ multiplication on the standard homological and cohomological
complexes, respectively, as in the case of the mod ¢ Hochschild homology [81]. Then both theories are
unified into a mod g Tate—Farrell-Vogel group cohomology theory.

In Sec. 1, we give some functorial properties of the non-Abelian tensor product modulo ¢ of crossed
modules; in particular, we investigate for the non-Abelian tensor product modulo g of crossed modules
the properties of right exactness (Proposition 6.4, 6.5) and compatibility with the direct limit of
crossed modules (Proposition 6.6). We show that the ‘absolute’ tensor product modulo ¢ of two
groups G and H with compatible actions is the quotient of non-Abelian tensor product G ® H by
q(H1(G,H) N Hi(H,G)) (Theorem 6.8). D.Guin’s isomorphism [12] is generalized for the tensor
product modulo g by giving the short exact sequence of groups

0 >G4  >I1(G,q)®:A >qZ®cA >0, ¢>0,

where G is a group, A is a G-module, and I(G, q) is the kernel of the morphism € : Z[G] — Z, (see
Proposition 6.13).

Then we give an application of tensor product modulo ¢ to algebraic K-theory with Z, coeffi-
cients [9]. In particular, for a (noncommutative) local ring A such that A/Rad A # Fa, we give
the relationship between non-Abelian tensor product modulo ¢ and K»(A,Z,) which is an analog in
g-modular aspect of D.Guin’s six-term exact sequence relating the non-Abelian homology of groups
with Milnor’s K» and the symbol group Sym (Theorem 6.17).

In Sec. 2, given a chain complex, we provide the definition of its mod ¢ homology and ®-(co)homolo-
gy (Definition 6.18). We prove the universal coefficient formulas (Proposition 6.19 and Corollary 6.20)
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and show that mod ¢ (co)homology of chain complexes reduce to the case ¢ = p™ with p a prime
(Theorem 6.22 and Corollary 6.23).

The study of non-Abelian left derived functors of the ‘absolute’ tensor product modulo ¢ of groups
inspired our definition of mod ¢ homology, H.(G, A;Z/q), of a group G with coefficients in a G-module
A, where ¢ is a positive integer, introduced in Sec. 3 (Definition 3.1). We develop certain aspects of this
mod ¢ version of the homology theory of discrete groups. According to Proposition 6.29 we can think
of mod ¢ homology (in case ¢ = 0) as a generalization of classical group homology. We give universal
coefficient formulas for the mod ¢ homology of groups (Proposition 6.29). Then we calculate the mod ¢
homology of free groups and finite cyclic groups (Proposition 6.33, Example 6.34, Proposition 6.35).

In Sec. 4, we investigate the derived functors of the non-Abelian ‘absolute’ tensor product modulo
q of groups establishing their relations with classical homology and g-homology of groups (Proposi-
tions 6.37, 6.38, 6.41). The main result of Sec. 4 is Theorem 6.40, showing that if A is a g-torsion free
G-module and g > 0, then there are natural isomorphisms Lfl_l(G ®1A) =2 H,(G,A;Z/q) for n > 2.

In Sec. 5, we introduce the mod ¢ cohomology, H*(G, A;Z/q), of a group G with coefficients in
a G-module A (Definition 6.27). Given a group G we introduce the notion of a (G, g)-torsor over a
G-module A (Definition 6.49) and describe the first mod ¢ cohomology group in terms of (G, g)-torsors
over A (Theorem 6.50). Using our notions of pointed g-extension and g-extension (Definitions 6.51
and 6.54), we describe the second mod ¢ cohomology of groups (Theorems 6.52 and 6.56).

In Sec. 6, we express the mod g cohomology of groups in terms of cotriple derived functors of the
kernels of higher dimensions of the mapping cone of the ¢ multiplication on the standard cohomological
complex (Theorem 6.57).

In Sec. 7, we give an account of Vogel cohomology theory [125]. In [52] Goichot gave a detailed
exposition of Vogel’s homology theory and its relations to Tate and Farrell theories. We shall give
here the cohomological approach (see also [128, Sec. 5]). At least in the case of finite groups it is the
same, but the point of view is slightly different.

In Sec. 8, the mod ¢ Tate-Farrell-Vogel cohomology of groups is introduced (Definition 6.74).
Finally we show how periodicity properties of finite periodic groups extend to mod ¢ Tate coho-
mology (Theorem 6.81) and give a property of cohomogically trivial G-modules for G a p-group
(Theorem 6.85).

In this chapter, ¢ denotes a positive integer, and its product on any module A is represented by ¢A
and A/q = A/qA. We denote by IG the augmentation ideal of the group ring Z[G] over a group G.
The groups Z and Z/q are trivial G-modules. We consider the group H'(G, A) trivial. A ring R is
always associative and unitary; an R-module A is a left R-module. Dp, is the category of (unbounded)
complexes of projective R-modules, and Cg is the category of complexes of R-modules. Considering a
group G, and given two G-modules A and A" we write A ®¢ A" and Homg (A, A’) for A @z A" and
Homgy; (A, A), respectively.

1. The Tensor Product Modulo ¢ of Groups

We begin this section by recalling some definitions of the mod ¢ non-Abelian tensor product of
groups [32].

1.1. Various definitions. Let y : M — P and v : N — P be two crossed P-modules and
consider the pullback
MxpN™ =M
(pull) wzl lu .
N > P

v
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Let K=MxpN ={(m,n) e MxN |me& M, neN, pu(m)=r(n)}. In this diagram each group
acts on any other group via its image in the group P.

Definition 6.1. The tensor product modulo q, M ® 9N, of the crossed P-modules p and v is the group
generated by the symbols m ® n and {k}, m € M, n € N, k € K subject to the following relations:

mm' @n = ("m' @ "™n)(m®n), (6.1)
m®nn' = (men)("me "), (6.2)
{E}(m @ n){k} " = m e n, (6.3)

g—1 )
{6k} = {8} T] (mk™' @ (F7 " mok!))) (K}, (6.4)
=1

[{E}, {K'}] = mk? @ mok™?, (6.5)
{(m™m~1,"nn" 1)} = (m @ n)? (6.6)
for all m,m’ € M, n,n' € N, k,k' € K.

Definition 6.2 ( [32]). The exterior product modulo q, M N4 N, of the crossed P-modules p and v is
obtained from the tensor product M ® 9N by imposing the additional relation

mk@mk=1 keK. (67)
The image of a generic element m ® n in M A? N is written m A n.

Note that we can add the case ¢ = 0; then under M ® "N we mean the tensor product of Brown
and Loday, M ® N, which is the group generated by elements m ® n, m € M, n € N and subject
to relations (6.1) and (6.2) (see Chap. 4, Sec. 1 or [16-18]). Furthermore, under M A° N we mean
Brown—Loday’s exterior product, M A N, which is the group generated by elements m An, m € M,
n € N and subject to relations (6.1), (6.2), and (6.7) (see [16, 18, 43]).

Assume that (M, p), (N,v) are crossed P-modules and (M’ y), (N',v') are crossed P’-modules.
Assume that a = (f,¢) : (M,u) — (M’, 1) and 8 = (g,%¢) : (N,v) — (N, V') are crossed module
morphisms such that ¢ = ¢. Then there is a unique homomorphism

a®1B:M®IN — M @IN" (aNB:MANN-— MANN),
such that
(@@B)(m®n)=f(m)®g(n) ((aA?B)(mAn)= f(m)Ag(n)),
(@@ 1B)({k}) = {(f(mik),g(m2k))}  ((aA?B)({k}) = {(f(m1k), g(m2k))})
for all m € M, n € N, and k € K. Further, if o, 8 are onto, so also is a ® 15 (a A7 j3).
Recall the definition of the function S;(k, k") from [32], where k, k' € K and t is a positive integer:

t—1

Bk, k) =[(mk™" &

i=1

kl—t+i

mok'"). (6.8)

Then for any k,k’ € K and any positive integer ¢ we have the following equality:
t—1

Bk, k') = [T miki= @ mok). (6.9)

i=1
We only prove this equality when ¢ is odd, since the case where t is even is similar. In fact, by the
definition of 5 in (6.8), we have
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t—1

Be(k, k) = H(wlk_l ® k17t+i7r2k/i) = (mk'® k27t7T2/€/)(7T1k_1 ® k37t7r2k/2) e
i=1
(kT @R k) - (kT @ % k) (kT @ mak/t L),
where j = tgl .
Thus,

Bk, k) = (mk ' @F "mk!) - (mk T @F mk?) (mk Tt @ F  mk)
e (kT @R T k) L (kT @ mok TR (M T kT @ mok) =
= (mk ' @F  mk) - (kT @F  mk?) -
(kT @ k) (M2 @ ok Y (K T kT @ mok!) =
= (M @R T k) (mk T @R T mk?)
(kT @ F k) (kT @ mok Y - (M ke T @ k) - (M mk T @ mok!) =
=(mk™ @ mk) - (mkT @" m
ik 1 k2t k/ k 1 k3t ]6'/2
(kT @ T k) (mk T @k (M kT @ mak!) - (KT mk T @ mak!) - (

k/t—2

Tkt @mak).
Now we compute the other part:

t—1

H(k/iqﬂ_lki_t ® ng/) —
=1

k/t—3 klt—2

= (mk'" "t @ mk)F ikt @ mok) - (M T mk T2 @ mok!) - (M mk T @ mok!) =
= (mk L @ F  mk ) (m k2t @ mok!) - (M m k2Tt @ mok!) - -
Mk @mk) (M T kT @ mok!) =
= (mk ' @% mk) - (mk Tt @ mk?) - (M mk T @ mok!) - (1
_ (ﬂ_lk—l ® k2_t7T2k/) . (Wlk—l ® k3—t7T2k/2) o
o (kI @ mok ) (M kT @ mok!) - (M T mk T @ mok!) =
= (mk ' @M k) - (mk T @ F T mk?) -
ek @ k) (kT @ ok ) - (M kT @ mok!) - (

7T1k7_1 ® 7T2/€/) =

f/t—2

7T1k‘_1 & 7T2k‘/).
Hence we have proved that

t—1
ber(k, k') = [+ mik™ @ mok’),
i=1

when ¢ is odd.
Then there is a unique isomorphism

T -M®IN—N®IM (1:MNN-—NANM),

such that T(m ®@n) = (n@m)~! (r(m An) = (n Am)~Y), 7({k}) = {k:_l}_l, where k = (mok, m1k)
forallme M, n € N,and k € K.
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In fact, We have only to show that 7 commutes with relations (6.1)—(6.7); for instance, by (6.9) we
have

B L B L B B e

a —i 1q—i -1 -
= 7({k}) - [H(’f mk™ " @mk )| T({K}) =
=1
q—1 )
= ({k) [T " mak @ mk ) T r({K)) =

I

_ T({k}) H ’7’(71'1}6‘_1 ® (kl—q+i7r2k/)i)7_({k/})‘

=1

S

Now let G and H be groups that act on themselves by conjugation (“y = zyxr~!) and each of which
acts upon the other in such a way that the compatibility conditions (4.1) hold.

Consider the Peiffer product G > H, which was defined by Whitehead in [126] and is the quotient of
the free product G« H by the normal subgroup generated by the elements 9hgh~'g~! and "ghg=1h~!
for all g € G, h € H. As a consequence of the compatibility conditions (4.1), the actions of G * H on
G and on H factor through G > H and the canonical maps G — G <t H and H — G <1 H are
crossed modules; see [51] for more details.

Definition 6.3 ( [32]). An ‘absolute’ tensor product modulo q of two groups G and H with compatible
actions on each other is the tensor product modulo ¢ of crossed modules G and H over the group
G H.

It is easy to deduce [32] that for groups G and H acting trivially on each other there is a natural
isomorphism

G®IH = (G®/q) ®z/q (H*/q).

1.2. Functorial properties. Now some properties of non-Abelian tensor product modulo ¢ will be
given.

We begin by giving for the non-Abelian tensor product modulo ¢ of crossed modules the properties
of right exactness and compatibility with the direct limit of crossed modules.

Let (L, \), (M, ), and (N,v) be crossed P-modules. A short exact sequence of groups

1 =L “>ym "N -1

is called a short exact sequence of crossed P-modules if o and 3 are morphisms of crossed P-modules.
Proposition 6.4. Let 1 ~L “>=M o >N =1 be a short eract sequence of crossed P-
modules. Then there is an exact sequence of groups

0%

Pl “~PeiM " ~PgIN -1, (6.10)
where o/ = 1p R, f/ =1p ® 3.

Proof. Using (6.1), (6.2), and (6.4) we can easily check that §'a’ is the trivial homomorphism. It is
also clear that ' is surjective (see Sec. 1.1).
Now we show that Im ¢ is a normal subgroup of P ® M. In effect, by [16, Propostion 3]

(pom)® @ al)(p@m)~t =Pmy g Pmla) e Ima,
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forallle L, me M, pe P. By (6.3)

{to,m)}¥' @ a)){(p,m)} ™" =""p' @ a(l) € Imd,

foralll € L, m € M, p,p' € P, where u(m) = p. By [32, Proposition 1.16 and Lemma 1.10]
{(p,m)}a {(1L,OH(p,m)} " = " @ a()){(1, (1))} € Im e

and
(' @m")a{(1,0)}(p" @m) ™ = (' u(m")p ™ u(m) ™t @ a()){(1, 1)} € Imd/,
foralll € L, m,m' € M, p,p’ € P, where u(m) =p, A(l) = 1.
Therefore, we have the diagram of groups

/

Poil “-PoiM " -PgIiN =1

P®IL >P®IM T>Cokero/ >1

[

[e)

where the bottom row is exact. Thus, there exists a natural homomorphism v : Coker o/ — P ® 9N
such that v = '

Let us define a homomorphism 7' : PQIN — Coker o as follows: 7/ (p®n) = [pm], v'{(p’,n’)} =
{(p',m")}], where B(m) =n, S(m') =n' and u(m’) = v(n’) = p'. It is correctly defined. In effect, let
my = ma(l) and m} = a(l)m’; then

p@my =p@ma(l) = (p@m)(um)pu(m)~" @ ma(l)m™"),
and
(@, mh)} = {0 a)m)} = {La) (')} = {1 al) @, m)}.

Hence [p @ my = p @ m] and [{(p',m})}] = [{(p', m)}].
It is easy to verify that 7' is compatible with the relations (6.1)—(6.6) and 7/, /v are identity
maps. | ]

Note that in general the non-Abelian tensor product modulo g of crossed P-modules is not a right
exact functor, i.e., the sequence (6.10) is not exact when the group P is replaced by any crossed
P-module A.

Let M and N be crossed P-modules. By [32, Lemma 1.3] we have two homomorphisms £ : M ®
IN — M and &' : M ® IN — N defined by

Emen)=m"m~,  &({k}) = mk9, (6.11)
gmen)="nn"t,  ¢{k}) = mki. (6.12)
Furthermore, these homomorphisms factor through M A? N.

Proposition 6.5. Let 1 > L > M >N >1 be a short exact sequence of crossed P-
modules. Then there is an exact sequence of groups

Ker ¢ > Ker¢), > Ker &)y > Coker &} > Coker &), > Coker &) =1,

where the homomorphisms &) : P® 1L — L, &, : PQIM — M, and & : P ® IN — N are
defined according to (6.12).
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Proof. It follows from the commutative diagram of groups with exact rows and columns

Proposition 6.6. Let {Ma,q)g,a < B} and {Pa,\llg,a < B} be two directed systems of groups. Let
fta 1 My — Py be a crossed Py-module for every o such that (®5,U5) : (Mg, Py) — (Mg, P3),
a < B, is a crossed module morphism. Let v, : N — P, be a crossed P,-module for every a such
that (1,\115) : (N,vq) — (N,vg), a < B, is a crossed module morphism. Then there is a natural
isomorphism

(Hm{M.}) @ N 2 lim{Mo @ N}, (lm{Ma}) A?N = lim{M, A9 N},

Proof. First, note that the tensor product modulo ¢ of h_n}l{Ma} and N are considered as crossed
(0%

modules over the group lig{Pa}.

It is clear that a homomorphism v : N — lig{Pa} defined as v(n) = [va(n)], n € N, with action

[Pl = Pop, is a crossed module.
Now we show that a homomorphism p : hg{Ma} — lig{Pa} defined by u([mq]) = [ta(me)] with

action Pelmyg] = [‘I"l(pa)@g(m/g)], where v > a, 8 (the existence of such v follows from the directness
of the system), is a crossed module. Proof of correctness here is easy and is omitted. Next

p(Plimg]) = (Yo @Y (mg)) = [y (V5P DY(mp))] = [T (pa) iy @} (ms) T (p )] =
= [W2(pa) Vins(ms) V(03 ")] = [palplmpllps '],  where v >, f;
wllmal) [y 5] = Ialme)l [ 5] = [\I’Zua(ma)q)g(mﬁ)} _ [ugmﬂ(ma)@g(mﬁ)] =
— [ (ma)®}(ma)L(my "] = [mallmglimg '], where > o, 8.

«

Let us define a homomorphism

ko (lm{Mo}) ® IN — lim{ M @ IN} (&1 (m{Ma}) AT N — lim{M, A? N} )
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as follows: £([ma]®n) = [ma®n] (k([ma] An) = [maAn)) and £({([ma],n)}) = [{(®a(ma),n)}], since
[1a(ma)] = [va(n)] and therefore there exists 8 > « such that Ui, (ma) = Pova(n); ,ugég(ma) =

vg(n).
Let (®3) = @4 ® 91y and (®3)' = @3 ® 91y. If [m,] = [mg], then there exists v > a, 8 such that

P4 (mq) = ®j(mg). Thus,
(22) (ma @ n) = (M) @ n = @] (ms) @n = (P3)' (Mg @ n).

If there exists ' > « such that \Ilgl,ua(ma) = \Ilglya(n) and therefore ,ugf@gl(ma) = vg/(n), then
there exists v > 3, 8’. Thus

(@2) ({(®2(ma),n)}) = {(@%(ma),n)} = (BF) ({(®2 (ma),n)})-
If [ma] = [my], then there exists v > o, @’ such that ®J(ms) = @), (my). Hence we have
(@3) ({(@2(ma),n)}) = {(2F (ma),n) } = (@) ({ (27 (mar):n)}),
where v/ > ~, 3, 5. Therefore r is correctly defined. Commutativity of £ with relations (6.1)—(6.7) is

easy to verify and is omitted from the text.
On the other hand, the canonical homomorphisms ®, : M, ® N — (hﬂ{Ma}) ®IN (D, :

M,NIN — (hﬂ{Ma})/\qN), D, (Mma®@n) = [Mma]@n (Po(MmaAn) = [ma]/\n),aand O, ({(ma,n)}) =
{(Ima],n)}, ind?lce a homomorphism ' : h_n}{Ma ®IN} — hg{Ma} ®IN (k' : hg{]%Cy N N} —

lim{Ma} AT N), and it is easy to see that kK, k'K are identity maps. ||
(0%

Let 7 be a nonnegative integer and p : M — P be a crossed P-module. (M, u) is called a r-crossed
P-module if " =1 for all a € Ker p.
We have the following proposition.

Proposition 6.7. Let p : M — P and v : N — P be r-crossed and l-crossed P-modules re-
spectively. Let s be the least common multiple of v and . Then o« : M N9 N — P, given by
a(mAn) = [u(m),v(n)], a({k}) = p(mik)? = v(mek), is a gs-crossed P-module.

Proof. By [32, Corollary 1.17], (M A? N,«) is a crossed P-module. Let € Kera. Then by [32,
Corollary 1.21] and [32, Lemma 1.20], we have

2% = {0'z}° = {0/ 2"},
where ' : M N N — K is defined by the following way:
dx = (§x,¢'x)

and the homomorphisms & and £’ are defined according to (6.11) and (6.12).
Since a = pé = v€¢’, we have

2 ={02*} = {(§o,6'2)"} = {(62",¢'2")} = {(1, 1)} = L.
N

From here till the end of this subsection we investigate the ’absolute’ tensor product modulo ¢g. In
effect, we have the following theorem.

Theorem 6.8. Let G and H be groups acting compatibly on each other. Then we have the following
exact sequence of groups

0 =q(H\(G H)NH(HG) >GoH “>=G®IH =1,
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where @ is given by ¢(g @ h) = g ® h.
Proof. By [32, Proposition 1.6] for any crossed modules 1 : G — P and v : H — P over any group
P we have the exact sequence of groups

GoH “>G®IH >K/[GH =1, (6.13)

where [G, H] is the subgroup of K = G x p H generated by the elements (¢"g~',9hh~), g € G, h € H.

In our case, when P is the Peiffer product of G and H, according to [12], P=Gx< H = (Gx H)/L,
where L is the subgroup of G x H (semidirect product of G and H) generated by the elements
(¢"g~ 1, h9h1), g € G, h € H and we show that K = [G, H]. In effect, let k = (g,h) € K. Then
(9,h™!) € L C G x H and therefore we have

(9:h7") = (0" g b Y) - (g™ g L by t) = (g™ gt g Mgt TR ),
Hence,

g=ag g q hlgl_l and h=9%hght -9 hihy

Thus k = (gx"* g, ', 9 hghy ') -+ - (Mg, 9 hahih), ie., K =[G, H] and by (6.13) the homomorphism
( is surjective.

By Definition 4.13, H1(G, H) and Hy(H, G) are the kernels of the homomorphisms G ® H Mool )

N(g®h) =9h ! and G H e , Mg ® h) = g"g~! respectively, which are crossed modules
(see Proposition 4.4), and therefore

q(H1(G, H) N Hi(H,G)) € (Hi(G, H) N H\(H,G)) € 2(G© H).

First, we show that ¢(¢(H1(G,H) N Hi(H,G) 1.

Let (g1 ® h1) -+ (gm @ hi) € Hi(G,H) N H,
and [32, Lemma 1.13], we have

e((g1 @h1) - (gm @ h))* = (91 @ h1) - (gm @ him))* =

= {0 BB - (g g I b)) | = {1 1)) = 1.
Hence ¢ induces a natural homomorphism
®:Ge H/q(H(G,H)NH{(H,G)) — G®H.
Now define a homomorphism ¥ : G ® {H — G ® H/q(H(G,H) N H1(H,G)) as follows:
Vgoh) =[gohnl, Tk} =[((n®h) (9. ® hn))"],
1 hn g, =1 glhlhl_lu-gnhnhn_l) (see above). If

since k = (91" g1 gn
1 =1 g -1 ' ~1
E=(g"g g g AR T I BT,

) =
(H,G) C G ® H; then by the formulas (6.4), (6.6),

then
(91® 1)+ (gn ® hn) (91 @ BY) -+ (gl @ B,)) ™' € Hy(G, H) 0 H\(H,G) € Z(G @ H).
Hence
((91 ®h1)- (gn ® hn))q((gll & h/l) T (g;n & h;n))_q =
_1\¢
= ((91 ®@h1) - (gn @ Py) - (91 @ L) - (g ® D)) 1) € q(Hi(G, H) N H\(H,Q)).

Thus V is correctly defined. It is easy to see that ¥ commutes with relations (6.1)-(6.6) and ®¥ and
U are identity maps. | ]
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Remark 6.9. Let G and H be two normal subgroups of a group P, and let them act on each other
by conjugation in P. Then the tensor product modulo ¢, G ® 1H, of G and H may be considered as
crossed G <1 H-modules (‘absolute’) or as crossed P-modules with canonical inclusions. In general
these two definitions are different, but when [G, H] = G N H (in the first case K = [G, H| and in the
second case K = G N H), they coincide, e.g., when G = H = P is a perfect group.

Corollary 6.10. If G is a perfect group then we have the following short exact sequence of groups:
0 > qH3(Q) >GRG >GRIG > 1.

Proof. Tt follows from Theorem 6.8 and the fact that if G is perfect, then by Proposition 4.5 and [97],
H,(G,G) = Hy(G). [

Now let us consider two infinite cyclic groups X and Y generated by x and y respectively, acting

on each other by the following ‘funny’ actions:
Ty=y~t, Ye=aTl,
which cannot arise as conjugation in a big group containing X and Y as normal subgroups.

In [51] it is proved that these actions are compatible and X ® Y = Z? with basis z ® y and 22 ® .
Proposition 6.11. Let X and Y be infinite cyclic groups generated by x and y respectively, acting
on each other by *y =y~ ', Yo =2~ . Then

XY 2XRY =7
Proof. Using Theorem 6.8 we have
X®Y 2 X ®Y/qKer AN Ker\),

where \: X ®Y — X, N : X ®Y — Y are canonical homomorphisms.
Now compute Ker A N Ker \ using the fact that X ® Y = Z x Z and the basis of X @ Y is 7 ® v,

m2®y.

We have
ZxZ * ~Z ZxZ > -7
T T
X®Y>\>X X®Y>\’ Y

where i(z) =1, j(y) = 1, and A\, A’ are defined as follows:
A(m,n) = iA((z @ y)™ (2> @ y)") = 2m + 4n,
N (m,n) =jA(z@y)"(z® @y)") = —2m.

It is easy to see that Ker AN Ker A’ = 0. [

Let I(G,q) = Ker€ with € : Z[G] — Z/q, E(Enzgz) = [an] It is easy to see that an element
Znigi of Z|G] belongs to I(G, q) if and only if qzdivides Z nz.
i i
Proposition 6.12. There is a short exact sequence of G-modules:

0 =IG “I1Gq °~ =7 =0,

where a is the natural inclusion.
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Proof. Let define the homomorphism ¢ by the following formula:
ny+--+ng

o(nigr + -+ nggr) = q

since ¢ divides n1 + - - - + ng.
It is easy to see that pa = 0 and if p(n1g1 + -+ + nkgr) = 0 for any nig1 + -+ + nkgr € 1(G, q),
then nq + -+ +ng = 0 and thus nig; + - + negr € IG. | ]

Assume that G is a group and A is a G-module. Let us define a homomorphism ¢ : G ® 14 =
G® A/qH (G, A) — I(G,q) ®¢g A as follows: ®[g ® a] = (g9 — e) ® a. We must show correctness.
In effect, let g1 ® a1---gn ® ap, € Hi(G,A) C G® A ie., gia; — a1 + -+ + gnan — ap = 0; then
(1®a1 - gn®an)? — q(g1—€)®ar1+- - +q(gn—€)®a, = ge®@(g1a1—a1++ - -+ gnan—ay) = ge®0 = 0.

Proposition 6.13. Let G be a group and A be a G-module. There is a short exact sequence of groups

®1
FEA L Zec A =0,

0 =G®I4 ® =1(G,q) &c A
where ¢ is defined in Proposition 6.12.

Proof. By Proposition 6.12 and if we replace Z by its isomorphic G-module ¢Z, we obtain the com-
mutative diagram of groups with exact rows:

0 >IG ~7Z[G] © =qZ >0

L xq l xq H
0 ~-1G >~ 1(G,q) o T UL >0
This diagram induces the following commutative diagram of left derived functors of the functor
— Qg A:
>0 > H1(G, A) >IG ®qg A > Z[G]l ®¢ A >qZ Rg A >0

H lxq lxq N (614)
~e =H|(GA =IGa¢A >I1Gq&cA =qlegA =0

where the rows are long exact sequences of groups. From [53], Theorem 6.8, and (6.14) follows the
assertion. [l

Remark 6.14. We can consider this theorem as a generalization of D.Guin’s isomorphism
GRA=ZIGRqA, g®ar— (9—e)®a,
when ¢ = 0 (see [53, Proposition 3.2]).

1.3. Applications to algebraic K-theory with Z/q coefficients of local rings. This subsection
is devoted to an application of the non-Abelian tensor product modulo ¢ to the algebraic K-theory
with Z/q coefficients of Browder [9].

Recall the definition of algebraic K-functors with Z/q coefficients [9)].

The algebraic K-functors of a discrete ring A has been defined by Quillen [110] by

K;(A) = m(BGL(A)T), i>1,
where GL(A) = lim GL(n,A) and BGL(A) is its classifying space, and BGL(A)™ is the plus construc-
tion on BGL(A) gbtained by attaching 2-cells and 3-cells to kill the subgroup of elementary matrices
E(A) c GL(A) = m(BGL(A)) in such a way that H.(BGL(A)) = H,(BGL(A)*"). Then define
K;(A;Z/q) = m(BGL(A)";7Z/q) = the homotopy group with Z/q coefficients,
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where m;(X) = [S?, X] =homotopy classes of maps of the sphere S* to X, and 7;(X;Z/q) = [Y*, X],
where Y = Si71 U, ¢! (attaching an i-cell by a map of degree q).

We can obtain the universal coefficient formula for algebraic K-functors with Z/q coefficients (see [9,
102]).

Proposition 6.15. Let A be a discrete ring. Then for g > 1, there is a short exact sequence of groups
0 > Kn(A)®Z/q = Kn(A,Z/q) > Tor(K,—1(A),Z/q) = 0.
Let A be a ring with unit. Then Sym(A) is the group generated by the symbols {u,v}, where

u,v € A* (A* is the group of units of the ring A), subject to the relations

(S1) {u,1—u}=1Lu#1,u, 1—ue A%

(S2) {uv',v} = {u,v}{v/, v};

(S3) {u,vv'} = {u,v}{u,v'}.
Note that Sym(A) is an Abelian group. It is well known, by Matsumoto’s theorem, that for any field
A there exists the isomorphism K3(A) = Sym(A) (see [97, Sec. 11, Theorem 11.1}).

Assume A is a (noncommutative) local ring such that A/Rad A # Fy. From [53, 84] it is known
that there exists a group Dy(A) generated by elements {u, v}, where u,v € A*, subject to the relations

(U0) {u,1 —u}=1u#1,u 1—uec A
(U1) {wd,v} ="{u/,v}{u,v};
(U2) {u,vwH{v,wul{w,uv} =1,

where "{v,w} = {“v," w}, such that there is a short exact sequence of crossed A*-modules

1 > K3 (A) > Dy (A) > [A*, A¥ >1,
(6.15)
{u,v}1 > [u,v] .
From this exact sequence D.Guin obtained his six-term exact non-Abelian homology sequence [53,
Theorem 4.2]
(A1) @7 Ka(A) = Hi(A*,Do(4)) = Hy(A*,[A", A7) >

> K3(A)  >Sym(A) — [A", AT]/[A7, [A% A]) > 1,
where the first non-Abelian homology of group A* is defined as Hi(A*, Dy(A)) = Ker(\ : A* ®
Dy(A) — Dgy(A)) and Hy(A*, [A*, A*]) = Ker(N : A* @ [A*, A*] — [A*, A*]) (for the definition of

X, see the proof of Theorem 6.8).
Let A be a local ring such that A/Rad A # Fa. Let us denote by Sym(A;Z/q) the pushout

Ks(A)/q > K2(A;Z/q)

| |
Sym(A)/q > Sym(A;7Z/q)

Proposition 6.16. Let A be a field and q > 1. Then there exists an isomorphism

K3 (A;Z/q) = Sym(A;Z/q).
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Proof. From the definition of Sym(A;Z/q), Proposition 6.15, and the Matsumoto theorem, we have
the following commutative diagram of groups with exact rows:

Rp(A) " = Ka(A) = K(AZfg) = Ki(A) = Ki(A)

| l |

Sym(A) ¢ Sym(A) > Sym(A;Z/q) >~ K (A) s Ki(A)
Now the assertion follows from the five lemma. [

This is an analog of Matsumoto’s Theorem in the g-modular aspect.
Let A be a (noncommutative) local ring such that A/Rad A # Fy and ¢ > 1. By Proposition 6.5
the short exact sequence (6.15) of crossed A*-modules induces the exact sequence of groups

Ker éh}(z(A) > Ker leo(A) > Ker {fA*7A*] >
> Coker 5%2(14) > Coker £bO(A) > Coker 5{14* A7) >0,

where 5%2(14) D AF ® 1Ky (A) — Ki(A), 52)0(,4) i A* ® 1Do(A) — Dp(A) and ngnA*] AT ®
1[A* A*] — [A*, A*] are defined according to (6.12). It is easy to see that Coker ¢’ = (Coker \')/g;
therefore, the calculations of D. Guin [53] imply that
Coker 5%2(14) = (Coker XKQ(A))/‘I = Ks(A)/q,
Coker leo(A) = (Coker )\’DO(A))/Q = Sym(A)/q
and
Coker &[4+ 4+ = (Coker )\EA*7A*])/(] = ([4*, A"/ [A*, (A", A7]) /q.

By [563, Lemma 4.1], A* acts trivially on K3(A). Then using Pr0p081t10n 1.6 [32], the same arguments
as in Theorem 6.8, and the splitting ¢ : A*RI1K3(A) — (A*®@ K3(A))/q defined by ¥(a®x) = [a®x],
Y({(1,y)}) =1fora € A, x,y € Ko, we see that there is an exact sequence of Abelian groups

1 > q(A* ® K5(A)) > A* ® Ky (A) > A* ® 1K, (A) > K3 (A) >1.

Moreover, A* ® 1K5(A) = (A* @ K2(A))/q ® K2(A). The triviality of actions induces A* @ Ky(A) =
(A*)% @7 Ky(A). Now it is easy to see that Ker €k, (4) = >~ ((A*)% @y Ka(A))/q @ Tor(K2(A), Z/q).
We can construct the connecting homomorphism

Ker&fA*7A*] — Coker 5}@(,4) = Ks(A)/q — K2(A;Z/q).
Then the following commutative diagram of groups with exact rows and columns:

0 > Ks(A)/q > Ko (A;Z/q) > Tor(K1(A),Z/q) >0

0 > Sym(A)/q > Sym(4;Z/q) > Tor(K1(A),Z/q) >0

(1A%, 47/ [A% (A% Af]) fg - (A7, AT/ A7, 1A%, A%]) /g

induces
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Theorem 6.17. Let A be a (noncommutative) local ring such that A/Rad A # Fy and ¢ > 1. Then
there is an exact sequence of groups

((A%)® ®z Ky(A))/q @ Tor(K2(A),Z/q) > Ker §bO(A) > Ker ffA*,A*] >

= Ko(AZ/q)  =Sym(A;Z/q) = ([A% AT]/[A [AY, A%]]) /g = 0.

2. Mod ¢ Homology and Cohomology of Chain Complexes
Given a covariant (contravariant) functor ® : D — Cz and an object in the category Dgr

8'n,-‘-l an 871—1
C*E > n+1 >C?’L > n—1 > ’I’LEZ,

the product by ¢ defines a morphism »q : C, — C, of chain complexes and the mapping cone of this
morphism

5n+1 8n a’nfl
> n—i—l@cn >Cy, @ Chq >Cho1®Cpha oy,

5n(mn,mn_1) = (On(xn) + qTn—1, —On—1(n—1)), denoted by Mc(C, q)«.

Definition 6.18. For n € Z
(i) the mod ¢ homology of the complex C\ is given by

Hn(Cy; 2/ q) := Hn(Mc(Cs, q)s);
(ii) the ®-homology (P-cohomology) of C. is given by
HE(C.) = Ho(B(CL))  (HR(C.) = H_o(B(CL))
and the mod g ®-homology (®-cohomology) of C. is given by
HY(CyiZ/q) = Hn(®(C4); Z/q) = Hy(Mc(®(Cy), q)-)
(H3(Ci: Z/q) = Hont1(®(Cs); Z/q) = Hont1(Mc(®(Ci), q)4) ).

Proposition 6.19 (universal coefficient formula for mod ¢ homology). Given C, € Dgr, we have an
exact sequence

0 > H,(Cy) ®Z/q > H,(Cy;Z/q) > Tor(H,—1(Cy),Z/q) >0, necZ.

Proof. The mapping cone gives rise to an exact homology sequence

x4

- H,(C.) "> H,(C.) =Hu(CuZ/g) >Hu(C) “'>H, 1(C.) =--

Now the product by ¢ in a module A has cokernel A/qA = A ® Z/q and kernel Tor(A,Z/q). The
exactness of the homology sequence gives the result. [ ]

Corollary 6.20 (universal coefficient formula for mod ¢ ®-cohomology). Given C, € Dr and a co-
variant (contravariant) functor ® : Dr — Cz we have an eract sequences

0 >Hy(C.)eZ/lq >Hy(CsZ/q)  >Tor(Hy (C.),Z/g) >0
(0 =Hp'C.)®Z/q >HYCwZ/q)  =Tor(HECL),Z/q)  =0),

n € 7.
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Remark 6.21. In the examples we shall consider that the morphism ®(x¢q) is the product by ¢ and,
up to isomorphism, Mc(®(Cy), q)n = ®(Mc(Cy, q))n for a covariant functor ® and Mc(®(Cy), ¢)nt+1 =
®(Mc(Cy, q))n for a contravariant functor ®. This motivates the index shift in the definition of mod
q P-cohomology.

Let g = rs; then there are canonical morphisms of chain complexes
oyt Mc(Cy, @) — Mc(Cy, 1) and gy : Mc(Cy, q)x — Mc(Cy, 5)

given by oy (zpn, Tn—1) = (n, STp_1) and asp(Tn, Tn—1) = (2, rxy—1) for all n € Z, respectively. It
follows that we obtain a canonical homomorphism

ap : Hy(Cy;Z)q) — Hp(Cy; Z)1r) X Hy(Cy;Z/s), n € Z.
Theorem 6.22. If ¢ = rs and the integers r, s are relatively prime, we have a canonical isomorphism
H,(Cy;Z/q) = Hn(Cu; Z)r) x Hn(Ci;Z/s)
for allmn € Z.

Proof. The inverse homomorphism to «,, n € Z, will be constructed. Since r and s are relatively
prime, there exist k,l € Z such that
kr+1ls=1. (6.16)

Define two morphisms of chain complexes
Brx : Mc(Cy, 1) — Mc(Cx, q)«

and
Bs e : Mc(Cy, 8)5 — Mc(Ck, q)«

b
' Brn(@n, xn—1) = (Iszp,lxn_1) and Bsp(Tn,Tn-1) = (krzp, kx,—1)
for n € Z. These maps are compatible with boundary operators. We verify it for g, .. In fact,
57167«7”(:%,3:”_1) = 5n(l8:rn, [Xp—1) = (18O (xn) + lqxp—1, —10nh—1(Tpn-1)) =
= 67«7”_1(8”(3:”) +rT,_1, —an_l(a:n_l)) = ﬁT,n_lgn(a:n,:rn_l).
Therefore, we obtain a homomorphism
Bn + Hy(Cu; Z)r) x Hyp(Ci; Z)s) — Hn(Ci;Z/q), n €L,

induced by f,, and fs,. It remains to prove that ./, and ., are identity maps.
Let (zpn,zp—1) be an nth chain of Mc(Cy, q)«. Then, using (6.16), we have

B (Tp, Tp—1) = ﬁn((ajn, STp_1), (a:n,mcn_l)) = (Iszp,lsrp_1) + (kran, kre,—1) = (Tn, Tn-1),

thus Bea, = 1.
Let (xy,zn—1) be an nth cycle of Mc(Cy, 1)y, i.e.,
On(zp) +r2p—1=0, Op_1(xn_1)=0. (6.17)
We have

nBn(Xn, Tpn—1) = an(lsxn, lxn—1) = (IsTp, lsTp—_1) + (ISTp, lrzn_1).

Whence the equality
(xny mn—l) - an/Bn(xny mn—l) = (erny krmn—l) + (—lS{L’n, _lrmn—l)

in the R-module Mc(Cy, 1), X Mc(Cl, 8)p.
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By (6.17) we get

On+1(0, kxy) = (krxy, —kOy (x,)) = (krazy, kra,—1)
and B
On+1(0, =lxy) = (=lsxy, 10p () = (—lszy, —lre,_1).
Therefore

(mny mn—l) - anﬂn(mna xn—l) = 5n+1 ((07 kxn): (07 _lmn)) .
Obviously, the same is true for an nth cycle of Mc(Cy, s)«. Thus a8, = 1. [

Corollary 6.23. Let ® : D — Cyz be a covariant (contravariant) functor, C, € Dr and q = s
with v and s relatively prime integers. Then there is a canonical isomorphism

H®(C.;7/q) = H®(C,; Z)r) x HY(C,;Z/s)
(H3(Cw;Z/q) = Hy(Ci; Z/r) x Hg(Ci; Z/s))
for alln € Z.

As the product by ¢ is obviously functorial, the homotopy properties of @, if any, induce homotopy
properties on the mod ¢ ®-homology (®-cohomology).

Lemma 6.24.

(i) Let Cy € Dg, ' : Dr — Cz be a second covariant (contravariant) functor and 6 : ® — @' a
natural transformation, such that 6(Cy) is a weak equivalence between ®(C.) and ®'(C.). Then
0 induces isomorphisms

HY(CuiZ/q) = HY (CiZ/q)  (Hg(Cu;Z/q) = Hy(Cu;Z/q))
for alln € Z.

(ii) Assume that ® is a homotopy functor, i.e., homotopic complexes are sent to homotopic com-
plexes. Let C,C. € Dr be homotopic. Then we have isomorphisms

Hy(Cw;Z/q) = Hy (CLiZ/q)  (Hg(CwiZ/q) = HE(ClsZ/q))
for alln € Z.

Proof. The proof will be only for the mod ¢ ®-cohomology.
(i) As the mapping cone construction is functorial we have a commutative diagram with exact rows

Hy \(C.)  =HR(C.) - Hp(CaZlg) - HR(C) = HR(CL)
Hy (G = HENC) - HR(CuZjg) - HR(C) = Hy(CL)

By hypothesis the two vertical maps on the left and the two on the right are isomorphisms. The
five-lemma gives the result.
(ii) It works the same with the diagram

Hy™'(CY) = Hg '(Cl)  =HE(CLZ/g) = HH(CL) = HE(CL)

| | | I

Hy™'(Cy) = Hg '(C.)  =HE(CuZ/g)  =HH(C.) = HE(C)

Example 6.25. Let K, be an object of the category Cg.
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(i) Let ® : Dr — Cz be the covariant functor defined by the tensor product complex, i.e.,
O(C,) = (Cr ® Ky)«, where

(Cy ® Ki)y = P Ci 0 K

1€EZ
with the differential A given by
Az@y)=dz@y+(-1)z@dy, z€Ci y€ Ko

(See any book on algebraic homology.) Then we write H,(Ci, K,) = HZ(C,) and
Hn(Cy, K. Z/q) = HY (Cy; Z/q).

(ii) Let ® : Dp — Cz be the contravariant functor defined by ®(C\) = Hom(Cy, K.)., where

Hom(Cy, K.)p = | [ Homg(Cy, Kiyn)

1€Z
with the differential A given by
(Af)i(e) = d(fi(2)) + (=1)"" fi1(d())

for f = (fi) € Hom(Cs,Ky), and = € C;. Then we write H"(Cy, K.) = HE(C,) and
H"(Cy, K Z/q) = Hy(Cw; Z/q).

If the complex K, is concentrated in degree 0, we get with H, (Cy, K.) and H"(C,, K,) the usual
homology and cohomology, respectively, with coefficients in Ky. If A is an R-module and K, a
resolution of A, the morphism K, — A defined by the map Ky — A induces isomorphisms

H,(Ci,K«;Z/q) — H,(Cy,A;Z/q), H"(Cy,K.;Z/q) — H"(Cy, A;Z/q)
for all n € Z by Lemma 6.24 (i).

The “internal Hom functor” in the category of chain complexes of R-modules was first studied by
R. Brown [11].

Lemma 6.26. Let C, € D and K, € Cr. We have, for all n € Z, a canonical isomorphism
’Hom(Mc(C*, q)*,K*)n =~ Mc (’Hom(C*,K*), q)nH.

Proof. We have
Homp(Mc(Cy, q)i, Kpnti) = Hompg(C; @ Ci—1, Kpti) = Homp(Cy, Kpyti) @ Hompg(Ci—1, Kpyti)

which gives, taking the product over Z and exchanging the factors on the right-hand side of the
equality,

Hom(Mc(Cy, @) s, Ki)n = Hom(Cy, Ki)p ® Hom(Cyy Ky )pt1 = Mc(Hom(Cy, Ky, q)nt1-

Another example of the functor ® will be considered in Sec. 7. Note that all results of this section
are true when Dp is an additive subcategory of Cg.
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3. Mod ¢ Homology of Groups

We begin this section by introducing a mod ¢ homology of groups by using Definition 6.18 and
then expressing it as the Tor, functors. Then we will establish some properties of mod ¢ homology
groups and do some calculations. The relation of mod ¢ homology of groups to the non-Abelian tensor
product modulo ¢ of groups, particularly with its non-Abelian left derived functors, will be studied in
the next section.

Let G be a group, A a G-module, and P, — Z a projective G-resolution of Z. According to
Example 6.25 — ® A is a covariant functor from Dzg to Cz.

Definition 6.27. The nth mod ¢ homology, H, (G, A;Z/q), of the group G with coefficients in the
G-module A is
Ho(G, A;Z/q) = Hy® (P Z/q), n>0.

Note that by Lemma 6.24(ii) these homology groups are well defined and do not depend on the
choice of the projective G-resolution of Z.
The following lemma is useful for expressing mod ¢ homology of groups as the Tor, functors.

Lemma 6.28. The morphism Mc(Px, q). — Z/q defined by the composed map Mc(Px, q)o = Py —
7 — 7/q is a projective G-resolution of 7/q.

Proof. Tt is straightforward by the exact homology sequence of mapping cone [93] and the fact that Z
is torsion free. [ ]

Proposition 6.29. H, (G, A;Z/q) = Tor%[G](Z/q, A), n>0.

Proof. 1t follows from Lemma 6.28 and the fact that there is an isomorphism (Mc(Py, q)s @ A)y, =
Mc((Py ® A)s, @), n > 0. |

It is easy to see that Hy(G, A;Z/q) = Ho(G,A)/q and H,(G,Z;7Z/q) = H,(G,Z/q), n > 0.

Proposition 6.30 (universal coefficient formulas). Let G be any group, A be a G-module, and n > 0.
Then

(a) there is a short exact sequence of groups

0 >Hu(G,A)®Z/qg >HuG AZ[q)  >Tor(H,1(G,A),Z/q)  >0;

(b) for a trivial G-module A there is a short exact sequence (splits nonnaturally) of groups
0 ~H,(G,Z/q) ® A - H,(G,A;Z/q) > Tor(H,-1(G,Z/q), A) > 0.
Proof.
Assertion (a) follows directly from Corollary 6.20; assertion (b) can be proved classically. ||
Proposition 6.31. Let G be a finite group of order k (|G| = k) and (k,q) = 1; then
H,(G,A;Z/q) =0, n>2.
Proof. Tt is well known (see [93]) that H, (G, A), n > 0 is a group of exponent k. Then H, (G, A)®Z/q,
n > 0 is a group of exponent ¢ and k and by assumption H,(G,A) ® Z/q = 0, n > 0. By the same
reasoning Tor(H,(G,A),Z/q) =0, n > 0. It remains to apply Proposition 6.30 (a). ||
Proposition 6.32. Let G be a finite group and A be a divisible, torsion free G-module. Then
H,(G,A;Z)q) =0, n>2,
Hi(G, A 2/q) = Tor(Ho(G, A), Z/q),
Hy(G,A;Z/q) = 0.
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Proof. By Proposition 6.30(a) and [93], H,(G,A;Z/q) = 0, n > 2 and Hi(G,A;Z/q) =
Tor(Ho(G, A),Z/q). As we know Hy(G, A;Z/q) = Ho(G,A)/q. But Hy(G,A) = A/I¢A and since A
is divisible, then Hy(G, A) is also a divisible group. Therefore Hy(G, A;7Z/q) = 0. [

Proposition 6.33. Let F be a free group and A be a F-module, then H,(F,A;Z/q) =0, n > 3.
Proof. 1t follows from Proposition 6.30(a) and H,(F,A) =0, n > 2. ||

Example 6.34. Let Z be the additive group of integers and Q/Z be the quotient of the additive
group of rational numbers by Z. Assume that Z acts trivially on Q/Z. By Proposition 6.33 we obtain
H,(Z,Q/Z;Z/q) = 0, n > 3. Using Proposition 6.30(a) we have the following short exact sequences
of groups

0 =HyZ,Q/Z)®Z/q  =HZ,Q/Z;Z/q)  =Tor(H\(Z,Q/Z),Z/q) >0,
0 =H(2Q/Z)®Z/q =H(Z,Q/Z;Z/q)  =Tor(Ho(Z,Q/Z),Z/q) =0.
It is easy to see that
Hy(Z,Q/Z) = Hy(Z,Q/Z) = Q/Z.
Since
Hy(Z,Q/Z) ® Z/q = H1(Z,Q/Z)/q = (Q/Z)/q = 0
(because Q is divisible) and Hy(Z,Q/Z) = 0, we have
Ho(Z,Q/Z: 7,/q) = Hi(Z, Q)% 2/q) = Tor(Q/Z, Z/q).

X

Tor(Q/Z,7/q) is the kernel of the homomorphism Q/Z 7 Q/Z and by [22, Chap. VII, Propo-

sition 2.2] we have Tor(Q/Z,Z/q) = Z/q. Therefore
Hy(2,Q/Z;Z/q) = H:\(Z,Q/Z; Z/q) = Z/q.
Finally,
Ho(Z,Q/Z; Z/q) = Ho(Z,Q/Z)/q = (Q/Z)/q = 0.

A good example is to show that H.(G, A;7Z/q) is not isomorphic to H.(G, A)/q or H,(G,A/q). In
this case H,(Z,(Q/Z)/q) =0, n > 0 (since (Q/Z)/q = 0) and H,(Z,Q/Z)/q =0, n > 0.

Now we compute the mod ¢ homology of finite cyclic groups. Let G = C,,(t) be a multiplicative
cyclic group of order m and generated by ¢. It is well known that the elements

N=1+t+---+t™! D=t-1
induce G-module homomorphisms
N, :Z|G] — Z|G], N,u = Nu,
D, :Z|G] — Z|G], Dsu= Du, u € Z|G],
respectively, and the following long exact sequence of G-modules:

Nozial P-zie) Y-zig) T-z[@) -z -0
is a free G-resolution of Z, which gives us the possibility to compute Eilenberg—Maclane homology
H,(G, A) of the finite cyclic group G = C),(t) with coefficients in any G-module A (see [93]).

By Lemma 6.28, we obtain the following free G-resolution of Z/q:

Yocezia) T-zc ez T-zcene P26 F-2/d -0,
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where D, (u,v') = Du+ qu’, Ny(u,v') = (Nu + qu’, —Dv’), and D, (u,u') = (Du + qu’, —Nu!') for all
u,u’ € Z|G]. The mod g homology groups of the finite cyclic group G = C,,(t) with coefficients in
G-module A are the homology groups of the following chain complex of G-modules:

N* D+

b ~ABA

NMoAoa P-a0A ~ A,

where

D*(a,d’) = Da+qd’, N*(a,d’) = (Na+ qd',—Dd'), D*(a,d’) = (Da+ qd’,—Nd')

for all a,ad’ € A.
It is easy to see that the mod g homology of finite cyclic groups is periodic from n > 2 with period
2. We obtain the following proposition.

Proposition 6.35. For a finite cyclic group Cy,(t) of order m and with generator t and for any
C(t)-module A

Ho(Cm, AsZ/q
Hy(Cp, A;Z/q
Hon(Cry A;Z/q
Hopy1(Co, A Z/q

A/ Hy(Cy,, A)/q = Coker D*,  where D* : A/q — A/q, D*[a] = [Da],
[(a,a )|Da + ga’ —O]/N*(AEBA)

[(a,d")|Na+ qa’ = 0,td’ —a]/D*(AEBA) n>1,
[(a,d")|Da+ga’ =0 Na—O]/N*(A@A) n>1.

( )
( )
( )
( )

Proposition 6.36. Let G be a group and 0 > Aq > A > Ag >0 be a short exact se-
quence of G-modules. Then there is a long exact sequence of mod q homology groups

- Hn(G,A1Z/q) = Ho(G A Zfq) = Hp(G, A2 Z/q) >+ >
=Ho(G,Ai;Z/q) = Ho(G,A;Z/q) = Ho(G, A Z/q)  =0.
Proof. 1t is straightforward by Proposition 6.29. [ ]

4. Derived Functors of the Non-Abelian Tensor Product Modulo g of Groups

Let A denote a fixed Abelian group and consider the category A/, a subcategory to that of Ax
examined in Chap. 4, Sec. 2, which denotes the category whose objects are all groups G together with
an action of G on A (and a trivial action of A on G). Morphisms in the category A’, are all group
homomorphisms « : G —» H that preserve the actions, namely 9a = *@gq, for all a € A and g € G.

Let " : A’y — A/, be the restriction of the endofunctor F': Ay — Ax while 7" F' — 14, and
§' : F' — F'? be the restrictions of the natural transformations 7 : F — 14, and § : F — F?
respectively, given in Chap. 4, Sec. 2. We obtain a cotriple 7' = (F',7/,§), and we denote by P’ the
projective class induced by this cotriple F'.

Since the actions of the groups G and A on each other satisfy the compatibility conditions (4.1) for
any object G € A, the non-Abelian ‘absolute’ tensor product modulo ¢ of groups defines a covariant
functor — ® 94 : A’y — Ab&r. Consider the non-Abelian left derived functors LP' (= ® 9A4), n > 0,
of the functor — ® 94 relative to the projective class P’ (see Chap. 1).

Proposition 6.37. Assume that G is a group and the groups A and A/q are trivial G-modules. Then
there are isomorphisms

Hn(Gv A/Q) = LZLDI—l(G Y QA)’ n 2 27
HI(G7 A/q) = Ker 5/7 HO(G7 A/Q) = (Coker 5/)/q7
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where &' 1 G@IA — A, €(g®a) =9a-a™t, &({k}) = mak?.

Proof. Tt is obvious that Ho(G,A/q) = A/q, Hi(G,A/q) 2 G ® A/q = G® 27 A/q = (G ®7 A)/q
and H,(G,A/q) = m,-1Cyx, n > 2, where C, is the following simplicial group:

TPM@@Alg e ZFAG) @Al ZFYG)® Alq

L (F(G)® @7, 4)/q : (F2(G)* @z A) g Z(FHG)™ ©zA)/q

> to>

YVYv

and

is the cotriple resolution of G.
By Theorem 6.8 (Coker &')/q = (Coker X)/q = A/q, Ker ¢’ = Ker X' /qgKer N = (G ®7 A)/q, and
LP" (G ®9A4) =7, 1C., n > 2, where C", is the following simplicial group:

TG @94 -~ FX(G) 14 >~ FY(G)®14
L (FM(G)™ ®zA)/q : (F2(@)* @z A)/g  Z(FHG)™ @z A)/q

> T

1%

1%
-

1%

YVY

Now the relation between classical homology of groups and non-Abelian left derived functors of the
tensor product modulo ¢ will be established.

Proposition 6.38. Let G be a group and A be a G-module. Then there is a long exact sequence of
groups

=L [(¢H\(G,A)) = H,(G,A) =L (Ge4) = >
> Lgl(G®qA) >L713l(qH1(G, A)) > Hy(G, A) > L?I(G®QA) >

= LY (¢H\(G,A)) = Hi(G,A)  =Ker& =0. (6.18)
Proof. Let consider the cotriple resolution of G in the category A’y

FYG) - EF%Q >FYG) -G
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By Theorem 6.8 we have a commutative diagram of groups

0 0 0
L al(FNG),A) = qHi(F2(G),A)  ZqHy\(FL(G), 4)
:F”(G)@)A : CPG@) e A “FY G ®A ,
: F"(G) ® 1A : ZF2(G)® 1A > FY(G)® 4
0 0 0

where the columns are short exact sequences of groups.

From this diagram we have exactness till L} (¢H) (G, A)). Exactness in Hi(G,A) and in
Ker ¢’ follows from Theorem 6.8 and from the fact that Hy(F'(G),A) — Hi(G,A) and hence
qH,(FY(G),A) — qH,(G,A) are epimorphisms and therefore L} (¢H(G,A)) — ¢H, (G, A) is
also an epimorphism. [ ]

We establish sufficient conditions for the isomorphism between non-Abelian left derived functors of
the tensor product modulo ¢ of groups and mod ¢ homology of groups.

Lemma 6.39. Let G be a group and A be a q-torsion free G-module. There are natural isomorphisms
H,(G,A/q) =2 H,(G,A;Z/q), n>0.

Proof. Consider two sequences of functors

1) HO(G7 _/Q)a Hl(G7 _/Q)a s 7Hn(G7 _/Q)a s
2) Ho(G,—;Z/q), Hi(G,—Z/q),...,Ho(G, = Z/q), . - ..

These both sequences satisfy the following axioms for a connected sequence of additive functors
{T},, 6n, n >0} from the category of g-torsion free G-modules to the category of Abelian groups:

(i) To(=) = Ho(G, —/q) = Ho(G, = Z/q);
(ii) for any short exact sequence of g-torsion free G-modules

0 = A A > Ay >0

there exists a long exact sequence of Abelian groups

on+1
= Thi1(A2) TS T(A) = To(A) >

o 5
> T,(As2) = Ty(Ag) 7 = To(Ar) >To(A) >Tp(A2) >0

(iii) if A is an induced g-torsion free G-module (it is easy to see that if M is ¢g-torsion free G-module,
then Z[G] ®z M is also a g-torsion free G-module), then T;,(A) =0, n > 1.

This proves the existence of the required natural isomorphisms. [ ]
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Theorem 6.40. Let G be a group and A be a gq-torsion free G-module. There are natural isomor-
phisms

LY (G®9A) = H,(G, A Z/q), n>2.
Proof. Let us consider the non-Abelian left derived functors, L¥'((— ® A)/q), n > 0, of the functor
(—® A)/q. By [53] we have the isomorphisms
GRA/q=IG®q A/q= (IG®c A)/q = (G® A)/q.
Therefore by [68, Theorem 6]
LI (G® A)/q) = Ha(G, Alg), n>2. (6.19)

If F is a free group, then the well-known fact that I F is a free ZF-module, i.e., IF = )" ZF, implies
the following isomorphism:

FRAXIFpA=) A
Assume that A is a g-torsion free F-module; then, according to this isomorphism H(F,A) C F® A

xd
is also g-torsion free. Thus H;(F, A) = qH,(F, A). From this fact and Theorem 4.20 we can conclude
that L”' (¢H, (G, A)) = LP(H\ (G, A)) = H,411(G, A), n > 0. Therefore by Proposition 6.38 it is easy
to get the following long exact sequence of groups:

q

H, (G, A) Ho(G,A)  =LP (G®94) =--- =LP(G®14) -

- Hy(G,A) "= Hy(G,4) ~LP(G®oiA) -

- H\(G,A) ">H\(GA) >(H|(GA), =0. (620
(6.20) implies the short exact sequences of groups
0 >H,(G,A®Z/q LI (GeIA)  >Tor(H, 1(G,A),Z/q) >0, n>2.

To prove the assertion, we must only construct homomorphisms s : LF (G ® 94) —
H,(G,A;Z/q), n > 2, in our case (when A is g-torsion free) such that the following diagram is
commutative:

0 W(GARZ)g  >LP (G®14)  >Tor(H, 1(G,A),Z/q) >0

| v I
0 =H (G A®Z/q =H,(GAZlq  >Tor(H, 1(G,A),Z/q) >0

where the bottom row is by Proposition 6.30 (a) in the case where A is a g-torsion free G-module.
By Theorem 6.8 there is a natural homomorphism

GRIA=(G®A)/qH (G, A) — (G® A)/q

and by (6.19) and Lemma 6.39 it induces homomorphisms « : L¥" (G ® 14) — LF" [ ((G ® A)/q) =
H,(G,A/q) 2 H,(G,A;Z/q), n > 2. Tt is easy to see that (6.21) is commutative. ||

It is interesting to consider derived functors of the additive functor G ® 9— from the category of
G-modules to the category of Abelian groups. Let us denote these derived functors by £,(G @ 1—),
n > 0; then we have the following assertion.

Proposition 6.41. Let A be a G-module; then there are isomorphisms

.(G®94) = Hyih (G, A), n>1.
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Proof. Consider a projective G-resolution P, — A of A.
Since Hi(G, P,) = 0, by Theorem 6.8 and [53] we have

GRIP, =2 (G® P,)/qH1(G,P,) =GR P, 2 IG ®¢ P,.
The well-known short exact sequence of Z[G]-modules
0 =IG >Z[G] ~7Z >0

gives a short exact sequence of chain complexes of Abelian groups

0 0 0
>I1G ®qa P, > >I1G ®qg Py > IG ®qa Py
> P, SEEE > P > P
>7 ®q P, > >7 Rq P >7®q Py
0 0 0

The induced long homology exact sequence proves the assertion. [ ]

5. Mod ¢ Cohomology of Groups

In this section we shall define a mod ¢ cohomology of groups by using Definition 6.18 and then
express it as the Ext* functors in the same way as the mod g homology of groups is expressed as the
Tor, functors. The first and the second mod ¢ cohomology of groups will be described in terms of
g-torsors and g-extensions of groups respectively.

Let G be a group, A be a G-module, and P, — Z be a projective G-resolution of Z. According to
Example 6.25 Hom(—, A) is a contravariant functor from D¢ to Cz.

Definition 6.42. The nth mod ¢ cohomology, H"(G, A;7Z/q), of the group G with coefficients in the
G-module A is

H"(G,A;Z/q) :== Hyjpp— 4 (Pi Z/q), n =0,

Note, Lemma 6.24 (ii) implies that these cohomology groups are well defined and do not depend on
the choice of the projective G-resolution of Z.
The next proposition immediately follows from Corollary 6.20.

Proposition 6.43 (universal coefficient formula). Let G be a group and A a G-module. Then there
is a short exact sequence of Abelian groups

0 ~H" (G, A)®7Z/q = H"(G,A;Z/q) > Tor(H™(G, A),Z/q) >0 (6.22)
forn > 0.
Now applying Lemmas 6.26 and 6.28, we have the following
Proposition 6.44. H"(G, A;Z/q) = Extyq (Z/q,A), n > 0.
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Let us consider the standard bar G-resolution of Z (see [93])

On On On— 3]

Cu(G) s - = Co1 = Cy YGRS ~C, >=Cy ‘=7 =0,
where C,, is the free G-module generated by all symbols [z1,...,z,], n > 1, 2; € G, and Cj is a free
G-module generated by only one symbol [ ]. The differential is defined by the formula

n—1

Oy, ..., xn] = x1[T2, ... 0] + Z(—l)i[azl, e LT, ,xn] + (=D)"[x1, ...y 2pa],
i=1

and e[ |]=1.

According to Theorem 6.44, using also the classical convention converting chain complexes into
cochain complexes, we call Hom(Mc(Cy(G)x«,q), A)« the standard cochain complex for the mod ¢
cohomology of G with coefficients in A and denote it by D*(G, A;Z/q). We denote its cocycles
by Z*(G, A;7Z/q) and its coboundaries by B*(G, A;Z/q), while Z*(G, A) and B*(G, A) denote the
cocycles and coboundaries of the standard cochain complex, respectively.

As usual, we identify Homg(Cy,, A) with the G-module Set(G™, A) of maps from G™ to A forn > 1
and with A for n = 0. In the complex D*(G, A;Z/q) we get, for (f,g) € Set(G™, A) x Set(G"~1, A)

6(f,9) = (6(f),af —6(9)), (6.23)

where ¢ is the classical differential given by

() (@1, oy xng1) =z f(z2, oo Bpg1)+

n

YN @) (D) ).
=1

In the following example H*(G, A;Z/q) is neither isomorphic to H*(G, A)/q nor to H*(G, A/q).

Example 6.45. Let Z be the group of integers, and Q/Z the quotient of the group of rational numbers
by Z. Assume that Z acts trivially on Q/Z. We have, for n > 2, H"(Z, A) = 0 for any G-module A,
especially Q/Z, and HY(Z,Q/Z) = H (Z,Q/Z) = Q/Z. Since the group Q/Z is divisible, Q/Z®Z/q =
0. Whence the exact sequence (6.22) gives H"(Z,Q/Z;Z/q) = 0 for n > 2, and we have

H°(Z,Q/Z;L/q) = H'(Z,Q/Z; Z/q) = Z/q.
While, for n > 0, H*(Z,(Q/Z)/q) = 0 and (H™(Z,Q/Z))/q = 0.

Proposition 6.46. Let G be a group and A a G-module.
(a) If A has exponent q, then

H™(G,A:Z)q) = H"(G, A) ® H" Y (G, A), n>0.

(b) If A is q-torsion-free, then
HYG, A;Z/q) =0 and H(G,A;Z/q) = H""\(G, Alq), n>1.

Proof.  (a) Follows from the triviality of the homomorphism ¢ in the equality (6.23).
(b) Obviously H(G, A;7Z/q) = Tor(H°(G, A),Z/q) = 0. The short exact sequence

0 =A -4 =A4/)q =0 (6.24)
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induces a long exact cohomology sequence, and we have only to construct the homomorphism
H"YG,A/q) — H™(G, A;Z/q), n > 1, compatible with the exact cohomology sequences and then
apply the five lemma at each level. Using the short exact sequence of standard cochain complexes

0 > ’Hom(C*’ A)* ><q> ’Hom(C*, A)* > ’Hom(C*, A/Q)* >0

induced by the exact sequence (6.24), for any (n — 1)-cocycle of Hom(Cy, A/q). we find in a natural
way an n-cocycle of Hom(Mc(Cly, q)«, A)«. This map of cocyles induces the required homomorphism
H"YG,A/q) — HY(G,A;Z/q), n > 1. ||

Proposition 6.46 provides a general reason why the mod ¢ cohomology and homology of groups play
a distinguished role especially for G-modules having torsion elements.

A g-derivation from G to A is a pair (f,a) consisting of a derivation f: G — A and an element
a € A such that qf (x) = za —a for all z € G.

Let Der(G, A;Z/q) denote the Abelian group of g-derivations from G to A. We write Der(G, A) for
the Abelian group of derivation from G to A and PDer(G, A) for the subset of principal derivations.

Plainly any pair of the form (fg,qa), with f, the principal derivation from G to A induced by
a € A, is a g-derivation. We call it a principal g-derivation. The set PDer(G, A;Z/q) of principal
g-derivations is a subgroup of Der(G, A;7Z/q).

Clearly, using the identification of Homg(C1, A) with Set(G, A) and of Hom¢g(Cp, A) with A, a pair
(f,a) € DYG, A;Z/q) is a cocycle if and only if it is a g-derivation. Furthermore it is a coboundary
if and only if it is a principal g-derivation. Hence the identification induces a natural isomorphism

H(G, A; /) = Dex(G, 4 2/q)/ PDex(G, A4; Z/q).
Note that the map PDer(G, A;Z/q) — PDer(G, A) given by (f,,qa) — fa, a € A, is an isomor-
phism if and only if H°(G, A) is a group of exponent q.

Proposition 6.47. The group Der(G, A;Z/q) is isomorphic to the group of pairs (o, a), where « is
an automorphism of the semidirect product A x G inducing identity maps on A and G, and a is an
element of A such that o is equal to the inner automorphism B, of A X G induced by a. Moreover
PDer(G, A;Z/q) is isomorphic to the group of pairs (B4, qa).

Proof. It is similar to the classical case. [ ]

It is well known [93] that any derivation f can be extended to the Abelian group homomorphism

v : Z|G] — A given by ’y( angl) = > n,f(g;) satisfying the condition v(rs) = ry(s) + €(s)y(r) for
i i

all r,s € Z[G]. The restriction of v to IG induces a G-module homomorphism S : IG — A, and we

obtain the well-known isomorphism Der(G, A) s Homg(IG, A) with ¥(f) = .

The set K of elements (f,a) € Der(G, A;Z/q) for which there exists a G-module homomorphism
a: I(G,q) — A such that a(x) = ¢(f)(x) for x € IG and a(ql) = a, is a subgroup of Der(G, A;Z/q).
Let a4 : I(G,q) — A be the G-module homomorphism given by a,(u) = ua, v € I(G,q). Since, for
any principal derivation f, and for z € IG, 9(f,)(x) = za, we obtain a,(z) = ¥(f,)(x), v € IG and
aq(ql) = qla = qa. Therefore K O PDer(G, A;7Z/q).

Proposition 6.48. There is a short exact sequence of Abelian groups
0 > Homg(I(G,q), A) . Der(G, A;Z/q) > Der(G, A;Z/q) /K > 0.

Proof. Define the homomorphism ¢ by ¢(a) = (f,a) for a € Homg(I(G, q), A), where ¥(f) = alig
and a = a(gql). The pair (f,a) is a g-derivation. Indeed we have qa(x) = a(xql) = za for x € IG.
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Since {q1} U{g — 1|g € G} is a generating set of I(G, q) as a G-module, p(a) = ¢(’) implies o = /.
Clearly the image of ¢ is the subgroup of K. [

Now the group H'(G, A;Z/q) will be expressed by torsors. Recall [114] that a principal homogeneous
space over A is a nonempty G-set P with right action (p,a) — pa of A compatible with G-action
such that, given p,p’ € P, there exists a unique a € A such that p’ = pa. We introduce the following
notion.

Definition 6.49. A (G, q)-torsor over a G-module A is a pair (P, f), where P is a principal homoge-
neous space over A and f is a map from P to A subject to the following conditions:

(i) f(xb) = f(x)+qbfor x € P, be A,
(ii)) gas = sf(x) — f(x) with as defined by sz = zas, s € G, x € P.

Two (G,q)-torsors (P, f) and (P, f') over a G-module A are said to be equivalent if there is a
bijection 9 : P — P’ such that 9 is compatible with the actions of G and A, and f = f'0.

Denote by P(G, A;7Z/q) the set of equivalence classes of (G, g)-torsors over A. We can construct a
natural sum on P(G, A;Z/q) given by (P, f) + (P, f') = (P", f"), where P” is a quotient of P x P’
by the relation (z,z") = (za,2’(—a)) for v € P, 2’ € P, a € A, and f” = f + f’. Under this sum
P(G,A;7Z/q) is an Abelian group with zero element (A4, q).

Theorem 6.50. For any G-module A there is a canonical isomorphism
P(G,A;Z/q) = HYG, A; Z/q).
Proof. We have a natural homomorphism
o:P(G,A;Z)q) — HY(G,A;Z/q)

defined as follows: Given a (G, q)-torsor (P, f), take an element € P. Then the equality sz = xas
defines a derivation ¢, : G — A given by ¢.(s) = as. It is easily checked that the pair (¢, f(x)) is
a g-derivation (use the equality (ii) of Definition 6.49). The element [(¢s, f(x))] does not depend on
the element = € P, and therefore the map « given by «[(P, f)] = [(¢z, f(x))] is well defined (use the
equality (i) of Definition 6.49).

Conversely, if (¢, a) is a g-derivation, define a (G, q)-torsor (P, f) over A as follows: Take P = A;
A acts on P by za =z +a for z € P, a € A. The group G acts on P by *z = ¢(s) + sz. The map
f: P — Aisgiven by f(z)=a+ qz.

It is easily checked that the pair (P, f) is a (G, q)-torsor over A, that we obtain a well-defined
homomorphism

B:HY(G,A;Z)q) — P(G, A; Z/q)
given by B([(p,a)]) = [(P, f)] and that a8 and S« are identity maps. ||
To describe the group H?(G, A;7Z/q) in terms of extensions, some definitions will be introduced.

Definition 6.51. Let GG be a group and A a G-module. A pointed g-extension of G by A is a triple
(E,u,g) consisting of an extension E : 0 > A > B > G >1 of G by A, a section map
u:G — B, and a map g : G —> A, such that

qu(z,y) = (6g)(z,y) = zg(y) — g(xy) + g(x)
for all z,y € G, where v: G x G — A is the factorization system induced by the section wu.

The pointed g-extension (E,u,g) is said to be equivalent to the pointed g-extension (E’,u/,g") if
there exists a morphism (14,0,1¢) : E — E’ and an element a € A such that

g'(z) — g(z) = q(u/ () — ou(z)) —za+a
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for all z € G.

This binary relation ~ is an equivalence. The proof is routine and is omitted.
Let us denote by EY(G, A;Z/q) the set of equivalence classes of pointed ¢-extensions of the group
G by the G-module A.

Theorem 6.52. Let G be a group and A a G-module. There is a natural bijection
ENG, AZfq) "= HXG, A Zfq) .

Proof. Define a map w by w[(E,u,g)] = [(v,g)] for [(E,u,g)] € EXG,A;Z/q), where v: G x G — A
is the factorization system induced by the section wu.

Correctness: we must show that if (E,u,g) ~ (E',u/,¢), then [(v,g)] = [(v/,¢')]. Tt is well known
[93] that

V(@,y) - v(z,y) = zh(y) — h(zy) + h(z)

for all x € G, where h(z) = v/(x) — ou(x). But there exists an element a € A such that ¢'(z) — g(z) =
qh(x) — za + a for all z € G. This means that we have (v',¢') — (v,g) € B3(G, A;Z/q).

Injectivity of w: Let [(E,u, )], [(E',u/,¢")] € EX(G, A;Z/q) and [(v,g)] = [(v/,¢")], i-e., there exists
h € Set(G, A) and a € A such that v'(x,y) — v(z,y) = (6h)(z,y) and ¢'(x) — g(x) = qh(z) — xa + a,
for all z,y € G. We can choose in the second extension a section u” and a map ¢” in such a way that
v =wv and ¢’ = g. In effect, let us define the section v’ (z) = v/(z) — h(z), for z € G, and the map
g": G — Aby ¢"(x) = g(x) — qh(x) + za — a. Tt is easy to show that

(B, g) ~ (E' W, ¢") ~ (E,u,g),

implying [(E,u,g)] = [(E', v, ¢")].
Surjectivity of w: Let (v,9) € Z%(G, A;Z/q). We take the extension

E: 0 > A > B ~G >0
induced by the 2-cocycle v and the section ug(z) = (0,z). Then we get the equality w([E,up,g]) =

[(v, 9)]- | |

Remark 6.53. If G is a group and A a G-module, and they satisfy the following condition:
for any map h:G — A, &(qgh) =0 = gh is cohomologically trivial, (6.25)

then the group H%(G, A;Z/q) can be described in terms of pairs (E, g) consisting of amap g : G — A
and an extension E of G by A having a factorization system v such that qv = dg. The relation ~
between such pairs will be similar, requiring that the sections v and «’ inducing the 2-cocycles v and
v, respectively, such that qv = dg and qv’ = &g/, satisfy the equality of the equivalence relation.
Clearly, the condition H'(G, A) = 0 implies condition (6.25) and both conditions are equivalent to
each other if A is a ¢-divisible group.

Moreover, for any G-module A, it is possible to introduce a “Baer sum” on the set EX(G, A;Z/q),
making the map w an isomorphism.

Before defining g-extensions of groups, we recall some properties on extensions of groups induced
by derivations [57].

Let G be a group and

E: 0 > A’ > A > A" >0

an exact sequence of G-modules. Given a derivation f : G — A”, we obtain an induced extension
f*(E). If f is a principal derivation, the induced extension splits. If two derivations fi, fo : G — A
are equivalent, the induced extensions fj(E) and f5(E) are equivalent. Given two derivations f1, fa :
G — A, the extension (f1 + f2)*(E) is the “Baer sum” of the extensions fj(E) and f5(E).
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Let G be a group, A a G-module, and f : G — A/q a derivation. We consider the exact sequence

0 > qA ~A ° >A/q >0 and call f*(q) the induced extension of G by gA.
Given an extension

E:0 > A ~B ~G > 1,
we call ¢F the extension induced by the ¢g-multiplication from A to ¢A.

Definition 6.54. Let G be a group and A a G-module. A g-extension of G by A is a pair (E, f),
where E is an extension of G by A and f : G — A/q a derivation, such that the induced extensions
gFE and f*(q) are equivalent. Two g-extensions (E, f) and (E’', f') are equivalent if the extensions E
and E’ are equivalent and the derivations f and f’ are equivalent.

Let Ext(G, A;7Z/q) be the set of equivalence classes of g-extensions of G by A. If (F, u, g) is a pointed
g-extension, then (F,co g) is a g-extension, since qu = dg, whence the extensions ¢E and (co g)*(q)
are equivalent. Furthermore the map (F,u, g) — (F, cog) sends two equivalent pointed g-extensions
onto two equivalent g-extensions. So it induces a map ® : EY(G, A;Z/q) — Ext(G, A;Z/q).

Lemma 6.55. Let G be a group, and A a G-module. The map © is surjective. Furthermore for
any q-extension (E,f) of G by A with E : 0 = A > B -G > 1 there exists a pair
(u,g) € Set(G, B) x Set(G, A) such that co g = f and qu = dg, where v € Z%(G, A) is induced by u.
Proof. The first sentence is a consequence of the second. Let u € Set(G, B) be a section map of the
morphism B — G and v; € Z%(G, A) be given by

v1(2,y) = w1 (x)u (y)ur (zy)
Let g : G — A/q such that f = co g; then, as the extensions f*(q) and ¢F are equivalent, there is a

map hg : G — qA such that 6(g) = v1 + d(ho). Let h : G — A be such that hg = gh. Let u = uph.
There is a section map of B — G, and the associated 2-cocycle is v = vy + dh. [ ]

The morphism & is not, generally, injective: consider a g-extension (E, f) and two pairs (u1, g1)
and (ug,g2) as in Lemma 6.55; then we have uy = ug + h, g1 = go + h/ with h,h/ : G — A. Now
we must have gdh = ¢dh’, but this does not imply h = h'; we have only the condition ¢é(h — ') =

8(a(h — ) = 0.
Note that a map k: G — A with ¢dk = 0 corresponds to the inclusion

ZYG,qA)¢  >=Homg(C1,qA)¢ >Homg(C1, A)¢  >Homg(Co @ C1, A).

Theorem 6.56. Let G be a group and A a G-module. The group Ext(G, A;Z/q) of equivalence classes
of q-extensions of G by A is isomorphic to the quotient H*(G, A;7Z/q)/L, where L is the image of
HY(G,qA) induced by the composed map

Set(G,qA)¢  >Set(G,A)¢ > Set(G? A) x Set(G, A) ,
where the first map is induced by the inclusion qA¢ > A.

Proof. The remark we made for two pointed g-extensions inducing the same extension works as well
for pointed g-extensions inducing equivalent g-extensions. Let (E, f) be a g-extension of G by A.
Let (E,u,g) be a pointed g-extension such that ®([(E,u,q)]) = [(E, f)]. Let ¥([(E,f)]) = (¢ o
W) ([(E,u, f)]), where ¢ : H*(G,A;Z/q) — H*(G, A;Z/q)/L is the canonical map. By Remark 6.53
if (E', f') is equivalent to (F, f) and (E’, v/, ¢") such that ®([(F',v,¢")]) = [(E', ¢')], we have

(" ow)([(E,u',g")]) = (¢ o w)([(E,u,9)]).
Then V([(E, f)]) = Y([(F', f')]), and the map ¥ is well defined. Furthermore it is surjective, since
(' ow) is surjective.
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Now we assume that U([(E, f)]) = 0. There is a g-extension (F,u,g) such that w([(E,u,g)]) € L,
that is, w([(E,u,g)]) = [(v,¢)] with v = 0 and ¢dg’ = 0. So the g-extension (E, f) is equivalent to
(E',0), where E’ is the trivial extension. ||

6. Mod ¢ Cohomology of Groups as Cotriple Cohomology

In this section the mod g cohomology of groups will be described as cotriple cohomology.

Let us consider again the category A’y and the cotriple 7' = (F’,7,0") in Ay. Let Fy(G)
be the cotriple resolution of an object G in the category &r4 (see Chap. 1, Sec. 1.2).

Let T : &r4 — Ab®r be a contravariant functor to the category of Abelian groups. Applying
T dimension-wise to the simplicial group Fi(G) yields an Abelian cosimplicial group T'F,(G). Then
the nth cohomology group of the Abelian cosimplicial group TFi(G) is called the nth right derived
functor R%T' of the functor T' with respect to the cotriple F.

It is well known that the right derived functors of the contravariant functor of derivations
Der(—,A) = Z'(—,A) : &ry — Ab®r with respect to the cotriple F are isomorphic, up to di-
mension shift, to the group cohomology functors H*(—, A) [4]. A similar assertion is not true for
mod ¢ cohomology of groups, i.e., the cotriple derived functor R%Z Y(—, A;Z/q) of the contravariant
functor of g-derivations Der(—, A;Z/q) = Z'(—, A;Z/q) : &r4 — Ab®r is not isomorphic to the mod
q group cohomology functor H"*!(—, A;Z/q) for some n > 1. In effect, if G is a free group acting on
A, then RLZ'(G, A;7Z/q) = 0, while, using Proposition 6.19, we see that H?(G, A;Z/q) is isomorphic
to HY(G, A)/q.

TG

-G

Theorem 6.57. Let G be a group and A a G-module. Then there are natural isomorphisms
RYZM(G, AiZ/q) = ZH(G, A Z/q),
R}ZMG. A;Z/q) = H" (G, A Z/q),

for k>1 andn > 0.

Proof. The augmented simplicial group 7¢ : Fi(G) — G is simplicially exact and therefore is left
(right) contractible as an augmented simplicial set. Since

DN(L, A;7,/q) = Set(L¥, A) @ Set(L*1, A)
for any group L acting on A, the Abelian cochain complex
0 =DNG,A;Z)q) =DNF(G),AZ/q)  =DNFI(G),AZ)q) >
- DMF(G), AZ)q) =+ = DMFE.(G),AZ/q) = (6.26)
becomes exact for k£ > 0, implying
RYD*(G,A;Z/q) = D*(G, A;Z/q) and R%D*(G,A;Z/q) =0, n > 0.
For any k£ > 0 the short exact sequence of Abelian cochain complexes
0 >ZFNF.(G),A;Z)q)  >DFF.(G),A;Z/q) =B F.(G),A;Z/q) >0 (6.27)
induces a long exact sequence of cotriple derived functors
0 =RYZNG,AZ/q)  =RYDMG,AZ/)q) = RYBMYG,AZ)q) >

= RLZMG,A;Z/q) = REDM(G,A;Z/)q) =+
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The injection
RYB*YG,A;Z/q) ¢ = REDFY(G, A;Z/q) = DG, A Z/q)
yields the exact sequence
0 =RpZMG,AZjq)  =DMG,AZfq) = DFUG AZ)q)

showing that RAZ¥(G, A;Z/q) = Z*(G, A;Z/q).
It is easily checked that any short exact sequence of G-modules

0 > Ay - A > Ay >0
induces a long exact cohomology sequence
0 =ZMG AisZ/q) ~ZMG AZfq) = ZMNG AxZ/q) -~ HMUG AZlg) >
- H"N G AZ)q) = HNG Ay Z/q) = HM(G AuZlg) =
It follows that for a free group G the sequence
0 =ZMG,AisZ/g)  =ZMG AZle) - ZNG AxZ/q) -0

is exact for k > 1, since in this case H*"'(G, A;Z/q) = 0. Hence for k > 1 there is a long exact
sequence of cotriple right derived functors

0 =ZMG AsZ/)q)  =ZNG AZlq)  =ZMG, A Z)q) = RYZM(G A Z)q) -
= RLZMG,A;Z)q) = RLZN(G,AZ)q) = RZZM(G,AZ/q) =+

Now it will be shown that R%Z*(G, A;Z/q) = 0 for k > 1 and n > 0, if A is an injective G-module.
The following complex of Abelian cosimplicial groups:

0 = DUR(G), AiZfg) - DURG),AiZlg) - DUF.G)AZ)g)
T DMEG), Azfg) e TS DMEG), A e (629)

is exact at the terms D*(F,(G), A;Z/q), k > 3, since H*(F,(G), A;Z/q) = 0, k > 3, by the universal
coefficient formula (Proposition 6.43).

It is easy to show that any injective G-module is a g-divisible group, and the proof is similar to the
case of injective Abelian groups.

Since F,(G),n > 0, is a free group, the group Z'(F,(G), A) of 1-cocycles is isomorphic to a direct
product ] A; of copies A; = A, where the set J is a basis of F,(G). Hence, if A is injective, then
ieJ
ZYFL(G),A), n > 0, is g-divisible; thus, H'(F,(G), A), n > 0, is also g-divisible. Therefore for an
injective G-module A the short exact sequence of Abelian cosimplicial groups

0 >Tor(HYF.(G),A),Z/q) =H\F(G),A) “'=HY(F.(G),A) >0

together with the well-known isomorphism R%H'(G,A) = H"Y(G, A), n > 0, imply the equality
R Tor(HY(G, A),Z/q) =0, n > 0.

The universal coefficient formula yields a short exact sequence of Abelian cosimplicial groups

0 ~ HY(F.(G),A) ® Z/q ~ HY(F,(G),A;Z/q) > Tor(H'(F.(G), A),Z/q) >0,
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implying the isomorphism R%H'(G,A;Z/q) = R%Tor(H'(G,A),Z/q), n > 0. By (6.27) and the
following short exact sequence of Abelian cosimplicial groups

0 =BYR(G),AZ/q =Z'(F(G),ALlq)  =H(F(G),AL/q) =0

it is easily seen that Rg_-Zl(G, A;Z/q) = Rg_-Hl(G, A;7Z/q), n > 0. Hence, for an injective G-module A
we deduce that R%Z'(G, A;Z/q) =0, n > 0, and using again (6.27) we obtain R}B2(G, A;Z/q) =0,
n > 0.

Let us consider the short exact sequence of Abelian cosimplicial groups

0  =HN{F.(G),A)®Z/q =HF.(G),AZ/q)  =Tor(H*(F.(G),A),Z/q) =0

induced by the universal coefficient formula, which for an injective G-module A, implies that
H?(F,(G), A;Z/q) = Tor(H?(F,(G), A),Z/q) = 0 for all n > 0.
We also have the following short exact sequence of Abelian cosimplicial groups

0 =BYR(G),AZlqg) =ZYF.(G),AZlq) -HF.(G),AZ/q) >0

Finally this implies that R%Z%(G, A;Z/q) = 0, n > 0, if A is an injective G-module.

Now by induction on k, using (6.26) and (6.28), we easily obtain that R%Zk(G, A;Z/q) =0,n >0,
for an injective G-module A and k > 3.

Clearly, by the universal coefficient formula, we have H"(G, A;Z/q) = 0, n > 2, if A is an injective
G-module.

Thus we have shown that two sequences of functors

1) Z¥G, = Z/q), H*T (G, = Z/q), H¥ (G, = Z/q), . . ;

satisfy the following axioms for a connected sequence of additive functors {T},,0™,n > 0} from the
category of G-modules to the category of Abelian groups:

(i) To(—) = Z*(G, — Z/q);

(ii) for any short exact sequence of G-modules 0 > Ay > A > Ay >0 there is a long
exact sequence of Abelian groups

0 =Ty(A)  =ToA) =Tp(ds) “=Ti(4) -

gn—1

= TS T (A S T(A) =Ta(Ay) "

Trt1(Ar) >

(iii) if A is an injective G-module, then 7T),(A) =0 for all n > 1.
I

In particular, Theorem 6.57 allows us to describe the mod ¢ cohomology groups H™(G, A;7Z/q),
n > 3, in terms of the non-Abelian derived functors of the functor Z2(—, A;Z/q).

Remark 6.58. An assertion similar to Theorem 6.57 has been proved in [64] for the classical
(co)homology of groups and associative algebras. Moreover, we can obtain a similar result for mod ¢
homology of groups.
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7. Vogel Cohomology of Groups

In this section we recall the definition of Vogel cohomology and give the proof, due to Vogel [125],
that it is a generalization of Tate—Farrell cohomology.

Recall from Example 6.25 the Hom complex Hom(C, K )« in the category Dgr. Given C, and K,
in Dp, the bounded Hom complex Homy(Cy, K.), is the subcomplex of Hom(Cy, K,). given by

Homy(Ci, K.)n = €D Homp(Cy, Kiyn).
1EZ
Proposition 6.59. Let C;, i € Z be a finitely generated R-module. Then there is an isomorphism of

complexes
Homy(Cyy Ky ) = Hom(Cy, R)s @ K.

Proof. Tt is easy to verify that for a finitely generated projective R-module C; there is an isomorphism
Hompg(Cy, Kiyp) = Hompg(Cy, R) @R Kijn.
Then we have

HOmb(O*, K*)n = @HomR(OiyKi—i-n) = @(HOIHR(OZ,R) R Kz+n) =

il icZ
= @(HomR(C—ia R) @R Kn—i) = (Homp(Cy, R)+ ® K )p.
iez

Let K, € Dr. Our second example of a functor ® (see Sec. 2 of this chapter) associates to C € Dgr
the quotient complex

Hom(C,, K,). = Hom(Cy, Ky ), /Homy(Cy, K,

Then the ®-cohomology of this complex is written
0"(Cy, K,) := H2(C,) = H_,(Hom(C,, K,),).
These cohomology groups have the expected property:

Lemma 6.60. Let Cy, K, € Dgr. Then the cohomology groups ﬁI”(C*,K*) depend only on the homo-
topy classes of Cy and K.

This lemma allows the following;:

Definition 6.61. Let A and A’ be two R-modules. Let L, be a projective resolution of A and L, a
projective resolution of A’. Then we set

Extp(A,A') = H*(L,,L.).

Proposition 6.62. Let K, € Dr and 0 = C > C, = C! >0 be an exact sequence in
Dr. Then we have two long exact sequences

~-H"\Y(Cl,K,) >H'C!,K.) >H"(C.,K.) >
- H"(ClL,K,) = H"NC!K) =
and
- H""Y(K,,C!)  >H"(K.,C) >H"(K.C.) >

- HY(K,,C") = H"(K,,C) =---.
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Proof. The short exact sequence of complexes
0  =Hom(C! K,)« >Hom(Cy, Ky)s > Hom(CL, K,). >0
is restricted to an exact sequence
0 > Homy(CV, Ky )« > Homy(Cy, Ky )« > Homy(CL, Ky )« >0 .

By diagram chasing these two exact sequences induce a third one

0  =Hom(C" K., =Hom(Ci,K.), =Hom(C,K), =0
implying the first long exact sequence. The second long exact sequence is obtained in the same way. | |

Corollary 6.63. Let M be an R-module and 0 = A = A = A" >0 an exact sequence
of R-modules. Then we have two long exact sequences

SExt (AL M) = Ext (A", M) =Ext(AM)  =BExt (A, M) =
and
CExt (M, A" = BExt(M,A)  =Ext'(M,A)  >Ext (M,A")  =--..

Vogel’s Ext functors have applications outside group theory [95, 128], but, to keep to our subject,
we just relate them, when R is a group ring, to Farrell cohomology theory (see [50] or, e.g., [10]).
From now on, the ring R is Z[G] with G a group, and we give the definition of Vogel cohomology of
groups.

Definition 6.64. Let G be a group and A a G-module. Then Vogel cohomology groups are given,
for n € Z, by

o~ —_—n

H"(G,A) .= Exts(Z, A).

Before giving the proof, due to Vogel, that his cohomology theory is a generalization of Farrell
cohomology we recall the definition of Farrell cohomology [50].

Definition 6.65. A complete resolution for a group G is a pair (Fy, F)') of complexes of G-modules
such that

(i) Fi is acyclic;
(i) FY is a resolution of the G-module Z;
(i) F. and F! coincide in higher dimensions.

In the sequel, we will always assume that a complete resolution is projective, i.e., Fy and F! are
complexes of projective G-modules. We shall say that a group G satisfies condition (C'R) if there
exists a complete resolution (Fy, F)') for G, if such a complete resolution is unique up to homotopy,
and if there exists a surjective morphism F, — F! which is the identity in higher dimensions. We
shall say that G satisfies condition (CRy) if, furthermore, there exists a complete resolution with each
F; and F! finitely generated, i € Z.

Remark 6.66. The existence of the morphism F, — F! is a consequence of the construction of the
complete resolution [10, Proposition X 2.3]. Furthermore this morphism can be made surjective by a
change of Fj.

Definition 6.67. Let G be a group satisfying condition (CR), A a G-module and (F}, F') a complete

A~

resolution for G. Then Farrell cohomology groups with coefficients in A are the groups Hj (G, A) =
H™(F,, A).
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Tate cohomology is Farrell cohomology for finite groups. Tate first built complete resolutions in this
case by splicing a resolution and a coresolution [10]. Then Farrell checked the condition (C'R) for groups
with finite virtual cohomological dimension (ved) [50]. Finally Ikenaga, introducing a generalized
cohomological dimension, proved that condition (C'R) is valid for a wider class of groups [58].

Theorem 6.68 (see [125]). Let G be a group satisfying condition (CRy). We assume that, given an
acyclic projective complex Fy, the complex Hom(Fy,Z[G))x« is acyclic. Then the Farrell cohomology of
G and the Vogel cohomology of G coincide.

Proof. Let A be a G-module and L, a projective G-resolution of A. By condition (C'Ry) there exists
a complete projective resolution (Fj, F)') for G with each F; and F}’ finitely generated, i € Z.
Let F! be the kernel of the canonical epimorphism F, — F”. We have an exact sequence of

complexes 0 o > F, > oF! >0, and thus an exact sequence
0 =Hom(F' L), =Hom(F., L), =Hom(F,L). =0. (6.29)

As L, is bounded beneath and F, is bounded overhead, we have

Hom(F,, L), = HHomg(F{, Lyyi) = @Homg(Fi’, Lyyi) = Homy(FL, Li)n-
i€Z i€Z
Thus Hom(F., L)« = Homy(F., L), and %(Fi, L,). = 0. Sequence (6.29) gives an isomorphism
Hom(F", L), = Hom(F., L),

As the complex Hom/(F,Z|G]). is acyclic, the complex Hom(F,Z|G]). ® L, is acyclic and, by
Proposition 6.59, Homy(Fy, L), is also acyclic. Thus, the canonical morphism Hom(F, L), —
%(Fﬁ, L.,). is a homology equivalence. The complexes Hom(F, L), and Hom(F}, A[0])«, where
A is in degree 0, are homotopy equivalent, since L, is a resolution of A (see Example 6.25). Finally

the complexes %(Ff , L)« and Hom(Fy, A[0]). have the same homology, that is, Vogel and Farrell
cohomology coincide. [

Remark 6.69. Let (K., K!) be another complete projective resolution for G. Plainly, as, by con-
dition (CR), the complexes F, and K, are homotopy equivalent the complexes Homy(Fy, Ly ). and
Homy(K, Ly)« are equivalent. Whence Homy, (K, L), is acyclic even if the groups K; are not finitely
generated.

Finite groups G satisfy condition (C'Ry) and, given an acyclic projective complex Fi, the complex
Hom(F,Z|G])« is acyclic [10]. Thus we have

Corollary 6.70. For a finite group G, Tate and Vogel cohomology of G coincide.

Condition (C'R) is true for a group G with ved(G) finite, but condition (CRy) is not always true.
Nevertheless Remark 6.69 allows to extend the corollary in this case.

Corollary 6.71. Let G be a group satisfying condition (CR). We assume that for any G-module
A, if Hp (H,A) = 0 for any finite subgroup H of G, then H},(G,A) = 0. Then Farrell and Vogel
cohomology of G coincide.

Proof. Let (F., F!') be a complete resolution for G. It is a complete resolution as well for any (fi-
nite) subgroup H, and a complex L, of projective G-modules is a complex of projective H-modules.
By definition f[;ia(G, A) = 0 (resp ﬁl’}a(H, A) = 0) means that the complex Homg(Cy, A)s (resp
Homp (Cy, A)y) is acyclic. Either by hand calculation or by use of a spectral sequence associated to
the bicomplex Homg (Cj, L;-), we see that, for any bounded G-complex L, the complex Hom(C,, L)
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is acyclic if and only if, for each ¢ € Z, the complex Hom(C\, L}). is acyclic. Thus the hypothesis is
equivalent to the same hypothesis where the G-module A is replaced by a bounded complex.

Let A be a G-module and L, a projective G-resolution of A. Then, for any subgroup H of G and
bounded subcomplex L), € D of L., the complex Homp (F, L,) is acyclic by Proposition 6.59, the
proof of Theorem 6.68 and Remark 6.69. Thus, the complex Homg(Fy, L) is acyclic. Whence, as a
colimit, the complex Hom/(F}, L) is acyclic, and we apply the end of the proof of Theorem 6.68. | |

The hypothesis in Corollary 6.71 is true for groups with finite ved [10, Lemma X 5.1]. It does
not work for all groups considered by Ikenaga, but he exhibited among them a large class of groups,
called C, containing a class of groups with finite ved but larger and for which this hypothesis is true;
see [58] for details. Thus we have

Corollary 6.72. If the group G belongs to the class Cy of Ikenaga, in particular if G has a finite
ved, then Farrell and Vogel cohomology of G coincide.

Remark 6.73.

(i) Vogel introduced also a cohomology theory in which he replaces the complex Homy(Cy, Ky )«
by the subcomplex Hom f(C*, K,). of morphisms which factor through bounded complexes of
finitely generated projective R-modules. This gives the same theory for a finite group but not
generally.

(ii) Proposition 6.59 is still valid if instead of C; finitely generated we assume that K, i € Z, is
finitely generated. Hence, if the G-module A admits a projective resolution by finitely generated
projective G-modules, Vogel and Tkenaga cohomology with coefficients in A coincide if G satisfies
condition (C'R).

8. Mod ¢ Vogel Cohomology of Groups

In this section we extend Vogel’s definition to get mod g cohomology. Then we investigate its
properties, among which we generalize some classical properties of Tate—Farrell cohomology.
Lemmas 6.24 and 6.60 allow the following definition.

Definition 6.74. Let G be a group and A a G-module. Let L, (respectively, K,) be a projective
G-resolution of Z (respectively, A). Then mod ¢ Vogel cohomology groups are given by

H"(G, A;Z)q) = H_pi1(Hom(Ly, K.); 7./ q).

Now, as an immediate consequence of Lemma 6.26, the mapping cones of L, and of %(L*, K«
are related:

Lemma 6.75. Let C,, K, € Dg. For all n € Z we have a canonical isomorphism
Hom(Mc(Ch, q)ss K )n = Mc(Hom(Cu, K, @)1
Hence we have the following proposition.
Proposition 6.76. Let G be a group and A a G-module. Then, for alln € Z, we have an isomorphism
H™(G, A;Z/q) = Bxte(Z/q, A).

Proof. 1f L, is a projective G-resolution of Z, we claim that Mc(Ly, q). is a projective G-resolution of
Z/q. This is always true, but for our purpose it is enough to consider the standard bar resolution; see
Sec. 5 of this chapter. Whence Lemma 6.75 gives the result. [ ]
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Remark 6.77. The Farrell mod ¢ cohomology of a group of finite virtual cohomological dimension
can be defined in the same way Farrell defined his cohomology by taking a complete resolution of
Z/q instead of Z. For instance, the pair of mapping cones (Mc(Fk, q)«, Mc(FY, q)«), where (F, F))
is a complete resolution of Z, is a complete resolution of Z/q. Then the proofs of Theorem 6.68 and
Corollary 6.71 work to show that Farrell mod ¢ cohomology coincides with Vogel mod ¢ cohomology.

In this context Corollary 6.20 becomes

Proposition 6.78 (universal coefficient formula). Let G be a group and A a G-module. Then, for all
n € 7, there is a short exact sequence of Abelian groups

0 =A"NGA)ez/g  -HYG AL/ - Tor(HMG,A)Z/g) 0.

Corollary 6.79. Let G be a group with ved(G) < oo and A a G-module. Then the canonical map
H"(G,A;Z)q) — H™(G,A;Z/q) induces an isomorphism for n > ved(G) + 2 and a surjection for
n = ved(G) + 1.

Proof. We have the following commutative diagram of groups:

0 -HNGA)®Zjq ~H'(GALlQ) - Tor(H'(G,A).Z/g) >0

| | l

0 ~H"NGA®L/g ~HYG AL/ >Tor(HG,A),Z/q) >0

with exact rows; the vertical homomorphisms are the canonical maps. By [10] the first vertical map
is surjective, and the third vertical map is an isomorphism for n — 1 > ved(G); furthermore the first
vertical map is an isomorphism still for n—1 > ved(G), whence the result given by the five-lemma. | |

Corollary 6.80. Let G be a finite group and A a G-module. Then
H™MG,AZ)q) = HW(G, A Z/q), n>2;
H™™(G, 4Z/q) = Ha(G, A Z/q), n>2;
furthermore, the groups ﬁ_l(G,A; Z/q), ﬁO(G, A;Z/q), and ﬁl(G,A; Z/q) are new and enter into
short exact sequences
0 >H(GA®Zq >HYGAZ/Q >Tor(H NG, A),Z/q) >0,
0 =HYGAeZ/q =BG AL/ =Tor(HG,A)Z/g) =0,
0 -HG.A)®Z/q >~H(G.AL/q) >Tor(H'G,A)Z/g)  >0.

Using again the universal coefficient formula for a group G of order k, we see that, for n € Z and
T € ﬁ”(G,A; 7./q), we have k?z = 0. Whence the groups ﬁ”(G,A; Z/q) are finite when G is finite
and A is a finitely generated G-module.

It is easy to verify that Shapiro’s lemma holds for mod ¢ Vogel cohomology of groups which states
that, if H is a subgroup of finite index in a group GG and A is an H-module, we have an isomorphism

H*(H,A;Z/q) = H (G, Z|G) ©zym) A Z/q).
The proof is similar to the case of Vogel homology [52, Lemma 4.4].
We have a cup product, actually a composition product [10], on Vogel cohomology H*(G,—) [52].

For ved(G) < oo, a fortiori for G finite, we recover the usual cup product. We shall extend this cup
product to mod ¢ cohomology for groups with finite virtual cohomology dimensions.
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A group G is said to have periodic cohomology if there exists an integer d # 0 such that, for any
n € 7, the functors H"(G, —) and H""%(G, —) are isomorphic. In the case ved(G) < oo, it is equivalent
to the existence of an clement u € H 4(G,7Z) that is invertible in the ring H *(G,Z). Then [10] the cup
product with u gives, for any n € Z and any G-module A, a periodicity isomorphism

wU—: HY(G, A) = H"(G, A).
Note that, at least for ved(G) < oo, if G has periodic cohomology, the period d is even.

Theorem 6.81. Let G be a finite group, L, a complete resolution of Z for G, and A and B two
G-modules. Then

(i) the cochain product U of Tate cohomology induces a cup product
HP(G,A)® H"(G,B;Z/q) ~ = H"*"(G,A® B;Z/q)
given by
f : (97 h) = (f 9, (_1)pf : h)7

where f € Homg(Ly, A)p and (g, h) € Homg(Mc(Ly, q)«, B)n;

(ii) for G with periodic cohomology of period d, the cup product with u € ﬁd(G,Z) induces an
isomorphism

H"(G.B;Z/q) = H""(G, B;Z/q)
for alln € Z and any G-module B.
Proof.
(i) It is easily checked that we have the equality

implying the correctness of the cup product.
(ii) To prove the periodicity, the defining properties of the Tate cohomology cup product are used [2,
Theorem 7.1]. We obtain the following commutative diagram of groups:

“- Y G,B)  -H'G,BiZ/g)  -HG.B) -

| | |

-G, B) - HNG BiZ)g) - H™UG,B) -

xq xq

with exact rows, and the vertical homomorphisms are induced by the cup product given in (i). Since
the periodicity holds for the Tate cohomology [2, 10], it remains to apply the five lemma. I

Remark 6.82. By the same way the periodicity theorem can be proved for groups with ved G < oo
having periodic cohomology.
Notice too that there is a cup product action of Tate cohomology on the right:

H™(G, B;Z/q) ® H'(G,A) ~ > H"?(G,B® A;Z/q)
given by (g,h) - f=(g- f,h- f). In this case

where (g,h) € Homg(Mc(Ly,q)«,B)n, f € Homg(Ly,B),, and the mod ¢ Tate cohomology
H*(G, B;7Z/q) becomes an H*(G,Z)-bimodule for any G-module B.
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From Theorem 6.81 we deduce that we have periodicity of the mod ¢ Tate cohomology for finite
cyclic groups having periodic cohomology of period 2 and for finite subgroups of the multiplicative
group of the quaternion algebra having periodic cohomology of period 4. Moreover we have

Corollary 6.83. Let C,, be a cyclic group of order m and t be a gemerator of Cp,. Then for any
Cn-module A, we obtain

H?(Cyp, A Z)q) = {(a,d") | Na+qd' =0, ta’ = a'}/ﬁ(A ®A), neZ,

H* N (Cp, AT/ q) = {(a,d") | Da+qd' =0, Na' = 0}/N(A ®A), neZ,
with N = l+t+--+tm ! D=t—-1 € Z[G] and where the homomorphisms D:AdA— Ad A
and N : A A — A® A are defined by D(a,a’) = (Da+qa’,—Nd') and N(a,d’) = (Na+qad',—Dd').
Proof. 1t follows from Theorem 6.81 (ii) and Proposition 6.35. ||

Remark 6.84. The question of periodic cohomology for a wider class of groups has been considered
in classical cohomology in the context of “periodicity after k steps” [121, 122].

Theorem 6.85. Let G be a p-group whose order |G| = p™ divides q, and A a G-module. Then the
following conditions are equivalent:

(i) ﬁ”(G, A;Z/q) = 0 for some n € Z;
(ii) A is cohomologically trivial.
If in addition A is p-torsion-free, then (i) and (ii) are equivalent to
(i) A/pA is free over (Z/p)[G].
Proof. First, assume that A is p-torsion-free. According to [2, Theorem 9.2], it suffices to show the
equivalence of the following two conditions:
(i) H"(G, A;Z/q) = 0 for some n € Z;
(iv) H "(G,A) =0 for two consecutive integers n.
(iv) = (i): if H"(G, A) = H""(G, A) = 0, then, by Theorem 6.78, H"}(G, A; Z/q) = 0.
(i) = (iv): if fI”(G,A; Z/q) = 0, the homomorphism ﬁ”_l(G, A) s ﬁ”_l(G, A) is surjective,

X

and the homomorphism ﬁ”(G, A) ‘. f[”(G, A) is injective. Thus, for x € f[”_l(G, A), there is

an element y € ﬁ”_l(G, A) with qy = x. On the other hand, we have p™y = 0, whence qy = 0. If
T € ﬁ”(G, A), the equality p™z = 0 implies gz = 0, and therefore x = 0.

The equivalence of (i) and (ii) for any G-module A is reduced to the previous case by use of
dimension-shifting. Take a short exact sequence of G-modules

0 = A’ > F > A >0
with F' free over Z[G]. Then we have the isomorphisms
HY(G,A) =~ H""Y(G,A) and H"(G,A;Z/q) = H" ™ (G, A Z/q)
for all n € Z with A’ torsion-free. [
We end with a final example of extension of a classical property to Vogel cohomology:
Proposition 6.86. Let G be a group and A a projective G-module. Then
H*(G,A;Z/q) = 0.
Proof. We take Lg = A and L,, = 0 for n # 0 as a projective resolution of A. [ ]
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