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SOME ASPECTS OF HOMOTOPIC ALGEBRA
AND NON-ABELIAN (CO)HOMOLOGY THEORIES

N. Inassaridze UDC 512.66

Abstract. This monograph is devoted to the study of homological and homotopic properties of vari-

ous algebraic structures. The problems considered and line of investigation taken fall under the general

headings of non-Abelian homological algebra and simplicial methods in category theory, with applica-

tions to K-theory and cyclic homology.
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INTRODUCTION

This monograph is devoted to the study of homological and homotopic properties of various algebraic
structures. The problems considered and line of investigation taken fall under the general headings

of non-Abelian homological algebra and simplicial methods in category theory, with applications to
K-theory and cyclic homology. Work in these areas has had fundamental applications in diverse fields
of mathematics and has made a significant impact on the development of many areas of mathematics.

Homotopical algebra, in particular, simplicial algebra, including its non-Abelian and categorical
aspects, is inspired by geometrical and topological constructions and plays a crucial role in the rapidly
expanding areas of K-theory—cyclic homology and homotopy theory. While in classical (Abelian)

homological algebra additive functors from Abelian (or additive) categories to Abelian categories are
investigated, one powerful tool of simplicial algebra is the notion of derived functors of nonadditive
functors, called non-Abelian derived functors, which has been applied to the simplicial-group approach

to algebraic K-theory developed by Swan [120] and Keune [82] and advanced in non-Abelian homolog-
ical algebra by Inassaridze [60] and others. On the other hand, most of the well-known (co)homology
functors are described in terms of non-Abelian derived functors as (co)triple (co)homology (see the

works of Barr and Beck [4, 5] and Duskin [40]).
The proposed results of this work are concentrated around homotopical algebra and (co)homology

theories with special attention to the approach based on non-Abelian derived functors to (co)homology

theories, their q-modular analogs, and n-fold Čech derived functors. It is a continuation of the author’s
previous investigations described in [68–70].

The main aims of this paper are to state and develop a general theory of n-fold Čech derived

functors, Ln-fold∗ T , of group-valued functors T : U −→ Gr, generalizing to that of Čech derived
functors introduced some 30 years ago by Pirashvili [103] (see also [60]) as an algebraic analog of the
Čech (co)homology of open covers of topological spaces, and to illustrate the methods of this theory

to generalize further the Brown–Ellis higher Hopf formulas for integral group homology [14].
Homology groups are the derived functors of the abelianization functor, which, of course, kills the

commutator subgroup of a group. Our generalization handles the derived functors of the functors

that kill higher commutators. More precisely, the “nilization of degree k” functor, Zk(G), k ≥ 2, is
given by Zk(G) = G/Γk(G), where {Γk(G), k ≥ 1} is the lower central series of a given group G.
These Zk are endofunctors on the category of groups and generalize the abelianization functor, so their

non-Abelian left derived functors, LP
nZk, n ≥ 0, with P a projective class of free groups, generalize

the group homology functors Hn, n ≥ 1 (cf., e.g., [5]). Namely, one of the main result of the paper
(Theorem 3.9) says that for a given group G, its free exact n-presentation F (see Definition 1.15) and
k ≥ 2, there is an isomorphism

LP
nZk(G) ∼= Ln-fold

n Zk(G) ∼=

⋂

i∈〈n〉
Ri ∩ Γk(F )

Dk(F ;R1, . . . , Rn)
, n ≥ 1,

where (F ;R1, . . . , Rn) is the normal (n+ 1)-ad of groups induced by F.

Moreover, applying our results, we obtain the following Hopf type formula in algebraic K-theory.
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Let R be a ring with unit and (F∗, d00, GL(R)) be a free pseudo-simplicial resolution of the general

linear group GL(R). Then there is an exact sequence of Abelian groups

0 �� lim←−
j

(1)

(
(

⋂

i∈〈n+1〉
Ker dni−1

)
∩Γj(Fn)

Dj(Fn;Ker dn0 ,...,Ker dnn)

)
��

�� Kn+1(R) �� lim←−
j

(
(

⋂

i∈〈n〉
Ker dn−1

i−1

)
∩Γj(Fn−1)

Dj(Fn−1;Ker dn−1
0 ,...,Ker dn−1

n−1)

)
�� 0

for n ≥ 1.
Particular attention in this paper is paid to the investigation of elegant algebraic models of connected

CW-spaces whose homotopy groups are trivial in dimensions greater than n+1 introduced by Ellis and

Steiner in [49] and called crossed n-cubes of groups. These models are more combinatorial algebraic
systems, but equivalent to that previously invented by Loday in [87] and called catn-groups. The
origin of these notions comes from the late 1940s by the notion of crossed modules first given by

Whitehead in [127] as a means of representing homotopy 2-types. A number of papers of the last
years are dedicated to the investigation of homological properties of these objects. We mentioned here
the papers [6, 21, 23, 46, 56, 85].

We study the diagonal of the n-simplicial multinerve E
(n)
∗ of crossed n-cubes of groups in connection

with the n-fold Čech complexes and with the abelianization of crossed n-cubes of groups Ab(n). In

particular, here we distinguish the following result for crossed n-cubes, which plays an essential role
in obtaining generalized Hopf type formulas for the homology of crossed n-cubes.

Let n ≥ 0, m ≥ 1, and M be a crossed (n +m)-cube. Then there is an isomorphism of simplicial

crossed n-cubes

Ab(n)E(m)(M)∗ ∼= E(m)Ab(n+m)(M)∗.

The universality of our new purely algebraic methods of n-fold Čech derived functors provides
motivation to investigate other cotriple homology theories from a Hopf formula point of view. In
fact, we study the tripleability of the category of crossed n-cubes (cf. [23]) and the leading cotriple

homology of these homotopy (n+ 1)-types. Namely, there is an isomorphism

Hm+1(M) ∼=

⋂

i∈〈m〉
Ri

〈n〉 ∩
∏

B∪C=〈n〉
[X(∅)B ,X(∅)C ]

∏

A⊆〈m〉

( ∏

B∪C=〈n〉

[ ⋂

i∈A
Ri

B ,
⋂

i/∈A
Ri

C

]) , m ≥ 1,

for any crossed n-cube M and its projective exact m-presentation X, where Ri = Ker(X(∅) −→
X({i})) for i ∈ 〈m〉. This result generalizes to that of Brown–Ellis [14] and the Hopf formula for the
second CCG-homology of crossed modules [21].

The non-Abelian homology of groups with coefficients in groups was constructed and investigated

in [67, 68] using the non-Abelian tensor product of groups of Brown and Loday [17, 18] and its
non-Abelian left derived functors, generalizing the classical Eilenberg–MacLane homology of groups
and extending Guin’s low-dimensional non-Abelian homology of groups with coefficients in crossed

modules [53], which has an interesting application to the algebraic K-theory of noncommutative
local rings [53, 68]. In [61–63] Inassaridze developed a non-Abelian cohomology theory previously
defined by Guin in low dimensions [53] generalizing the classical Eilenberg–MacLane cohomology of

groups. In this paper, we continue the investigation of non-Abelian group homology theory establishing
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some interesting functorial properties and making some explicit computations of low-dimensional non-

Abelian homologies.
Another goal of this paper is to set up a similar non-Abelian (co)homology theory for Lie algebras,

stating and proving several desirable properties of this (co)homology theory.
In [45] Ellis introduced and studied the non-Abelian tensor product of Lie algebras, which is a

Lie structural and purely algebraic analog of the non-Abelian tensor product of groups of Brown
and Loday [17, 18]. Applying this tensor product of Lie algebras, Guin defined the low-dimensional
non-Abelian homology of Lie algebras with coefficients in crossed modules [55].

We construct a non-Abelian homology H∗(M,N) of a Lie algebraM with coefficients in a Lie algebra
N as the non-Abelian left derived functors of the tensor product of Lie algebras, generalizing the
classical Chevalley–Eilenberg homology of Lie algebras and extending Guin’s non-Abelian homology

of Lie algebras [55]. We give an application of our long exact homology sequence to cyclic homology
of associative algebras, correcting the result of [55]. In fact, for a unital associative (noncommutative)
algebra A we obtain a long exact non-Abelian homology sequence

· · · �� H2(A,V (A), [A,A]) �� H2(A,V (A)) �� H2(A, [A,A]) ��

�� H1(A,V (A), [A,A]) �� H1(A,V (A)) �� H1(A, [A,A]) ��

�� HC1(A) �� HCM
1 (A) �� [A,A]/[A, [A,A]] �� 0 .

Following [55] and using ideas from [61], we introduce the second non-Abelian cohomology H2(R,M)
of a Lie algebra R with coefficients in a crossed R-module (M,μ), generalizing the classical second

cohomology of Lie algebras. Then, for a coefficient short exact sequence of crossed R-modules

0 �� (L, 0) �� (M,μ) �� (N, ν) �� 0 ,

having a module section over the ground ring, we give a nine-term exact non-Abelian cohomology
sequence

0 �� H0(R,L) �� H0(R,M) �� H0(R,N) �� H1(R,L) �� H1(R,M) ��

�� H1(R,N) �� H2(R,L) �� H2(R,M) �� H2(R,N),

extending the seven-term exact cohomology sequence of Guin [55], which exists under the aforemen-

tioned additional necessary condition on the coefficient sequence of crossed modules.
During the last twenty years many important works appeared investigating the mod q versions of

algebraic and topological topics.

For example, in [101] Neisendorfer, following F. P. Peterson [102], constructed and studied a ho-
motopy theory with Z/q coefficients (primary homotopy theory) having important applications to
K-theory and homotopy theory.

In [9] Browder defined and investigated a mod q algebraic K-theory called the algebraic K-theory
with Z/q coefficients.

In [119] Suslin and Voevodsky calculated the mod 2 algebraic K-theory of the integers as a result

of Voevodsky’s solution of the Milnor conjecture [124].
In [32] Conduché and Rodriguez–Fernández introduced and studied non-Abelian tensor and exterior

products modulo q of crossed modules, generalizing definitions of Brown [13] and Ellis and Rodriguez

[48] (see also [47, 112]) and having properties similar to the Brown–Loday’s non-Abelian tensor product
of crossed modules [17, 18].

In [81] Karoubi and Lambre introduced the mod q Hochschild homology as the homology of the

mapping cone of the morphism given by the q multiplication on the standard Hochschild complex.
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Then they constructed the Dennis trace map from mod q algebraic K-theory to mod q Hochschild

homology and found an unexpected relationship with number theory.
The final goals of this work are to investigate the non-Abelian tensor (exterior) product modulo

q of Conduché and Rodriguez–Fernández [32], to introduce and study mod q group homology and
cohomology theories, and to unify them into a mod q Tate–Farrell–Vogel group cohomology theory.

We show that the “absolute” tensor product modulo q, G ⊗ qH, of two groups G and H with
compatible actions is the quotient of non-Abelian tensor product G⊗H by q(H1(G,H) ∩H1(H,G)),
where H1 is the first non-Abelian group homology. We generalize Guin’s isomorphism [12][12] for the

tensor product modulo q by giving the short exact sequence of groups

0 �� G⊗ qA �� I(G, q) ⊗G A �� qZ⊗G A �� 0, q ≥ 0,

where G is a group, A is G-module, and I(G, q) is the kernel of the morphism ε̃ : Z[G] −→ Zq.
We give an application of tensor product modulo q to algebraic K-theory with Zq coefficients [9] of

noncommutative local rings. In particular, for a noncommutative local ring A such that A/RadA �= F2

and q > 1, there is an exact sequence of groups

((A∗)ab ⊗Z K2(A))/q ⊕ Tor(K2(A),Z/q) �� Ker ξ′D0(A)
�� Ker ξ′[A∗,A∗]

��

�� K2(A;Z/q) �� Sym(A;Z/q) �� ([A∗, A∗]/[A∗, [A∗, A∗]])/q �� 0.

This result is a q-modular analog of Guin’s six-term exact sequence relating the non-Abelian homology
of groups with Milnor’s K2 and the symbol group Sym (see [53]).

We introduce mod q homology, H∗(G,A;Z/q), and cohomology, H∗(G,A;Z/q), of a group G with
coefficients in a G-module A, naturally inspired in the study of non-Abelian left derived functors of the
“absolute” tensor product modulo q of groups, and which are the homologies of the mapping cones of

the q multiplication on the standard homological and cohomological complexes, respectively, as in the
case of the mod q Hochschild homology [81]. We have the following short exact sequences (universal
coefficient formulas) for mod q group (co)homology relating them to classical group (co)homology:

0 �� Hn(G,A) ⊗ Z/q �� Hn(G,A;Z/q) �� Tor(Hn−1(G,A),Z/q) �� 0,

0 �� Hn−1(G,A) ⊗ Z/q �� Hn(G,A;Z/q) �� Tor(Hn(G,A),Z/q) �� 0,

for n ≥ 0.
We introduce the notions of mod q version torsors and extensions to describe the first and second

mod q cohomologies of groups, respectively.

We express the mod q cohomology of groups in terms of cotriple (right) derived functors of the
kernels of higher dimensions of the mapping cone of the q multiplication on the standard cohomological
complex. In fact, for a given group G and a G-module A we have the isomorphisms

R0
FZ

k(G,A;Z/q) ∼= Zk(G,A;Z/q),

Rn
FZ

k(G,A;Z/q) ∼= Hn+k(G,A;Z/q),

for k > 1 and n > 0.
We give an account of the Vogel cohomology theory [125]. In [52] Goichot gave a detailed exposition

of Vogel’s homology theory and its relations to Tate and Farrell theories. We shall give here the

cohomological approach (see also [128, § 5]). Then the mod q Tate–Farrell–Vogel cohomology of
groups is introduced unifying mod q homology and cohomology of groups. Finally we show how the
periodicity properties of finite periodic groups extend to mod q Tate cohomology.

The results of this paper were published in [24, 31, 39, 65–67, 71–75].
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Notation and Conventions. We denote the categories of sets, groups, and Abelian groups by Set,

Gr, and AbGr, respectively.
For any set A, its cardinality is denoted by |A|.
For a nonnegative integer n, we denote by 〈n〉 the set of first n natural numbers {1, · · · , n}.
Given a group G and n normal subgroups, R1, . . . , Rn, the tuple, (G;R1, . . . , Rn), will be called a

normal (n+ 1)-ad of groups, while Z(G) and [G,G] denote the center and the commutator subgroup
of G, respectively. Moreover, for any elements a, b ∈ G, [a, b] is the commutator aba−1b−1.

Given a (pseudo)-simplicial object X∗ and a (pseudo)-simplicial morphism f∗ in a category U and

a functor T : U −→ Gr, denote by T (X∗) and T (f∗) the (pseudo)-simplicial group and (pseudo)-
simplicial group morphism obtained by applying the functor T dimensionwise to X∗ and to f∗, respec-
tively.

Chapter 1

DERIVED FUNCTORS

In this chapter, we give a brief introduction to non-Abelian and Čech derived functors. For a fuller
account of these derived functors, we refer the reader to [60]. We pay particular attention to Čech
derived functors and develop its n-fold analog.

In Sec. 1, we recall the well-known notions and results on the non-Abelian derived functors of
group-valued functors with respect to projective classes and cotriples.

In Sec. 2, we give a brief introduction to Čech derived functors (see also [60]); then their n-fold

analogs are examined. The Čech derived functors of group-valued functors were introduced in [103]
(see also [60]) as an algebraic analog of the Čech (co)homology construction of open covers of topo-
logical spaces with coefficients in sheaves of Abelian groups (see [115]). It is well known that the

Čech cohomology of topological spaces with coefficients in sheaves is closely related to the sheaf co-
homology of topological spaces; in particular, this relation is expressed by spectral sequences [115].
Some applications of Čech derived functors to group (co)homology theory and K-theory are given

in [103–105].
The notion of Čech derived functors is generalized to that of the n-fold Čech derived functors of a

group-valued functor, and their relationship to the non-Abelian derived functors is given in terms of

spectral sequences. Later in Chap. 3, based on this notion, we get a new purely algebraic method for
the investigation of higher integral group homology from a Hopf formula point of view and the further
generalizations of these formulas. This method is universal and is valid for other algebraic structures.

1. Non-Abelian Derived Functors

In this section, we recall some well-known notions and results about derived functors of nonadditive
functors from [60, 103, 123].

1.1. Pseudo-simplicial objects. First some terminology and notation on pseudo-simplicial ob-
jects in a category are examined.

Definition 1.1. Let U be a category. By a pseudo-simplicial object X∗ in U is meant a nonnegatively

graded object with face morphisms dni : Xn −→ Xn−1 and pseudo-degeneracy morphisms sni : Xn −→
Xn+1, 0 ≤ i ≤ n, satisfying the following conditions:

dn−1
i dnj = dn−1

j−1d
n
i for i < j,

dn+1
i snj = sn−1

j−1d
n
i for i < j,
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dn+1
j snj = 1 = dn+1

j+1 s
n
j , dn+1

i snj = sn−1
j dni−1 for i > j + 1.

The following identity on pseododegeneracies:

sn+1
i snj = sn+1

j+1s
n
i for i ≤ j

is possibly not fulfilled. Otherwise we obtain the notion of a simplicial object in the category U .
A morphism f∗ : X∗ −→ X ′∗ of pseudo-simplicial objects is a morphism of degree zero of graded

objects that commutes with the face and the degeneracy morphisms, i.e., a nonnegatively graded

family of morphisms {fn : Xn −→ X ′
n, n ≥ 0} with fn−1d

n
i = dni fn, n > 0, and fn+1s

n
i = sni fn, n ≥ 0

for all 0 ≤ i ≤ n.

Definition 1.2. Let f∗ and g∗ be two morphisms from X∗ to X ′∗. We say that f∗ is pseudo-homotopic

to g∗, denoted by f∗ � g∗, if there exist morphisms hni : Xn −→ X ′
n+1, 0 ≤ i ≤ n, such that the

following conditions hold:

dn+1
0 hn0 = fn, dn+1

n+1h
n
n = gn,

dn+1
i hnj = hn−1

j−1d
n
i for i < j,

dn+1
j+1h

n
j+1 = dn+1

j+1h
n
j , dn+1

i hnj = hn−1
j dni−1 for i > j + 1.

If, in addition, the conditions

sn+1
i hnj = hn+1

j+1 s
n
i for i ≤ j,

sn+1
i hnj = hn+1

j sni−1 for i > j

are satisfied, we say that f∗ is homotopic to g∗.

An augmented pseudo-simplicial object (X∗, d00,X) in the category U is a pseudo-simplicial object
X∗ with a morphism d00 : X0 −→ X such that d10d

0
0 = d11d

0
0. It is (left) contractible if there exist

morphisms hn : Xn −→ Xn+1, n ≥ 0, and h : X −→ X0 such that d00h = 1, dn+1
0 hn = 1, n ≥ 0,

d11h0 = hd00, and dn+1
i hn = hn−1d

n
i−1 for n ≥ 1, 1 ≤ i ≤ n+ 1.

Now consider the pseudo-simplicial objects in the category Gr (cf. [60] for the general theory). For
examples of pseudo-simplicial groups, see [90].

Let G∗ be a pseudo-simplicial group, Nn(G∗) =
n−1⋂

i=0
Ker dni , n ≥ 0, and ∂n the restriction of dnn to

Nn(G∗), n > 0. Then Im∂n is a normal subgroup of Gn−1, and Im∂n+1 ⊆ Ker∂n for n > 0. This
determines the Moore chain complex [96] N(G∗) = {Nn(G∗), ∂∗}, which clearly is independent of the
pseudo-degeneracies and depends only on the face morphisms.

Definition 1.3. The nth homology group of the chain complex N(G∗) is called the nth homotopy
group πn(G∗) of the pseudo-simplicial group G∗, n ≥ 0.

According to [96, Proposition 17.4] the nth homotopy group of a simplicial group coincides with the
group πn(G∗). We also note that if an augmented pseudo-simplicial group (G∗, d00, G) is contractible
then πn(G∗) = 0, n ≥ 1, and d00 induces an isomorphism π0(G∗) ∼= G.

Given a pseudo-simplicial group G∗, it is easy to verify that there are other chain complexes
N ′(G∗) = {N ′

n(G∗), ∂′∗} where N ′
n(G∗) =

⋂

i∈A
Ker dni , A = {0, . . . , n} \ k, 0 ≤ k ≤ n, and ∂n is

the restriction of dnk to N ′
n(G∗), n > 0. Then the nth homology group of the chain complex N ′(G∗)

coincides with the group πn(G∗), n ≥ 0 (see [60]).
Let f∗ : G∗ −→ G′∗ be a morphism of pseudo-simplicial groups. Then it is easy to see that it

naturally induces group homomorphisms πn(f∗) : πn(G∗) −→ πn(G
′∗), n ≥ 0.
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Theorem 1.4. The homotopy groups πn(G∗) are Abelian for n ≥ 1. If the morphisms of pseudo-

simplicial groups f∗, g∗ : G∗ −→ G′∗ are pseudo-homotopic, then πn(f∗) = πn(g∗), n ≥ 0.

Definition 1.5. A morphism f∗ : G∗ −→ G′∗ of pseudo-simplicial groups is called a fibration if the
homomorphism fn : Gn −→ G′

n is surjective for all n ≥ 0.

Theorem 1.6. If f∗ : G∗ −→ G′∗ is a fibration, then the sequence of homotopy groups

· · · �� πn+1(G
′∗) �� πn(Ker f∗) �� πn(G∗) �� πn(G

′∗) �� · · ·

is exact, where Ker f∗ is the following pseudo-simplicial group {Ker fn, n ≥ 0}.

1.2. Comparison of non-Abelian and cotriple derived functors. Let U be an arbitrary cat-
egory, and P a projective class of objects in U in the sense of Eilenberg–Moore. This is a class of
objects in U such that for every object X ∈ U there exists a P-epimorphism τ : P −→ X, where
P belongs to the class P; a morphism f : X −→ X ′ in U is said to be P-epimorphic if the map

HomU(P, f) : HomU (P,X) −→ HomU (P,X ′) is surjective for every P ∈ P.
Let X and Y be objects in the category U , and

Y

d0 ��

dn
��

... X

be sequence of n+ 1 morphisms, n ≥ 0, in U . A simplicial kernel of (d0, . . . , dn) is a sequence

K

k0 ��

kn+1

��
... Y

of n + 2 morphisms in U satisfying dikj = dj−1ki for 0 ≤ i, j ≤ n + 1 and universal with respect to

this property. That is, if

Z

d′0 ��

d′n+1

��
... Y

is any other sequence satisfying did
′
j = dj−1d

′
i for 0 ≤ i, j ≤ n + 1, then there exists a unique

∂ : Z −→ K such that ki∂ = d′i, 0 ≤ i ≤ n+ 1.

For any objectX ∈ U we consider a P-projective resolution (X∗, d00,X) in the sense of Tierney–Vogel
(see [123]). A nonnegatively graded object X∗, with face morphisms dni : Xn −→ Xn−1, 0 ≤ i ≤ n,

and a morphism d00 : X0 −→ X, satisfying the condition dn−1
i dnj = dn−1

j−1 d
n
i , 0 ≤ i < j ≤ n, is called

P-projective if each Xn belongs to the class P and is called P-exact if each natural morphism from
Xn+1 to the simplicial kernel of (dn0 , . . . , d

n
n) is P-epimorphic. (X∗, d00,X) is called the P-projective

resolution of X if it is P-projective and P-exact. We note that any P-projective resolution admits
pseudo-degeneracy morphisms sni : Xn −→ Xn+1, 0 ≤ i ≤ n (see [123]), which was the reason to
consider the theory of pseudo-simplicial groups in [59].

If in the category U there exist finite limits, then every object admits such a resolution.
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Theorem 1.7. Let (X∗, d00,X) be P-projective and (X ′∗, d00,X
′) be P-exact. Then any morphism

f : X −→ X ′ in U can be extended to a morphism f∗ : X∗ −→ X ′∗ over f , i.e., the diagram

X∗
d00 ��

f∗
��

X

f
��

X ′∗
d00

�� X ′

is commutative. Furthermore, any two such extensions are pseudo-homotopic.

According to this theorem, we have the following definition of non-Abelian left derived functors.

Definition 1.8. Let U be a category with finite limits. For an arbitrary covariant functor T : U −→
Gr, define the nth left derived functor LP

n T : U −→ Gr, n ≥ 0, relative to the projective class P, by
choosing for each X ∈ U , a P-projective resolution (X∗, d00,X) and setting

LP
n T (X) = πn(T (X∗)) and LP

n T (f) = πn(T (f∗))

for any object X ∈ U and any morphism f ∈ U .

A cotriple F = (F, τ, δ) in a category U is an endofunctor F : U −→ U together with natural
transformations τ : F −→ 1U and δ : F −→ F 2, satisfying the commutativity conditions

F
δ ��

1F
��

F 2

Fτ
��

τF
��

F F

,

F
δ ��

δ
��

F 2

Fδ
��

F 2

δF
�� F 3

.

Then the cotriple F induces the projective class P: X ∈ P if and only if there exists a morphism

ϑ : X −→ F (X) such that τXϑ = 1X . In fact, F (X) ∈ P and the morphism τX : F (X) −→ X is a
P-epimorphism for any object X ∈ U .

Given an object X ∈ U , consider the augmented simplicial object (F∗(X), d00,X) in the category U ,
where

F∗(X) ≡ · · ·
��

��
... Fn(X)

dn0 ��

dnn

��
... · · ·

d20 ��
��

d22

�� F1(X)
d10 ��

d11

�� F0(X) ,

Fn(X) = Fn+1(X) = F (Fn(X)), dni = F iτFn−i, sni = F iδFn−i, 0 ≤ i ≤ n, which is called the cotriple
resolution of X (see [120]).

Definition 1.9. Let T : U −→ Gr be a covariant functor. We define the nth left derived functor
LF
n T : U −→ Gr, n ≥ 0, relative to the cotriple F , by setting

LF
n T (X) = πn(T (F∗(X))) and LF

n T (f) = πn(T (F
n+1(f)))

for any object X ∈ U and any morphism f ∈ U .

Now we compare these derived functors giving the following result of [103].

Proposition 1.10. Let T : U −→ Gr be a covariant functor. There is an isomorphism

LP
n T

∼= LF
n T, n ≥ 0.

In spite of Proposition 1.10 the preferable usage of one of these derived functors is given in Chap. 4,
Theorems 4.17 and 4.19 (derived functors relative to cotriple), and Theorem 4.23 (derived functors

relative to projective class).
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2. N-Fold Čech Derived Functors

In this section, U always denotes a category with finite limits and P a projective class in the category

U , unless otherwise stated.

2.1. Čech derived functors. Given an object X and a morphism α : P −→ X in the category U ,
denote by P ×X · · · ×X P

︸ ︷︷ ︸
(n+1)-times

the limit of the finite diagram {α : P −→ X}i∈0,n in the category U with

natural morphisms αi : P ×X · · · ×X P
︸ ︷︷ ︸

(n+1)-times

−→ P , 0 ≤ i ≤ n, such that ααi = ααj for all 0 ≤ i, j ≤ n.

An augmented simplicial object (Č(α)∗, α,X) in the category U , where Č(α)n = P ×X · · · ×X P
︸ ︷︷ ︸

(n+1)-times

for n ≥ 0, the face morphism dni : Č(α)n −→ Č(α)n−1, 0 ≤ i ≤ n, is induced by the morphisms

(α0, . . . , α̂i, . . . , αn), and the degeneracy morphism sni : Č(α)n −→ Č(α)n+1, 0 ≤ i ≤ n, is induced

by the morphisms (α0, . . . , αi, αi, αi+1, . . . , αn), will be called the Čech augmented complex for α (see

also [60, 103]). If P belongs to the projective class P and α is a P-epimorphism, (Č(α)∗, α,X) will
be called a Čech resolution of X. Note that the objects Č(α)n, n ≥ 1, do not usually belong to the
projective class P.

Definition 1.11. Let T : U −→ Gr be a covariant functor. Define the ith Čech derived functor
LiT : U −→ Gr, i ≥ 0, of the functor T by choosing, for each object X ∈ U , a P-epimorphism

α : P −→ X with P ∈ P and setting

LiT (X) = πi(T Č(α)∗).

The next lemma shows that this definition does not depend on the choice of a P-epimorphism
α : P −→ X with P ∈ P, and the functors LiT , i ≥ 0, are well defined.

Lemma 1.12. Let α : P −→ X, β : Q −→ Y , and λ : X −→ Y be any morphisms in the category

U , and f∗, g∗ : Č(α)∗ −→ Č(β)∗ be morphisms of simplicial objects over λ. Then f∗ and g∗ are
pseudo-simplicially homotopic, f∗ � g∗.

Proof. We only construct the pseudo-simplicial homotopy. In fact, the morphism hi : Č(α)n −→
Č(β)n+1, 0 ≤ i ≤ n, is naturally induced by the morphisms (gα0, . . . , gαi, fαi, . . . , fαn), where g = g0
and f = f0.

The prime usage of the Čech derived functors are in the classical group (co)homology theory [103–

105]. Here is an illustration. It is a classical fact that the nth non-Abelian derived functor of the
functor H1 : Gr −→ AbGr is isomorphic to (n+ 1)th group homology. So the functor H1 determines
all higher homologies. With the use of Čech derived functors, the following beautiful result of [105]

leads one to think that the functor H2 : Gr −→ AbGr determines also all higher homologies.

Proposition 1.13. For n ≥ 1, there are isomorphisms

H2n
∼= LnHn and H2n+1

∼= LnHn+1,

where P is the projective class of free groups in the category Gr.

In Chap. 3 the Čech derived functors of the group abelianization functor enlighten our motivation

to develop the n-fold analog of some of this theory.
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2.2. Construction of n-fold Čech derived functors. In this section, we generalize the notion

of the Čech derived functors to that of the n-fold Čech derived functors of group-valued functors.
The subsets of 〈n〉 are ordered by inclusion. This ordered set determines in the usual way a category

Cn. For every pair (A,B) of subsets with A ⊆ B ⊆ 〈n〉, there is the unique morphism ρAB : A −→ B

in Cn. It is easy to see that any morphism in the category Cn, not an identity, is generated by ρAB for
all A ⊆ 〈n〉, A �= 〈n〉, B = A ∪ {j}, j /∈ A.

An n-cube in the category U is a functor F : Cn −→ U , A �−→ FA, ρ
A
B �−→ αA

B. A morphism between

n-cubes F,Q : Cn −→ U is a natural transformation κ : F −→ Q.
Let A ⊆ 〈n〉 and consider two full subcategories of the category Cn: CA

n is the category of all subsets

of 〈n〉 containing the subset A and CA
n is the category of all subsets of 〈n〉 having the trivial intersection

with the subset A. For a given n-cube in the category U , and A as above, denote by FA and FA the

functors induced by the restriction of the functor F to the subcategories CA
n and CA

n respectively. For
a given morphism of n-cubes κ : F −→ Q in the category U denote by κA : FA −→ QA the natural

transformation induced by restriction of the natural transformation κ.

Example 1.14.

(a) Let (G;R1, . . . , Rn) be a normal (n + 1)-ad of groups. These data naturally determine an n-
cube of groups F as follows: for any A ⊆ 〈n〉, let FA = G/

∏

i∈A
Ri; for the inclusion A ⊆ B, let

αA
B : FA −→ FB be the natural homomorphism induced by 1F . This n-cube of groups will be

called the n-cube of groups induced by the normal (n+ 1)-ad of groups, (G;R1, . . . , Rn).
(b) Let (X∗, d00,X) be an augmented pseudo-simplicial object in the category U . A natural n-cube

X(n) : Cn −→ U , n ≥ 1, in U is defined as follows:

X
(n)
A = Xn−1−|A| for all A ⊆ 〈n〉,

αA
A∪{j} = d

n−1−|A|
k−1 for all A �= 〈n〉, j /∈ A,

where X−1 = X, δ(k) = j, and δ : 〈n− |A|〉 −→ 〈n〉 \ A is the unique monotone bijection.

Given an n-cube F in the category U . It is easy to see that there exists a natural morphism

FA
αA�� limB⊃A FB for any A ⊆ 〈n〉, A �= 〈n〉.

Definition 1.15. Let X be an object in the category U . An n-cube F will be called an n-presentation

of X in the category U if F〈n〉 = X. An n-presentation F of X will be called P-projective if the object
FA belongs to the projective class P for all A �= 〈n〉 and will be called P-exact if the morphism αA is
P-epimorphic for all A �= 〈n〉.

Note that for any object of U we can construct step by step its P-projective P-exact n-presentation
(see also fibrant n-presentations of a group in the sense of Brown–Ellis [14]). Moreover, we have the

following proposition.

Proposition 1.16. Let (X∗, d00,X) be an augmented pseudo-simplicial object in the category U .
(i) (X∗, d00,X) is a P-projective resolution of X if and only if the n-cube X(n) in U is a P-exact

n-presentation of X for all n ≥ 1.

(ii) If U = Gr and the group morphism d00 induces a natural isomorphism π0(X∗)
d̃00 �� X ,

then the n-cube of groups X(n), n ≥ 1, is induced by the normal (n + 1)-ad of groups
(Xn−1,Ker dn−1

0 , . . . ,Ker dn−1
n−1), i.e.,

X
(n)
A

∼= Xn−1

/∏

i∈A
Ker dn−1

i−1 , A ⊆ 〈n〉.
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Proof. (i) is proved by a straightforward calculation. (ii) is implied by the following well-known fact

on pseudo-simplicial groups:

dnj (Ker dni ) = Ker dn−1
i for n > 0, 0 ≤ i < j ≤ n.

The proposition is proved.

Now let F be an n-presentation of the object X in the category U . Applying Č in the n-independent

directions, we see that this construction leads naturally to an augmented n-simplicial object in U .
Taking the diagonal of this augmented n-simplicial object gives the augmented simplicial object
(Č(n)(F)∗, α,X), called an augmented n-fold Čech complex for F, where α = α∅

〈n〉 : F∅ −→ X. If

F is a P-projective P-exact n-presentation of X, then (Č(n)(F)∗, α,X) is called an n-fold Čech reso-

lution of X.
Let X, Y ∈ U , F andQ be n-presentations of X and Y respectively, and λ : X −→ Y be a morphism

in U . A morphism κ : F −→ Q of n-cubes will be called an extension of the morphism λ if κ〈n〉 = λ.

Theorem 1.17. Let F and Q be P-projective and P-exact n-presentations of given objects X and Y

in U , respectively. Then any morphism λ : X −→ Y in U can be extended to a morphism κ : F −→ Q
of n-cubes that naturally induces a morphism κ̃∗ of simplicial objects

Č(n)(F)∗
α ��

κ̃∗
��

X

λ

��
Č(n)(Q)∗

β
�� Y

over λ. Furthermore, any two such extensions κ, π : F −→ Q of λ induce pseudo-simplicially homotopic

morphisms κ̃∗, π̃∗ of simplicial objects, κ̃∗ � π̃∗.

Proof. We begin by showing the existence of a morphism of n-cubes κ : F −→ Q in U extending the
morphism λ : X −→ Y .

Since F is P-projective and Q is P-exact, there exists a morphism κ〈n〉\{i} : F〈n〉\{i} −→ Q〈n〉\{i} for

all i ∈ 〈n〉, such that α
〈n〉\{i}
〈n〉 κ〈n〉\{i} = λα

〈n〉\{i}
〈n〉 . Assume that for some A ⊆ 〈n〉 and for all B ⊃ A,

B ⊆ 〈n〉, there exists a morphism κB : FB −→ QB such that αB
CκB = κCα

B
C , C ⊇ B. Then as an

immediate consequence we have the induced morphism κ : limB⊃A FB −→ limB⊃AQB . Using again

the facts that F is P-projective and Q is P-exact, we see that there exists a morphism κA : FA −→ QA

such that αAκA = καA. Clearly, the constructed morphism of n-cubes κ : F −→ Q naturally induces
a unique morphism of augmented n-simplicial objects, and applying the diagonal gives a morphism of
simplicial objects κ̃∗ : Č(n)(F)∗ −→ Č(n)(Q)∗ over the morphism λ.

We need to prove the remaining part of the assertion first in a particular case.

Particular Case. Let κ, π : F −→ Q be two extensions of the morphism λ : X −→ Y and l ∈ 〈n〉.
Let κ{l} = π{l} : F{l} −→ Q{l}; then the respective induced morphisms of simplicial objects κ̃∗, π̃∗ :

Č(n)(F)∗ −→ Č(n)(Q)∗ over λ are pseudo-simplicially homotopic.

The construction of Č(n) directly implies that for any n-cube of groups F, Č(n)(F)∗ is the diagonal
of a bisimplicial object X∗∗ induced by applying the ordinary Čech complex construction Č to the

morphism of simplicial objects Č(n−1)(F{l})∗ −→ Č(n−1)(F{l})∗.
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By assumption, the extensions κ and π of the morphism λ induce a commutative diagram of

simplicial objects

Č(n−1)(F{l})∗
κ̃′∗ ��

π̃′∗
��

��

Č(n−1)(Q{l})∗

��
Č(n−1)(F{l})∗

κ̃′′∗ ��

π̃′′∗
�� Č(n−1)(Q{l})∗,

where κ̃′′∗ = π̃′′∗ , which implies there are morphisms of simplicial objects of simplicial objects in U

X∗∗
κ∗∗ ��
π∗∗

��

��

Y∗∗

��
Č(n−1)(F{l})∗

κ̃′′∗=π̃′′∗
�� Č(n−1)(Q{l})∗

over the morphism of simplicial objects κ̃′′∗ = π̃′′∗ in U .
The following lemma will be needed.

Lemma 1.18. Let X∗∗, Y∗∗ be bisimplicial objects in the category U and α∗∗, β∗∗ : X∗∗ −→ Y∗∗ be
morphisms of bisimplicial objects. Let there exist a vertical (horizontal) pseudo-simplicial homotopy
hv (hh) between the induced morphisms of simplicial objects αm∗, βm∗ : Xm∗ −→ Ym∗ (α∗m, β∗m :

X∗m −→ Y∗m) for all m ≥ 0, such that the following conditions hold:

dhj h
v
i = hvi d

h
j (dvjh

h
i = hhi d

v
j ).

Then the induced morphisms of simplicial objects α̃∗, β̃∗ : ΔX∗ −→ ΔY∗ are pseudo-simplicially homo-

topic, α̃∗ � β̃∗, where ΔX∗ and ΔY∗ are the diagonal simplicial objects of X∗∗ and Y∗∗, respectively.

Proof. We can construct the required homotopy in the following way: h′i = hvi s
h
i : Xnn −→ Yn+1,n+1,

0 ≤ i ≤ n.
Now we must verify the standard identities for pseudo-simplicial homotopy (see Definition 1.2). In

fact,

dv0d
h
0h

v
0s

h
0 = dv0h

v
0d

h
0s

h
0 = dv0h

v
0 = αnn,

dvn+1d
h
n+1h

v
ns

h
n = dvn+1h

v
nd

h
n+1s

h
n = dvn+1h

v
n = βnn,

dvi d
h
i h

v
js

h
j = dvi h

v
jd

h
i s

h
j =

{
hvj−1d

v
i s

h
j−1d

h
i = hvj−1s

h
j−1d

v
i d

h
i , i < j,

hvjd
v
i−1s

h
j d

h
i−1 = hvjs

h
j d

v
i−1d

h
i−1, i > j + 1,

dvj+1d
h
j+1h

v
j+1s

h
j+1 = dvj+1h

v
j+1d

h
j+1s

h
j+1 = dvj+1h

v
j+1 = dvj+1h

v
jd

h
j+1s

h
j = dvj+1d

h
j+1h

v
js

h
j .

The lemma is proved.

Returning to the main proof, using Lemma 1.12, it is easy to see that there exists a vertical homotopy
hv between the induced morphisms of simplicial objects κm∗, πm∗ : Fm∗ −→ Qm∗ for all m ≥ 0, such
that dhj h

v
i = hvi d

h
j . Applying Lemma 1.18, we see that there is a pseudo-simplicial homotopy between

the morphisms of simplicial objects κ̃∗, π̃∗ : Č(n)(F)∗ −→ Č(n)(Q)∗ in the category U .
Now we return to the general case, showing for any two extensions κ, π : F −→ Q of amorphism

λ : X −→ Y the existence of extensions κ1, . . . , κn−1 : F −→ Q of λ such that κ̃∗ � κ̃1∗ , κ̃1∗ �
κ̃2∗ , . . . , κ̃n−2∗ � κ̃n−1∗ , κ̃n−1∗ � π̃∗ which, of course, implies that κ̃∗ � π̃∗. In fact, we can construct

an extension κ1 : F −→ Q in the following way: let κ
{1}
1 = κ{1} and κ

〈n〉\{1}
1 = π〈n〉\{1}. We complete
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the construction of κ1 using the technique above and the facts that F is a P-projective and Q is an

P-exact n-presentation of the objects X and Y in U , respectively.
We construct an extension κi for all 2 ≤ i ≤ n− 1 as follows: let κ

{i}
i = κ

{i}
i−1 and κ

〈n〉\〈i〉
i = π〈n〉\〈i〉.

We complete again the construction of κi using the above technique and the facts that F is P-projective
and Q is P-exact.

The construction of κi, 1 ≤ i ≤ n− 1, and our already proved particular case imply that κ̃∗ � κ̃1∗ ,

κ̃1∗ � κ̃2∗ , . . . , κ̃n−2∗ � κ̃n−1∗ , κ̃n−1∗ � π̃∗.

Using this comparison theorem, we state the following definition.

Definition 1.19. Let T : U −→ Gr be a covariant functor. Define the ith n-fold Čech derived functor

Ln-fold
i T : U −→ Gr, i ≥ 0, of the functor T by choosing for each X in U , a P-projective P-exact

n-presentation F and setting

Ln-fold
i T (X) = πi(T Č

(n)(F)∗),

where (Č(n)(F)∗, α,X) is the n-fold Čech resolution of X.

Later, in Chap. 3, we provide explicit calculations of the n-fold Čech derived functors of “nilization
of degree k” functor, Zk, k ≥ 2, and of the crossed n-cube abelianization functor.

2.3. Some properties of n-fold Čech derived functors. We recall the notion of cosheaf in
the sense of [103] (see also [60]). A functor T : U −→ Gr is called cosheaf over (U ,P) if for any

P-epimorphism α : Y −→ X the sequence of groups

T (Y ×X Y ) ���� T (Y )
T (α) �� T (X) �� 1 ,

is exact. An important example of cosheaf is the functor ZP : U −→ Gr, P ∈ P, defined as follows:
for an object X ∈ U let ZP (X) be the free group generated by the set HomU (P,X). Let us denote

the category of cosheaves over (U ,P) by CS(U ,P) and Q be the projective class in the category
CS(U ,P) generated by the cosheaves ZP , which means that any object of Q is a retract of coproducts
of cosheaves of the form ZP (see [103] and [60, Proposition 2.29]). Then, for any object X ∈ U , we
can define the section functor ΓX : CS(U ,P) −→ Gr by ΓX(T ) = T (X) for all T ∈ CS(U ,P). The
non-Abelian derived functors of this ΓX functor will be considered in Chap. 4, Sec. 3.

Proposition 1.20 (see [103]). The following conditions are equivalent :

(i) T is a cosheaf over (U ,P);
(ii) for any P-epimorphism P −→ X there is an exact sequence of groups

T (P ×X P ) ���� T (P ) �� T (X) �� 1,

where P ∈ P;

(iii) the natural transformation τT : LP
0 T −→ T is an equivalence of functors.

We recall the following notion from [103]. Given an object X ∈ U , an augmented pseudo-simplicial
object (X∗, d00,X) is called a contractible P-resolution of X if for all P ∈ P the augmented pseudo-

simplicial set (HomU (P,X∗),HomU (P, d00),HomU (P,X)) is contractible.
The next lemma is useful. The proof is routine.

Lemma 1.21. Let F be a P-exact n-presentations of a given object X in the category U . Then an

augmented n-fold Čech complex (Č(n)(F)∗, α,X) is a contractible P-resolution of X.

The following propositions establish a reasonable link between n-fold Čech derived functors and

non-Abelian derived functors for a given cosheaf functor in terms of spectral sequences.
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Proposition 1.22. Let T : U −→ Gr be a cosheaf over (U ,P), X ∈ U and n ≥ 1. Then there exists

a spectral sequence
E2

p,q = Ln-fold
p (LP

q T )(X) =⇒ LP
p+qT (X).

Moreover, for E2
0,q = 0, q > 0, there are an isomorphism

Ln-fold
1 T (X) ∼= LP

1 T (X)

and an epimorphism

LP
2 T (X) −→ Ln-fold

2 T (X).

Proof. The existence of such spectral sequence directly follows from Lemma 1.21 and [60,
Theorem 2.35]. The rest of the assertion is obvious.

Using Proposition 1.22, we easily see that for a cosheaf T : U −→ Gr there is an isomorphism

Ln-fold
1 T ∼= L(n−1)-fold

1 T, n ≥ 2.

Moreover, we have a natural connection between the higher n-fold and (n − 1)-fold Čech derived
functors. In fact, we have the following proposition.

Proposition 1.23. Let T : U −→ Gr be a cosheaf over (U ,P), X ∈ U and n ≥ 2. Then there is a
spectral sequence

E2
pq =⇒ Ln-fold

p+q T (X),

where E2
0q = 0, q > 0 and E2

p0 = L(n−1)-fold
p T (X), p ≥ 0.

Proof. By the construction, for any P-projective P-exact n-presentation F of G, Č(n)(F)∗ is the diag-
onal of a bisimplicial object X∗∗ induced by applying the ordinary Čech complex construction Č to

the morphism of (n− 1)-fold Čech complexes θ∗ : Č(n−1)(F{n})∗ −→ Č(n−1)(F{n})∗, where θi, i ≥ 0, is
a P-epimorphism.

Now applying the cosheaf T dimensionwise, we denote the resulting bisimplicial object by T (X∗∗).
By [107], there is a spectral sequence

E2
pq =⇒ Ln-fold

p+q T (X).

Using Proposition 1.20, we have the isomorphism E2
p0

∼= L(n−1)-fold
p T (X), p ≥ 0. Moreover, since X00

belongs to the projective class P, we have E2
0q = 0, q > 0.

Let U be a variety of groups with operators. This means that the objects are groups together with

some additional operations satisfying some identities. Examples are the category of groups, nilpotent
groups, or solvable groups of given degree, as well as rings, Lie algebras, and their subcategories of
nilpotent or solvable objects.

Let T : U −→ Gr be a functor such that T (0) = 0. We recall (see [105]) that the simplicial degree
of the functor T is less than or equal to d if for any n ≥ 0 and any simplicial object X∗ whose length
is ≤n, denoted by l(X∗) ≤ n and which means that NXi = 1 for i > n, we have l(T (X∗)) ≤ dn. In

this case we write sdeg(T ) ≤ d.

Corollary 1.24. Let U be a pointed variety of groups with operators, T : U −→ Gr a cosheaf over

(U ,P) whose simplicial degree is equal to 1, sdeg(T ) = 1, and X ∈ U . Then Ln-fold
i T (X) = 0, i > n

and for the spectral sequence of Proposition 1.23, there are an exact sequence of groups

0 �� E2
n−2,1

�� Ln-fold
n−1 T (X) �� L(n−1)-fold

n−1 T (X) ��

�� E2
n−3,1

�� · · · �� E2
11

�� Ln-fold
2 T (X) �� L(n−1)-fold

2 T (X) �� 0
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and an isomorphism

E2
n−1,1

∼= Ln-fold
n T (X).

Proof. Since sdeg(T ) = 1, E2
pq = 0 either for p > n− 1 or q > 1, which completes the proof.

We refer, as a good example, to Corollary 1.24 when U = Gr and T is the ‘nilization of degree k’
functor, Zk, k ≥ 2, which we examine in Chap. 3.

Chapter 2

HOMOTOPY (n + 1)-TYPES AND HOMOLOGY

In the 1940s Whitehead [127] introduced the algebraic notion of a crossed module as a means of
representing connected CW-spaces whose homotopy groups are trivial in dimensions ≥2 for solving
some homotopical problems. Subsequently, MacLane and Whitehead used it to represent the third

group cohomology [94]. Later, in [87], generalizing the notion of crossed modules, Loday gave the
foundation of a theory of algebraic models of connected CW-spaces whose homotopy groups are trivial
in dimensions greater than n+ 1, called cat n-groups. These algebraic structures have nice properties

and satisfy a form of generalized Van Kampen theorem [18, 19]. Other equivalent algebraic models of
homotopy (n + 1)-types are more combinatorial algebraic systems, crossed n-cubes, invented by Ellis
and Steiner in [49].

A number of papers of the last years are dedicated to the investigation of homological properties
of these objects. Ellis [46] and Baues [6] introduced and investigated the (co)homology of crossed
modules as the (co)homology of its classifying space, neglecting its algebraic structure. In [85] Ladra

and Grandjeán gave the first approach to an internal homology theory of crossed modules taking into
account its algebraic structure. Later, in [21] Carrasco, Cegarra, and Grandjeán made the observation
that the category of crossed modules is an algebraic category, that is, there is a tripleable “underlying”
functor from the category of crossed modules to the category of sets, implying a purely algebraic

construction and study of cotriple (co)homology theory. In [56], Grandjeán, Ladra, and Pirashvili gave
a connection of these two homology theories of crossed modules by the dimension shifting isomorphism,
while Casas, Ellis, Ladra, and Pirashvili in [23] have recently generalized this result to higher patterns

for cat n-groups.
This chapter is devoted to the investigation of crossed n-cubes, equivalently cat n-groups, in various

aspects.

In Sec. 1, investigating the diagonal of the n-simplicial multinerve, E(n)(−)∗, of crossed n-cubes of
groups, we relate naturally this construction to the n-fold Čech complexes. Moreover, for an inclusion
crossed n-cube of groups, M, given by a normal (n + 1)-ad of groups, we construct a new induced

crossed n-cube Bk(M), k ≥ 2 (Proposition 2.7) and show the existence of an isomorphism of simplicial

groups ZkE
(n)(M)∗ ∼= E(n)(Bk(M))∗, where E(n)(M)∗ denotes the diagonal of the n-simplicial nerve

of the crossed n-cube of groups M (see Proposition 2.9). We provide a more general result, namely the

commutation of the crossed n-cube abelianization functor Ab(n) with the diagonal of the m-simplicial

multinerve E(m) (see Proposition 2.10), which plays an essential role in obtaining generalized Hopf
type formulas for the homology of crossed n-cubes.

We study some properties of the mapping cone complex of a morphism of (non-Abelian) group com-

plexes introduced in [87]. In particular, for a given morphism of pseudo-simplicial groups α : G∗ −→ H∗
the natural morphism κ : NM∗(α) −→ C∗(α̃) induces isomorphisms of their homology groups, where
C∗(α̃) is the mapping cone complex of the induced morphism of the Moore complexes and NM∗(α)
is the Moore complex of a new pseudo-simplicial group constructed using α (see Proposition 2.11).
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(Similar results have recently been found by Conduché, [29].) Using this result, we derive purely

algebraically the result of [87, Proposition 3.4], giving for a crossed n-cube of groups M an isomor-
phism between the homotopy groups of E(n)(M)∗ and the corresponding homology groups of a chain

complex of groups C∗(M) (see Proposition 2.13). In particular, we give an explicit computation of
the nth homotopy group of the simplicial group E(n)(M)∗.

In Sec. 2 we show that the category Crsn is an algebraic category (see also [23]), that is, there
is a tripleable forgetful functor from Crsn to Set (Proposition 2.15). The leading cotriple homology
of these homotopy (n + 1)-types is constructed, which will be investigated in Chap. 4 from a Hopf

formulas point of view.
Section 3 is devoted to the investigation of homological properties of precrossed modules pursuing

the line of Conduché and Ellis [30]. Homology groups modulo q of a precrossed P -module in any

dimensions are defined in terms of non-Abelian derived functors, where q is a nonnegative integer.
The Hopf formula is proved for the second homology group modulo q of a precrossed P -module
(Theorem 2.24). Some other properties of homologies of precrossed P -modules are investigated.

1. Crossed n-Cubes and catn-Groups

We begin by recalling the following algebraic concept of Whitehead [127].
A precrossed P -module (M,μ) over the group P is a group homomorphism μ : M −→ P together

with an action of P on M , satisfying the following condition:

μ(pm) = pμ(m)p−1 for all dm ∈ M, p ∈ P.

If, in addition, the precrossed module (M,μ) satisfies the Peiffer identity

μ(m)m′ = mm′m−1 for all m, m′ ∈ M,

then it is said to be a crossed P -module. Given a crossed module (M,μ), the image of μ is necessarily

an ideal in P and the kernel of μ is a P -invariant ideal in the center of M . Moreover, the action of P
on Kerμ induces an action of P/ Imμ on Kerμ, making Kerμ a P/ Imμ-module.

A morphism (ϕ,ψ) : (M,μ) −→ (N, ν) of (pre)crossed modules is a commutative square

M
μ ��

ϕ

��

P

ψ
��

N
ν

�� Q,

with ϕ(pm) = ψ(p)ϕ(m) for all m ∈ M , p ∈ P . Let us denote the category of crossed (precrossed)

modules by CM (PCM) and its subcategory of crossed (precrossed) P -modules with fixed group P
by CM(P ) (PCM(P )).

Now we examine two equivalent algebraic models of homotopy (n+1)-types, catn-groups and crossed

n-cubes [49, 87], generalizing the notion of crossed modules, and recall some well-known results and
notions for our future purpose.

1.1. cat n-group. A catn-group is a group G together with 2n endomorphisms si, ti : G −→ G,

1 ≤ i ≤ n, such that

tisi = si, siti = ti, [Ker si,Ker ti] = 1 for all i,

sisj = sjsi, titj = tjti, sitj = tjsi for i �= j.

A morphism of catn groups f : (G, si, ti) −→ (G′, s′i, t
′
i) is a group homomorphism f : G −→ G′

satisfying s′if = fsi and t′if = fti for 1 ≤ i ≤ n. We obtain the category of catn-groups denoted by

Catn.
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Later, in [49], the higher-dimensional analogs of crossed modules were introduced, called crossed n-

cubes. These generalize normal (n+1)-ads of groups in the same way that crossed modules generalize
normal subgroups.

1.2. Crossed n-cube. A crossed n-cube of groups is a family M = {MA : A ⊆ 〈n〉} of groups
together with homomorphisms μi : MA −→ MA\{i} for i ∈ 〈n〉, A ⊆ 〈n〉 and functions h : MA ×
MB −→ MA∪B for A, B ⊆ 〈n〉, such that if ab denotes h(a, b) · b for a ∈ MA and b ∈ MB with
A ⊆ B, then for all a, a′ ∈ MA, b, b

′ ∈ MB, c ∈ MC , and i, j ∈ 〈n〉, the following conditions hold:

μi(a) = a if i /∈ A,

μiμj(a) = μjμi(a),

μih(a, b) = h(μi(a), μi(b)),

h(a, b) = h(μi(a), b) = h(a, μi(b)) if i ∈ A ∩B,

h(a, a′) = [a, a′],

h(a, b) = h(b, a)−1,

h(a, b) = 1 if a = 1 or b = 1,

h(aa′, b) = ah(a′, b)h(a, b),

h(a, bb′) = h(a, b)bh(a, b′),
ah(h(a−1, b), c)ch(h(c−1, a), b)bh(h(b−1, c), a) = 1,

ah(b, c) = h(ab,a c) if A ⊆ B ∩C.

Warning: A crossed n-cube of groups gives an n-cube on forgetting structure, but note that there
is a reversal of the role of the index A. The top corner of a crossed n-cube is M〈n〉, and that in an

n-cube is F∅. This is due to the fact that an n-cube of groups naturally yields a crossed n-cube as a
sort of generalized kernel, as we have seen earlier.

A morphism of crossed n-cubes, α : M −→ N , is a family of group homomorphisms

{αA : MA −→ NA, A ⊆ 〈n〉} commuting with the μi and the h-functions. The resulted category
of crossed n-cubes of groups will be denoted by Crsn.

Now we give the notion of a crossed n-subcube, which is consistent with the categorical notion

of subobject in the category Crsn. We say that a crossed n-cube M′ is a crossed n-subcube of
M if M′

A is a subgroup of MA, and the homomorphism μ′
i : M′

A −→ M′
A\{i} and the function

h′ : M′
A ×M′

B −→ M′
A∪B are the restrictions of μi : MA −→ MA\{i} and h : MA ×MB −→ MA∪B

respectively for every i ∈ 〈n〉, A,B ⊆ 〈n〉.
Moreover, a crossed n-subcubeM′ of M is said to be a normal crossed n-subcube if h(a, b′) ∈ M′

A∪B
and h(a′, b) ∈ M′

A∪B for all a ∈ MA, b
′ ∈ M′

B, a
′ ∈ M′

A, b ∈ MB .
Let α : M −→ N be a morphism of crossed n-cubes and Kerα denote the family {KerαA : A ⊆ 〈n〉}

of groups, which essentially is a normal crossed n-subcube of M.

Example 2.1.

(i) A crossed 1-cube is the same as a crossed module, Crs1 = CM.
(ii) A crossed 2-cube is the same as a crossed square (for the definition, see [18]). The detailed

reformulation is easy.
(iii) Let G be a group and N1, . . ., Nn be normal subgroups of G. LetMA =

⋂

i∈A
Ni for A ⊆ 〈n〉 (here

M∅ is understood to mean G); if i ∈ 〈n〉, define μi : MA
i∈A �� MA\{i} to be the inclusion and

given A, B ⊆ 〈n〉, let h : MA ×MB −→ MA∪B be given by the commutator: h(a, b) = [a, b]
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for a ∈ MA, b ∈ MB (here, of course, MA∪B = MA ∩MB). Then {MA : A ⊆ 〈n〉, μi, h} is

a crossed n-cube, called the inclusion crossed n-cube given by the normal (n+ 1)-ad of groups
(G;N1, . . . , Nn).

(iv) Let N be a crossed n-cube and R1, . . . ,Rm be normal crossed n-subcubes of N . Let

A ⊆ 〈m + n〉, A1 = A ∩ {n + 1, · · · , n + m}, A2 = A ∩ 〈n〉 and consider MA =
⋂

j∈A1

Rj−n
A2

(here
⋂

j∈∅
Rj−n

A2
is understood to mean NA2); define μi : MA

i∈A �� MA\{i} to be the inclu-

sion
⋂

j∈A1

Rj−n
A2

� � �� ⋂

j∈A1\{i}
Rj−n

A2
if i ∈ A1 and to be induced by μi : R

j−n
A2

−→ Rj−n
A2\{i} if

i ∈ A2; let h : MA ×MB −→ MA∪B be defined naturally by commutators and h-functions of
the crossed n-cubes N ,R1, . . . ,Rm. Then {MA : A ⊆ 〈n〉, μi, h} is a crossed (m + n)-cube,

called the crossed (m+n)-cube of groups induced by the normal (m+1)-ad of crossed n-cubes
(N ;R1, . . . ,Rm).

Remark 2.2. Note that for n = 0 the construction of (iv) agrees with that of (iii) if we assume that
a crossed 0-cube is just a group.

According to [87] the category of cat 1-groups is equivalent to that of crossed modules, and the
category of cat 2-groups to that of crossed squares. One of the main result of [49] says that the

categories Crsn and Catn are equivalent. Namely, we have the following

Theorem 2.3. There are inverse equivalences of categories

Crsn
Φn

��
Catn

Ψn
��

given by

Φn(M) =
∨

A⊆〈n〉
MA

/{
h(a, b) = [a, b] for all a ∈ MA, b ∈ MB, A,B ⊆ 〈n〉

}
, M ∈ Crsn

and

Ψn(G)A =
⋂

i∈A
Ker si ∩

⋂

i/∈A
Im si, G ∈ Catn, A ⊆ 〈n〉.

Throughout this work, we mainly prefer to use crossed n-cubes instead of cat n-groups, except for
those cases where using catn-groups will make things easier to understand.

1.3. Nerve of crossed n-cubes. Given a crossed module, M = ( M
μ �� P ), the corresponding

cat1-group is (M � P, s, t), where s(m, p) = p and t(m, p) = μ(m)p. This cat1-group has an internal
category structure within the category Gr, and the nerve of its category structure forms the simplicial

group E(M)∗, where E(M)n = M � (· · · (M � P ) · · · ) with n semidirect factors of M , and the face
and degeneracy homomorphisms are defined by

d0(m1, . . . ,mn, p) = (m2, . . . ,mn, p),

di(m1, . . . ,mn, p) = (m1, . . . ,mimi+1, . . . ,mn, p), 0 < i < n,

dn(m1, . . . ,mn, p) = (m1, . . . ,mn−1, μ(mn)p),

si(m1, . . . ,mn, p) = (m1, . . . ,mi, 1,mi+1, . . . ,mn, p), 0 ≤ i ≤ n.

The simplicial group E(M)∗ is called the nerve of the crossed module M, and its Moore complex
is trivial in dimensions ≥2. In fact, its Moore complex is just the original crossed module up to

isomorphism with M in dimension 1 and P in dimension 0.
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For a given crossed n-cube M, there is an associated catn-group and hence on applying the crossed

module nerve structure E in the n-independent directions, this construction leads naturally to an
n-simplicial group, called the multinerve of the crossed n-cube M and denoted by Ner(M). Taking

the diagonal of this n-simplicial group gives a simplicial group denoted by E(n)(M)∗ (see [106]).
Given a crossed n-cube of groups M = {MA : A ⊆ 〈n〉, μi, h}, and any i ∈ 〈n〉, by [106,

Proposition 5], there is a morphism μi : M1 −→ M0 of crossed (n − 1)-cubes of groups, where

M1 = {MA : A ⊆ 〈n〉, i ∈ A} and M0 = {MA : A ⊆ 〈n〉, i /∈ A}, such that for each B ⊆ 〈n − 1〉,
Kerμi,B is central in M1,B and Imμi,B is normal in M1,B. Moreover, there is an exact sequence of
crossed (n− 1)-cubes in the obvious sense

0 �� N1
�� M1

μi �� M0
�� N0

�� 1, (2.1)

where N1 = {Kerμi,B : B ⊆ 〈n−1〉} and N0 = {Coker μi,B : B ⊆ 〈n−1〉} with the natural structure
of crossed (n− 1)-cubes.

The following result will be helpful in the sequel.

Proposition 2.4. There is an exact sequence

0 �� πn−2(E
(n−1)(N1)∗) �� πn−1(E

(n)(M)∗) �� πn−1(E
(n−1)(N0)∗) ��

�� πn−3(E
(n−1)(N1)∗) �� · · · �� π2(E

(n−1)(N0)∗) ��

�� π0(E
(n−1)(N1)∗) �� π1(E

(n)(M)∗) �� π1(E
(n−1)(N0)∗) �� 0

and isomorphisms

π0(E
(n)(M)∗) ∼= π0(E

(n−1)(N0)∗), πn(E
(n)(M)∗) ∼= πn−1(E

(n−1)(N1)∗).

Proof. By the construction, E(n)(M)∗ is the diagonal of the bisimplicial group M∗∗ induced by ap-

plying the crossed module nerve construction E to the morphism of simplicial groups E(n−1)(μi) :

E(n−1)(M1)∗ −→ E(n−1)(M0)∗. Moreover, applying Lemma B [106] to the exact sequence (2.1) of
(n− 1)-cubes, we have the following exact sequence of simplicial groups

0 �� E(n−1)(N1)∗ �� E(n−1)(M1)∗
E(n−1)(μi) �� E(n−1)(M0)∗ �� E(n−1)(N0)∗ �� 1. (2.2)

Hence by [107] there is a spectral sequence

E2
pq =⇒ πp+q(E

(n)(M)∗),

where E2
p0 = πp(E

(n−1)(N0)∗) and E2
p1 = πp(E

(n−1)(N1)∗), p ≥ 0. Proposition 2.13 implies that

E2
pq = 0 either for p > n− 1 or q > 1, which completes the proof.

Now we present a fresh view of the n-fold Čech complexes, relating them to the diagonal of the

n-simplicial multinerve of crossed n-cubes of groups, which leads to some ideas that will be useful
throughout the next chapter.

Given an n-cube of groups F, the normal (n+ 1)-ad of groups (F ;R1, . . . , Rn), where F = F∅ and

Ri = Kerα∅

{i}, i ∈ 〈n〉 will be called the normal (n+ 1)-ad of groups induced by F.

Lemma 2.5. Let F be an n-presentation of a group G in the category Gr. There is an isomorphism
of simplicial groups

E(n)(M)∗ ∼= Č(n)(F)∗,
where M is the inclusion crossed n-cube of groups given by the normal (n + 1)-ad of groups
(F ;R1, . . . , Rn) induced by F.
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Proof. For n = 1, we only construct the following isomorphism:

λ∗ : E(R ↪→ F )∗
∼= �� Č(α)∗,

where F
α �� G is a group homomorphism and R = Kerα. In fact, define λ0 = 1F and

λn(r1, . . . , rn, f) = (r1 · · · rnf, r2 · · · rnf, . . . , rnf, f), n ≥ 1, for all (r1, . . . , rn, f) ∈ E(R ↪→ F )n.
As the constructions are natural, we get, on repeated application, an isomorphism of n-simplicial

groups. Applying the diagonal clearly gives the result.

Now define the functor

E(m) : Crsn −→ SimplCrsn−m (simplicial crossed (n−m)-cubes), (2.3)

1 ≤ m ≤ n, as follows: given a crossed n-cube M, consider an associated cat n-group G, which is

equivalent to a crossed (n−m)-cube endowed with m compatible category structures. Then, applying
the nerve structure E to the m-independent directions, we see that this construction leads naturally
to an m-simplicial crossed (n −m)-cube. Then the simplicial crossed (n −m)-cube E(m)(M)∗ is the

diagonal of this m-simplicial crossed (n−m)-cube.
Note that this construction depends upon the sequence of the m-independent directions.
An m-cube of crossed n-cubes X determines a normal (m + 1)-ad of crossed n-cubes

(X(∅);R1, · · · , Rm), where Ri = KerX(ρ∅{i}), i ∈ 〈m〉. This (m + 1)-ad will be called the normal

(m+ 1)-ad of crossed n-cubes induced by X.
The following assertion follows directly from Lemma 2.5.

Corollary 2.6. Let X be an m-presentation of a crossed n-cube M in the category Crsn. There is
an isomorphism of simplicial crossed n-cubes

Č(m)(X)∗ ∼= E(m)(N )∗,

where N is the crossed (m + n)-cube of groups given by the normal (m + 1)-ad of crossed n-cubes

(X(∅);R1, . . . , Rm) induced by X.

1.4. Abelianization and related functors. It is well known that for an algebraic category C

the obvious inclusion functor of the category of Abelian group objects AbC ↪→ C has left adjoint
Ab : C −→ AbC, called the abelianization functor, which plays a fundamental role in the description
of homology of objects in the category C. Namely, the kth homology of an object X ∈ C is defined

to be LkAb(X), where LkAb denotes the kth derived functor of Ab in the sense of Quillen [109].
An Abelian group object in Crsn, an Abelian crossed n-cube, is a crossed n-cube whose h maps are

trivial. The abelianization functor

Ab(n) : Crsn −→ AbCrsn, (2.4)

is given as follows:

(a) for A ⊆ 〈n〉
Ab(n)(M)A =

MA∏

B∪C=A
DB,C

,

where DB,C is the subgroup of MA generated by the elements h(b, c), h : MB × MC −→
MB∪C=A for all b ∈ MB , c ∈ MC ;

(b) if i ∈ 〈n〉, the homomorphism μ̃i : Ab
(n)(M)A −→ Ab(n)(M)A\{i} is induced by the homomor-

phism μi;

(c) for A,B ⊆ 〈n〉, the function h̃ : Ab(n)(M)A × Ab(n)(M)B −→ Ab(n)(M)A∪B is induced by h

and therefore is trivial,
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for any M = {MA : A ⊆ 〈n〉, μi, h} ∈ Crsn.

The functor Ab(n) is left adjoint to the inclusion functor i : AbCrsn ↪→ Crsn, as is easily checked.
The equivalent Abelian group object to an Abelian crossed n-cube in the category Catn is just a

catn-group whose underlying group is Abelian, which is called an Abelian catn-group (see also [23]).

Moreover, the abelianization functor

Ab(n) : Catn −→ AbCatn (2.5)

sends a catn-group G = (G, si, ti) to the Abelian catn-group (G/[G,G], si , ti), where si and ti are

induced by si and ti.

Proposition 2.7. Let M be an inclusion crossed n-cube given by a normal (n + 1)-ad of groups
(F ;R1, . . . , Rn) and k ≥ 2. Then there is a crossed n-cube Bk(M) given as follows:

(a) for A ⊆ 〈n〉
Bk(M)A =

⋂

i∈A
Ri/Dk(F ;A),

where

Dk(F ;A) =
∏

A1∪A2∪···∪Ak=A

[ ⋂

i∈A1

Ri,
[ ⋂

i∈A2

Ri, . . . ,
[ ⋂

i∈Ak−1

Ri,
⋂

i∈Ak

Ri

]
. . .
]]
, A ⊆ 〈n〉;

(b) if j ∈ 〈n〉, the homomorphism μ̃j : Bk(M)A −→ Bk(M)A\{j} is induced by the inclusion
homomorphism μj;

(c) representing an element in Bk(M)A by x, where x ∈
⋂

i∈A
Ri (the bar denotes a coset), for

A,B ⊆ 〈n〉, the map

h̃ : Bk(M)A × Bk(M)B −→ Bk(M)A∪B

is given by

h̃(x, y) = h(x, y) = [x, y]

for all x ∈ Bk(M)A, y ∈ Bk(M)B.

Proof. Since
[ ⋂

i∈A1

Ri,
[ ⋂

i∈A2

Ri, . . . ,
[ ⋂

i∈Ak−1

Ri,
⋂

i∈Ak

Ri

]
. . .
]]

⊆
[ ⋂

i∈A1\{j}
Ri,
[ ⋂

i∈A2\{j}
Ri, . . . ,

[ ⋂

i∈Ak−1\{j}
Ri,

⋂

i∈Ak\{j}
Ri] . . .

]]

for A1 ∪ · · · ∪ Ak = A ⊆ 〈n〉, the inclusion

μj :
⋂

i∈A
Ri

� � ��
⋂

i∈A\{j}
Ri

induces the homomorphism μ̃j : Bk(M)A −→ Bk(M)A\{j} for all j ∈ 〈n〉.
Now, what is left is to show that the function

h̃ : Bk(M)A × Bk(M)B −→ Bk(M)A∪B

for A,B ⊆ 〈n〉 is well defined. In fact, let x′ ∈
⋂

i∈A
Ri, y

′ ∈
⋂

i∈B
Ri be such that

xx′−1 ∈
∏

A1∪···∪Ak=A

[ ⋂

i∈A1

Ri,
[ ⋂

i∈A2

Ri, . . . ,
[ ⋂

i∈Ak−1

Ri,
⋂

i∈Ak

Ri

]
. . .
]]
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and

yy′−1 ∈
∏

A1∪···∪Ak=B

[ ⋂

i∈A1

Ri,
[ ⋂

i∈A2

Ri, . . . ,
[ ⋂

i∈Ak−1

Ri,
⋂

i∈Ak

Ri] . . .
]]
.

The inclusion [ ⋂

i∈A
Ri,
⋂

i∈B
Ri

]
⊆
⋂

i∈A∪B
Ri

for all A,B ⊆ 〈n〉 implies that

[x, y][x′, y′]−1 = xyx−1y−1y′x′y′−1x′−1

= xy′
[
y′−1y, x−1

]
y′−1x−1x[y′, x−1x′]x−1

∈
∏

A1∪···∪Ak=A∪B

[ ⋂

i∈A1

Ri,
[ ⋂

i∈A2

Ri, . . . ,
[ ⋂

i∈Ak−1

Ri,
⋂

i∈Ak

Ri] . . .
]]
,

so h(x, y) = h(x′, y′) and h̃ is well defined. The verification that Bk(M) is a crossed n-cube is now

routine and is omitted.

Remark 2.8. The functor B2 coincides on the subcategory of inclusion crossed n-cubes with the
abelianization functor Ab(n).

For any inclusion crossed n-cube M given by a normal (n + 1)-ad of groups (F ;R1, . . . , Rn) and
k ≥ 2, there is a natural morphism of crossed n-cubes M −→ Bk(M) inducing the natural fibration

of simplicial groups E(n)(M)∗
Δn,k

∗ �� E(n)(Bk(M))∗ defined by

Δn,k
m (x1, . . . , xl) = (x1, . . . , xl)

for all (x1, . . . , xl) ∈ E(n)(M)m =
( ⋂

i∈A1

Ri

)
� · · ·�

( ⋂

i∈Al

Ri

)
and m ≥ 0, where A1, . . . , Al ⊆ 〈n〉 and

l = (m+ 1)n. It is easy to see that KerΔn,k
m = Dk(F ;A1)� · · ·�Dk(F ;Al).

Proposition 2.9. Let M be an inclusion crossed n-cube given by a normal (n + 1)-ad of groups
(F ;R1, . . . , Rn) and k ≥ 2. Then there is an isomorphism of simplicial groups

ZkE
(n)(M)∗ ∼= E(n)(Bk(M))∗.

Proof. For any inclusion crossed module R ↪→ F , It is easy to verify the following equalities in the

group R� · · ·�R� F :
[
(1, . . . , 1, x), (1, . . . , 1, x′)

]
=
(
1, . . . , 1, [x, x′]

)
,

[
(1, . . . , 1, r

s
, 1, . . . , 1), (1, . . . , 1, x)

]
=
(
1, . . . , 1, [r, x]

s
, 1, . . . , 1

)
,

[
(1, . . . , 1, r

s
, 1, . . . , 1), (1, . . . , 1, r′

t
, 1, . . . , 1)

]
=
(
1, . . . , 1, [r, r′]

min{s, t}
, 1, . . . , 1

)

for all x, x′ ∈ F , r, r′ ∈ R.
There are further generalizations of these equalities, namely for any inclusion crossed n-cube M

given by the normal n+1-ad of groups (F,R1, . . . , Rn) we have the following facts, the proof of which

is routine and will be omitted.

(A) Let s and t be any fixed elements of the set 〈(m+1)n〉. Then there exists a unique λ = λ(s, t) ∈
〈(m+ 1)n〉 such that Aλ = As ∪ At and in the group E(n)(M)m the equality

[
(1, . . . , 1, x

s
, 1, . . . , 1), (1, . . . , 1, y

t
, 1, . . . , 1)

]
=
(
1, . . . , 1, [x, y]

λ

, 1, . . . , 1
)
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holds for all x ∈
⋂

i∈As

Ri, y ∈
⋂

i∈At

Ri.

(B) Let s ∈ 〈(m+ 1)n〉 and A,B ⊆ As with A ∪B = As. Then there exists p, q ∈ 〈(m + 1)n〉 such
that Ap = A, Aq = B, and λ(p, q) = s.

We must only show the equality

Γk

(
E(n)(M)m

)
= KerΔn,k

m , (2.6)

which will be done by induction on k, using facts (A) and (B) above.

Let k = 1; then it is clear that Γ1(E
(n)(M)m) = KerΔn,1

m .
Proceeding by induction, we assume that (2.6) is true for k − 1 and we will prove it for k.

First, we will show the inclusion KerΔn,k
m ⊆ Γk(E

(n)(M)m). It suffices to show that

1� · · · � 1�Dk(F,As)� 1� · · ·� 1 ⊆ Γk(E
(n)(M)m) for all s ∈ 〈(m+ 1)n〉.

In fact, any generator w of Dk(F,As) has the form w = [x, y], where x ∈
⋂

i∈A
Ri, y ∈ Dk−1(F,B) and

A ∪B = As.
Now (B) implies that there exist p, q ∈ 〈(m+1)n〉 such that Ap = A, Aq = B and λ(p, q) = s. Thus

we have [
(1, . . . , 1, x

p
, 1, . . . , 1), (1, . . . , 1, y

q
, 1, . . . , 1)

]
= (1, . . . , 1, w

s
, 1, . . . , 1),

which means that

1� · · ·� 1�Dk(F,As)� 1� · · ·� 1 ⊆
[
E(n)(M)m,KerΔn,k−1

m

]
.

Therefore, by the inductive hypothesis we obtain

1� · · ·� 1�Dk(F,As)� 1� · · ·� 1 ⊆
[
E(n)(M)m,Γk−1(E

(n)(M)m)
]
= Γk(E

(n)(M)m).

Finally, we will show the inverse inclusion Γk(E
(n)(M)m) ⊆ KerΔn,k

m . In fact, any generator

w of Γk(E
(n)(M)m) can be written in the form w = [w1, w2], where w1 ∈ E(n)(M)m and w2 ∈

Γk−1(E
(n)(M)m). Using again the inductive hypothesis, we have w2 ∈ KerΔn,k−1

m . Thus,

w1 =

(m+1)n∏

s=1

(1, . . . , 1, xs
s
, 1, . . . , 1), xs ∈

⋂

i∈As

Ri,

w2 =

(m+1)n∏

t=1

(1, . . . , 1, yt
t
, 1, . . . , 1), yt ∈ Dk−1(F,At).

We know that [xs, yt] ∈ Dk(F,As ∪ At), so (A) implies that we have

[
(1, . . . , 1, xs

s
, 1, . . . , 1), (1, . . . , 1, yt

t
, 1, . . . , 1)

]
=
(
1, . . . , 1, [xs, yt]

λ(s,t)

, 1, . . . , 1
)

∈ 1� · · ·� 1�Dk(F,Aλ(s,t))� 1� · · ·� 1 ⊆ KerΔn,k
m .

and the Witt–Hall identities on commutators imply that w ∈ KerΔn,k
m .

From Proposition 2.9 we can deduce that the abelianization of a crossed module commutes with its
nerve. We provide a more general result for functors (2.4) and (2.3), which plays an essential role in

obtaining generalized Hopf-type formulas for the homology of crossed n-cubes.
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Proposition 2.10. Let n ≥ 0, m ≥ 1 and M be a crossed (n+m)-cube. Then there is an isomorphism

of simplicial crossed n-cubes

Ab(n)E(m)(M)∗ ∼= E(m)Ab(n+m)(M)∗,

where E(m) functors in both sides of the isomorphism are applied to the same directions.

Proof. To simplify things, according to Theorem 2.3, instead of the crossed (n +m)-cube M we use
its equivalent object, the cat (n+m)-group, G = (G, si, ti) = Φn+m(M). The proof will be done by

induction on m.
Let m = 1 and n = 0; then the assertion reduces to Proposition 2.9. This case plays the key role in

the whole proof.

In fact, for m = 1, n ≥ 1 and for the cat (n+ 1)-group G, let us fix some k ∈ 〈n + 1〉 and apply
the functor E(1) to this “direction.” By the definition, the simplicial cat n-group, E(1)(M)∗, is just

the simplicial group E(Ψ1(G, sk, tk))∗ endowed with n compatible category structures induced by the
respective structural endomorphisms sj, tj (0 ≤ j ≤ n+1, j �= k) of the cat (n + 1)-group G. The fact
that the abelianization of a cat n-group is just the abelianization of the underlying group endowed

with the induced structural endomorphism and our key fact above completes the assertion in this case.
Proceeding by induction, we assume that the assertion is true for m− 1, and we will prove it for m.
By the construction, E(m)(M)∗ is the diagonal of the bisimplicial crossed n-cube induced by ap-

plying the crossed module nerve construction E(1) to the simplicial crossed (n+1)-cube E(m−1)(M)∗.
Hence we have

E(m)(M)k = E(1)
(
E(m−1)(M)k

)
k
,

for all k ≥ 0. Using the inductive hypothesis, we have the isomorphisms

Ab(n)E(m)(M)k = Ab(n)E(1)
(
E(m−1)(M)k

)
k
∼= E(1)Ab(n+1)

(
E(m−1)(M)k

)
k

∼= E(1)
(
E(m−1)

(
Ab(n+m)(M)

)
k

)
k
= E(m)

(
Ab(n+m)(M)

)
k
.

1.5. Non-Abelian mapping cone complex. This section is devoted to the investigation of some

properties of the mapping cone complex of a morphism of (non-Abelian) group complexes as introduced
in [87].

A complex of (non-Abelian) groups (A∗, d∗) of length n is a sequence of group homomorphisms

An
dn �� An−1

dn−1 �� · · · d1 ���� A0

such that Im di+1 is normal in Ker di. Now we recall the following definition from [87].
Let f : (A∗, d∗) −→ (B∗, d′∗) be a morphism of chain complexes of groups. Let f satisfy the following

conditions (∗):
each fi : Ai −→ Bi is a crossed module

and

the maps (di, d
′
i) form a morphism of crossed modules.

Then the mapping cone of f is a complex of (non-Abelian) groups (C∗(f), ∂∗) defined by Ci(f) = Ai−1�

Bi, where the action of Bi on Ai−1 is induced by the action of Bi−1 on Ai−1 via the homomorphism
d′i; and

∂i(a, b) =
(
di−1(a)

−1, fi−1(a)d
′
i(b)
)

for all a ∈ Ai−1, b ∈ Bi. By [87, Proposition 3.2], there is a long exact sequence of groups

· · · �� Hi(A∗) �� Hi(B∗) �� Hi(C∗(f)) �� Hi−1(A∗) �� · · · . (2.7)
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Now let us consider a morphism of pseudo-simplicial groups α : (G∗, d∗i , s
∗
i ) −→ (H∗, d′∗i , s

′∗
i ) satis-

fying the following conditions (∗∗):
each αn : Gn −→ Hn is a crossed module

and

the maps (d∗i , d
′∗
i ) and (s∗i , s

′∗
i ) form morphisms of crossed modules.

Define a new pseudo-simplicial group M∗(α) as follows:

Mn(α) = Gn �Gn � · · ·�Gn︸ ︷︷ ︸
n-times

�Hn,

dn0 (g1, . . . , gn, h) =
(
dn0 (g2), . . . , d

n
0 (gn), d

′n
0 (h)

)
,

dni (g1, . . . , gn, h) =
(
dni (g1), . . . , d

n
i (gi)d

n
i (gi+1), . . . , d

n
i (gn), d

′n
i (h)

)
, 0 < i < n,

dnn(g1, . . . , gn, h) =
(
dnn(g1), . . . , d

n
n(gn−1), αn−1d

n
n(gn)d

′n
n (h)

)
,

sni (g1, . . . , gn, h) =
(
sni (g1), . . . , s

n
i (gi), 1, s

n
i (gi+1), . . . , s

n
i (gn), s

′n
i (h)

)
, 0 ≤ i ≤ n.

It is easy to see that the induced morphism α̃ : NG∗ −→ NH∗, where NG∗ and NH∗ are the
Moore complexes of G∗ and H∗ respectively, satisfies the conditions (∗). Therefore, we can consider

the mapping cone complex C∗(α̃) of α̃.

Proposition 2.11. The natural morphism of complexes κ : NM∗(α) −→ C∗(α̃), given by
κn(g1, g2, . . . , gn, h) = (dnn(gn), h), n ≥ 0, induces an isomorphism of groups

πn(M∗(α)) ∼= Hn(C∗(α̃)), n ≥ 0.

Proof. The verification that κn, n ≥ 0 is a homomorphism and commuting with differen-
tials is easy. Let (g, h) ∈ NGn−1 � NHn = Cn(α̃); then it is easy to verify that

(sn−1
0 (g)ε(n−1), . . . , sn−1

n−2(g)
−1, sn−1

n−1(g), h) ∈ NMn(α), where ε(i) = (−1)i. It is clear that

κn

(
sn−1
0 (g)ε(n−1), . . . , sn−1

n−2(g)
−1, sn−1

n−1(g), h
)
= (g, h).

Hence κn is surjective for all n ≥ 0.
Consider the kernel complex (G∗, ∂∗) of κ. Note that Im ∂n is not normal in Ker ∂n−1 in general,

G0 = 1 and

Gn =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(g1, g2, . . . , gn) ∈ Gn �Gn � · · ·�Gn︸ ︷︷ ︸
n-times

| dn0 (gj) = 1, 2 ≤ j ≤ n;

| dni (gj) = dni (gi)d
n
i (gi+1) = 1, 1 ≤ i ≤ n− 1,

| 1 ≤ j ≤ n and i �= j − 1, j;

| dnn(gn) = 1.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

Furthermore, it is easy to verify that for an element (g1, . . . , gn−1) ∈ Ker ∂n−1, the element
(g′1, . . . , g′n−1, g

′
n), defined by the formulas

g′i =

⎧
⎨

⎩

sn−1
n−1(gi)s

n−1
n−2(g

−1
i ) · · · sn−1

i (g
ε(n−i−1)
i )sn−1

i−1 (g
ε(n−i)
i g

ε(n−i)
i+1 · · · gε(n−i)

n−1 ), i is even,

sn−1
i−1 (g

ε(n−i)
n−1 · · · gε(n−i)

i+1 g
ε(n−i)
i )sn−1

i (g
ε(n−i−1)
i ) · · · sn−1

n−2(g
−1
i )sn−1

n−1(gi), i is odd,

for all 1 ≤ i ≤ n− 1 and g′n = 1, belongs to Gn and

∂n(g
′
1, . . . , g

′
n−1, g

′
n) = (g1, . . . , gn−1).

Now the proposition follows from the long exact homology sequence induced by the short exact se-

quence of complexes 1 �� G∗ �� NM∗(α)
κ �� C∗(α̃) �� 1 .
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Given a pseudo-simplicial group G∗, we will say that the length of G∗ is ≤ n, denoted by l(G∗) ≤ n,

if NGi = 1 for i > n.

Remark 2.12. Let α : (G∗, d∗i , s
∗
i ) −→ (H∗, d′∗i , s

′∗
i ) be a morphism of pseudo-simplicial groups satis-

fying the conditions (∗∗) and n ≥ 2. Assume l(G∗) ≤ n− 1 and l(H∗) ≤ n− 1. Consider an element

(g1, g2, . . . , gk, h) ∈ NMk(α), k > n; then

dk0(gj) = 1, 2 ≤ j ≤ k,

dki (gj) = dki (gi)d
k
i (gi+1) = 1, 1 ≤ i ≤ k − 1, 1 ≤ j ≤ k and i �= j − 1, j,

d′ki (h) = 1, 0 ≤ i ≤ k − 1.

Using the well-known result given as Lemma 3.5 below, we can easily show that gi = 1, 1 ≤ i ≤ k and

h = 1, so NMk(α) = 1 for k > n. Thus l(M∗(α)) ≤ n.

Now using the mapping cone construction, for a given crossed n-cube M, we construct inductively

a complex of groups C∗(M) of length n, always having in mind that M is thought of as a crossed

module of crossed (n − 1)-cubes, M1 −→ M0. In fact, for n = 1, and M = ( M
μ �� P ), C∗(M)

is the complex M −→ P of length 1. Let n = 2 and M be a crossed square, considered as a crossed
module of crossed modules or a morphism of complexes of length 1 satisfying the conditions (∗). The
construction above gives a complex C∗(M) of length 2. (It has a 2-crossed module structure, [27], as
noted by Conduché; see also [100].) Proceeding by induction, assume that for any crossed (n−1)-cube
M, we have constructed a complex C∗(M) of length n − 1. Now let M be a crossed n-cube and

consider it as a crossed module of crossed (n − 1)-cubes M1 −→ M0. This implies that there is a

morphism of complexes of groups C∗(M1)
δ �� C∗(M0) of length n−1 satisfying the conditions (∗).

So using again the above-mentioned construction, we obtain a chain complex of groups C∗(M) = C∗(δ)
of length n.

Proposition 2.13 (see [87]). Let M be a crossed n-cube of groups. Then l(En(M)∗) ≤ n and there
is a natural morphism of complexes NE(n)(M)∗ −→ C∗(M) that induces isomorphisms of groups

πi(E
(n)(M)∗) ∼= Hi(C∗(M)), i ≥ 0.

Moreover,

πn(E
(n)(M)∗) ∼=

n⋂

i=1
Ker

(
M〈n〉

μi �� M〈n〉\{i}
)
.

Proof. This is obvious for n = 1. Let n = 2 and M be a crossed square. If we consider M
as a crossed module of crossed modules M1 −→ M0, inducing the natural morphism of sim-

plicial groups E(1)(M1)∗
α �� E(1)(M0)∗ , which satisfies the conditions (∗∗), then by definition

E(2)(M)∗ = M∗(α), and by Proposition 2.11 and the corresponding remark, l(E(2)(M)∗) ≤ 2, and

there exists a natural morphism of complexes NE(2)(M)∗ −→ C∗(α̃) inducing an isomorphism

πi(E
(2)(M)∗) ∼= Hi(C∗(α̃)), i ≥ 0.

Clearly, C∗(α̃) ∼= C∗(M).
Proceeding by induction, we assume that the assertion is valid for n− 1 and we will show it for n.

Let us consider any crossed n-cube M as a crossed module of crossed (n − 1)-cubes M1 −→
M0. This implies a morphism of simplicial groups E(n−1)(M1)∗

α �� E(n−1)(M0)∗ satisfying the

conditions (∗∗) and a morphism of complexes C∗(M1)
δ �� C∗(M0) satisfying the conditions (∗). By
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definition, E(n)(M)∗ = M∗(α); hence Proposition 2.11 and Remark 2.12 imply that l(E(n)(M)∗) ≤ n

and there exists a natural morphism of complexes NE(n)(M)∗
κ �� C∗(α̃) inducing isomorphisms

πi(E
(n)(M)∗) ∼= Hi(C∗(α̃)), i ≥ 0.

Using the inductive hypothesis, we see that there exist natural morphisms of complexes

NE(n−1)(M1)∗
κ′

�� C∗(M1) and NE(n−1)(M0)∗
κ′′

�� C∗(M0) ,

that induce isomorphisms

πi(E
(n−1)(M1)∗) ∼= Hi(C∗(M1)),

πi(E
(n−1)(M0)∗) ∼= Hi(C∗(M0)),

for i ≥ 0. It is easy to verify that κ′′α̃ = δκ′ and that (κ′i, κ
′′
i ) is a morphism of crossed modules for

all i ≥ 0. Then the natural morphism of complexes

C∗(α̃)
κ′
�κ′′

�� C∗(δ) = C∗(M),

by (2.7) and the five lemma, induces Hi(C∗(α̃)) ∼= Hi(C∗(M)), i ≥ 0. Therefore the morphism of

complexes

NE(n)(M)∗
(κ′

�κ′′)◦κ �� C∗(M)

induces isomorphisms

πi(E
(n)(M)∗) ∼= Hi(C∗(M)), i ≥ 0.

These isomorphisms and the construction of C∗(M) imply that

πn(E
(n)(M)∗) ∼=

n⋂

i=1
Ker

(
M〈n〉

μi �� M〈n〉\{i}
)
.

2. Homology of Crossed n-Cubes

In this section, we give the construction of the (cotriple) homology of homotopy (n+1)-types, which
will be investigated in the next chapter from a Hopf formulas point of view.

First, we show that the category Crsn is an algebraic category (see also [23]), that is, there is a

tripleable forgetful functor from Crsn to Set. In fact, we need only to construct a ‘free’ cotriple in
the category Crsn.

We begin by constructing the adjoint pair of functors Crsn
U ��

Gr
��

F
�� .

Assume that the functor U : Crsn −→ Gr assigns to any crossed n-cube M = {MA : A ⊆ 〈n〉} the
direct product of groups MA, A ⊆ 〈n〉, i.e.,

U(M) =
∏

A⊆〈n〉
MA.

Now define the functor F : Gr −→ Crsn as follows: for any group G, let F (G) denote the inclu-
sion crossed n-cube induced by the normal (n + 1)-ad of groups

( ∨

A⊆〈n〉
GA; Ker p1, . . . ,Ker pn

)
(see

Example 2.1), where
∨

A⊆〈n〉
GA is the sum of groups GA = G, A ⊆ 〈n〉 and

pi :
∨

A⊆〈n〉
GA −→

∨

B⊆〈n−1〉
GB , i ∈ 〈n〉,
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are natural projections given by

pi =

{
1G : GA −→ GB if A ⊆ 〈n〉 \ {i},
0 otherwise,

where δi : 〈n〉 \ {i} −→ 〈n− 1〉 is the unique monotone bijection.

Proposition 2.14. The functor F is left adjoint to the functor U .

To prove this proposition we use the following easily verified facts requiring only care over the

notation. Given a crossed n-cube M = {MA : A ⊆ 〈n〉}, for any B ⊆ 〈n〉 denote by MB and MB

the families {MA : A ⊆ 〈n〉, B ⊆ A} and {MA : A ⊆ 〈n〉, B ∩A = ∅}, respectively. Then MB and

MB have the structure of crossed (n− |B|)-cubes (see [106, Proposition 5]).

Proof of Proposition 2.14. We claim that for any group G, the homomorphism

u = {uA} : G −→
∏

A⊆〈n〉
F (G)A = UF (G),

where uA : G −→ F (G)A =
⋂

i∈A
Ker pi is given by the identity from G to GA, is a universal arrow from

G to the functor U .
Let M be a crossed n-cube and let αA : G −→ MA, A ⊆ 〈n〉 be homomorphisms defining a

homomorphism α : G −→
∏

A⊆〈n〉
MA = U(M). Then there is a commutative diagram with splitting

short exact sequences of groups:

Ker pi �� ��

γ̃i

��

∨

A⊆〈n〉
GA

pi �� ��

γ

��

∨

B⊆〈n−1〉
GB

γi
��

Φn−1(M{i}) �� �� Φn(M) �� �� Φn−1(M{i})

,

where Φ∗ is the equivalence given in Theorem 2.3, γi is induced by GB
αA �� MA with A ⊆ 〈n〉 \ {i}

such that δi(A) = B, γ is induced by GA
αA �� MA , A ⊆ 〈n〉, and γ̃i is the restriction of γ. It is

easy to see that the homomorphisms γ̃i induce the homomorphisms γ̃A :
⋂

i∈A
Ker pi −→ Φn−|A|(MA).

Now define the homomorphism ˜̃γA :
⋂

i∈A
Ker pi −→ MA, A ⊆ 〈n〉 as the composition of γ̃A and

βA : Φn−|A|(MA) −→ MA given by MB

μB\A �� MA for B ⊇ A, where μB\A is the composition of the

homomorphisms μij , j = 1, . . . , |B \ A|, with any ij ∈ (B \ A) \
j−1⋃

k=1

{ik}. Finally, it is easy to verify

that ˜̃γ = {˜̃γA} : F (G) −→ M is the unique morphism of crossed n-cubes with U(˜̃γ)u = α.

We denote by U1 : Gr −→ Set the usual forgetful functor and by F1 : Set −→ Gr its left adjoint,
the free group functor. Composing these two adjunctions,

Crsn
U ��

Gr
F

��
U1 ��

Set,
F1

��

we deduce the following proposition.

Proposition 2.15. The underlying set functor U = U1 ◦ U : Crsn −→ Set has a left adjoint F =

F ◦ F1 : Set −→ Crsn.
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It is routine to verify that the category Crsn, n ≥ 2, similarly to that of crossed modules (i.e.,

n = 1) [21], has kernel pairs and coequalizers preserved and reflected by the functor U . Then by
Proposition 2.15 and Linton’s criterion on tripleability [86] the underlying set functor U : Crsn −→ Set
is tripleable.

Now we construct the cotriple homology of crossed n-cubes (cat n-groups). We refer the reader to

the work of Barr and Beck [5] for the background on cotriple (co)homology.

The above constructed pair of adjoint functors Set
F ��

Crsn
U

�� induces the cotriple F ≡ (F, δ, τ)

on the category Crsn by the obvious way: F = FU : Crsn −→ Crsn, τ : F −→ 1nCrs is the counit and
δ = FuU : F −→ F

2, where u : 1Set −→ UF is the unit of the adjunction.
Using the general theory of cotriple homology due to [5], we have the following definition.

Definition 2.16. Let M be a crossed n-cube. Define the kth homology of M by setting

Hk(M) = LF

k−1Ab
(n)(M), k ≥ 1.

Let P be the projective class induced by the “free” cotriple F (see Chap. 1, Sec. 1.2). According to
Proposition 1.10 the derived functors relative to the cotriple are isomorphic to the derived functors
relative to the projective class induced by the cotriple [60]. Thus there is an isomorphism

LF

kAb
(n) ∼= LP

kAb
(n).

Recall also that an object P of a category C is projective if, given a regular epimorphism f :

X �� �� Y , each morphism g : P −→ Y can be lifted to a morphism h : P −→ X such that fh = g.

We say thatC has enough projective objects if any objectX admits a projective presentation, i.e., there
exists a regular epimorphism P −→ X with P a projective object. If C is a tripleable category with

the adjunction Set
F ��

C
U

�� , then F (X), X ∈ Set, is a projective object and the natural morphism

FU(C) −→ C, C ∈ C, is a regular epimorphism in C, implying that C has enough projectives. It is

also known that the projective class of all projective objects in the algebraic category C coincides with
the projective class P induced by the adjunction, and regular epimorphisms are just P-epimorphisms.

It is easy to verify that if M∗ is a F-cotriple resolution of a crossed n-cube M, then M〈n〉\A
∗ is a

projective resolution of M〈n〉\A for A ⊆ 〈n〉, A �= 〈n〉. Hence

Hk(M)A = Hk(M〈n〉\A)〈|A|〉, k ≥ 1.

Therefore, the interest of our investigation is the group Hk(M)〈n〉, which we denote by Hk(M). If
we define the functor σ : Crsn −→ Gr by σ(M) = M〈n〉 for M ∈ Crsn, then

Hk(M) = LF

k−1(σAb
(n))(M), k ≥ 1.

3. Homology of Precrossed Modules

Precrossed modules form a model of homotopy type in dimensions 1 and 2 for connected CW-
complexes. Precisely, Kan’s G functor establishes an equivalence relation between the category of
connected CW-complexes and the category of free simplicial groups [79] and the first two terms of the

Moore chain complex associated to the simplicial group gives a precrossed module.
The homology of precrossed modules was introduced by Conduché and Ellis in [30]. The aim of

this section is to pursue their line of investigation of homological properties of precrossed modules.

Let (M,μ) be a precrossed P -module. The following type elements in M

〈m,m′〉 = mm′m−1μ(m)m′−1
, m,m′ ∈ M,
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are called Peiffer commutators, and now we give some identities for them from [7]

〈m,m′m′′〉 = 〈m,m′〉μ(m)m′〈m,m′′〉μ(m)m′−1
, (2.8)

〈mm′,m′′〉 = m〈m′,m′′〉m−1〈m, μ(m
′)m′′〉, (2.9)

p〈m,m′〉 = 〈pm, pm′〉, (2.10)

〈k,m〉 = kmk−1m−1, (2.11)

〈k,m〉〈m,k〉 = kμ(m)k−1 (2.12)

for all m,m′,m′′ ∈ M , p ∈ P and k ∈ Kerμ.
The Peiffer commutator subgroup 〈M,M〉, which is a subgroup of the group M generated by the

Peiffer commutators, plays the same role for precrossed modules as the commutator subgroup plays for
groups. Analogously, as a lower central series in a group, a lower Peiffer central series in a precrossed
P -module is defined by Baues and Conduché [7]:

M (1) = M ⊃ M (2) ⊃ · · · .

This series has properties similar to classical central series, giving one hope to generalize some methods
of Curtis [34, 35] and Quillen [108] for nonsimply connected spaces.

The crossed P -module μ′ : M/〈M,M〉 −→ P associated to the precrossed P -module μ : M −→ P ,

where M/〈M,M〉 is a factor group of M by the Peiffer commutator subgroup, and the homomorphism
μ′ and the action of P on M/〈M,M〉 are induced by μ and the action of P on M , respectively, are
further called Peiffer abelianization. As an analog of the classical first group homology, Conduché and
Ellis [30] defined the first homology of a precrossed P -module (M,μ) by Peiffer abelianization,

H1(M)P = M/〈M,M〉.

We point out that despite its name, the Peiffer abelianization can be non-Abelian.
Let X be a set and δ : X −→ P a map to the group P . Then the free precrossed P -module

∂ : F −→ P with base (X, δ) is defined as follows: F is the free group generated by the set X×P , ∂ is

defined on generators by ∂(x, p) = pδ(x)p−1, and the action of P on F is given by p(x, p′) = (x, pp′).
Conduché and Ellis in [30] also defined the second homology group of a precrossed P -module (M,μ)

by the Hopf formula

H2(M)P = R ∩ 〈F,F 〉/〈〈F,R〉〉,
where 1 −→ R −→ F −→ M −→ 1 is a short exact sequence of precrossed P -modules, and (F, ∂) is a
free precrossed P -module with some base (X, δ), which is called the free presentation of the precrossed

P -module (M,μ). They studied some properties of so-defined low-dimensional homology groups of
precrossed P -modules and hoped that higher homologies could be defined analogously using Hopf
formulas for higher homology groups (see [14]). Using this method to define all homology groups of

a precrossed P -module (M,μ), Hn(M)P , one encounters some difficulties, for n ≥ 3, in proving that
the definition does not depend on the free presentation of the precrossed P -module (M,μ).

We have another concept to define all homology groups of a precrossed P -module, particulary the

use of non-Abelian derived functors.
We consider all treatments with homology of precrossed P -modules in the q modular aspect, where q

is a nonnegative integer, and for q = 0 this gives the homology groups of precrossed modules introduced

in [30]. Thus, for nonnegative integer q, we define homology groups modulo q of precrossed P -module
(M,μ) in any dimension n ≥ 1, denoted by Hn(M, q)P , and study their properties generalizing the
classical homology of groups with coefficients in Zq = Z/qZ. Note that q modular aspects of some

other theories will be treated in Chap. 6.
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3.1. Construction. Let us denote by Set(P ) the category of sets over the group P , whose objects

are all sets with a map to P and whose morphisms are all maps of sets such that the corresponding
triangles are commutative.

Consider the functor F : Set(P ) −→ PCM(P ) defined as follows: for an object X
α �� P of the

category Set(P ), let F( X
α �� P ) be a free precrossed P -module with base (X,α); for a morphism

X
κ �� X ′ , let F(κ) be the canonical homomorphism induced by κ.

It is known that the forgetful functor from the category PCM(P ) to the category Set(P ) is a right

adjoint of the functor F . This adjunction induces the cotriple (F , τ, δ) in the category PCM(P ). Let
P be the projective class in the category PCM(P ) induced by the cotriple (F , τ, δ) (see [60, 123]).

First, we describe the projective class P and the corresponding P-epimorphisms.

Proposition 2.17. A morphism M
ϕ �� N of the category PCM(P ) is a P-epimorphism if and

only if ϕ is surjective (as map of sets).

Proposition 2.18. In the category PCM(P ) the following conditions are equivalent :

(i) A precrossed P -module (Q, ν) belongs to the projective class P;

(ii) (Q, ν) is a free precrossed P -module with base (X,α) for some object X
α �� P of the cate-

gory Set(P ).

The proof of these propositions is easy and we omit it.

A precrossed P -module (N, ν) is a precrossed P -submodule of a precrossed P -module (M,μ) if N
is a subgroup of M , the action of P on N is induced by the action of P on M , and ν is the restriction
of μ on N . If, in addition, N is a normal subgroup of the group M , then we write N <P M .

Let (M,μ) be a precrossed P -module, N , N ′ be two subgroups of M , and q be a nonnegative
integer. We denote by 〈N,N ′〉(q) the subgroup of M generated by the elements 〈n, n′〉 and kq for all
n ∈ N , n′ ∈ N ′, k ∈ N ∩N ′ ∩ Kerμ. Let 〈〈N,N ′〉〉(q) = 〈N,N ′〉(q)〈N ′, N〉(q). We have the following

lemma.

Lemma 2.19.

(i) If N and N ′ are precrossed P -submodules of M , then 〈N,N ′〉(q) and 〈〈N,N ′〉〉(q) are precrossed

P -submodules of M .
(ii) If N <P M , then 〈M,N〉(q) <P M , 〈N,M〉(q) <P M , 〈〈M,N〉〉(q) <P M .

Proof. (i) Follows from relation (2.10) and the equality p(kq) = (pk)q, p ∈ P , k ∈ N ∩N ′ ∩Kerμ.
(ii) follows from relations (2.8) and (2.9) and the equality mkqm−1 = (mkm−1)q, m ∈ M , k ∈

N ∩Kerμ.

Using Lemma 2.19, we can define a covariant functor T(q) from the category PCM(P ) to the

category Gr of groups by the following way: for any precrossed P -module (M,μ), let T(q)(M) =

M/〈〈M,M〉〉(q) = M/〈M,M〉(q); for a morphism (M,μ)
ϕ �� (M ′, μ′) , let T(q)(ϕ) be a group homo-

morphism induced by ϕ. Note that for q = 0 the functor T(q) is the Peiffer abelianization functor.
In the category PCM(P ), there exist finite limits (easy to show). Let us consider the non-Abelian

left derived functors LP
n T(q), n ≥ 0, of the functor T(q) : PCM(P ) −→ Gr relative to the projective

class P induced by the cotriple (F , τ, δ) in the category PCM(P ) (see [60]).

Definition 2.20. Let P be a group, (M,μ) be a precrossed P -module, and q be a nonnegative integer.
Define the nth homology group modulo q of the precrossed P -module (M,μ) by

Hn(M, q)P = LP
n−1T(q)(M), n ≥ 1.
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Proposition 2.21. Let μ : M −→ P be a precrossed P -module such that μ(m) = 1 for all m ∈ M .

Then we have

Hn(M, q)P = Hn(M,Zq), n ≥ 1.

Proof. Consider a P-projective pseudo-simplicial resolution (see Chap. 1, Sec. 1.2) of (M,μ) in the
category PCM(P )

· · ·
��

��
... F2

κ2 �� Y1
������ F1

κ1 �� Y0
���� F0

�� M , (2.13)

where Fn ∈ P and Yn is a simplicial kernel in the category PCM(P ). By Propositions 2.17 and 2.18

all Fn are free groups and all κn are surjective group homomorphisms, implying that (2.13) is a
projective resolution of the group M in the category Gr. Since μ is a trivial group homomorphism,
T(q)(Fn) = F ab

n /qF ab
n . Using [5] we obtain the assertion.

3.2. Main properties. We investigate the functor T(q) and prove a Hopf type formula for the
second homology modulo q of precrossed P -modules, generalizing the classical one (see [3, 47]).

Lemma 2.22. Let P be a group and q be a nonnegative integer. Then the functor T(q) : PCM(P ) −→
Gr is a cosheaf over (PCM(P ),P), where P is the projective class induced by the cotriple (F , τ, δ).

Proof. It is easy to verify that for a short exact sequence of precrossed P -modules

1 �� L �� M �� N �� 1

there is an exact sequence of groups

T(q)(L) �� T(q)(M) �� T(q)(N) �� 1. (2.14)

Consider a P-epimorphism Q
α �� M in the category PCM(P ). We must show that the diagram

of groups

T(q)(Q×M Q)
d0 ��

d1

�� T(q)(Q)
T(q)(α) �� T(q)(M) �� 1

is exact. In effect, we have the following commutative diagram of groups:

T(q)(R) ��

λ

��

T(q)(Q)
T(q)(α) �� T(q)(M) �� 1

Ker d0
d1

�� T(q)(Q)
T(q)(α)

�� T(q)(M) �� 1

,

where R is the kernel of α : Q −→ M , λ is a homomorphism induced by the inclusion R ↪→ Q×M Q,
r �−→ (r, 1), and the top row is exact by (2.14). Hence the bottom row of this diagram is also exact.

Proposition 2.23. Let P be a group, (M,μ) be a precrossed P -module, and q be a nonnegative integer.
Then there is a natural isomorphism

H1(M, q)P ∼= M/〈M,M〉(q).

Proof. The proposition follows from Lemma 2.22 and Proposition 1.20.

Theorem 2.24 (Hopf’s formula). Let P be a group, (M,μ) be a precrossed P -module, and q be a
nonnegative integer. Then there is an isomorphism

H2(M, q)P ≈ R ∩ 〈F,F 〉(q)/〈〈F,R〉〉(q),
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where 1 �� R �� F
ϕ �� M �� 1 is any free presentation of the precrossed P -module (M,μ)

i.e., using Propositions 2.17 and 2.18, we have that F is an object of the projective class P and ϕ is

a P-epimorphism.

Proof. Consider the augmented Čech resolution (Č(ϕ), ϕ, (M,μ)) of (M,μ) ∈ PCM (P ) for ϕ : F −→
M .

By Lemma 2.22, T(q) is a cosheaf over (PCM (P ),P), and using [103] or [60, Theorem 2.39(ii)], we
see that there is an isomorphism

LP
1 T(q)(M) ∼= π1C∗,

where C∗ is the following simplicial group

C∗ ≡ · · ·
�������� T(q)(F ×M F ×M F )

Tq(d0) ����

Tq(d2)
�� T(q)(F ×M F )

Tq(d0) ��

Tq(d1)
�� T(q)(F ) .

The Moore complex NC∗ of the simplicial group C∗ has length 1, i.e., (NC∗)n = 0, n ≥ 2. This

follows from the fact that the Moore complex of the Ĉech resolution has length 1. Hence

π1C∗ = KerTq(d0) ∩KerTq(d1).

Furthermore, we have the following isomorphism of precrossed P -modules F ×M F
∼= �� R� F ,

defined by (r, f) �−→ (rf, f), where the precrossed P -module structure on the group R�F is given by
the following way: a homomorphism R � F −→ P is defined by (r, f) �−→ μϕ(f) and an action of P

on R � F by p(r, f) = (pr,p f) for all p ∈ P , r ∈ R, f ∈ F . We obtain R� F
d0 ��

d1

�� F , d0(r, f) = f ,

d1(r, f) = rf .
It only remains to prove that the homomorphism

α : (R/〈〈F,R〉〉(q))× F/〈F,F 〉(q) −→ T(q)(R� F ),

defined by α([r], [f ]) = [(r, f)], is an isomorphism.

Remark 2.25. For μ = 0, Theorem 2.24 generalizes the classical Hopf formula from [3] and for
q = 0 Proposition 2.23 and Theorem 2.24 show that we can obtain the first and the second homology
of precrossed P -modules of Conduché and Ellis [30] as non-Abelian derived functors of the Peiffer

abelianization functor.

3.3. Some other properties. In this section, we investigate low-dimensional, first and second,
homologies modulo q of precrossed P -modules, always having in mind Proposition 2.23 and Theo-

rem 2.24, and give some results generalizing, in the q modular aspect, the results of Conduché and
Ellis (see [30]).

Proposition 2.26. Let P be a group, q be a nonnegative integer, and

1 �� L �� M �� N �� 1

be a short exact sequence of precrossed P -modules. Then there is an exact sequence of groups

H2(M, q)P �� H2(N, q)P �� L/〈〈M,L〉〉(q) �� H1(M, q)P �� H1(N, q)P �� 1. (2.15)

Proof. Assume 1 −→ R −→ F −→ M −→ 1 is a free presentation of the precrossed P -module M , and
hence 1 −→ R′ −→ F −→ N −→ 1 is a free presentation of the precrossed P -module N . Therefore,
R ⊂ R′, implying R ∩ 〈F,F 〉(q) ⊂ R′ ∩ 〈F,F 〉(q), 〈〈F,R〉〉(q) ⊂ 〈〈F,R′〉〉(q), and there is the canonical

group homomorphism H2(M, q)P −→ H2(N, q)P .
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The following commutative diagram of groups with exact rows

1 �� R′ ��

��

F ��

��

N �� 1

1 �� L �� �� N �� 1

induces a homomorphism H2(N, q)P −→ L/〈〈M,L〉〉(q).
Other homomorphisms are defined naturally and it is easy to verify that the sequence (2.15) is

exact.

Remark 2.27. We can extend the sequence (2.15) to any dimensions using the long exact sequence

of the non-Abelian derived functors and recover for μ = 0 the eight-term exact homology sequence of
groups with coefficients in Zq (see [48]).

The following result generalizes the classical group result and uses the standard proof, originally

due to [116].
For any precrossed P -module (M,μ) and any nonnegative integer q, there is the following family of

precrossed P -submodules:

M
(1)
(q) = M,M

(2)
(q) = 〈〈M,M〉〉(q), . . . ,M

(n+1)
(q) =

〈〈
M,M

(n)
(q)

〉〉
(q)

.

Theorem 2.28. Let P be a group, q a nonnegative integer, and ϕ : M −→ N be a morphism of

precrossed P -modules such that the following properties hold :

(i) the natural homomorphism H1(M, q)P −→ H1(N, q)P , induced by ϕ, is an isomorphism;
(ii) the natural homomorphism H2(M, q)P −→ H2(N, q)P , induced by ϕ, is a surjection.

Then ϕ induces a natural isomorphism of precrossed P -modules

M/M
(n)
(q)

∼= �� N/N
(n)
(q) for n ≥ 2.

Proof. By induction. For n = 2, the theorem is obvious. Assume that it is valid for n. By Proposi-
tion 2.26 and the commutative diagram of groups with exact rows

1 �� M
(n)
(q)

��

��

M ��

ϕ

��

M/M
(n)
(q)

��

��

1

1 �� N
(n)
(q)

�� N �� N/N
(n)
(q)

�� 1

,

we have the following commutative diagram of groups with exact rows

H2(M, q)P ��

��

H2(M/M
(n)
(q) , q)P

��

��

M
(n)
(q) /M

(n+1)
(q)

��

��

H1(M, q)P ��

��

H1(M/M
(n)
(q) , q)P

��

��

1

H2(N, q)P ��H2(N/N
(n)
(q) , q)P

��N
(n)
(q) /N

(n+1)
(q)

��H1(N, q)P ��H1(N/N
(n)
(q) , q)P

��1

.
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Using the five-lemma, we see that M
(n)
(q) /M

(n+1)
(q) is isomorphic to N

(n)
(q) /N

(n+1)
(q) . Then the commutative

diagram of groups

1 �� M
(n)
(q) /M

(n+1)
(q)

��

��

M/M
(n+1)
(q)

��

��

M/M
(n)
(q)

��

��

1

1 �� N
(n)
(q) /N

(n+1)
(q)

�� N/N
(n+1)
(q)

�� N/N
(n)
(q)

�� 1

gives the result for n+ 1.

For any precrossed P -module μ : M −→ P , let M ∧q
P M be the group generated by the symbols

m ∧m′ and {k}, m,m′ ∈ M , k ∈ Kerμ subject to the following relations:

m ∧m′m′′ = (m ∧m′)(m ∧m′′)
(
〈m,m′′〉−1 ∧ μmm′), (2.16)

mm′ ∧m′′ = (m ∧m′m′′m′−1)
(
μmm′ ∧ μmm′′), (2.17)

〈m,m′〉 ∧ 〈n, n′〉 = (m ∧m′)(n ∧ n′)(m ∧m′)−1(n ∧ n′)−1, (2.18)

(〈m,m′〉 ∧m′′)(m′′ ∧ 〈m,m′〉) = (m ∧m′)
(
μm′′

m ∧ μm′′
m′)−1

, (2.19)

k ∧ k = 1, (2.20)

{k}(m ∧m′){k}−1 = (kqm ∧m′)(kq ∧ μmm′)−1, (2.21)

{kk′} = {k}
q−1∏

i=1

(
k−1 ∧ k1−q+i(k′)ikq−1−i

)
{k′}, (2.22)

{k}{k′}{k}−1{k′}−1 = kq ∧ k′q, (2.23)

{〈m,m′〉} = (m ∧m′)q (2.24)

for all m,m′,m′′, n, n′ ∈ M , and k, k′ ∈ Kerμ.

Note that (2.16)–(2.20) are the defining relations for the groupM∧PM defined in [30]. Furthermore,
when P = 1 or μ = 0, the group M ∧q

P M coincides with the non-Abelian exterior product modulo q,
M ∧q M , introduced by Conduché and Rodriguez–Fernández [32] (see Chap. 6 and also [13, 47, 48]).

There is an action of the group P on the group M ∧q
P M given by p(m∧m′) = pm∧ pm′ and p{k} =

{pk} for all m,m′ ∈ M , k ∈ Kerμ. Moreover, there exists a P -equivariant group homomorphism
∂q
2 : M ∧q

P M −→ M defined by ∂q
2(m ∧m′) = 〈m,m′〉 and ∂q

2({k}) = kq. It is clear that

∂q
2(M ∧q

M M) = M
(2)
(q) .

Note that the complex of groups M ∧q
P M

∂q
2 �� M

μ �� P is a 2-crossed module in the sense of

Conduché [27].

Proposition 2.29. Let (M,μ) be a precrossed P -module, q > 0, and

1 �� R �� F
ϕ �� M �� 1

be a short exact sequence of precrossed P -modules, where (F, ν) is a free precrossed P -module. If the
homomorphism ∂q

2 : F ∧q
P F −→ F is injective, then the group M ∧q

P M is isomorphic to the group

F
(2)
(q) /〈〈F,R〉〉(q).
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Proof. Let LF (respectively, LM ) be the free group generated by the set (F ×F )∪Ker ν (respectively,

(M ×M) ∪Kerμ). There is a commutative diagram of groups

LF
��

πF

��

LM

πM

��
F ∧q

P F �� M ∧q
P M

,

where the horizontal homomorphisms are surjective and πF and πM are canonical homomorphisms
defined by πF (f, f

′) = f ∧ f ′, πF (g) = {g} and πF (m,m′) = m ∧m′, πF (k) = {k} for all f, f ′ ∈ F ,

g ∈ Ker ν, m,m′ ∈ M and k ∈ Kerμ. It is easy to obtain that Ker(F ∧q
P F −→ M ∧q

P M) is the
homomorphic image of Ker(LF −→ LM ) by πF . It is also easy to verify that Ker(LF −→ LM) is the
normal subgroup of LF generated by the elements (f1, f2)(f

′
1, f

′
2)

−1 and f3f
′−1
3 such that ϕfi = ϕf ′

i,

fi, f
′
i ∈ F (i = 1, 2) and ϕf3 = ϕf ′

3, f3, f
′
3 ∈ Kerν. Thus, its image in F ∧q

P F is the normal subgroup
generated by the elements (f1∧f2)(f

′
1∧f ′

2)
−1 and {f3}{f ′

3}−1, which by the formulas (2.16), (2.17),
and (2.23) coincides with the normal subgroup of F ∧q

P F generated by the elements f ∧ r, r ∧ f and

{r}, f ∈ F , r ∈ R. Then the image of this subgroup by the isomorphism F ∧q
P F ∼= ∂q

2(F ∧q
P F ) = F

(2)
(q)

is 〈〈F,R〉〉(q) and thus F
(2)
(q) /〈〈F,R〉〉(q) ∼= M ∧q

P M .

Lemma 2.30. Let h : A −→ B and g : B −→ C be group homomorphisms. If h is surjective, then
the following sequence of groups is exact :

1 �� Ker(h) �� Ker(gh) �� Ker(g) �� 1.

Theorem 2.31. Let μ : M −→ P be a precrossed P -module, q > 0, and

1 �� R �� F
ϕ �� M �� 1

be a short exact sequence of precrossed P -modules, where F is a free precrossed P -module. If the

homomorphism ∂q
2 : F ∧q

P F −→ F
(2)
(q) is an isomorphism, then there is an isomorphism of groups

H2(M, q) ∼= Ker
(
M ∧q

P M −→ M
)
.

Proof. By Lemma 2.30, we have the following exact sequence of groups:

1 �� Ker(ϕ ∧q
P ϕ) �� Ker(∂q

2(ϕ ∧q
P ϕ)) �� Ker ∂q

2
�� 1.

From the commutative diagram of groups

F ∧q
P F

ϕ∧q
Pϕ

��

∼=
��

M ∧q
P M

∂q
2

��

F
(2)
(q)

ϕ
(2)
(q)

�� M
(2)
(q)

we obtain

Ker(∂q
2(ϕ ∧q

P ϕ)) ∼= Kerϕ
(2)
(q) = R ∩ F

(2)
(q) .

Then

Ker(∂q
2 : M ∧q

P M −→ M) ∼= R ∩ F
(2)
(q) /〈〈F,R〉〉(q) = H2(M, q)P .

Finally, we give an example showing that there exists a group P and a free precrossed P -module F

such that the homomorphism ∂q
2 : F ∧q

P F −→ F is injective.
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Lemma 2.32. Let (M,μ) be a precrossed P -module and q a nonnegative integer. Then there is an

exact sequence of groups

M ∧P M
ϕ �� M ∧q

P M �� ker μ/〈M,M〉 �� 1.

Proof. The homomorphism ϕ is given by ϕ(m ∧m′) = m ∧m′. The required exactness can be easily

verified.

Proposition-Example 2.33. Let P be a free group, μ : F −→ P a free precrossed P -module and

q > 0. Then the homomorphism ∂q
2 : F ∧q

P F −→ F
(2)
(q) is an isomorphism.

Proof. Using Lemma 2.32, we have the following commutative diagram of groups with exact rows:

1 �� F ∧P F
ϕ ��

∂2
��

F ∧q
P F ��

∂q
2
��

ker μ/F (2) ��

α
��

1

1 �� F (2) �� F
(2)
(q)

�� F
(2)
(q) /F

(2) �� 1

,

where F (2) = 〈F,F 〉, ∂2 is an isomorphism [7], proved by applying a theorem of Whitehead [126] on

2-dimensional CW-complexes and the theorem of Kan [79] (see above), and hence ϕ is injective. We
can directly check that α is an isomorphism, and so is ∂q

2 .

Chapter 3

HOPF-TYPE FORMULAS

One of the basic results of the theory of group homology is the well-known Hopf formula for the second

integral group homology, relating homology to an elementary formula involving a presentation of the
group being studied. In particular, it asserts that for a given group G there is an isomorphism

H2(G) ∼= R ∩ [F,F ]

[F,R]
,

where R �� �� F �� �� G is a free presentation of the group G.
Several alternative generalizations of this classical Hopf formula to higher dimensions were made in

various papers (see, e.g., [33, 111, 117]), but perhaps the most successful one, giving formulas in all

dimensions, was by Brown and Ellis [14]. They used topological methods, in particular, the Hurewicz
theorem for n-cubes of spaces (see [19]), which itself is an application of the generalized van Kampen
theorem for diagrams of spaces [18]. The final result is as follows.

Theorem (see [14]). Let R1, . . . , Rn be normal subgroups of a group F such that

H2(F ) = 0, Hr

(
F/
∏

i∈A
Ri

)
= 0 for r = |A|+ 1, r = |A|+ 2,

where A is a nonempty proper subset of 〈n〉 = {1, . . . , n} (for example, if the groups F/
∏

i∈A
Ri are free

for A �= 〈n〉) and F/
∏

1≤i≤n
Ri

∼= G. Then there is an isomorphism

Hn+1(G) ∼=

n⋂

i=1
Ri ∩ [F,F ]

∏

A⊆〈n〉

[ ⋂

i∈A
Ri,

⋂

i/∈A
Ri

] .

38



Later Ellis [44] gave a purely algebraic proof of the formula using hyper-relative derived functors.

His results are clearly related to those presented here, and a comparison between them may yield
some general links between the two theories of derived functors being used. In the original paper [14]
and in the paper with an algebraic approach [44], a technical assumption was omitted. An erratum is
available from Ellis’ homepage.

In this chapter, using the general theory of n-fold Čech derived functors, we establish a new purely
algebraic method for investigating higher integral group homology from a Hopf formula point of view
and the further generalizations of these formulas. This method is universal and is valid for other

algebraic structures.
Section 1 is devoted to the study of normal (n+1)-ads of groups arising from simplicial groups and

shows how we pass naturally from simplicial groups to Hopf type formulas (Theorem 3.6).

Our generalization, in Sec. 2, handles the non-Abelian derived functors of the “nilization of degree k”
functor, Zk(G) : Gr −→ Gr, k ≥ 2, where Z2 coincides with the group abelianization functor Ab. We
give Hopf type formulas for these derived functors (Theorems 3.8 and 3.9). Finally, we apply these

results to algebraic K-theory and obtain Hopf type formula for algebraic K-theory (Theorem 3.14).
In Sec. 3, the m-fold Čech derived functors of group-valued functors from the category of crossed

n-cubes is treated. In particular, we calculate the mth m-fold Čech derived functor of the certain

abelianization functor σAb from the category of crossed n-cubes to the category of groups (The-
orem 3.15), implying the expression of the cotriple homology of crossed n-cubes (cat n-groups) as
generalized Hopf type formulas (Theorem 3.16).

1. From Simplicial Groups to Hopf-Type Formulas

We start by developing some techniques for handling (n+1)-ads of groups, relating them to iterated
commutators.

Definition 3.1. Let j be given, 1 ≤ j ≤ n. A normal (n + 1)-ad of groups (F ;R1, . . . , Rn) is called

simple relative to Rj if there exists a subgroup F ′ of the group F such that

F ′ ∩Rj = 1,
⋂

i∈A
Ri =

( ⋂

i∈A
Ri ∩ F ′

)( ⋂

i∈A
Ri ∩Rj

)

for all A ⊆ 〈n〉 \ {j}.

For a given (n + 1)-ad of groups (F ;R1, . . . , Rn), A ⊆ 〈n〉, and k ≥ 1 recall that we have denoted
above by Dk(F ;A) (see Proposition 2.7) the following normal subgroup of the group F :

∏

A1∪A2∪···∪Ak=A

[ ⋂

i∈A1

Ri,
[ ⋂

i∈A2

Ri, . . . ,
[ ⋂

i∈Ak−1

Ri,
⋂

i∈Ak

Ri

]
. . .
]]
.

Sometimes, we write Dk(F ;R1, . . . , Rn) instead of Dk(F ; 〈n〉).

Lemma 3.2. Let (F ;R1, . . . , Rn) be a normal (n + 1)-ad of groups which is simple relative to Rj ,

1 ≤ j ≤ n and let k ≥ 1. Then

Dk(F ;A) = (Dk(F ;A) ∩ F ′)Dk(F ;A ∪ {j})
for all A ⊆ 〈n〉 \ {j}.

Proof. We use induction on k. Let k = 1; then

D1(F ;A) =
⋂

i∈A
Ri =

( ⋂

i∈A
Ri ∩ F ′

)( ⋂

i∈A
Ri ∩Rj

)
=
( ⋂

i∈A
Ri ∩ F ′)D1(F ;A ∪ {j}

)

for A ⊆ 〈n〉 \ {j}.
Proceeding by induction, we assume that the assertion is true for k − 1 and we will prove it for k.
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The inclusion (Dk(F ;A) ∩ F ′)Dk(F ;A ∪ {j}) ⊆ Dk(F ;A) is obvious. It is easy to see that a

generator of Dk(F ;A) has the form [x,w], where x ∈
⋂

i∈B
Ri, w ∈ Dk−1(F ;C), B,C ⊆ A ⊆ 〈n〉 \ {j},

and B ∪C = A. There exist elements y ∈
⋂

i∈B
Ri ∩ F ′ and z ∈

⋂

i∈B
Ri ∩Rj such that x = yz. We have

[x,w] = [yz,w] = y[z, w]y−1[y,w].

Clearly,

[z, w] ∈ Dk(F ;B ∪ C ∪ {j}) = Dk(F ;A ∪ {j})
and hence y[z, w]y−1 ∈ Dk(F ;A∪{j}). By the inductive hypothesis, there exist w′ ∈ Dk−1(F ;C∪{j})
and x′ ∈ Dk−1(F ;C) ∩ F ′ such that w = x′w′. We have

[y,w] = [y, x′w′] = [y, x′]x′[y,w′]x′−1.

Clearly,

[y,w′] ∈ Dk(F ;B ∪ C ∪ {j}) = Dk(F ;A ∪ {j})
and hence

x′[y,w′]x′−1 ∈ Dk(F ;A ∪ {j}).
Therefore, there is an element w′′ ∈ Dk(F ;A ∪ {j}) such that [x,w] = [y, x′]w′′ where [y, x′] ∈
Dk(F ;A) ∩ F ′.

For a given group G, the (lower) central series (Γk = Γk(G))

G = Γ1 ⊇ Γ2 ⊇ · · · ⊇ Γk ⊇ · · ·
of G is defined inductively by

Γk =
∏

i+j=k

[Γi,Γj].

The well-known Witt–Hall identities on commutators (see, e.g., [7]) imply that Γk = [G,Γk−1].
Let us define the nilization of degree k functor Zk : Gr −→ Gr, k ≥ 2 by Zk(G) = G/Γk(G) for

any G ∈ Gr and where Zk(α) is the natural homomorphism induced by a group homomorphism α.
Of course, Z2 is the ordinary abelianization functor of groups.

Proposition 3.3. Let (F ;R1, . . . , Rn) be a normal (n + 1)-ad of groups and k ≥ 2. Assume that
(F ;R1, . . . , Rj) is a simple normal (j + 1)-ad of groups relative to Rj for all 1 ≤ j ≤ n. Then

⋂

i∈〈j〉
Ri ∩ Γk(F ) = Dk(F ; 〈j〉), 1 ≤ j ≤ n.

Proof. Since the inclusion

Dk(F ; 〈j〉) ⊆
⋂

i∈〈j〉
Ri ∩ Γk(F )

is clear, we must only show the inclusion
⋂

i∈〈j〉
Ri ∩ Γk(F ) ⊆ Dk(F ; 〈j〉),

which will be done by induction on j.

Let j = 1, then there exists a subgroup F1 of the group F such that R1 ∩ F1 = 1 and F = F1R1.
Let w ∈ R1 ∩ Γk(F ) ⊆ Γk(F ) = Dk(F ;∅). Using Lemma 3.2, we have elements x′ ∈ Dk(F ;∅) ∩ F1

and w′ ∈ Dk(F ; 〈1〉) such that w = x′w′. But x′ = ww
′−1 ∈ R1 and hence x′ = 1. Thus,

R1 ∩ Γk(F ) ⊆ Dk(F ; 〈1〉).
Proceeding by induction, we assume that the result is true for j − 1 and we will prove it for j.
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There exists a subgroup Fj of the group F such that Rj ∩ Fj = 1 and
⋂

i∈A
Ri =

( ⋂

i∈A
Ri ∩ Fj

)( ⋂

i∈A
Ri ∩Rj

)

for all A ⊆ {1, . . . , j − 1}. Let

w ∈
⋂

i∈〈j〉
Ri ∩ Γk(F ) ⊆

⋂

i∈〈j−1〉
Ri ∩ Γk(F ).

Using the inductive hypothesis, we have the equality
⋂

i∈〈j−1〉
Ri ∩ Γk(F ) = Dk

(
F ; 〈j − 1〉

)
.

By Lemma 3.2, there are elements x′ ∈ Dk(F ; 〈j − 1〉) ∩ Fj and w′ ∈ Dk(F ; 〈j〉) such that w = x′w′.
Certainly, x′ = ww

′−1 ∈ Rj and hence x′ = 1. Therefore,
⋂

i∈〈j〉
Ri ∩ Γk(F ) ⊆ Dk(F ; 〈j〉).

The proposition is proved.

These conditions of “simplicity” may seem rather restrictive, but the following observation shows
that examples of simple normal (n + 1)-ads of groups appear naturally, and that moreover these

examples satisfy the conditions of Proposition 3.3.

Proposition 3.4. Let F∗ be a pseudo-simplicial group. Then (Fn; Ker dn0 , . . . ,Ker dnj−1) is a simple

normal (j + 1)-ad of groups relative to Ker dnj−1 for all 1 ≤ j ≤ n.

Proof. Since dnj−1s
n−1
j−1 = 1,

sn−1
j−1 (Fn−1) ∩Ker dnj−1 = 1, sn−1

j−1 (Fn−1)Ker dnj−1 = Fn

for all n ≥ 1. Hence for j = 1, (Fn; Ker dn0 ) is a simple normal 2-ad of groups relative to Ker dn0 and
the F ′ of the definition of simplicity is sn−1

0 (Fn−1).

Now assume that j > 1. We will show the following equality:
⋂

i∈A
Ker dni =

( ⋂

i∈A
Ker dni ∩ sn−1

j−1 (Fn−1)
)( ⋂

i∈A
Ker dni ∩Ker dnj−1

)

for all A ⊆ {0, . . . , j − 2} and A �= ∅, so again the F ′ of the definition of simplicity is sn−1
j−1 (Fn−1).

Let

x = sn−1
j−1 (xn−1)rj−1 ∈

⋂

i∈A
Ker dni ,

where xn−1 ∈ Fn−1, rj−1 ∈ Ker dnj−1. Thus

dni (x) = dni s
n−1
j−1 (xn−1)d

n
i (rj−1) = 1

for all i ∈ A. Since i < j − 1, we have

dni (rj−1) = sn−2
j−2d

n−1
i (xn−1)

−1.

Hence

1 = dn−1
i dnj−1(rj−1) = dn−1

j−2 d
n
i (rj−1) = dn−1

j−2 s
n−2
j−2d

n−1
i (xn−1)

−1 = dn−1
i (xn−1)

−1.

Therefore, dni (rj−1) = 1 and dni s
n−1
j−1 (xn−1) = 1 for all i ∈ A.

The next lemma is well known but very useful. The proof is routine.
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Lemma 3.5. Let G∗ be a pseudo-simplicial group and A ⊆ 〈n〉, A �= 〈n〉. Then

dnn

( ⋂

i∈A
Ker dni−1

)
=
⋂

i∈A
Ker dn−1

i−1 , n ≥ 2.

Now we give the main result of this section.

Theorem 3.6. Let (F∗, d00, G) be an aspherical augmented pseudo-simplicial group. Then there is a
natural isomorphism

πnZk(F∗) ∼=

n−1⋂

i=0
Ker dn−1

i ∩ Γk(Fn−1)

Dk(Fn−1; Ker dn−1
0 , . . . ,Ker dn−1

n−1)
, k ≥ 2, n ≥ 1.

Proof. Let us consider the short exact sequence of augmented pseudo-simplicial groups

1

��

1

��

1

��

1

��
· · ·

��

��
... Γk(Fn)

d̃n0 ��

d̃nn

��
...

��

· · ·
��
��
�� Γk(F1)

d̃10 ��

d̃11

��

��

Γk(F0)
d̃00 ��

��

Γk(G)

��
· · ·

��

��
... Fn

dn0 ��

dnn

��
...

��

· · ·
��
��
�� F1

d10 ��

d11

��

��

F0

d00 ��

��

G

��
· · ·

��

��
...Zk(Fn)

��

��
...

��

· · ·
��
��
�� Zk(F1)

��
��

��

Zk(F0) ��

��

Zk(G)

��
1 1 1 1

.

By the induced long exact homotopy sequence, we have isomorphisms of groups

πnZk(F∗) ∼=

n−1⋂

i=0
Ker d̃n−1

i

d̃nn
( n−1⋂

i=0
Ker d̃ni

)
, n ≥ 1.

Since d̃ni is the restriction of dni to Γk(Fn), Ker d̃ni = Ker dni ∩ Γk(Fn). Hence

n−1⋂

i=0

Ker d̃n−1
i =

( n−1⋂

i=0

Ker dn−1
i ) ∩ Γk(Fn−1

)

and
n−1⋂

i=0

Ker d̃ni =
( n−1⋂

i=0

Ker dni

)
∩ Γk(Fn).

Using Propositions 3.3 and 3.4, we have
( ⋂

i∈〈n〉
Ker dni−1

)
∩ Γk(Fn) = Dk(Fn; Ker dn0 , . . . ,Ker dnn−1), n ≥ 1.
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Since (F∗, d00, G) is an aspherical augmented pseudo-simplicial group,

dnn

( ⋂

i∈〈n〉
Ker dni−1

)
=
⋂

i∈〈n〉
Ker dn−1

i−1 , n ≥ 1.

Using this fact and Lemma 3.5, it is now easy to see that we have an equality

d̃nn

( n−1⋂

i=0

Ker d̃ni

)
= dnn

(
Dk(Fn; Ker dn0 , . . . ,Ker dnn−1)

)

= Dk

(
Fn−1; Ker dn−1

0 , . . . ,Ker dn−1
n−1

)
.

In the case where (F∗, d00, G) is a free pseudo-simplicial resolution of G, the homotopy groups of
Zk(F∗) will be the left non-Abelian derived functors LP

nZk(G) of Zk, evaluated at G, where P is the
projective class of free groups (see Chap. 1, Sec. 1.2). We thus have the following formal result.

Corollary 3.7. Let G be a group and (F∗, d00, G) an aspherical augmented pseudo-simplicial group
and k ≥ 2. If Fn is a free group for all n ≥ 0, i.e., (F∗, d00, G) is a free pseudo-simplicial resolution of
the group G, then there is a natural isomorphism

LP
nZk(G) ∼=

n−1⋂

i=0
Ker dn−1

i ∩ Γk(Fn−1)

Dk(Fn−1; Ker dn−1
0 , . . . ,Ker dn−1

n−1)
, n ≥ 1.

2. Generalized Hopf-Type Formulas

In this section, we focus our attention on the investigation of the n-fold Čech derived functors of
the functor Zk : Gr −→ Gr, k ≥ 2. Our method gives the possibility of finding a new purely algebraic
proof of the generalized Hopf formula of Brown and Ellis; moreover, we express LP

nZk(G), n ≥ 1,

k ≥ 2 by a Hopf type formula, where P is the projective class of free groups.
Note that a P-projective P-exact n-presentation F of a group G is called a free exact n-presentation

of the group G.

The Quillen algebraic K-functors Kn+1, n ≥ 1, are described in terms of a short exact sequence
including the higher Hopf-type formulas for free exact n-presentations induced by a free simplicial
resolution of the general linear group.

2.1. Hopf-type formulas for derived functors of the functors Zk. Using the fact that Zk is
a right exact functor, we easily show that Ln-fold

0 Zk
∼= Zk. Moreover, Propositions 2.9 and 2.13 and

Lemma 2.5 or alternatively Corollary 1.24 imply that Ln-fold
i Zk = 0 for i > n. Then the following

theorem gives the nth n-fold Čech derived functor of the functor Zk : Gr −→ Gr, k ≥ 2.

Theorem 3.8. Let G be a group and k ≥ 2. Then there is an isomorphism

Ln-fold
n Zk(G) ∼=

⋂

i∈〈n〉
Ri ∩ Γk(F )

Dk(F ;R1, . . . , Rn)
, n ≥ 1,

where (F ;R1, . . . , Rn) is the normal (n+1)-ad of groups induced by some free exact n-presentation F
of the group G.

Proof. By their definition and Lemma 2.5 we obtain an isomorphism

Ln-fold
n Zk(G) ∼= πn(ZkE

(n)(M))∗,
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where M is the inclusion crossed n-cube of groups given by the normal (n + 1)-ad of groups

(F ;R1, . . . , Rn). Hence using Proposition 2.9 we have an isomorphism

Ln-fold
n Zk(G) ∼= πn(E

(n)Bk(M)∗).

Then, by Proposition 2.13,

Ln-fold
n Zk(G) ∼=

⋂

l∈〈n〉
Ker(Bk(M)〈n〉

μ̃l,〈n〉 �� Bk(M)〈n〉\{l}). (3.1)

Now we set up the inductive hypothesis. Let n = 1, then

L1-fold
1 Zk(G) ∼= Ker

( R1

Dk(F ;R1)
−→ F

Γk(F )

)
=

R1 ∩ Γk(F )

Dk(F ;R1)
.

Proceeding by induction, we assume that the result is true for n− 1 and we will prove it for n.

Let us consider l ∈ 〈n〉 and the restriction F{l} of F to the subcategory of Cn consisting of those

A ⊂ 〈n〉 not containing l (recall the discussion in Chap. 1, Sec. 2.2). It is easy to verify that F{l} is a
free exact (n−1)-presentation of the free group F〈n〉\{l}. Here we use the fact that if G is a free group,

then Ln-fold
i T (G) = 0, i > 0 and Ln-fold

0 T (G) ∼= T (G) for any functor T : Gr −→ Gr. Thus, because of
our inductive hypothesis,

L(n−1)-fold
n−1 Zk(F〈n〉\{l}) ∼=

⋂

i∈〈n〉\{l}
Ri ∩ Γk(F )

Dk(F ;R1, . . . , Rl−1, Rl+1, . . . , Rn)
= 0. (3.2)

Now from (3.1) and (3.2) we can easily deduce that there is the isomorphism

Ln-fold
n Zk(G) ∼=

⋂

i∈〈n〉
Ri ∩ Γk(F )

Dk(F ;R1, . . . , Rn)
.

Now we are ready to express, by generalized Hopf type formulas not only the non-Abelian derived
functors of the functor Z2, i.e., group homology functors, but also the derived functors of all the

functors Zk, k ≥ 2.

Theorem 3.9. Let G be a group, F be a free exact n-presentation of G and k ≥ 2. Then

LP
nZk(G) ∼= Ln-fold

n Zk(G) ∼=

⋂

i∈〈n〉
Ri ∩ Γk(F )

Dk(F ;R1, . . . , Rn)
, n ≥ 1,

where (F ;R1, . . . , Rn) is the normal (n+ 1)-ad of groups induced by F.

Proof. It directly follows from Corollary 3.7, Proposition 1.16(i), and Theorem 3.8.

Remark 3.10. One technical condition was omitted in the statement of the generalized Hopf formula

as originally formulated in [14]. The result here corrects and generalizes that Brown–Ellis higher Hopf
formulas.

Proposition 3.11. There is an isomorphism

Ln-fold
i Zk

∼= L(n−1)-fold
i Zk, 0 ≤ i ≤ n− 1.
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Proof. Assume that G is a group and F a free exact n-presentation of G. By Definition 1.19, Propo-

sition 2.9, and Lemma 2.5,

Ln-fold
i Zk(G) ∼= πi(E

(n)Bk(M)∗), i ≥ 0,

where M is the inclusion crossed n-cube of groups given by the normal (n + 1)-ad of groups
(F ;R1, . . . , Rn).

Now applying Proposition 2.4 to the crossed n-cube of groups Bk(M) we have an exact sequence

0 �� πn−2(E
(n−1)(N1)∗) �� Ln-fold

n−1 Zk(G) �� πn−1(E
(n−1)(N0)∗) ��

�� πn−3(E
(n−1)(N1)∗) �� · · · �� π2(E

(n−1)(N0)∗) ��

�� π0(E
(n−1)(N1)∗) �� Ln-fold

1 Zk(G) �� π1(E
(n−1)(N0)∗) �� 0

and isomorphisms

Ln-fold
0 Zk(G) ∼= π0(E

(n−1)(N0)∗), Ln-fold
n Zk(G) ∼= πn−1(E

(n−1)(N1)∗).

Since Zk, k ≥ 2, is a right exact functor, we easily show that

πi(E
(n−1)(N0)∗) ∼= L(n−1)-fold

i Zk(G), i ≥ 0.

It only remains to show that πi(E
(n−1)(N1)∗) = 0 for 0 ≤ i ≤ n − 2. In fact, by the construction,

the crossed (n − 1)-cube of groups N1 is the kernel of the morphism of crossed (n − 1)-cubes μl :

Bk(M)1 −→ Bk(M)0. It is easy to verify that F〈n〉\A is a free exact m-presentation of the free group
FA where m = |A|. Using Theorem 3.8 we have

Lm-fold
m Zk(FA) ∼=

⋂

i∈A
Ri ∩ Γk(F )

Dk(F ;A)
= 0 for A �= 〈n〉,

which implies that N1,B = Kerμl,B = 0 for all B ⊆ 〈n− 1〉 and B �= 〈n− 1〉 and

N1,〈n−1〉 = Kerμl,〈n−1〉 ∼= Ln-fold
n Zk(G).

Hence πi(E
(n−1)(N1)∗) = 0 for 0 ≤ i ≤ n− 2.

Now from Theorem 3.9 and Proposition 3.11 we deduce the following result.

Theorem 3.12. There is an isomorphism

Ln-fold
i Zk

∼= LP
i Zk, 0 ≤ i ≤ n.

We obtain an interesting formula for n = 2. For this we need the following lemma.

Lemma 3.13 (see [28, 100]). Let

M =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L
λ ��

λ′
��

M

μ

��
N

ν
�� P

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

be a crossed square. Then

H0(C∗(M)) = P/ Imμ Im ν,

H1(C∗(M)) ∼= M ×P N/ Im κ,

H2(C∗(M)) = Kerλ ∩Kerλ′,
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where C∗(M) is the mapping cone complex of groups

L
α �� M �N

β �� P

with α(l) = (λ(l)−1, λ′(l)), β(m,n) = μ(m)ν(n) for all l ∈ L, (m,n) ∈ M � N , and κ is the natural
homomorphism from L to M ×P N .

Proof. We only prove thatH1(C∗(M)) ∼= M×PN/ Im κ. It is easy to verify that f : Ker β −→ M×PN ,
given by f(m,n) = (m−1, n) for all (m,n) ∈ Ker β, is an isomorphism and Im fα = Imκ. The other
results are as easy as this part to verify.

Using Theorem 3.12 and Lemma 3.13, for a given group G and k ≥ 2, we see that there are
isomorphisms of groups

LP
1 Zk(G) ∼=

R1Γk(F ) ∩R2Γk(F )

(R1 ∩R2)Γk(F )
,

where (F ;R1, R2) is a normal 3-ad of groups induced by some free exact 2-presentation F of G.

Note that for group-abelianization functor Ab = Z2 we have the following apparently new interpre-
tation of the second integral group homology:

H2(G) ∼= R1[F,F ] ∩R2[F,F ]

(R1 ∩R2)[F,F ]
.

2.2. Hopf-type formulas in algebraic K-theory. In this section, we will give an application of

our generalized Hopf type formulas to algebraic K-theory.
First, recall the well-known definition of lim←−

(1), the first derived functor of the functor lim←− (inverse

limit in the category of groups)(see, for example, [60]). Let {Ak, p
k
k+1}k be a countable inverse system

of groups; then
(1)

lim←−{Ak, pkk+1} =
∏

k

Ak/ ∼,

where ∼ is an equivalence relation on the set
∏

k

Ak defined as follows: {ak} ∼ {a′k} if there exists {hk}

such that {hk}{ak}{pkk+1(h
−1
k+1)} = {a′k}.

Theorem 3.14. Let R be a ring with unit and (F∗, d00, GL(R)) be a free pseudo-simplicial resolution
of the general linear group GL(R). Then there is an exact sequence of Abelian groups

0 �� lim←−
j

(1)

( (
⋂

i∈〈n+1〉
Ker dni−1)∩Γj(Fn)

Dj(Fn;Ker dn0 ,...,Ker dnn)

)
��

�� Kn+1(R) �� lim←−
j

( (
⋂

i∈〈n〉
Ker dn−1

i−1 )∩Γj(Fn−1)

Dj(Fn−1;Ker dn−1
0 ,...,Ker dn−1

n−1)

)
�� 0

for n ≥ 1.

Proof. Using [60, Theorem 2.15], we see that there is a short exact sequence of groups

0 �� lim←−
k

(1)LP
n+1Zk(GL(R)) �� LP

nZ∞(GL(R)) �� lim←−
k

LP
nZk(GL(R)) �� 0 (3.3)

for all n ≥ 0, where the functor Z∞ : Gr −→ Gr is given by Z∞(G) = lim←−
k

Zk(G), G ∈ Gr.
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It is known from [82] (see also [60]) that the values of the non-Abelian left derived functors LP∗ Z∞
of the functor Z∞ : Gr −→ Gr on GL(R) are isomorphic to Quillen’s K-groups. Thus from (3.3) we
deduce that there is a short exact sequence of Abelian groups

0 �� lim←−
k

(1)LP
n+1Zk(GL(R)) �� Kn+1(R) �� lim←−

k

LP
nZk(GL(R)) �� 0, n ≥ 0.

Now Corollary 3.7 directly implies the result.

Note that using Theorem 3.9 and Remark 3.10, we can express Kn+1(R) in data coming from exact
(n+ 1) and n-presentations of the group GL(R).

3. Hopf Type Formulas for the Homology of Homotopy (n+ 1)-Types

The aim of this section is to investigate the homology of the homotopy (n + 1)-types, given in
previous chapter, from a Hopf formulas point of view, using our purely algebraic method of m-fold

Čech derived functors.
Now we consider the m-fold Čech derivatives of functors from the category of crossed n-cubes to the

category of groups, while the general situation has been dealt in Chap. 1, Sec. 2. In particular, we give

an explicit computation of the m-fold Čech derived functors of the functor σAb(n) : Crsn −→ AbGr,
implying a purely algebraic approach to the homology groups of crossed n-cubes from a Hopf type
formula point of view.

The following theorem gives the calculation of the mth m-fold Čech derived functors of the functor

σAb(n) : Crsn −→ AbGr ⊆ Gr.

Theorem 3.15. Let M be a crossed n-cube and X its P-projective P-exact m-presentation, where P is

the projective class induced by the “free” cotriple F in the category Crsn (see Chap. 2, Sec. 2). Then
there is an isomorphism

Lm-fold
m (σAb(n))(M) ∼=

⋂

i∈〈m〉
Ri

〈n〉 ∩
∏

B∪C=〈n〉
[X(∅)B ,X(∅)C ]

∏

A⊆〈m〉

( ∏

B∪C=〈n〉

[ ⋂

i∈A
Ri

B ,
⋂

i/∈A
Ri

C

]) , m ≥ 1,

where Ri = Ker(X(∅) −→ X({i})) for i ∈ 〈m〉.

Proof. Using Corollary 2.6, we have

Lm-fold
m (σAb(n))(M) ∼= πm(σAb(n)E(m)(N )∗),

where N is the crossed (n+m)-cube of groups induced by the normal (m+ 1)-ad of crossed n-cubes
(X(∅);R1, . . . , Rm). Hence Proposition 2.10 implies an isomorphism

Lm-fold
m (σAb(n))(M) ∼= πm(σE(m)Ab(n+m)(N )∗).

Then, by Proposition 2.13 (see also [87, Proposition 3.4]),

Lm-fold
m (σAb(n))(M) ∼=

⋂

l∈〈m〉
Ker(Ab(n+m)(N )〈n+m〉

μ̃l�� Ab(n+m)(N〈n+m〉\{l}). (3.4)

Now we set up the inductive hypothesis. Let m = 1; then

L1-fold
1 (σAb(n))(M)

∼= Ker

( R1
〈n〉

∏

A⊆〈1〉

( ∏

B∪C=〈n〉

[ ⋂

i∈A
Ri

B ,
⋂

i/∈A
Ri

C

]) −→
X(∅)〈n〉

∏

B∪C=〈n〉
[X(∅)B ,X(∅)C ]

)
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=

R1
〈n〉 ∩

∏

B∪C=〈n〉
[X(∅)B ,X(∅)C ]

∏

A⊆〈1〉

( ∏

B∪C=〈n〉

[ ⋂

i∈A
Ri

B ,
⋂

i/∈A
Ri

C

]) .

Proceeding by induction, we assume that the result is true for m− 1 and we will prove it for m.

Let us consider l ∈ 〈m〉 and denote by X{l} the restriction of the functor X : Cm −→ Crsn to the

subcategory of Cm consisting of all subsets A ⊆ 〈m〉 with l /∈ A. It is easy to check that X{l} is a
projective exact (m − 1)-presentation of the crossed n-cube X(〈m〉 \ {l}), which itself is a projective
crossed n-cube. Since the values of m-fold Čech derived functors of any functor for an object belonging

to the projective class are trivial, our inductive hypothesis implies that

L(m−1)-fold
m−1 (σAb(n))

(
X(〈m〉 \ {l})

) ∼=

⋂

i∈〈m〉\{l}
Ri

〈n〉 ∩
∏

B∪C=〈n〉
[X(∅)B ,X(∅)C ]

∏

A⊆〈m〉\{l}

( ∏

B∪C=〈n〉

[ ⋂

i∈A
Ri

B ,
⋂

i/∈A
Ri

C

]) = 1. (3.5)

Now from (3.4) and (3.5) we can easily deduce the required isomorphism.

Now we give the result which expresses the homology of crossed n-cubes as Hopf type formulas

generalizing the Hopf formula for the second CCG-homology of crossed modules [21].

Theorem 3.16. Let M be a crossed n-cube and X its P-projective P-exact m-presentation. Then
there is an isomorphism

Hm+1(M) ∼=

⋂

i∈〈m〉
Ri

〈n〉 ∩
∏

B∪C=〈n〉
[X(∅)B ,X(∅)C ]

∏

A⊆〈m〉

( ∏

B∪C=〈n〉

[ ⋂

i∈A
Ri

B ,
⋂

i/∈A
Ri

C

]) , m ≥ 1,

where Ri = Ker(X(∅) −→ X({i})) for i ∈ 〈m〉.

Proof. Let (F∗, d00,M) be a P-projective pseudo-simplicial resolution of M in the category Crsn and
consider the short exact sequence of augmented pseudo-simplicial groups

1

��

1

��

1

��

1

��
· · ·

��

��
... D(Fm)

d̃m
0,〈n〉 ��

d̃m
m,〈n〉

��
...

��

· · ·
��
��
�� D(F1)

d̃1
0,〈n〉 ��

d̃1
1,〈n〉

��

��

D(F0)
d̃0
0,〈n〉 ��

��

D(M)

��
· · ·

��

��
... Fm,〈n〉

dm
0,〈n〉 ��

dm
m,〈n〉

��
...

��

· · ·
��
��
�� F1,〈n〉

d1
0,〈n〉 ��

d1
1,〈n〉

��

��

F0,〈n〉
d0
0,〈n〉 �� M〈n〉

��

· · ·
��

��
... σAb(n)(Fm)

��
��
��

��

· · ·
��
��
�� σAb

(n)(F1)
��
��

��

σAb(n)(F0) ��

��

σAb(n)(M)

��
1 1 1 1

,

where D(M) denotes the group
∏

B∪C=〈n〉
[MB ,MC ] for any crossed n-cube M.
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By the induced long exact homotopy sequence, we have the isomorphisms of groups

πmσAb(n)(F∗) ∼=

m−1⋂

i=0
Ker d̃m−1

i,〈n〉

d̃mm,〈n〉
(m−1⋂

i=0
Ker d̃mi,〈n〉

)
, m ≥ 1. (3.6)

Since d̃mi,〈n〉 is the restriction of dmi,〈n〉 to D(Fm), Ker d̃mi,〈n〉 = Ker dmi,〈n〉 ∩D(Fm). Hence

m−1⋂

i=0

Ker d̃m−1
i,〈n〉 =

(m−1⋂

i=0

Ker dm−1
i,〈n〉
)
∩D(Fm−1)

and
m−1⋂

i=0

Ker d̃mi,〈n〉 =
(m−1⋂

i=0

Ker dmi,〈n〉
)
∩D(Fm).

Since the shift of pseudo-simplicial object F∗ is the contractible augmented pseudo-simplicial object

(Dec(F∗), d10, F0) (see [40]), by Proposition 1.16(i) the m-cube of crossed n-cubes Dec(F )(m) is a
projective exact m-presentation of F0. Hence, by Theorem 3.15 we have

Lm-fold
m (σAb(n))(F0) ∼=

⋂

i∈〈m〉
Ker dmi−1,〈n〉 ∩

∏

B∪C=〈n〉
[Fm,B , Fm,C ]

∏

A⊆〈m〉

( ∏

B∪C=〈n〉

[ ⋂

i∈A
Ker dmi−1,B

,
⋂

i/∈A
Ker dmi−1,C

]) = 1, m ≥ 1,

implying the equality

⋂

i∈〈m〉
Ker dmi−1,〈n〉 ∩

∏

B∪C=〈n〉
[Fm,B , Fm,C ]

=
∏

A⊆〈m〉

( ∏

B∪C=〈n〉

[ ⋂

i∈A
Ker dmi−1,B

,
⋂

i/∈A
Ker dmi−1,C

])

, m ≥ 1. (3.7)

Since (F∗,〈n〉, d
0
0,〈n〉,M〈n〉) is an aspherical augmented pseudo-simplicial group,

dmm,〈n〉
( ⋂

i∈〈m〉
Ker dmi−1,〈n〉

)
=
⋂

i∈〈m〉
Ker dm−1

i−1,〈n〉, m ≥ 1.

Using this fact and Lemma 3.5, by (3.7) it is easy to see that we have an equality

d̃mm,〈n〉
(m−1⋂

i=0

Ker d̃mi,〈n〉
)
= dmm,〈n〉

( ∏

A⊆〈m〉

( ∏

B∪C=〈n〉

[ ⋂

i∈A
Ker dmi−1,B

,
⋂

i/∈A
Ker dmi−1,C

]))

=
∏

A⊆〈m〉

( ∏

B∪C=〈n〉

[ ⋂

i∈A
Ker dm−1

i−1, B
,
⋂

i/∈A
Ker dm−1

i−1, C

])

.

Thus by (3.6) we have

Hm+1(M) ∼=

(m−1⋂

i=0
Ker dm−1

i,〈n〉
)
∩

∏

B∪C=〈n〉
[Fm−1,B , Fm−1,C ]

∏

A⊆〈m〉

( ∏

B∪C=〈n〉

[ ⋂

i∈A
Ker dm−1

i−1, B
,
⋂

i/∈A
Ker dm−1

i−1, C

]) .

Using again Proposition 1.16(i) and Theorem 3.15, we complete the proof.
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Chapter 4

NON-ABELIAN HOMOLOGY OF GROUPS

The non-Abelian homology of groups with coefficients in any group in any dimension was introduced

in [68] as the non-Abelian left derived functors of the non-Abelian tensor product of groups. It
generalizes the classical Eilenberg–MacLane homology of groups [41, 42] and extends Guin’s low-
dimensional H0 and H1 non-Abelian homology groups with coefficients in crossed modules [53], which

has important applications in the algebraic K-theory of noncommutative local rings.
The non-Abelian tensor product of groups was introduced by Brown and Loday in [17, 18] following

the works of Lue [92] and Dennis [37]. It arose in applications in the homotopy theory of a generalized

Van Kampen theorem. It was defined for a pair A, B of groups which act on themselves by conjugation
and on each other such that the certain compatibility conditions hold. During the last twenty years
the non-Abelian tensor product has been the subject of a number of papers. We refer to here the web

page of Brown for a full account of this subject.
In [61–63], H. Inassaridze developed a non-Abelian cohomology theory previously defined by Guin

in low dimensions [53] that differs from the classical first non-Abelian cohomology pointed set of

Serre [114] and from the setting of various papers on non-Abelian cohomology [7, 26, 37] extending
the classical exact non-Abelian cohomology sequence from lower dimensions [114] to higher dimensions.
This non-Abelian cohomology theory of groups will not be treated in this work.

This chapter is devoted to the investigation of the non-Abelian homology of groups.
In Sec. 1, we give a short review of the results on the non-Abelian tensor product of groups of

Brown–Loday [17–19] and its generalization in the sense of [68], which will be useful in the sequel.

Section 2 is devoted to the construction of the non-Abelian homology of groups with coefficients in
any groups, which generalize the classical Eilenberg–MacLane group homology theory.

In Sec. 3, some properties on the non-Abelian homology of groups are established. In particular,

various exact sequences of the non-Abelian homology H∗(G,A) of groups with respect to the both
variables are given (Theorems 4.15, 4.17, and 4.19 (Mayer–Vietoris sequence)). Then non-Abelian
homology groups are described as the non-Abelian left derived functors of the functor H1(−, A) (The-

orem 4.20), as well as of the section functor Γ in the category of cosheaves (Theorem 4.22). Sufficient
conditions are established for the non-Abelian homology groups to be finitely generated, finite, p-
groups, torsion groups, or groups of exponent q (Theorem 4.23).

In Sec. 4, special attention is given to the investigation of the second and third non-Abelian homol-
ogy of groups. In particular, the explicit formulas for them are obtained by using Čech resolutions
(Theorems 4.24, 4.25, and 4.28).

1. The Non-Abelian Tensor Product of Groups

Let a pair G, H of groups act on themselves by conjugation (xy = xyx−1) and on each other such

that the following compatibility conditions hold:

(gh)(g′) = g(h(g
−1
g′)), (hg)(h′) = h(g(h

−1
h′)) (4.1)

for all g, g′ ∈ G and h, h′ ∈ H.

Example 4.1. Let α : G −→ P and β : H −→ P be crossed modules over a group P . Let G
and H act on each other via P and on themselves by conjugation. Then these actions satisfy the
conditions (4.1).

Now a slightly modified version of the non-Abelian tensor product of groups will be given, which

was studied in [68–70], in order to construct its non-Abelian derived functors.
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Let G and H be arbitrary groups that act on each other and on themselves by conjugation. The

compatibility conditions (4.1) are not assumed to hold.

Definition 4.2. The non-Abelian tensor product G⊗H is the group generated by the symbols g⊗h,
g ∈ G, h ∈ H, subject to the relations

gg′ ⊗ h = (gg′ ⊗ gh)(g ⊗ h), (4.2)

g ⊗ hh′ = (g ⊗ h)(hg ⊗ hh′), (4.3)

(g ⊗ h)(g′ ⊗ h′) = ([g,h]g′ ⊗ [g,h]h′)(g ⊗ h) (4.4)

for all g, g′ ∈ G and h, h′ ∈ H, where [g, h] = ghg−1h−1 ∈ G ∗H.

Remark 4.3.

(a) If the groups G and H satisfy the compatibility conditions (4.1) then this definition coincides

with that of given by Brown–Loday [17, 18].
(b) In [67–70] the relation

(g′ ⊗ h′)(g ⊗ h) = (g ⊗ h)([h,g]g′ ⊗ [h,g]h′)

was included in the definition of G ⊗H. It is easy to check that this relation is redundant (it
directly follows from (4.4)).

Assume that Θ : G −→ A, Φ : H −→ B are homomorphism of groups, A and B act on each other,
and Θ and Φ preserve the actions in the sense that

Φ(gh) = Θg(Φh), Θ(hg) = Φh(Θg)

for all g ∈ G, h ∈ H. Then there is a unique homomorphism Θ ⊗ Φ : G ⊗ H −→ A ⊗ B such that
(Θ⊗ Φ)(g ⊗ h) = Θg ⊗ Φh for all g ∈ G, h ∈ H. Further, if Θ, Φ are onto, so also is Θ⊗ Φ.

It is easy to verify that there are natural isomorphisms

G⊗H ∼= H ⊗G, given by g ⊗ h �−→ (h⊗ g)−1

and, if G and H act trivially on each other [18],

G⊗H ∼= Gab ⊗Z Hab, given by g ⊗ h �−→ [g] ⊗ [h].

The following properties of the non-Abelian tensor product of groups are well known but useful in
the sequel, and the relevant proofs are omitted.

Proposition 4.4 (see [18]). Let M and N be groups equipped with compatible actions on each other.

(a) The free product M ∗N acts on M ⊗N so that

p(m⊗ n) = pm⊗ pn, m ∈ M, n ∈ N, p ∈ M ∗N.

(b) There are homomorphisms

λ : M ⊗N −→ M, λ′ : M ⊗N −→ N

such that λ(m⊗ n) = m · nm−1, λ′(m⊗ n) = mnn−1.
(c) The homomorphism λ, λ′, with the given actions, are crossed modules.
(d) If l ∈ M ⊗N , m′ ∈ M , n′ ∈ N , then

(λl)⊗ n′ = l · n′
l−1m′ ⊗ (λ′l) = m′

ll−1.

(e) The actions of M on Kerλ′, N on Kerλ, are trivial.
(f) If l, l′ ∈ M ⊗N , then

[l, l′] = (λl)⊗ (λ′l′)
and, in particular, [m⊗ n,m′ ⊗ n′] = (m · nm−1)⊗ (m

′
n′n′−1).
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Proposition 4.5 (see [16]). Let G be any group and let

1 �� A
i �� K

π �� G �� 1

be a central extension. Then there is a homomorphism ξ : G⊗G −→ K such that πξ is the commutator
map κ. If G is perfect (G = [G,G]), then ξ is unique, i.e., κ : G ⊗ G −→ G is the universal central

extension of the perfect group G.

The non-Abelian tensor product of groups is a right exact functor. In particular, the following
theorem holds.

Theorem 4.6.

(a) Assume that

1 �� A
f �� B

g �� C �� 1

is a short exact sequence of groups, D is an arbitrary group that acts on A, B, and C, the groups
A, B, and C also act on D, and f and g preserve the actions. Then we have the following exact
sequence of groups:

D ⊗A
f ′

�� D ⊗B
g′ �� D ⊗ C �� 1,

where f ′ = 1⊗ f , g′ = 1⊗ g.
(b) Assume that

1 �� A
f �� B

g �� C �� 1, (4.5)

1 �� D
φ �� E

ψ �� F �� 1 (4.6)

are short exact sequences of groups, where A and D, B and E, and C and F act on each other,

and f and φ and g and ψ preserve the actions. Then the sequence of groups

(A⊗E)× (B ⊗D)
α �� B ⊗ E

g⊗ψ �� C ⊗ F �� 1

is exact, where α is a map of sets.

Later the following calculation of the non-Abelian tensor product of groups will be needed.

Proposition 4.7. Let A be any group acting trivially on Z and Z acts on A such that the compatibility
conditions (4.1) hold. Then there is a natural isomorphism

Z⊗A
∼= �� Aab, n⊗ a �−→ [n−1a] · [n−2a] · · · [1a] · [a].

Proof. By [18, Proposition 2.3], Z⊗A is an Abelian group and n⊗ aa′ = n⊗ a′. Therefore,

n⊗ aa′ = (n ⊗ a)(n ⊗ a′). (4.7)

Let define a homomorphism f : Z⊗A −→ Aab as follows:

n⊗ a �−→ [n−1a] · [n−2a] · · · [1a] · [a].
We must show that this map preserves the defining relations of the non-Abelian tensor product. In
fact,

f((n+m)⊗ a) = [n+m−1a] · · · [1a] · [a],
f(m, na) = [m−1(na)] · · · [1(na)] · [na] = [n+m−1a] · · · [n+1a] · [na].
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Therefore, f((n+m)⊗ a) = f(m⊗ na)f(n⊗ a). Next,

f(n⊗ aa′) = [n−1(aa′) · · · [1(aa′)] · [aa′],
f(n⊗ aa′) = [n−1a′] · · · [1a′] · [a′].

Therefore, f(n⊗ aa′) = f(n⊗ a)f(n⊗ aa′).
Now define g : Aab −→ Z⊗A by [a] �−→ 1⊗a. It is easy to see that g is a well-defined homomorphism.

We must show that gf is the identity map. In effect, by (4.7) and the formula

(n+ 1)⊗ a = (1⊗ na)(n⊗ a)

we have

gf(n⊗ a) = 1⊗ (n−1a · · · 1a · a) = (1⊗ n−1a) · · · (1⊗ 1a)(1⊗ a)

= (n ⊗ a)((n − 1)⊗ a)−1 · · · ((n − 1)⊗ a)((n− 2)⊗ a)−1 · · · (2⊗ a) · (1⊗ a)−1(1⊗ a) = n⊗ a.

It is easy to see that fg is also the identity map.

Example 4.8. Let A be a metabelian group and the action of Z on A be defined by inner automor-
phism, i.e., na′ = ana′a−n for all n ∈ Z, a′ ∈ A for some a ∈ A. If A acts on Z trivially, then in this

case the groups Z and A act on each other compatibly, and Proposition 4.7 can be applied.

Proposition 4.9. Let A be a metabelian group acting on Z trivially and Z act on A by inner auto-

morphism (see above). Then there is a natural isomorphism

Z
2 ⊗A ∼= (Aab)2.

Proof. Check the conditions of [16, Proposition 10] in our case. We have

(a): m(na′) = n(ma′).

(b)–(c): n(m⊗ a′) = m⊗ na′ is an action and since = m⊗ ana′a−n = m⊗ a′, it is trivial.

Therefore by [16, Proposition 10] and Proposition 4.7 we have natural isomorphisms

Z
2 ⊗A ∼= (Z⊗A)× (Z⊗A) ∼= (Aab)2.

The proposition is proved.

2. Construction of Non-Abelian Homology of Groups

Let A denote a group. Let AA denote the category whose objects are all groups G together with

an action of G on A by automorphisms of A and an action of A on G by automorphisms of G.
Morphisms in the category AA are all group homomorphisms α : G −→ H that preserve the actions,
namely α(ag) = aα(g) and ga = α(g)a, for all a ∈ A and g ∈ G.

Let F : AA −→ AA be the endofunctor defined as follows: for an object G of AA, let F (G) denote

the free group generated by G with actions: |g1|ε1 ···|gs|εsa = g
ε1
1 (· · · (gεss a) · · · ), and a(|g1|ε1 · · · |gs|εs) =

|ag1|ε1 · · · |ags|εs where a ∈ A, |g1|ε1 · · · |gs|εs ∈ F (G) and εi = ±1; for a morphism α : G −→ G′ of AA,

let F (α) be the canonical homomorphism from F (G) to F (G′) induced by α.
Let τ : F −→ 1AA

be the obvious natural transformation and let δ : F −→ F 2 be the natural
transformation induced for every G ∈ AA by the injection G −→ F (G). We obtain a cotriple F =

(F, τ, δ), which we call the free cotriple in the category AA. Let P be the projective class induced by
the free cotriple F (see Chap. 1, Sec. 1.2).

First we describe in the category AA the projective class P induced by the free cotriple F and the

corresponding P-epimorphisms.
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Proposition 4.10. A morphism α : G −→ G′ of the category AA is a P- epimorphism if and only if

there exists a section map β : G′ −→ G that preserves the actions of A, i.e., β(ag′) = aβ(g′) for all
a ∈ A, g′ ∈ G′.

Proposition 4.11. In the category AA the following conditions are equivalent :

(i) F belongs to the projective class P.

(ii) F is a free group generated by a set X such that ax ∈ X for all a ∈ A and x ∈ X.

(iii) For any morphism α : G −→ G′ that has a section map β : G′ −→ G preserving the actions of
A and any morphism κ′ : F −→ G′, there exists a morphism κ : F −→ G such that ακ = κ′.

The proof of these propositions is easy and is omitted.
The non-Abelian tensor product of groups defines a covariant functor −⊗A from the category AA

to the category Gr. Consider the non-Abelian left derived functors LP
n (− ⊗A), n ≥ 0, of the functor

−⊗A relative to the projective class P induced by the free cotriple F .
It is easy to verify that there is a natural isomorphism LP

0 (− ⊗ A) ∼= − ⊗ A [68] and by Proposi-
tion 1.20 the functor −⊗A is a cosheaf over (AA,P). The following result is given in [68].

Theorem 4.12. If A is an Abelian group that acts trivially on a group G ∈ AA, then we have natural
isomorphisms

LP
n (G⊗A) ∼= Hn+1(G,A), n ≥ 1,

Kerλ′ ∼= H1(G,A), Coker λ′ ∼= H0(G,A),

where λ′ : G⊗A −→ A, λ′(g ⊗ a) = ga · a−1.

Proof. Let A be a G-module, let GrG be the category of groups over G, and let DiffG(W ) = Z[G]⊗W

IW for W be a group over G. By Guin’s Proposition 3.2 [53] LP
n (−⊗A) is isomorphic to the nth left

derived functor of A⊗Z[G] DiffG(−) : GrG −→ Gr that gives the Eilenberg–Maclane homology group
Hn+1(G,A) if n ≥ 1 (see [5]).

This theorem enables us to introduce non-Abelian homology of groups. In fact, we have the following
definition.

Definition 4.13. Let G and A be groups acting on each other. Then we define

Hn(G,A) = LP
n−1(G⊗A), n ≥ 2,

H1(G,A) = Kerλ′, H0(G,A) = Coker λ′,

where λ′ : G ⊗ A −→ A/H ′, λ′(g ⊗ a) = [gaa−1], and H ′ is the normal subgroup generated by the

elements (ag)a′aga−1
a′−1, for each a, a′ ∈ A, g ∈ G.

It is easy to see that if G and A are any groups acting on each other trivially, then Hn(G,A) ∼=
Hn(G,Aab) for n ≥ 1, where Aab is the abelianization of the group A.

Remark 4.14. It is clear that the groups Hn(G,A) are Abelian for n ≥ 2. We will show that Imλ′

is a normal subgroup of A/H ′, and when for the actions of G and A the compatibility conditons (4.1)
hold, then H1(G,A) is also Abelian.

3. Some Properties of the Non-Abelian Homology of Groups

We begin this section by setting exact sequences of the non-Abelian homology H∗(G,A) of groups

with respect to both variables.
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Theorem 4.15. Let G, A1, A, A2 be arbitrary groups, and G act on A1, A, and A2, which act on

G. Let 1 �� A1
f �� A

g �� A2
�� 1 be an exact sequence of groups, where f and g homomor-

phisms preserve the actions. Then there exist exact sequences of the non-Abelian homology

· · · �� H3(G,A2) �� H2(G,A,A2) �� H2(G,A) ��

�� H2(G,A2)
l1 �� H1(G,A,A2)

l2 �� H1(G,A) ��

�� H1(G,A2)
l3 �� H0(G,A,A2)

l4 �� H0(G,A) �� H0(G,A2) �� 1, (4.8)

where

Hn(G,A,A2) = πn−1(Ker(1F∗(G) ⊗ g)), n ≥ 2,

Ker(1F∗(G) ⊗ g) =
{
Ker(1Fn(G) ⊗ g), n ≥ 1

}
;

H1(G,A,A2) =

[
Ker(1F 1(G) ⊗ g) ∩ ∂0

0
−1

(Ker(1G ⊗ g) ∩Kerλ′)
]

∂1
1(Ker(1F 2(G) ⊗ g) ∩Ker ∂1

0)
,

H0(G,A,A2) = Ker(g̃)/λ′(Ker(1G ⊗ g)) (the set of left cosets),

and

· · · �� H3(G,A,A2) �� H2(G,A1, A) �� H2(G,A1) ��

�� H2(G,A,A2) �� H1(G,A1, A) �� H1(G,A1) �� H1(G,A,A2) ��

�� H0(G,A1, A) �� H0(G,A1) �� H0(G,A,A2) �� 1 , (4.9)

where the groups Hn(G,A1, A) are defined analogously.

Remark 4.16.

(a) The sequence (4.8) generalizes the well-known classical exact sequence of the homology of groups
with Abelian coefficients. If A1, A, A2 are G-modules, then the groups Hn(G,A1, A) are trivial.

(b) If G and A act on each other compatibly (in this case G, A1 and G, A2 act on each other
compatibly), then H0(G,A,A2) = H0(G,A1).

(c) Let 1 −→ (A1, 1) −→ (A,μ) −→ (A2, λ) −→ 1 be an exact sequence of crossed G-modules.
Then Guin has obtained [9] the following exact sequence of the non-Abelian homology

H1(G,A1) �� H1(G,A) �� H1(G,A2) ��

�� H0(G,A1) �� H0(G,A) �� H0(G,A2) �� 1 . (4.10)

The first five terms of the sequence (4.8) coincide with the sequence (4.10).

(d) we have a natural homomorphism H1(G,A1) −→ H1(G,A,A2) such that the diagram

H1(G,A1) ��

��

H1(G,A)

H1(G,A,A2)
l2

�� H1(G,A)

is commutative. When the actions are compatible, this natural homomorphism is surjective.
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For noncommutative local rings, the relationship of Milnor’s algebraic K-functor K2 with the sym-

bol group Sym is given in terms of a long exact sequence of non-Abelian homology of groups [68]
extending Guin’s six-term exact sequence [53]. In fact, let R be a noncommutative local ring such
that R/RadR �= F2. Then we have the following exact sequence of groups

· · · �� H3(R
∗, [R∗, R∗]) �� H2(R

∗, U(R), [R∗, R∗]) �� H2(R,U(R)) ��

�� H2(R
∗, [R∗, R∗]) �� H1(R

∗, U(R), [R∗, R∗]) �� H1(R,U(R)) ��

�� H1(R
∗, [R∗, R∗]) �� K2(R) �� Sym(R) �� [R∗, R∗]/[R∗, [R∗, R∗]] �� 1 .

Theorem 4.17. Let G1, G, G2, A be arbitrary groups. Assume that A acts on G1, G, and G2, and

all groups act on A. Let 1 �� G1
α �� G

β �� G2
�� 1 be an exact sequence of groups such

that the homomorphisms α and β preserve the actions. Then H0(G,A) ∼= H0(G2, A) and there is a

long exact sequence of non-Abelian homology groups

· · · �� H4(G2, A) �� H3(G,G2, A) �� H3(G,A) ��

�� H3(G2, A) �� H2(G,G2, A) �� H2(G,A) �� H2(G2, A) ��

�� H1(G,G2, A) �� H1(G,A) �� H1(G2, A) �� 1, (4.11)

where Hn(G,G2, A) = πn−1(Ker(F∗(β)⊗ 1A)) and Ker(F∗(β)⊗ 1A) = {Ker(Fn(β)⊗ 1A) for n ≥ 1.

Proof. The proof follows from the commutative diagram of groups

· · ·
��
��
�� Ker(F 2(β)⊗ 1A)

∂
1
0 ��

∂
1
1

��

��

Ker(F 1(β)⊗ 1A)

��
· · ·

��
��
�� F

2(G) ⊗A
∂1
0 ��

∂1
1

��

F 2(β)⊗1A
��

F 1(G)⊗A
∂0
0 ��

F 1(β)⊗1A
��

G⊗A
λ′

��

β⊗1A
��

A/H ′

· · ·
��
��
�� F

2(G2)⊗A
∂1
0 ��

∂1
1

�� F 1(G2)⊗A
∂0
0 �� G2 ⊗A

λ′
�� A/H ′

2

.

Remark 4.18. In the exact sequence (4.11) the groups H1(G,A) and H1(G2, A) can be replaced by
the groups π0(F∗(G)⊗A) and π0(F∗(G2)⊗A) respectively.

Let

D =

G2

α2

��
G1 α1

�� G

(4.12)

be a diagram in the category AA with surjective α1. Let L∗(D, A) be the pullback of the induced

diagram

F∗(G2)⊗A

F∗(α2)⊗1A
��

F∗(G1)⊗A
F∗(α1)⊗1A

�� F∗(G)⊗A

.
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Define Hn(D, A) = πn−1L∗(D, A), n ≥ 2.

Theorem 4.19 (Mayer–Vietoris sequence). For any diagram (4.12) there is a long exact sequence

· · · �� Hn+1(G,A) �� Hn(D, A) �� Hn(G1, A)⊕Hn(G2, A) �� Hn(G,A) ��

�� · · · �� H2(D, A) �� H2(G1, A)⊕H2(G2, A) �� H2(G,A) ��

�� π0L∗(D, A) �� π0(F∗(G1)⊗A)× π0(F∗(G2)⊗A) �� π0(F∗(G)⊗A) �� 1. (4.13)

Proof. We have the following commutative diagram of simplicial groups with exact rows:

1 �� I∗
σ∗ �� L∗(D, A)

p∗ ��

q∗
��

F∗(G2)⊗A ��

F∗(α2)⊗1A
��

1

1 �� I∗ �� F∗(G1)⊗A
F∗(α1)⊗1A �� F∗(G)⊗A �� 1

, (4.14)

where I∗ = Ker(F∗(α1)⊗ 1A). Diagram (4.14) induces the following commutative diagram with exact

rows

· · · �� π1(F∗(G2)⊗A) ��

��

π0(I∗) �� π0L∗(D, A) ��

��

π0(F∗(G2)⊗A) ��

��

1

· · · �� π1(F∗(G)⊗A)
δ1

�� π0(I∗) �� π0(F∗(G1)⊗A) �� π0(F∗(G)⊗A) �� 1

. (4.15)

The connecting homomorphism πn(F∗(G) ⊗ A) −→ πn−1L∗(D, A), n ≥ 1, is the composite map

πn−1(σ∗)δn. The homomorphism πn(L∗(D, A)) −→ πn(F∗(G1) ⊗ A) × πn(F∗(G2) ⊗ A), n ≥ 0, is
induced by πn(q∗) and πn(p∗). The map πn(F∗(G1)⊗A)×πn(F∗(G2)⊗A) −→ πn(F∗(G)⊗A), n ≥ 0,
is given by πn(F∗(α1)⊗ 1A)πn(F∗(α2)⊗ 1A)

−1. To get the exactness of the sequence (4.13), it remains

to apply diagram (4.15).

Note that if the group G2 is trivial, then we recover the sequence (4.11) (see Remark 4.13).

Let G and A be any groups that act on each other. Let us consider H1(−, A) as a functor from the
category AA to the category Gr of groups and its left derived functors LP

n (H1(−, A)) relative to the
projective class P induced by the free cotriple F . Then we have

Theorem 4.20. There is a natural isomorphism

Hn(G,A) ∼= LP
n−1(H1(G,A)), n ≥ 1.

Proof. We have a short exact sequence of groups

1 �� H1(G,A) �� G⊗A
λ′

�� Imλ′ �� 1,

and for any surjective morphism α : G −→ G′ of AA the commutative diagram of groups

G⊗A
λ′

��

��

A/H

G′ ⊗A
λ′

�� A/H ′
,
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where H = H ′ and λ′(G⊗A) = λ′(G′⊗A). Then the assertion follows from the long exact sequence of

homotopy groups of the following short exact sequence of simplicial groups with λ′ : G⊗A −→ A/H:

1

��

1

��

1

��
· · ·

��

��
... H1(F

3(G), A)
��
��
��

��

H1(F
2(G), A)

��
��

��

H1(F
1(G), A)

��
· · ·

��

��
... F 3(G)⊗A

��
��
��

��

F 2(G)⊗A
��
��

��

F (G)⊗A

��
· · ·

��

��
... Imλ′ ��

��
��

��

Imλ′ ��
��

��

Imλ′

��
1 1 1

(4.16)

Note that Theorem 4.20 generalizes the well-known fact that the integral homology can be obtained
as the left derived functors of the abelianization functor.

Proposition 4.21.

(i) H1(−, A) is a cosheaf over (AA,P) (for the definition see Chap. 1, Sec. 2.3).

(ii) If the actions satisfy compatibility conditions (4.1), then H1(−, A) is a right exact functor.

Proof.

(i) From the commutative diagram of groups (4.16) it follows that H1(−, A) ∼= LP
0 H1(−, A). Then

the assertion follows by Proposition 1.20.
(ii) Follows from the commutative diagram of groups

1 �� H1(G2, A) ��

��

G2 ⊗A ��

��

A

1 �� H1(G,A) ��

��

G⊗A ��

��

A

1 �� H1(G1, A) ��

��

G1 ⊗A ��

��

A

1 1

.

Now a new description of the non-Abelian homology of groups will be given in terms of the non-
Abelian left derived functors of the section functor ΓG : CS(AA,P) −→ Gr (see Chap.1, Sec. 2.3).

Theorem 4.22. Let G and A be groups acting on each other. Then there are isomorphisms

Hn(G,A) ∼= LQ
n−1ΓG(−⊗A), n ≥ 2 and Hn(G,A) ∼= LQ

n−1ΓG(H1(−, A)), n ≥ 1.

Proof. Since Theorem 4.6(a) and Proposition 4.21(i) say that the functors (−⊗A) and H1(−, A) are
cosheaves over (AA,P), respectively, the isomorphisms follow from [60, Theorem 2.34] and Theorem

4.20.
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Theorem 4.23. Let G and A be any groups. Let A act on G trivially and G act on A.

(i) If G is a finite group and A is a finite group (or p-group or finitely generated group), then
Hn(G,A), n ≥ 2, is a finite group (or p-group or finitely generated group);

(ii) If A is a torsion group (or a group of exponent q), then Hn(G,A), n ≥ 2, is a torsion group
(or a group of exponent q).

Proof. Let us consider a P-projective pseudo-simplicial resolution X∗
∂0
0 �� G of G in the category

AA. Apply the Quillen’s construction [60, 107]

1 �� ΩX∗ �� EX∗ �� X∗ �� Cπ0X∗ �� 1

to the pseudo-simplicial group X∗. We obtain the commutative diagram of groups

· · ·
��

��
... Ker(∂1

0 · · · ∂n+1
0 )

∂n+1
0 ��

∂n+1
n

��
...

∂n+1
n+1

��

· · ·
��
��
�� Ker(∂1

0∂
2
0)

∂2
0 ��

∂2
1

��

∂2
2

��

Ker(∂1
0) ≡ EX∗

∂1
1

��
· · ·

��

��
... Xn

∂n
0 ��

∂n
n

��
...

��

· · ·
��
��
�� X1

∂1
0 ��

∂1
1

��

��

X0 ≡ X∗

��
· · ·

��

��
... G

��

��
...

��

· · ·
��
��
�� G

��
��

��

G ≡ Cπ0X∗

��
1 1 1

where Cπ0X∗ is the constant simplicial group. Therefore we have the following commutative diagram

of groups:

1

��

1

��

1

��
· · ·

��

��
... Ker(∂n+1

n+1 ⊗ 1A)
��

��
...

��

· · ·
��
��
�� Ker(∂2

2 ⊗ 1A)
��
��

��

Ker(∂1
1 ⊗ 1A)

��
· · ·

��

��
... Ker(∂1

0 · · · ∂n+1
0 )⊗A

∂n+1
0 ⊗1A ��

∂n+1
n ⊗1A

��
...

∂n+1
n+1⊗1A

��

· · ·
��
��
�� Ker(∂1

0∂
2
0)⊗A

∂2
0⊗1A ��

∂2
1⊗1A

��

∂2
2⊗1A

��

Ker(∂1
0)⊗A

∂1
1⊗1A

��
· · ·

��

��
... Xn ⊗A

∂n
0 ⊗1A ��

∂n
n⊗1A

��
...

��

· · ·
��
��
�� X1 ⊗A

∂1
0⊗1A ��

∂1
1⊗1A

��

��

X0 ⊗A

��
· · ·

��

��
... G⊗A

��

��
...

��

· · ·
��
��
�� G⊗A

��
��

��

G⊗A

��
1 1 1

. (4.17)
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Thus the sequence of simplicial groups

1 �� Ker(ϑ ⊗ 1A) �� EX∗ ⊗A
ϑ⊗1A �� X∗ ⊗A

j⊗1A �� Cπ0X∗ ⊗A �� 1,

is exact, where ϑn : (EX∗)n −→ Xn is induced by the homomorphism ∂n+1
n+1 : Xn+1 −→ Xn and

jn : Xn −→ (Cπ0X∗) is the composite homomorphism ∂0
0∂

1
0 · · · ∂n

0 . Therefore, we obtain two long
exact sequences of groups:

· · · �� πn+1 Ker(j ⊗ 1A) �� πnKer(ϑ⊗ 1A) �� πn(EX∗ ⊗A) ��

�� πnKer(j ⊗ 1A) �� πn−1Ker(ϑ⊗ 1A) �� · · · �� π1 Ker(j ⊗ 1A) ��

�� π0Ker(ϑ⊗ 1A) �� π0(EX∗ ⊗A) �� π0 Ker(j ⊗ 1A) �� 1

and

· · · �� πn+1(Cπ0X∗ ⊗A) �� πnKer(j ⊗ 1A) �� πn(X∗ ⊗A) ��

�� πn(Cπ0X∗ ⊗A) �� πn−1Ker(j ⊗ 1A) �� · · · �� π1(Cπ0X∗ ⊗A) ��

�� π0 Ker(j ⊗ 1A) �� π0(X∗ ⊗A) �� π0(Cπ0X∗ ⊗A) �� 1 .

But the homotopy groups πn(EX∗ ⊗ A), n ≥ 0, are trivial, since the augmented pseudo-simplicial
group (EX∗, ε, 1) is right contractible with contractions h = 0 and hn = sn+1

n+1 for n ≥ 0 [60, 107]. This

implies that

Hn+1(G,A) = πn(X∗ ⊗A) ∼= πn−1(Ker(ϑ⊗ 1A)), n ≥ 1. (4.18)

Assume now with no loss of generality that A acts on X∗ trivially. Any Ker(∂1
0 · · · ∂n+1

0 ), n ≥ 0,
acts trivially on A and since it is a free group, by [18, Proposition 2.4] we have

Ker(∂1
0 · · · ∂n+1

0 )⊗A ∼= Ker(∂1
0 · · · ∂n+1

0 )ab ⊗Aab ∼=
∑

α

Aab, (4.19)

where α runs over the basis of Ker(∂1
0 · · · ∂n+1

0 ).

First, we prove (i): If G is a finite group and A acts trivially on G then we can construct a new
P-projective simplicial resolution G∗ of the object G in the category AA such that every Gn will be a
finitely generated free group [70]. This can be done as follows.

Recall the definition of the loop functor G from the category of reduced complexes to the category
of simplicial groups [78].

Let K be a reduced complex (i.e., K is a simplicial set that has only one 0-simplex φ). Then we
define a simplicial group GK as follows: the group of the n-simplices is a group that has

(i) one generator σ for every n+ 1-simplex σ ∈ Kn+1,

(ii) one relation snnτ = en for every n-simplex τ ∈ Kn.

The face and degeneracy homomorphisms ∂n
i : GnK −→ Gn−1K and sni : GnK −→ Gn+1K are

given by the formulas

∂n
i σ = ∂n

i σ, 0 ≤ i < n,

∂n
nσ = ∂n

nσ · ∂n
n+1σ

−1
,

sni σ = sni σ, 0 ≤ i ≤ n.

Clearly, the groups GnK are free and from [78] it is known that πn(K) ∼= πn−1(GK) for n > 0.
Let G be a category that has only one object O and Hom(O,O) = G, and consider the nerve M∗(G)

of the category G. It is easy to see that M∗(G) is a reduced complex. It is known that π1(M∗(G)) ∼= G
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and πn(M∗(G)) = 0, n �= 1. Let us consider the simplicial group GM∗(G). Then π0(GM∗(G)) ∼=

π1(M∗(G)) ∼= G and πn−1(GM∗(G)) ∼= πn(M∗(G)) = 0, n > 1. Hence GM∗(G)
∂0
0 �� G is a P-

projective simplicial resolution in the category of groups, where ∂0
0 is the natural epimorphism, and

P is the projective class in the category of groups induced by the free cotriple.

Thus, if we define the action of A on GnM∗(G) trivially and the action of GnM∗(G) on A as follows:

ma = ∂0
0∂

1
0 ···∂n

0 ma, m ∈ GnM∗(G),

then by Propositions 4.10 and 4.11 we deduce that GnM∗(G)
∂0
0 �� G is the P-projective simplicial

resolution in the category AA.
Therefore the group Ker(∂1

0 · · · ∂n+1
0 ) is the subgroup with finite index of the finitely generated free

group and by [113] Ker(∂1
0 · · · ∂n+1

0 ) is also a finitely generated free group. Hence by (10) if A is finite

group (or p-group or finitely generated group) so is Ker(∂1
0 · · · ∂n+1

0 )⊗A, n ≥ 0. By (4.17) and (4.18)

it follows that Hn(G,A), n ≥ 2 is a finite group (or p-group or finitely generated group).
(ii) is proved analogously by (4.17)–(4.19) and the fact that the property of a group to be torsion

(or of exponent q) is stable under coproducts, subgroups, and quotient groups.

4. Second and Third Non-Abelian Homologies of Groups

Now new descriptions of the second and the third non-Abelian homology of groups will be given
using the Čech derived functors (see Chap. 1, Sec. 2.1).

Let G and A be arbitrary groups that act on each other. Let P be an object of the projective class P
and α : P −→ G be a P-epimorphism in the category AA. Consider the Čech resolution (Č(α)∗, α,G)
of G. The actions of A and Č(α)n = P ×G · · · ×G P

︸ ︷︷ ︸
(n+1)-times

, n ≥ 1, on each other are induced in a natural

way by the actions of A and P on each other.
Denote by Č(α)∗ ⊗A the simplicial group obtained by applying the functor −⊗A dimension-wise

to the simplicial group Č(α)∗.

Theorem 4.24.

(i) There is an isomorphism

H2(G,A) ∼= Ker(d10 ⊗ 1A) ∩Ker(d11 ⊗ 1A)
/[

Ker(d10 ⊗ 1A),Ker(d11 ⊗ 1A)
]
;

(ii) there is an epimorphism

H3(G,A) −→
⋂

i∈[2]
Ker(d2i ⊗ 1A)

/∏

I,J

[KI ,KJ ],

where ∅ �= I, J ⊂ [2] = {0, 1, 2} with I ∪ J = [2], KI =
⋂

i∈I
Ker(d2i ⊗ 1A) and KJ =

⋂

j∈J
Ker(d2j ⊗

1A).

Proof. By [103] (see also [60, Theorem 2.39(ii)]) we know that there is an isomorphism

H2(G,A) = LP
1 (G⊗A) ∼= π1(Č(α)∗ ⊗A) (4.20)

and an epimorphism

H3(G,A) = LP
2 (G⊗A) −→ π2(Č(α)∗ ⊗A). (4.21)

Now we must show that Č(α)2 ⊗ A and Č(α)3 ⊗ A are generated by degenerate elements. In fact,

for any (x, y, z) ∈ Č(α)2 and a ∈ A we have
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(x, y, z) ⊗ a = (x, x, x)(1, x−1y, x−1y)(1, 1, y−1z)⊗ a =

=
(
(x,x,x)(1, x−1y, x−1y) · (x,x,x)(1, 1, y−1z)⊗ α(x)a

)
((x, x, x) ⊗ a) =

=
(
(1, yx−1, yx−1)(1, 1, xy−1zx−1)⊗ α(x)a

)
((x, x, x) ⊗ a) =

=
(
(1,yx−1,yx−1)(1, 1, xy−1zx−1)⊗ α(x)a

)(
(1, yx−1, yx−1)⊗ α(x)a

)
((x, x, x) ⊗ a) =

=
(
(1, 1, zy−1)⊗ α(x)a

)(
(1, yx−1, yx−1)⊗ α(x)a

)
((x, x, x) ⊗ a) =

= (s0 ⊗ 1A)
(
(1, zy−1)⊗ α(x)a

)
· (s1 ⊗ 1A)

(
(1, yx−1)⊗ α(x)a

)
· (s0 ⊗ 1A)((x, x) ⊗ a).

For Č(α)3 ⊗A the proof is similar.

By [18, Lemma 5.7] and [99, Theorem 4.1] there are equalities

Im ∂2 =
[
Ker(d0 ⊗ 1A),Ker(d1 ⊗ 1A)

]
,

Im ∂3 =
∏

I,J

[KI ,KJ ],
(4.22)

where ∅ �= I, J ⊂ [2] = {0, 1, 2} with I ∪ J = [2],

KI =
⋂

i∈I
Ker(d2i ⊗ 1A),

KJ =
⋂

j∈J
Ker(d2j ⊗ 1A),

and ∂2 and ∂3 are Moore complex homomorphisms of Č(α)∗ ⊗A.
From (4.20)–(4.22) follows the assertion.

Let us consider an exact sequence of groups

1 �� R
σ �� F

α �� G �� 1,

where F ∈ P and α is a P-epimorphism. We have commutative diagrams of groups with exact rows
and columns

1

��

1

��
R

σ1

��

R

σ
��

1 �� R
σ0 �� F ×G F

∂0 ��

d1
��

F ��

α
��

1

1 �� R
σ

�� F
α

��

��

G ��

��

1

1 1

, (4.23)
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1

��

1

��
1 �� Ker(σ1 ⊗ 1A)

β ��

��

Ker(σ ⊗ 1A) ��

��

Coker β

R⊗A

σ1⊗1A
��

R⊗A ��

σ⊗1A
��

R⊗A
σ0⊗1A �� (F ×G F )⊗A

∂0⊗1A ��

d1⊗1A
��

F ⊗A ��

α⊗1A
��

1

R⊗A
σ⊗1A �� F ⊗A

α⊗1A ��

��

G⊗A ��

��

1

1 1

. (4.24)

Define a homomorphism

δ : Ker(d0 ⊗ 1A) ∩Ker(d1 ⊗ 1A) −→ Coker β,

by δ(x) = [y] for all x ∈ Ker(d0⊗1A)∩Ker(d1⊗1A) and with (σ1⊗1A)(y) = x. It is easy to verify that
δ is correctly defined and is an isomorphism. From Theorem 4.24(i) we obtain the following theorem.

Theorem 4.25. Let G and A be any groups acting on each other. Then

H2(G,A) ∼= Coker β
/
δ
([

Ker(d0 ⊗ 1A),Ker(d1 ⊗ 1A)
])
.

Corollary 4.26. If A acts trivially on G, G acts on A and the actions are compatible, then there is

an isomorphism
H2(G,A) ∼= Coker β.

Proof. It is obvious, since by [18, Proposition 2.3] in this case the group (F ×G F )⊗A is Abelian.

Note that if G acts on A and A acts on G trivially such that the actions are compatible, then

Hn(G,A) ∼= Hn(G,Aab), n ≥ 2, since G⊗A ∼= G⊗Aab.
Let Zn act on a group A and A act on Zn trivially such that the actions are compatible. Further

we assume that Z acts on A via the canonical homomorphism α : Z −→ Zn and A acts trivially on

Z. Consider the isomorphism κ : Aab −→ nZ ⊗ A given by a �−→ n ⊗ a and the homomorphism
σ1 ⊗ 1A : nZ⊗A −→ (Z×α Z)⊗A (see diagram (4.24)). Then we have

Proposition 4.27. There is an isomorphism

H2(Zn, A) ∼=N (Aab)/Ker((σ1 ⊗ 1A)κ),

where N (Aab) = KerN , N : Aab −→ Aab with N([a]) =
∑

x∈Zn

x[a].

Proof. It is clear that α is a P-epimophism (see Proposition 4.10). Using Proposition 4.7 we have the

following commutative diagram:

nZ⊗A
κ−1

��

σ⊗1A
��

Aab

N
��

Z⊗A ∼=
�� Aab

.

It remains to apply Corollary 4.26.
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Let us consider the category AMod of A-modules. In this category consider the following projective

class P:
An object of P is a free Abelian group having a basis X such that ax ∈ X for any x ∈ X, a ∈ A.
It is clear that the projective class P includes all free A-modules. For any additive functor T :

AMod −→ AbGr consider its left derived functors LP
n T , n ≥ 0.

For any short exact sequence of A-modules 0 �� B1
i �� B

j �� B2
�� 0, where j is a P-

epimorphism, i.e., with an action preserving section, we have a long exact sequence of the left derived

functors LP
n T of T .

Consider the following commutative diagram of groups with exact rows:

1 �� R
σ ��

τ ′
��

F
α ��

��

G ��

��

1

1 �� Ker(αab)
σ′

�� F ab

αab

�� Gab �� 1,

where G ∈ AA, F is an object of the projective class P in the category AA (see above) and α is a
P-epimorphism.

Theorem 4.28. Let G be an Abelian group acting on a group A trivially, and A act on G. Then we
have an exact sequence of groups

(Ker(σ ⊗ 1A) ∩Ker(τ ′ ⊗ 1A))
ab �� H2(G,A) �� TorP1 (G, IA) �� 0,

where IA is the augmentation ideal of A.

Proof. It is easy to show that in this case τ ′ is surjective. So we obtain the following commutative
diagram of groups with exact rows and columns:

[F,F ]⊗A

��

[F,F ]⊗A

��
1 �� Ker(σ ⊗ 1A) ��

λ
��

R⊗A
σ⊗1A ��

τ ′⊗1A
��

F ⊗A
α⊗1A ��

��

G⊗A �� 1

1 �� Ker(σ′ ⊗ 1A) �� Ker(αab)⊗A
σ′⊗1A

��

��

F ab ⊗A
αab⊗1A

��

��

G⊗A �� 1

1 1

.

It will be shown that the natural epimorphism

λ : Ker(σ ⊗ 1A) −→ Ker(σ′ ⊗ 1A)

reduced to Ker(σ1⊗1A) (see diagram (4.24)) and to δ([Ker(d10⊗1A),Ker(d11⊗1A)]) is trivial. In effect,
the commutative diagram with exact rows

1 �� R
σ1 ��

��

F ×G F
d11 ��

��

F ��

��

1

1 �� Ker(d11
ab
) �� (F ×G F )ab

d11
ab

�� F ab �� 1
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induces the following commutative diagram:

R⊗A
σ1⊗1A ��

��

(F ×G F )⊗A

d11⊗1A
����

F ⊗A ��

��

1

Ker(d11
ab
)⊗A �� (F ×G F )ab ⊗A

d11
ab⊗1A

�� F ab ⊗A �� 1

(4.25)

which maps to the diagram

R⊗A
σ⊗1A ��

τ ′⊗1A
��

F ⊗A
α⊗1A ��

Ker(αab)⊗A
��

G⊗A �� 1

Ker(αab)⊗A
σ′⊗1A

�� F ab ⊗A
αab⊗1A

�� G⊗A �� 1

(4.26)

using the triple (1R, d
1
0, α) (see diagram (4.23)).

To this end we need the fact that the homomorphism Ker(d11
ab
)⊗A −→ (F ×GF )ab⊗A is injective.

The short exact sequence of A-modules

1 �� Ker(d11
ab
) �� (F ×G F )ab

d11
ab

�� F ab �� 1

has a section γ given by γ[f ] = [(f, f)] that preserves the actions of A. Therefore it induces a long
exact sequence of the left derived functors of −⊗Z[A] IA with relative to the projective class P

· · · �� TorP1 (F
ab, IA) �� Ker(d11

ab
)⊗Z[A] IA ��

�� (F ×G F )ab ⊗Z[A] IA �� F ab ⊗Z[A] IA �� 0.

Since F ab belongs to the projective class P, we have TorP1 (F
ab, IA) = 0. By Guin’s isomorphism [53]

the groups Ker(d11
ab
)⊗Z[A] IA, (F ×G F )ab ⊗Z[A] IA and F ab ⊗Z[A] IA are naturally isomorphic to the

groups Ker(d11
ab
)⊗A, (F ×GF )ab⊗A and F ab⊗A respectively. This implies that the homomorphism

Ker(d11
ab
)⊗A −→ (F ×G F )ab ⊗A is injective.

From diagrams (4.25) and (4.26), the triviality of λ on Ker(σ1 ⊗ 1A) and δ([Ker(d0 ⊗ 1A),Ker(d1 ⊗
1A)]) is now clear.

By the same reason the short exact sequence of A modules

0 �� Ker(αab) �� F ab αab
�� G �� 0,

which has a natural needed section, gives the following exact sequence

0 �� TorP1 (G, IA) �� Ker(αab)⊗A
σ′⊗1A �� F ab ⊗A

αab⊗1A �� G⊗A �� 0.

It follows by Theorem 4.25 that λ induces a natural epimorphism H2(G,A) on TorP1 (G, IA), and

by the homomorphism δ the group (Ker(σ ⊗ 1A) ∩Ker(τ ′ ⊗ 1A)) maps on its kernel.

Note also that TorP1 (G, IA) = Coker Tor1(α
ab, IA).
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Chapter 5

NON-ABELIAN (CO)HOMOLOGY OF LIE ALGEBRAS

The purpose of this chapter is to set up a similar non-Abelian (co)homology theory for Lie algebras

and mainly dedicated to state and prove several desirable properties of this (co)homology theory.
In [45] Ellis introduced and studied the non-Abelian tensor product of Lie algebras which is a Lie

structural and purely algebraic analog of the non-Abelian tensor product of groups of Brown and

Loday [17, 18], treated slightly in Chap. 4, Sec. 1.
Applying this tensor product of Lie algebras, Guin defined the low-dimensional non-Abelian homol-

ogy of Lie algebras with coefficients in crossed modules [55].

In Sec. 1, we recall the notion of the non-Abelian tensor product of Lie algebras due to Ellis [45]
and give some needed properties.

In Sec. 2, we construct a non-Abelian homology H∗(M,N) of a Lie algebra M with coefficients

in a Lie algebra N as the non-Abelian left derived functors of the tensor product of Lie algebras,
generalizing the classical homology of Lie algebras and extending Guin’s non-Abelian homology of Lie
algebras [55] (Proposition 5.6 and Definition 5.7).

In Sec. 3, we investigate the non-Abelian homology of Lie algebras in various aspects, establishing its
some functorial properties. In particular, long exact non-Abelian homology sequences are established
(Theorems 5.9, 5.11 and Corollary 5.12). Moreover, the non-Abelian homology of Lie algebras is

expressed in terms of first non-Abelian homology (Theorem 5.13) and its compatibility with direct
limits of Lie algebras is established (Proposition 5.14). Some explicit formulas for the second and the
third non-Abelian homology of Lie algebras are obtained using Čech derived functors (Theorem 5.15).

In Sec. 4, we give an application of the long exact non-Abelian homology sequence of Lie algebras
to cyclic homology of associative algebras (Theorem 5.18), correcting the result of [55].

Sections 5 and 6 are dedicated to the non-Abelian cohomology of Lie algebras. Following ideas

from [55, 61], using the generalized notion of the Lie algebra of derivations (Definition 5.20 and
Proposition 5.21), we introduce the second non-Abelian cohomology H2(R,M) of a Lie algebra R
with coefficients in a crossed R-module (M,μ) (Proposition 5.26, Definition 5.28), generalizing the

classical second cohomology of Lie algebras (Propositions 5.24 and 5.27). Then, for a coefficient short
exact sequence of crossed R-modules having a module section over the ground ring, we give a nine-
term exact non-Abelian cohomology sequence extending the seven-term exact cohomology sequence

of Guin [55], which exists under the aforementioned additional necessary condition on the coefficient
sequence of crossed modules (Proposition 5.29).

Further generalizations of non-Abelian cohomology of Lie algebras is possible pursuing the line

of [62, 63], in particular, in the direction of making a definition in any dimension and for a wider class
of coefficients.

In this chapter, we denote by Λ a unital commutative ring unless otherwise stated. We shall use
the term Lie algebra to mean a Lie algebra over Λ and [ , ] and | | to denote the Lie bracket and the

coset of the quotient Lie algebra respectively. We denote the category of Lie algebras over Λ by Lie.
We mean under the classical (co)homology of a Lie algebra M with coefficients in an M -module N

the (co)homology groups in the sense of Chevalley–Eilenberg (see, e.g., [22]) that are the homology

of the complexes obtained by applying the functors HomU(M)(−, N) and −⊗U(M) N to the following
standard complex of U(M)-modules

· · · ∂ �� Vn(M)
∂ �� · · · ∂ �� V1(M)

∂ �� V0(M)
ε �� Λ,
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where U(M) is the universal enveloping algebra of M , Vn(M) = U(M) ⊗Λ En(M), n ≥ 0, En(M) =

M∧Λ · · · ∧ΛM︸ ︷︷ ︸
n-times

, n ≥ 1, and E0(M) = Λ, and the chain boundary is given by the formula

∂〈x1, . . . , xn〉 =
n∑

i=1

(−1)i+1xi〈x1, . . . , x̂i, . . . , xn〉+

+
∑

1≤i<j≤n

(−1)i+j
〈
[xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , xn

〉
,

and ε〈 〉 = 1.

1. The Tensor Products of Lie Algebras

Let P and M be two Lie algebras. By an action of P on M we mean a Λ-bilinear map P×M −→ M ,

(p,m) �−→ pm satisfying the following conditions:

[p,p′]m = p(p
′
m)− p′(pm), p[m,m′] = [pm,m′] + [m, pm′]

for all m, m′ ∈ M and p, p′ ∈ P . For example, if P is a subalgebra of some Lie algebra Q, and if M
is an ideal in Q, then Lie multiplication in Q yields an action of P on M .

Now we give the definition of the tensor product of Lie algebras due to Ellis [45] (see also [25, 55]).

Definition 5.1. Let M and N be two Lie algebras acting on each other. The tensor product M ⊗N
of the Lie algebras M and N is the Lie algebra generated by the symbols m⊗ n, m ∈ M , n ∈ N , and

subject to the following relations:

(i) λ(m⊗ n) = λm⊗ n = m⊗ λn,

(ii) (m+m′)⊗ n = m⊗ n+m′ ⊗ n,
m⊗ (n+ n′) = m⊗ n+m⊗ n′,

(iii) [m,m′]⊗ n = m⊗ (m
′
n)−m′ ⊗ (mn),

m⊗ [n, n′] = (n
′
m)⊗ n− (nm)⊗ n′,

(iv) [(m⊗ n), (m′ ⊗ n′)] = −(nm)⊗ (m
′
n′)

for all λ ∈ Λ, m,m′ ∈ M , n, n′ ∈ N .

Assume that φ : M −→ A, ψ : N −→ B are Lie homomorphisms, A, B act on each other, and φ, ψ
preserve the actions in the following sense:

φ(nm) = ψ(n)φ(m), ψ(mn) = φ(m)ψ(n), m ∈ M, n ∈ N.

Then, by [45], there is a unique homomorphism φ⊗ψ : M ⊗N −→ A⊗B such that (φ⊗ψ)(m⊗n) =

φ(m)⊗ ψ(n) for all m ∈ M , n ∈ N . Furthermore, if φ, ψ are onto, so also is φ⊗ ψ.
The tensor product of Lie algebras is symmetric in the sense of the isomorphism M⊗N −→ N⊗M

given by m⊗ n �−→ −n⊗m [45].

A precrossed P -module (M,μ) is a Lie homomorphism μ : M −→ P together with an action of P
on M satisfying the following condition:

μ(pm) = [p, μ(m)] for all m ∈ M, p ∈ P.

If in addition the precrossed module (M,μ) satisfies the Peiffer identity:

μ(m)m′ = [m,m′] for all m,m′ ∈ M,

then it is said to be a crossed P -module. Note that, as in the group case, for a crossed module (M,μ)
the image of μ is an ideal in P , the kernel of μ is a P -invariant ideal in the center of M , and the action

of P on Kerμ induces an action of P/ Imμ on Kerμ, making Kerμ a P/ Imμ-module.
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In [45] the results on the tensor product M ⊗N are obtained assuming the actions of M and N on

each other compatible, i.e.,

(nm)n′ = [n′,mn] and (mn)m′ = [m′, nm] (5.1)

for all m,m′ ∈ M and n, n′ ∈ N . This is the case, for example, if (M,μ) and (N, ν) are crossed
P -modules, M and N act on each other via the action of P . These compatibility conditions are not

assumed to hold except the following

Proposition 5.2. Let M and N be Lie algebras acting on each other such that the compatibility

conditions (5.1) hold. Then there is a natural isomorphism of Lie algebras

M ⊗N ∼= (M ⊗Λ N)/D(M,N),

where D(M,N) is the Λ-submodule of M ⊗Λ N generated by the elements

[m,m′]⊗ n−m⊗ (m
′
n) +m′ ⊗ (mn),

m⊗ [n, n′]− (n
′
m)⊗ n+ (nm)⊗ n′,

(nm)⊗ (mn),

(nm)⊗ (m
′
n′) + (n

′
m′)⊗ (mn),

[nm, n
′
m′]⊗ (m

′′
n′′) + [n

′
m′, n

′′
m′′]⊗ (mn) + [n

′′
m′′, nm]⊗ (m

′
n′)

for all m, m′, m′′ ∈ M and n, n′, n′′ ∈ N .

Proof. Let us introduce in the Λ-module (M⊗ΛN)/D(M,N) a Lie structure by the following formula:

[m⊗ n,m′ ⊗ n′] = −(nm)⊗ (m
′
n′).

To show that this multiplication can be extended from generators to any elements of (M ⊗Λ

N)/D(M,N), we must verify its compatibility with the defining relations of (M ⊗Λ N)/D(M,N),
which is routine and will be omitted. Now it is easy to see the required isomorphism of Lie alge-
bras.

The interesting properties of the tensor product of Lie algebras, in particular its compatibility with
the direct limits and the right exactness, will be given.

Proposition 5.3. Let {Mα, φβ
α, α ≤ β} be a direct system of Lie algebras. Let N be a Lie algebra,

and let for every α the Lie algebras Mα, N act on each other and the homomorphisms φβ
α preserve

the actions. Then there is a natural isomorphism of Lie algebras
(
lim−→
α

{Mα}
)
⊗N ∼= lim−→

α

{Mα ⊗N}.

Proof. We only define the actions of lim−→
α

{Mα} and N on each other by the following way:

|mα|n = mαn and n|mα| = |nmα|

for all mα ∈ Mα, n ∈ N , and the natural isomorphism of Lie algebras

f :
(
lim−→
α

{Mα}
)
⊗N −→ lim−→

α

{Mα ⊗N} by f(|mα| ⊗ n) = |mα ⊗ n|.

The details of the proof are straightforward.
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Proposition 5.4. Assume that 0 �� M ′ φ �� M
ψ �� M ′′ �� 0 is a short exact sequence of

Lie algebras, and N is an arbitrary Lie algebra acting on M ′, M and M ′′; the Lie algebras M ′, M ,
M ′′ act on N and φ, ψ preserve these actions. Then there is an exact sequence of Lie algebras

M ′ ⊗N �� M ⊗N �� M ′′ ⊗N �� 0.

Proof. Similarly to the proof of [45, Proposition 9], since it does not use compatibility conditions
(5.1).

2. Construction of Non-Abelian Homology

We begin this section by recalling the well-known construction of the free Lie algebra on some
Λ-module.

Let M be a Λ-module. Let A1(M) = M , Ak(M) =
∑

0<i<k

Ai(M) ⊗Λ Ak−i(M) and A(M) =
∑

0<k

Ak(M). The inclusion maps Ai(M) ⊗Λ Ak(M) −→ Ai+k(M) give rise to a nonassociative multi-

plication on A(M), turning it into an algebra over Λ.

Let B(M) be the two-sided ideal of A(M) generated by the elements

xx and x(yz) + y(zx) + z(xy),

for all x, y, z ∈ A(M).

We obtain the Lie algebra F(M) = A(M)/B(M) which is the free Lie algebra on the Λ-module
M satisfying the following universal property: there is a natural Λ-homomorphism i : M −→ F(M)
such that for any Lie algebra L and a Λ-homomorphism α : M −→ L there exists a unique Lie
homomorphism κ : F(M) −→ L such that κi = α.

Let N be a Lie algebra and α : M −→ Der(N) a Λ-homomorphism, where Der(N) is the Lie algebra
of derivations of N . Then there exists a unique Lie homomorphism κ : F(M) −→ Der(N) such that
κi = α, which means there is an action of the Lie algebra F(M) on the Lie algebra N .

Now if in addition M is an N -module, then the module action of N on M yields an N -module
structure on Ak(M): if x⊗ y ∈ Ai(M)⊗Λ Ak−i(M) and n ∈ N then, inductively, we define

n(x⊗ y) = nx⊗ y + x⊗ ny,

and this extends linearly to an action of n on an arbitrary element of Ak(M). The action of N on
Ak(M) extends linearly to an action of N on A(M), making A(M) an N -module. Since B(M) is
N -invariant, the action of N on A(M) induces a Lie action of N on F(M).

Let AN denote, for a fixed Lie algebra N , the category whose objects are all Lie algebras M
together with an action of M on N by derivations of N and an action of N on M by derivations of
M . Morphisms in the category AN are all Lie homomorphisms α : M −→ M ′ preserving the actions,

namely α(nm) = nα(m) and mn = α(m)n for all m ∈ M , n ∈ N .
Let F : AN −→ AN be the endofunctor defined as follows: for an object M of AN , let F(M) denote

the free Lie algebra on the underlying Λ-module M with the above-mentioned actions of N on F(M)

and F(M) on N ; for a morphism α : M −→ M ′ of AN , let F(α) be the canonical Lie homomorphism
from F(M) to F(M ′) induced by α.

Let τ : F −→ 1AN
be the obvious natural transformation and let δ : F −→ F2 be the natural

transformation induced for every M ∈ AN by the natural inclusion of Λ-modules M −→ F(M). We
obtain the cotriple F = (F , τ, δ). Let P be the projective class in the category AN induced by the
cotriple F. It is easy to see that in the category AN there exist finite limits. Therefore every object M

of the category AN has a P-projective pseudo-simplicial resolution (F∗, d00,M) (see Chap. 1, Sec. 1.2).
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Let T : AN −→ Lie be a covariant functor. Applying T dimension-wise to F∗ yields the simplicial

Lie algebra T F∗. Define the kth derived functor LP

kT : AN −→ Lie, k ≥ 0, of the functor T relative

to the projective class P as the kth homotopy of T F∗. Note that LP

kT (M), k ≥ 1, is an Abelian Lie

algebra and will be thought as a Λ-module. Hence, forgetting the Lie algebra structure, we see that
Proposition 1.10 implies that there is an isomorphism of functors

LP

kT ∼= LF

kT , k ≥ 0,

where LF

kT is kth cotriple derived functor of the functor T .
The next lemma is useful. The proof is easy and is omitted.

Lemma 5.5. A morphism α : M −→ M ′ of the category AN is a P-epimorphism if and only if there
exists a Λ-linear splitting β : M ′ −→ M that preserves the actions of N , i.e., β(nm) = nβ(m) for all

m ∈ M , n ∈ N .

The non-Abelian tensor product of Lie algebras defines a covariant functor −⊗N from the category
AN to the category Lie. Consider the left derived functors LP

k(− ⊗N), k ≥ 0, of the functor − ⊗N
relative to the projective class P.

Proposition 5.6. Let M be a Lie algebra and N a module over the Lie algebra M . Then there are

natural isomorphisms

LP

k(− ⊗N)(M) ∼= Hk+1(M,N), k ≥ 1,

Ker ν ∼= H1(M,N), Coker ν ∼= H0(M,N),

where N is regarded as an Abelian Lie algebra acting trivially on M and ν : M ⊗ N −→ N is a Lie

homomorphism given by ν(m⊗ n) = mn, m ∈ M , n ∈ N .

Proof. Let LieM denote the category of Lie algebras over M , and DiffM : LieM −→ U(M) − mod
(category of U(M)-modules) a functor given by

DiffM (W ) = I(W )⊗U(W ) U(M),

where U(M) and U(W ) are the universal enveloping algebras of M and W respectively and I(W ) is
the augmentation ideal. By [25, Proposition 13], LF∗(− ⊗N)(M) are isomorphic to the values of the
non-Abelian left derived functors of the functor DiffM (−)⊗U(M) N : LieM −→ Λ−mod (category of

Λ-modules) for the object 1M of the category LieM , which give the classical homology H∗(M,N) of Lie
algebras with the usual dimension shift, similarly to the cases of group (co)homology and Hochschild
(co)homology described as cotriple (co)homology [4, 5].

Using this proposition we make the following

Definition 5.7. Let M and N be Lie algebras acting on each other. Define the non-Abelian homology

of M with coefficients in N by setting

Hk(M,N) = LP

k−1(−⊗N)(M), k ≥ 2,

H1(M,N) = Ker ν, H0(M,N) = Coker ν,

where ν : M ⊗ N −→ N/H, ν(m⊗ n) = |mn|, and H is the ideal of the Lie algebra N generated by
the elements (nm)n′ − [n′,mn] for all m ∈ M , n, n′ ∈ N .

Remark 5.8.

(a) It is clear that Hk(M,N), k ≥ 2, are only Λ-modules, while H1(M,N) and H0(M,N) are Lie

algebras. If the actions of M and N satisfy the compatibility conditions (5.1), then H1(M,N)
is also an Abelian Lie algebra.
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(b) Let N be a crossed M -module; then H0(M,N) and H1(M,N) coincides with zero and first non-

Abelian homology Λ-modules of the Lie algebra M with coefficients in the crossed M -module
N introduced by Guin [55].

We can define another non-Abelian homology theory of Lie algebras using the non-Abelian left
derived functors of the non-Abelian tensor product relative to the cotriple over sets which coincides
with our theory for Lie algebras being free Λ-modules.

3. Some Properties of Non-Abelian Homology

In this section we give some functorial properties of the non-Abelian homology of Lie algebras.
Now several long exact non-Abelian homology sequences with respect to both variables will be

given.

Theorem 5.9. Let α : N −→ N ′ be a surjective Lie homomorphism, M an arbitrary Lie algebra

acting on N and N ′ which act on M and α preserve the actions. Then there is a long exact sequence
of non-Abelian homology

· · · �� H3(M,N ′)
δ3 �� H2(M,N,N ′)

j2 �� H2(M,N)
i2 �� H2(M,N ′)

δ2 ��

δ2 �� H1(M,N,N ′)
j1 �� H1(M,N)

i1 �� H1(M,N ′)
δ1 ��

δ1 �� H0(M,N,N ′)
j0 �� H0(M,N)

i0 �� H0(M,N ′) �� 0 , (5.2)

where

Hk(M,N,N ′) = πk−1(Ker(1F∗(M) ⊗ α)), k ≥ 2,

H1(M,N,N ′) =

{
Ker(1F1(M) ⊗ α) ∩ (d00 ⊗ 1N )

−1
(Ker(1M ⊗ α) ∩Ker ν)

}

(d11 ⊗ 1N )(Ker(1F2(M) ⊗ α) ∩Ker (d10 ⊗ 1N ))
,

H0(M,N,N ′) = Ker α̃/ν(Ker(1M ⊗ α)),

(F∗(M), d00,M) is the F cotriple resolution of the object M of the category AN , and α̃ : N/H −→ N ′/H ′

is the homomorphism induced by α.

Proof. The following commutative diagram of Lie algebras with exact columns

0

��

0

��

0

��

0

��
· · ·

��

��
... Ker(1F2(M) ⊗ α)

��
��

��

Ker(1F1(M) ⊗ α) ��

��

Ker(1M ⊗ α) ��

��

Ker α̃

��
· · ·

��

��
... F2(M)⊗N

d10⊗1N ��

d11⊗1N

��

1F2(M)⊗α

��

F1(M)⊗N
d00⊗1N ��

1F1(M)⊗α

��

M ⊗N
ν ��

1M⊗α

��

N/H

α̃

��
· · ·

��

��
... F2(M)⊗N ′

d10⊗1N′ ��

d11⊗1N′
��

��

F1(M)⊗N ′ d00⊗1N′ ��

��

M ⊗N ′ ν′ ��

��

N ′/H ′

��
0 0 0 0
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immediately induces the exactness of the sequence

· · · �� H3(M,N ′)
δ3 �� H2(M,N,N ′)

j2 �� H2(M,N)
i2 �� H2(M,N ′).

Using the “snake lemma” in the last two columns of this diagram we have the following exact sequence:

H1(M,N)
i1 �� H1(M,N ′)

δ1 �� H0(M,N,N ′)
j0 �� H0(M,N)

i0 �� H0(M,N ′) �� 0 .

We define the homomorphisms j1 and δ2 by

j1(|x|) = (d00 ⊗ 1N )(x)

for x ∈ {Ker(1F1(M) ⊗ α) ∩ (d00 ⊗ 1N )
−1

(Ker(1M ⊗ α) ∩Ker ν)} and

δ2(|y|) =
∣
∣(d11 ⊗ 1N )(y′)− (d10 ⊗ 1N )(y′)

∣
∣

for y ∈ Ker (d11 ⊗ 1N ′) ∩Ker (d10 ⊗ 1N ′), where y′ ∈ F2(M) ⊗N such that (1F2(M) ⊗ α)(y′) = y. It is

easy to verify that j1 and δ2 are well defined and that the sequence (5.2) is exact in terms H2(M,N ′),
H1(M,N,N ′) and H1(M,N) by virtue Proposition 5.4.

Remark 5.10.

(a) If the actions of M and N satisfy the compatibility conditions (5.1), then H0(M,N,N ′) =
H0(M,N ′′), where N ′′ = Kerα.

(b) Let 0 −→ (N ′′, 0) −→ (N,μ) −→ (N ′, ν) −→ 0 be an exact sequence of crossed M -modules.
Thanks to the result in [55], there is a six-term exact non-Abelian homology sequence

H1(M,N ′′) �� H1(M,N) �� H1(M,N ′) ��

�� H0(M,N ′) �� H0(M,N) �� H0(M,N ′) �� 0. (5.3)

The first five terms of the sequence (5.3) coincide with the first five terms of the sequence (5.2)
and there is a natural homomorphism of Λ-modules

H1(M,N ′′) �� H1(M,N,N ′).

Let

D =

M2

α2

��
M1 α1

�� M

(5.4)

be a diagram in the category AN with surjective α1. Let L∗(D, N) be the pullback of the induced
diagram

F∗(M2)⊗A

F∗(α2)⊗1N
��

F∗(M1)⊗N F∗(α1)⊗1N

�� F∗(M)⊗N

.

Define Hk(D, N) = πk−1L∗(D, N), k ≥ 2.

Theorem 5.11 (Mayer–Vietoris sequence). For any diagram (5.4) there is a long exact sequence of
Λ-modules

· · · �� Hk+1(M,N) �� Hk(D, N) �� Hk(M1, N)⊕Hk(M2, N) �� Hk(M,N) ��
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�� · · · �� H2(D, N) �� H2(M1, N)⊕H2(M2, N) �� H2(M,N) �� π0L∗(D, N) ��

�� π0(F∗(M1)⊗N)⊕ π0(F∗(M2)⊗N) �� π0(F∗(M)⊗N) �� 0. (5.5)

Proof. There is a commutative diagram of simplicial Lie algebras with exact rows

0 �� I∗
σ∗ �� L∗(D, N)

p∗ ��

q∗
��

F∗(M2)⊗N ��

F∗(α2)⊗1N
��

0

0 �� I∗ �� F∗(M1)⊗N
F∗(α1)⊗1N �� F∗(M)⊗N �� 0

,

where I∗ = Ker(F∗(α1)⊗ 1N ). Hence we have the following commutative diagram with exact rows

· · · ��π1(F∗(M2)⊗N) ��

��

π0(I∗) ��π0L∗(D, N) ��

��

π0(F∗(M2)⊗N) ��

��

0

· · · ��π1(F∗(M)⊗N)
δ1

�� π0(I∗) ��π0(F∗(M1)⊗N) ��π0(F∗(M)⊗N) �� 0

. (5.6)

The connecting homomorphism πk(F∗(M) ⊗ N) −→ πk−1L∗(D, N), k ≥ 1, is the composite map
πk−1(σ∗)δk. The homomorphism πk(L∗(D, N)) −→ πk(F∗(M1) ⊗ N) ⊕ πk(F∗(M2) ⊗ N), k ≥ 0,
is induced by πk(q∗) and πk(p∗). The homomorphism πk(F∗(M1) ⊗ N) ⊕ πk(F∗(M2) ⊗ N) −→
πk(F∗(M)⊗N), k ≥ 0, is given by πk(F∗(α1)⊗ 1N )− πk(F∗(α2)⊗ 1N ). To get the exactness of the
sequence (5.5), it remains to apply the diagram (5.6).

Corollary 5.12. There is a long exact sequence of the non-Abelian homology of Lie algebras with

respect to the first variable.

Proof. It follows by applying Theorem 5.11 for M2 = 0.

Let us consider H1(−, N) as a functor from the category AN to the category Lie of Lie algebras

and its non-Abelian left derived functors LF

k(H1(−, N)) relative to the cotriple F.

Theorem 5.13. There is a natural isomorphism

Hk(−, N) ∼= LF

k−1(H1(−, N)), k ≥ 1.

Proof. It follows from the long exact homotopy sequence of the following short exact sequence of

simplicial Lie algebras

0

��

0

��

0

��
· · ·

��

��
... H1(F3(M), N)

��
��
��

��

H1(F2(M), N)
��
��

��

H1(F1(M), N)

��
· · ·

��

��
... F3(M)⊗N

��
��
��

ν

��

F2(M)⊗N
��
��

ν

��

F1(M)⊗N

ν

��
· · ·

��

��
... Im ν

��
��
��

��

Im ν
��
��

��

Im ν

��
0 0 0

,

where the bottom simplicial Lie algebra is a constant simplicial Lie algebra and ν : M ⊗N −→ N/H

is a homomorphism given in Definition 5.7.
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Proposition 5.14. Let {Mα, φβ
α, α ≤ β} and {Nα, ψβ

α, α ≤ β} be direct systems of Lie algebras.
Let M and N be Lie algebras and for every α the Lie algebras Mα, N and M , Nα act on each other

and the homomorphisms φβ
α, ψ

β
α preserve the actions. Then there are natural isomorphisms

Hk

(
M, lim−→

α

{Nα}
)
∼= lim−→

α

{Hk(M,Nα)}, k ≥ 0,

Hk

(
lim−→
α

{Mα}, N
)
∼= lim−→

α

{Hk(Mα, N}), k ≥ 0.

Proof. The constructions of both isomorphisms are similar, and only the first one will be given. In
fact, for k = 0 the homomorphism

f : H0

(
M, lim−→

α

{Nα}
)
−→ lim−→

α

{
H0(M,Nα)

}

is defined by f(|{nα}|) = {|nα|}, {nα} ∈ lim−→
α

{Nα}, and the homomorphism

g : lim−→
α

{
H0(M,Nα)

}
−→ H0

(
M, lim−→

α

{Nα}
)

is induced by the homomorphisms

gα : H0(M,Nα) −→ H0

(
M, lim−→

α

{Nα}
)
,

|nα| �−→ |{nα}|.

It is easy to see that these homomorphisms are well defined and fg and gf are identity maps.

For k = 1 the isomorphism

H1

(
M, lim−→

α

{Nα}
) ∼= �� lim−→

α

{H1(M,Nα)}

is induced by the isomorphism M ⊗ lim−→
α

{Nα}
∼= �� lim−→

α

{M ⊗Nα} (see Proposition 5.3).

Finally, for k ≥ 2 the required isomorphism can be obtained applying the well-known assertions

F
(
lim−→
α

{Nα}
)
∼= lim−→

α

{F(Nα)}

and

πk

(
lim−→
α

{Dα}
)
∼= lim−→

α

{πk(Dα)},

where Dα is a simplicial Lie algebra.

We end this section with explicit descriptions of the second and the third non-Abelian homology of
Lie algebras using Čech derived functors.

Let M and N be Lie algebras acting on each other. Let F be an object of the projective class P and

F
ε �� M be a P-epimorphism in the category AN . Let us consider the augmented Čech resolution

(Č(ε)∗, ε,M) of the object M in the category AN (see Chap. 1, Sec. 2.1), where

Č(ε)k = F ×
M

· · · ×
M

F
︸ ︷︷ ︸
(k+1)-times

, k ≥ 0,

dki (x0, . . . , xk) = (x0, . . . , x̂i, . . . , xk), k ≥ 1, 0 ≤ i ≤ k,

ski (x0, . . . , xk) = (x0, . . . , xi, xi, . . . , xk), k ≥ 0, 0 ≤ i ≤ k.
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Applying the functor −⊗N dimension-wise to the Čech resolution ofM yields the augmented simplicial

Lie algebra (Č(ε)∗ ⊗N, ε⊗ 1N ,M ⊗N).

Theorem 5.15.

(i) There is an isomorphism of Λ-modules

H2(M,N) ∼=
{
Ker(d10 ⊗ 1N ) ∩Ker(d11 ⊗ 1N )

}/[
Ker(d10 ⊗ 1N ),Ker(d11 ⊗ 1N )

]
;

(ii) there is an epimorphism of Λ-modules

H3(M,N) −→
2⋂

i=0

Ker(d2i ⊗ 1N )
/∑

I,J

[KI ,KJ ],

where ∅ �= I, J ⊂ {0, 1, 2} such that I ∪ J = {0, 1, 2} and KI =
⋂

i∈I
Ker(d2i ⊗ 1N ), KJ =

⋂

j∈J
Ker(d2j ⊗ 1N ).

Proof. We have an isomorphism

H2(M,N) = LP

1(−⊗N)(M) ∼= π1(Č(ε)∗ ⊗N) (5.7)

and an epimorphism

H3(M,N) = LP

2(−⊗N)(M) −→ π2(Č(ε)∗ ⊗N) (5.8)

(see e.g. [60, Theorem 2.39(ii)]).

The Lie algebra Č(ε)2 ⊗N coincides with its ideal generated by the degenerate elements. In fact,
for any (x, y, z) ⊗ n ∈ Č(ε)2 ⊗N there is an equality

(x, y, z) ⊗ n = (x, x, x) ⊗ n+ (0, y − x, y − x)⊗ n+ (0, 0, z − y)⊗ n

= (s10 ⊗ 1N )((x, x) ⊗ n) + (s11 ⊗ 1N )((0, x − y)⊗ n) + (s10 ⊗ 1N )((0, z − y)⊗ n).

It is easy to verify the similar fact for Č(ε)3 ⊗N . Then by [1, Theorem 1]

Im ∂2 =
[
Ker(d10 ⊗ 1N ),Ker(d11 ⊗ 1N )

]
,

Im ∂3 =
∑

I,J

[KI ,KJ ],

where ∂2 and ∂3 are differentials of the Moore complex of Č(ε)∗⊗N . Hence the assertion follows from
(5.7) and (5.8).

4. Application to Cyclic Homology

In this section the relation of cyclic homology to Milnor cyclic homology of associative algebras is
established in terms of the long exact non-Abelian homology sequence of Lie algebras.

It is well known from the result of Loday and Quillen [88, 91] that for a unital associative algebra

A over a characteristic zero field Λ the cyclic homology HC∗−1(A) of A is the primitive part of the
Hopf algebra H∗(gl(A),Λ) of the Lie algebra gl(A) of matrices with coefficients in A. Analogously, the
rational algebraic K-theory of A is the primitive part of the homology H∗(GL(A),Q) of the general

linear group GL(A) of A, which makes one think that cyclic homology is an additive version of the
algebraic K-theory.

The following stabilization result is also known [88, 91] for the homology of Lie algebra gli(A) for

any unital associative algebra A over a characteristic zero field Λ:

Hk(gli(A),Λ)
∼= Hk(gli+1(A),Λ), i ≥ k,
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and for the computation of the first obstruction to stability

Coker(Hk(glk−1(A),Λ) −→ Hk(glk(A),Λ))
∼= HCM

k−1(A),

where HCM
∗−1(A) are the Milnor cyclic homlogy groups [88], which coincides with Ω∗−1

A|Λ/dΩ
∗−2
A|Λ for

commutative A, where Ω∗
ΛA are the Kähler differentials forms of A. Similar results on the homology

of the linear group GLi(A) of a ring A under certain conditions (see [54, 118])

Hk(GLi(A),Z) ∼= Hk(GLi+1(A),Z), i ≥ k

and

Coker(Hk(GLk−1(A),Z) −→ Hk(GLk(A),Z)) ∼= KM
k (A),

where KM∗ (A) denotes the Milnor K-theory of A, give one thought to consider Milnor cyclic homology

as the additive version of the Milnor K-theory.
Using the non-Abelian group homology, we establish the relation of algebraicK-functorK2 to Milnor

K-functor KM
2 for noncommutative local rings [53, 68]. Now we give an additive version of this result.

In particular, the relation of the first cyclic homology HC1 and the first Milnor cyclic homology HCM
1

of unital associative algebras is expressed in terms of a long exact non-Abelian homology sequence of
Lie algebras, which corrects and extends the six-term exact sequence of [55, Theorem 5.7].

First we introduce the definition of the first Milnor cyclic homology.

Definition 5.16. Let A be a unital associative Λ-algebra. The first Milnor cyclic homology HCM
1 (A)

of A is the quotient of A⊗Λ A by the relations

a⊗ b+ b⊗ a = 0,

ab⊗ c− a⊗ bc+ ca⊗ b = 0,

a⊗ bc− a⊗ cb = 0

for all a, b, c ∈ A.

Our definition of HCM
1 (A) coincides with the definition in the sense of [88] when Λ is a field of

characteristic �=2.
It is well known that the first cyclic homology HC1(A) of a unital associative Λ-algebra A is the

kernel of the homomorphism of Λ-modules

A⊗Λ A/J(A) −→ [A,A],

a⊗ b �−→ ab− ba,

where [A,A] is the additive commutator of A and J(A) is the submodule of A⊗Λ A generated by the
elements

a⊗ b+ b⊗ a,

ab⊗ c− a⊗ bc+ ca⊗ b

for all a, b, c ∈ A.
It is clear that HCM

1 (A) coincides with HC1(A) when A is commutative.

Given a unital associative (noncommutative) Λ-algebra A, consider A as the Lie algebra with the
usual induced Lie structure [a, b] = ab− ba, a, b ∈ A. Denote by V (A) the quotient Lie algebra of the
non-Abelian tensor square A⊗A by the ideal generated by the elements

a⊗ b+ b⊗ a,

ab⊗ c− a⊗ bc+ ca⊗ b

for all a, b, c ∈ A. We compile the results of [55] on the Lie algebra V (A) into the following proposition.

76



Proposition 5.17. Let A be a unital associative Λ-algebra.

(i) There is an action of the Lie algebra A on the Lie algebra V (A) defined by the formula

a′(a⊗ b) = [a′, a]⊗ b+ a⊗ [a′, b]

and a homomorphism μ : V (A) −→ A given by a ⊗ b �−→ [a, b] has the structure of a crossed
A-module;

(ii) There is a natural isomorphism of Λ-modules

V (A) ∼= A⊗Λ A/J(A);

(iii) A acts trivially on HC1(A);

(iv) There is a short exact sequence of crossed A-modules of Lie algebras

0 �� HC1(A) �� V (A) �� [A,A] �� 0 .

Proof. For the proof of (i) and (iii), see [55]. To prove (ii), we can show that J(A) ⊇ D(A,A) and then
examine similar arguments as in Proposition 5.2. The proof of (iv) is straightforward from (i)–(iii).

We have the following assertion.

Theorem 5.18. Let A be a unital associative (noncommutative) Λ-algebra. Then there is an exact
sequence of Λ-modules

· · · �� H2(A,V (A), [A,A]) �� H2(A,V (A)) �� H2(A, [A,A]) ��

�� H1(A,V (A), [A,A]) �� H1(A,V (A)) �� H1(A, [A,A]) ��

�� HC1(A) �� HCM
1 (A) �� [A,A]/[A, [A,A]] �� 0,

Proof. Proposition 5.17, Theorem 5.9, and Remark 5.10 yield the following long exact sequence of
Λ-modules

· · · �� H2(A,V (A), [A,A]) �� H2(A,V (A)) �� H2(A, [A,A]) ��

�� H1(A,V (A), [A,A]) �� H1(A,V (A)) �� H1(A, [A,A]) ��

�� H0(A,HC1(A)) �� H0(A,V (A)) �� H0(A, [A,A]) �� 0.

It is easy to see that

H0(A,HC1(A)) = HC1(A),

H0(A, [A,A]) = [A,A]/[A, [A,A]].

Moreover, H0(A,V (A)) = Coker ν, where ν : A⊗ V (A) −→ V (A) is the Lie homomorphism given
by a⊗ (b⊗ c) = a(b⊗ c). Calculations in the Lie algebra V (A) [55, Lemma 5.4] say that

a(b⊗ c) = a⊗ [b, c] = a⊗ bc− a⊗ cb, a, b, c ∈ A.

Now we easily deduce that there is a natural isomorphism of Λ-modules

H0(A,V (A)) ∼= HCM
1 (A).
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5. The Lie Algebra of Derivations

In the remaining two sections of this chapter we deal with the non-Abelian cohomology of Lie alge-

bras. In particular, we construct the second non-Abelian cohomology of Lie algebras with coefficients
in crossed modules extending Guin’s low-dimensional non-Abelian cohomology of Lie algebras. For
this we need to modify the Lie algebra of derivations introduced in [55].

We begin this section by introducing the extended notion of crossed modules of Lie algebras in the
following sense.

Definition 5.19. Let P and R be Lie algebras acting on each other, and (M,μ) a (pre)crossed R-
module. (M,μ) will be called a P -(pre)crossed R-module if the following conditions hold:

(i) (rp)r′ = [r′, pr], r, r′ ∈ R, p ∈ P ;

(ii) P acts on M and μ is a P -equivariant Lie homomorphism, i.e.,

μ(pm) = pμ(m), m ∈ M, p ∈ P ;

(iii) (pr)m = p(rm)− r(pm) = −(rp)m, r ∈ R, p ∈ P , m ∈ M .

It is easy to see that any (pre)crossed P -module in a natural way can be thought as a P -(pre)crossed
P -module, P acting on itself by Lie multiplication.

A morphism f : (M,μ) −→ (N, ν) of P -(pre)crossed R-modules is a morphism of (pre)crossed
R-modules such that f(pm) = pf(m), p ∈ P , m ∈ M .

Definition 5.20. Let (M,μ) be a P -crossed R-module. Denote by Der(P, (M,μ)) the set of pairs
(γ, r), where γ : P −→ M is a crossed homomorphism (or derivation), which means that γ is a
Λ-homomorphism satisfying the equality

γ([p, p′]) = pγ(p′)− p′γ(p), p, p′ ∈ P,

and r is an element of R such that

μγ(p) = −pr, p ∈ P. (5.9)

This set is called the set of derivations from P to (M,μ).

We introduce on Der(P, (M,μ)) the following operations:

(γ, r) + (γ′, s) = (γ + γ′, r + s),

λ(γ, r) = (λγ, λr),
[
(γ, r), (γ′, s)

]
= (γ ∗ γ′, [r, s]),

for all (γ, r), (γ′, s) ∈ Der(P, (M,μ)) and λ ∈ Λ, where γ ∗ γ′ is given by (γ ∗ γ′)(p) = γ(sp)− γ′(rp),
p ∈ P .

Proposition 5.21. Under the aforementioned operations Der(P, (M,μ)) becomes a Lie algebra.

Proof. We only show that (γ ∗ γ′, [r, s]) ∈ Der(P, (M,μ)). First, we prove that γ ∗ γ′ is a crossed
homomorphism. In fact,

(γ ∗ γ′)([p, q]) = γ(s[p, q])− γ′(r[p, q]) = γ([sp, q]) + γ([p, sq])− γ′([rp, q])− γ′([p, rq]) =

= (sp)γ(q)− qγ(sp) + pγ(sq)− (sq)γ(p)− (rp)γ′(q) + qγ′(rp)− pγ′(rq) + (rq)γ′(p).

On the other hand,

p(γ ∗ γ′)(q)− q(γ ∗ γ′)(p) = pγ(sq)− pγ′(rq)− qγ(sp) + qγ′(rp).
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Moreover, using (iii) of Definition 5.19 and (5.9) we have

(sp)γ(q)− (sq)γ(p)− (rp)γ′(q) + (rq)γ′(p) = 0,

implying (γ ∗ γ′)([p, q]) = p(γ ∗ γ′)(q)− q(γ ∗ γ′)(p).
Further, by (i) of Definition 5.19 we have

μ(γ ∗ γ′)(p) = μγ(sp)− μγ′(rp) = −(sp)r + (rp)s = −[r, ps] + [s, pr] = −p[r, s].

Thus (γ ∗ γ′, [r, s]) ∈ Der(P, (M,μ)).
The details are easy to verify and is omitted from the text.

Remark 5.22. Let (N, ν) and (M,μ) be precrossed and crossed R-modules respectively. Then (M,μ)
is anN -crossed R-module induced by ν, and Der(N, (M,μ)) coincides with the Lie algebra DerR(N,M)
defined in [55]. In particular, it coincides with the Lie algebra DerR(R,M) from [55] when (M,μ) is

viewed as an R-crossed R-module.

At the same time, assume that (M,μ) is a P -crossed R-module and a P ′-crossed R-module and
f : P ′ −→ P is a Lie homomorphism such that

f(p′)m = p′m, f(p′)r = p′r, p′ ∈ P ′, r ∈ R, m ∈ M.

Then there is a Λ-homomorphism

f̃ : Der(P, (M,μ)) −→ Der(P ′, (M,μ))

given by f̃(γ, r) = (γf, r), (γ, r) ∈ Der(P, (M,μ)). If, in addition, f satisfy the condition

f(rp′) = rf(p′), p′ ∈ P ′, r ∈ R,

then f̃ is a Lie homomorphism.

Now assume that P and R act on each other compatibly, i.e., the conditions (5.1) hold. Then there
is an action of P on Der(P, (M,μ)) defined by

p(γ, r) = (γ′,p r), p ∈ P, (γ, r) ∈ Der(P, (M,μ)), (5.10)

where γ′(q) = qγ(p), q ∈ P . There is also an action of R on Der(P, (M,μ)) given by

s(γ, r) = (γ′′, [s, r]), s ∈ R, (γ, r) ∈ Der(P, (M,μ)), (5.11)

where γ′′(q) = sγ(q) − γ(sq), q ∈ P . It is routine to show that the elements (γ′, pr) and (γ′′, [s, r])
belong to Der(P, (M,μ)) and that (5.10), (5.11) define Lie actions.

Proposition 5.23. Let (M,μ) be a P -crossed R-module and the actions of P and R on each other
satisfy the compatibility conditions (5.1). Then the Lie homomorphism ξ : Der(P, (M,μ)) −→ R

given by (γ, r) �−→ r with the aforementioned actions of P and R on Der(P, (M,μ)) is a P -precrossed
R-module.

Proof. We show only the following equality:

(pr)(γ, s) = p(r(γ, s))− r(p(γ, s))

for all r ∈ R, p ∈ P and (γ, s) ∈ Der(P, (M,μ)).
In fact,

(pr)(γ, s) = (γ′, [pr, s]),
where

γ′(q) = (pr)γ(q)− γ((
pr)q) = (pr)γ(q)− γ([q, rp]) = (pr)γ(q)− qγ(rp) + (rp)γ(q) = −qγ(rp).

On the other hand,

p(r(γ, s))− r(p(γ, s)) = (γ1,
p[r, s])− (γ2, [r,

p s]) = (γ1 − γ2, [
pr, s]),
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where

(γ1 − γ2)(q) =
q(rγ(p)− γ(rp))− r(qγ(p)) + (rq)γ(p) = −qγ(rp).

The remaining details are omitted as they are routine.

6. Non-Abelian Cohomology

Before introducing our original definition of the second non-Abelian cohomology of Lie algebras, we
recall the definitions of Guin [55] of the first and the zero non-Abelian cohomologies of Lie algebras
with coefficients in crossed modules.

Let R be a Lie algebra and (M,μ) a crossed R-module. Define the zero non-Abelian cohomology
as an ideal of M of all R-invariant elements,

H0(R,M) =
{
m ∈ M | rm = 0 for all r ∈ R

}
.

The crossed module relation μ(m)m′ = [m,m′] implies that H0(R,M) is contained in the center of M
and therefore has only a Λ-module structure.

The first non-Abelian cohomology is a Lie algebra defined by

H1(R,M) = DerR(R,M)/I,

where I is the following ideal of the Lie algebra DerR(R,M):

I =
{
(ηm,−μ(m) + c) | m ∈ M, c ∈ Z(R)

}
,

ηm is the principal crossed homomorphism (or derivation) induced by m, namely ηm(x) = xm, x ∈ R,
and Z(R) is the center of the Lie algebra R.

We need the following characterization of the second classical cohomology H2(R,M) of the Lie
algebra R with coefficients in an R-module M .

Let us consider the diagram of Lie algebras

P
d0 ��

d1
�� F

ε �� R , (5.12)

where F is a free Lie algebra over some Λ-module, ε is a Lie homomorphism having a Λ-linear splitting
and (P, d0, d1) is a simplicial kernel of ε in the category Lie, i.e., P = {(x, y) ∈ F × F | ε(x) = ε(y)},
d0(x, y) = x, and d1(x, y) = y. Assume that Δ denotes the Lie subalgebra {(x, x) ∈ F × F | x ∈ F}
of P .

Let us claim M as an R-module; then M is also an F -module and P -module via the Lie homo-
morphisms ε and εdi (i = 0, 1) respectively. Denote by Der(P,M) (resp. Der(F,M)) the Λ-module

of crossed homomorphisms from P to M (resp. from F to M). Let D̃er(P,M) be a submodule of

Der(P,M) of all crossed homomorphisms γ such that γ(Δ) = 0. There is a Λ-homomorphism

κ : Der(F,M) �� D̃er(P,M) ,

given by β �−→ βd0 − βd1.

Proposition 5.24. There is a natural isomorphism

H2(R,M) ∼= Cokerκ.

Proof. As in Proposition 5.6, the classical cohomology of the Lie algebra R with coefficients in
the R-module M is isomorphic, up to dimension shift, to the non-Abelian right derived functors

Rk
P
Der(−,M)(R), k ≥ 0, of the contravariant functor Der(−,M) : AM −→ Λ − mod (here we mean
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that M is an Abelian Lie algebra acting trivially on each object of AM ). Hence we only need to

construct an isomorphism of Λ-modules

R1
P
Der(−,M)(R) ∼= Cokerκ.

Let us consider a P-projective simplicial resolution of the object R in the category AM

· · ·
��

��
... F2

d20 ��
��

d22

�� F1

d
����

���
���

���
��

d10 ��

d11

�� F0
ε �� R

P

d0
���������� d1

����������

, (5.13)

where F0 = F and d is the unique Lie homomorphism such that d1i = did (i = 0, 1), which by

Lemma 5.5 is surjective.
Applying the functor Der(−, A) to (5.13) yields a cochain complex of Λ-modules

Der(F0, A)
∂0 �� Der(F1, A)

∂1 �� Der(F2, A)
∂2 �� · · · .

Now define a Λ-homomorphism ϕ : D̃er(P,M) �� Ker ∂1 by ϕ(γ) = γd, γ ∈ D̃er(P,M). To

show that the crossed homomorphism γd : F1 −→ A belongs to Ker ∂1, we need only to examine the
following lemma.

Lemma 5.25. For γ ∈ D̃er(P,M) there is an equality

γ(x, y) = γ(x, z) + γ(z, y)

for all x, y, z ∈ F such that ε(x) = ε(y) = ε(z).

Proof. It is straightforward.

Returning to the main proof, construct a Λ-homomorphism

ψ : Ker∂1 �� D̃er(P,M)

by ψ(β) = γ, β ∈ Ker ∂1, where the map γ : P −→ A is given by γ(x, y) = β(z), (x, y) ∈ P , and
z ∈ F1 such that d(z) = (x, y).

We show that γ is well defined. In fact, let z′ ∈ F1 such that d(z′) = (x, y). Using again Lemma 5.5

implies that there exists an element w ∈ F2 such that d20(w) = d21(w) = 0 and d22(w) = z − z′. Hence,

γ(z)− γ(z′) = γd22(w) = ∂1(β)(w) = 0.

It is easy to show that γ is a crossed homomorphism and ψϕ, ϕψ are identity maps. Moreover, it
is clear that the above-given isomorphism induces the isomorphism H2(R,M) ∼= Coker κ.

Now we are ready to construct our second non-Abelian cohomology of Lie algebras.
Assume that in the diagram (5.12) R acts on F , and ε preserves the actions (here we mean that

R acts on itself by Lie multiplication), implying the induced action of R on P . Note that all these

conditions are satisfied when F = F(R) is the free Lie algebra on the underlying Λ-module R with
canonical Lie homomorphism ε = τR : F(R) −→ R and the above-defined action of R on F(R) (see
Sec. 2 of this chapter). Hence, with no lose of generality, we can assume that the center Z(R) of R

acts trivially on F (see Theorem 5.29).
Let (M,μ) be a crossed R-module. Then (M,μ) can be viewed as a P -crossed R-module induced

by εdi (i = 0, 1) and a F -crossed R-module induced by ε. Denote by D̃er(P, (M,μ)) the subset of

Der(P, (M,μ)) consisting of all elements of the form (γ, 0) satisfying the condition γ(Δ) = 0. Clearly
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D̃er(P, (M,μ)) is a Λ-submodule of Der(P, (M,μ)), since in it the Lie multiplication of Der(P, (M,μ))

is killed.
Let us consider the Λ-submodule B(P, (M,μ)) of D̃er(P, (M,μ)) consisting of all elements (γ, 0) for

which there exists (β, h) ∈ Der(F, (M,μ)) such that βd0 − βd1 = γ.

Proposition 5.26. The Λ-module D̃er(P, (M,μ))/B(P, (M,μ)) is unique up to isomorphism of choos-
ing the diagram (5.12) for the crossed R-module (M,μ).

Proof. Consider the commutative diagram of Lie algebras

P

ω̃1
��
ω̃2

��

d0 ��

d1
�� F

ω1

��
ω2

��

ε �� R

P ′ d′0 ��

d′1
�� F ′ ε �� R

where the bottom row is another diagram of the form (5.12). The existence of such ωi and ω̃i (i = 0, 1),

not preserving the actions of R in general, is clear.
As noted in Sec. 5, we have the induced Λ-homomorphisms, which will be denoted by ωi :

Der(P ′, (M,μ)) −→ Der(P, (M,μ)), ωi(γ, r) = (γω̃i, r), i = 0, 1.

It is easy to see that (γω̃i, 0) ∈ D̃er(P, (M,μ)) if (γ, 0) ∈ D̃er(P ′, (M,μ)). Let (γ, 0) ∈ B(P ′, (M,μ)),

i.e., there exists (β, h) ∈ Der(F ′, (M,μ)) such that βd′0 − βd′1 = γ; then

γω̃i = (βd′0 − βd′1)ω̃i = βωid0 − βωid1.

Thus (γω̃i, 0) ∈ B(P, (M,μ)). Hence we have the natural homomorphisms of Λ-modules χi :

D̃er(P ′, (M,μ))/B(P ′, (M,μ)) −→ D̃er(P, (M,μ))/B(P, (M,μ)), i = 0, 1, induced by ωi.

Now we show that χ1 = χ2 . Take the Lie homomorphism s : F −→ P ′ given by s(x) =

(ω1(x), ω2(x)). For (γ, 0) ∈ D̃er(P ′, (M,μ)) we have (γs, 0) ∈ Der(F, (M,μ)) and the equality

(γsd0 − γsd1)(x, y) = γs(x)− γs(y) = γ(ω1(x), ω2(x))− γ(ω1(y), ω2(y)) =

= γ(ω1(x)− ω1(y), ω2(x)− ω2(y)) + γ
(
ω1(y)− ω2(x), ω1(y)− ω2(x)

)
=

= γ
(
ω1(x)− ω2(x), ω1(y)− ω2(y)

)
= (γω̃1 − γω̃2)(x, y)

for (x, y) ∈ P . Therefore (γω̃1, 0)− (γω̃2, 0) ∈ B(P, (M,μ)) and χ1 = χ2 .
The rest of the proof is standard.

Proposition 5.27. Let R be a Lie algebra and (M,μ) a crossed R-module.

(i) There is a canonical epimorphism of Λ-modules

ϑ : H2(R,Kerμ) −→ D̃er(P, (M,μ))/B(P, (M,μ)),

given by ϑ(|β|) = |(ψ(β), 0)|, |β| ∈ H2(R,Ker μ) (for the definition of ψ see Proposition 5.24).
(ii) If r ∈ Z(R) for any element (α, r) ∈ Der(F, (M,μ)), then ϑ is an isomorphism.

Proof. It directly follows from Proposition 5.24.

Note that the condition of Proposition 5.27 (ii) is fulfilled when either R is an Abelian Lie algebra or
M is an R-module thought of as the crossed R-module (M, 0). This assertion motivates our definition
of the second non-Abelian cohomology of Lie algebras with coefficients in crossed modules.

Definition 5.28. Let R be a Lie algebra and (M,μ) a crossed R-module. Then the Λ-module

D̃er(P, (M,μ))/B(P, (M,μ)) will be called the second non-Abelian cohomology of R with coefficients

in (M,μ) and will be denoted by H2(R,M).
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It is easy to see that a morphism of crossed R-modules θ : (M,μ) −→ (N, ν) induces a Λ-homomor-

phism

θ2 : H2(R,M) −→ H2(R,N), θ2
(
|(α, 0)|

)
= |(θα, 0)|.

Finally, using our second non-Abelian cohomology of Lie algebras, we obtain a nine-term exact
cohomology sequence that prolongs Guin’s seven-term exact cohomology sequence but under one

additional necessary condition on the coefficient of the short exact sequence lacking in [55, Theorem
2.8].

Theorem 5.29. Let R be a Lie algebra and 0 �� (L, 0)
ξ �� (M,μ)

θ �� (N, ν) �� 0 an exact

sequence of crossed R-modules, having a Λ-linear splitting. Then there is an exact sequence of Λ-
modules

0 �� H0(R,L)
ξ0 �� H0(R,M)

θ0 �� H0(R,N)
δ0 �� H1(R,L)

ξ1 �� H1(R,M)
θ1 ��

θ1 �� H1(R,N)
δ1 �� H2(R,L)

ξ2 �� H2(R,M)
θ2 �� H2(R,N) ,

where θ1 is a Lie homomorphism and δ1 is a crossed homomorphism with the action of H1(R,N) on
H2(R,L) induced by the action of R on P .

Proof. According to Theorem 2.8 [55] there is an exact sequence of Λ-modules

0 �� H0(R,L)
ξ0 �� H0(R,M)

θ0 �� H0(R,N)
δ0 ��

δ0 �� H1(R,L)
ξ1 �� H1(R,M)

θ1 �� H1(R,N) ,

where θ1 is a Lie homomorphism. Note that the Λ-linear splitting on coefficient sequence is needed to

construct the connecting map δ1.
We must only define the crossed homomorphism δ1 and the action of the Lie algebra H1(R,N) on

the Λ-module H2(R,L) (in our setting), and then show the exactness of the following sequence:

H1(R,M)
θ1 �� H1(R,N)

δ1 �� H2(R,L)
ξ2 �� H2(R,M)

θ2 �� H2(R,N). (5.14)

Let us take an element |(α, r)| ∈ H1(R,N) and consider the diagram

P
d0 ��

d1
�� F

ε ��

β
��

R

α
��

L
ξ

�� M
θ

�� N

, (5.15)

where β : F −→ M is a crossed homomorphism such that θβ = αε. The existence of such β follows
from the following fact: let F be a free Lie algebra (over some Λ-module X) acting on a Lie algebra

M ; then any Λ-linear map from X to M could be naturally extended to a crossed homomorphism
from F to M .

Then there is a (unique) crossed homomorphism γ : P −→ L such that ξγ = βd0 − βd1. It is clear

that γ(Δ) = 0. Define

δ1|(α, r)| = |(γ, 0)|.
We must verify the correctness of δ1. Let β′ : F −→ M be another crossed homomorphism such that

θβ′ = αε, and hence γ′ : P −→ L be the induced crossed homomorphism satisfying ξγ′ = β′d0 − β′d1.
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Then θβ′ = θβ and there is a crossed homomorphism σ : F −→ L such that β′ = β + ξσ. Thus we

have

ξγ′ = β′d0 − β′d1 = βd0 + ξσd0 − βd1 − ξσd1 = ξγ + ξσd0 − ξσd1,

implying |(γ, 0)| = |(γ′, 0)|.
Now, if (α′, r′) is another representative of the class |(α, r)|, then there exists n ∈ N such that

α′ = α+ ηn. Take β′ : F −→ M such that β′ = β + ηm, where m ∈ M with θ(m) = n and θβ = αε.
It is clear that θβ′ = α′ε. Moreover,

ξγ′ = β′d0 − β′d1 = βd0 + ηmd0 − βd1 − ηmd1 = βd0 − βd1 = ξγ.

Whence γ′ = γ and the connecting map δ1 is correctly constructed.
Now define the action of H1(R,N) on H2(R,L) by the formula

|(α,r)||(γ, 0)| = |(γ̃, 0)|, |(α, r)| ∈ H1(R,N), |(γ, 0)| ∈ H2(R,L),

where γ̃(x, y) = γ(rx, ry), (x, y) ∈ P . The following equality in the Lie algebra Der(P, (M,μ)):

(ξγ̃, 0) =
[
(ξγ, 0), (βd0, r)

]
,

where β : F −→ M is the mentioned crossed homomorphism (see diagram (5.15)), implies that
γ̃ : P −→ L is a crossed homomorphism. Furthermore, it is obvious that γ̃(Δ) = 0. We must verify

that this action is correctly defined. Assume that |(α′, r′)| = |(α, r)| ∈ H1(R,N); hence α′ = α − ηn
and r′ = r + ν(n)− c for some n ∈ N and c ∈ Z(R). We have

γ(r
′
x, r

′
y) = γ(rx, ry) + γ

(
ν(n)x, ν(n)y

)
− γ(cx, cy).

As was mentioned above, we can assume, without loss of generality, that Z(R) acts trivially on F ;
hence γ(cx, cy) = γ(0, 0) = 0. Now we can deduce the correctness of such defined action from the
following lemma.

Lemma 5.30. A map β : F −→ L given by β(x) = γ(ν(n)x, [uν(n), x]) is a crossed homomorphism,
where u : R −→ F is the required Λ-linear splitting, and there is an equality

γ
(
ν(n)x, ν(n)y

)
= (βd0 − βd1)(x, y), (x, y) ∈ P.

Proof. To show that β is a crossed homomorphism we make the following calculations:

xβ(y)− yβ(x) = xγ
(
ν(n)y, [uν(n), y]

)
− yγ

(
ν(n)x, [uν(n), x]

)
=

= (x,x)γ
(
ν(n)y, [uν(n), y]

)
− (y,y)γ

(
ν(n)x, [uν(n), x]

)
=

= γ
[
(x, x),

(
ν(n)y, [uν(n), y]

)]
− γ
[
(y, y),

(
ν(n)x, [uν(n), x]

)]
=

= γ
(
[x, ν(n)y],

[
x, [uν(n), y]

])
− γ
(
[y, ν(n)x],

[
y, [uν(n), x]

])
= γ
(
ν(n)[x, y],

[
uν(n), [x, y]

])
= β[x, y].

Let m ∈ M such that θ(m) = n. Then

γ
(
[uν(n), x], [uν(n), y]

)
= γ
[
(uν(n), uν(n)), (x, y)

]
=

= ν(n)γ(x, y)− (x,y)γ(uν(n), uν(n)) = μ(m)γ(x, y) = [m,γ(x, y)] = 0,

since L is contained in the center of M .

Thus by lemma 5.25 we have

(βd0 − βd1)(x, y) = β(x)− β(y) = γ
(
ν(n)x, [uν(n), x]

)
− γ
(
ν(n)y, [uν(n), y]

)
=

= γ
(
ν(n)x, [uν(n), x]

)
+ γ
(
[uν(n), x], [uν(n), y]

)
+ γ
(
[uν(n), y], ν(n)y

)
= γ(ν(n)x, ν(n)y).
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Now we verify the exactness of the sequence (5.14).

Let |(α, r)| ∈ H1(R,M). Then δ1θ1|(α, r)| = δ1|(θα, r)| = |(γ, 0)|, where ξγ = αεd0 − αεd1 = 0.
Therefore Im θ1 ⊆ Ker δ1.

Let |(α, r)| ∈ H1(R,N) such that δ1|(α, r)| = |(γ, 0)| = 0, where ξγ = βd0 − βd1 (see diagram
(5.15)). Then there exists a crossed homomorphism η : F −→ L satisfying γ = ηd0 − ηd1. Hence we

obtain that (β − ξη)d0 = (β − ξη)d1 implies the existence of (α, r) ∈ DerR(R,M) with β − ξη = αε.
It is obvious that θ1|(α, r)| = |(α, r)|. Hence Ker δ1 ⊆ Im θ1.

Let |(α, r)| ∈ H1(R,N), then ξ2δ1|(α, r)| = ξ2|(γ, 0)| = |(ξγ, 0)| = 0, since there exists (β, r) ∈
Der(F, (M,μ)) such that ξγ = βd0 − βd1. Therefore Im δ1 ⊆ Ker ξ2.

Let |(γ, 0)| ∈ H2(R,L) such that |(ξγ, 0)| = 0 ∈ H2(R,M). Then there exists (β, s) ∈
Der(F, (M,μ)) such that ξγ = βd0 − βd1, whence θβd0 = θβd1. It follows that there is a unique

crossed homomorphism α : R −→ N such that αε = θβ. It is easy to verify that the pair (α, s)
belongs to DerR(R,N) and δ1|(α, s)| = |(γ, 0)|. Therefore Ker ξ2 ⊆ Im δ1.

The rest of the exactness of the sequence (5.14) is similar to the group theoretic case (see [61,

Theorem 13]) and will be omitted.

Chapter 6

MOD q NON-ABELIAN TENSOR PRODUCTS

AND (CO)HOMOLOGY OF GROUPS

The aim of this chapter is to study of some mod q theories. In particular, the non-Abelian tensor and

exterior product modulo q of Conduché and Rodriguez–Fernández [32] of crossed modules, generalizing
definitions of Brown [13] and Ellis and Rodriguez [48] (see also [47] and [112]) and having properties
similar to the Brown–Loday non-Abelian tensor product [18] (see Chap. 4, Sec. 1), is investigated in

various aspects. Mod q group homology and cohomology theories are introduced and studied as the
homologies of the mapping cones of the q multiplication on the standard homological and cohomological
complexes, respectively, as in the case of the mod q Hochschild homology [81]. Then both theories are

unified into a mod q Tate–Farrell–Vogel group cohomology theory.
In Sec. 1, we give some functorial properties of the non-Abelian tensor product modulo q of crossed

modules; in particular, we investigate for the non-Abelian tensor product modulo q of crossed modules

the properties of right exactness (Proposition 6.4, 6.5) and compatibility with the direct limit of
crossed modules (Proposition 6.6). We show that the ‘absolute’ tensor product modulo q of two
groups G and H with compatible actions is the quotient of non-Abelian tensor product G ⊗ H by

q(H1(G,H) ∩ H1(H,G)) (Theorem 6.8). D.Guin’s isomorphism [12] is generalized for the tensor
product modulo q by giving the short exact sequence of groups

0 �� G⊗ qA �� I(G, q) ⊗G A �� qZ⊗G A �� 0 , q ≥ 0,

where G is a group, A is a G-module, and I(G, q) is the kernel of the morphism ε̃ : Z[G] −→ Zq (see
Proposition 6.13).

Then we give an application of tensor product modulo q to algebraic K-theory with Zq coeffi-
cients [9]. In particular, for a (noncommutative) local ring A such that A/RadA �= F2, we give
the relationship between non-Abelian tensor product modulo q and K2(A,Zq) which is an analog in

q-modular aspect of D.Guin’s six-term exact sequence relating the non-Abelian homology of groups
with Milnor’s K2 and the symbol group Sym (Theorem 6.17).

In Sec. 2, given a chain complex, we provide the definition of its mod q homology and Φ-(co)homolo-

gy (Definition 6.18). We prove the universal coefficient formulas (Proposition 6.19 and Corollary 6.20)
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and show that mod q (co)homology of chain complexes reduce to the case q = pm with p a prime

(Theorem 6.22 and Corollary 6.23).
The study of non-Abelian left derived functors of the ‘absolute’ tensor product modulo q of groups

inspired our definition of mod q homology, H∗(G,A;Z/q), of a group G with coefficients in a G-module
A, where q is a positive integer, introduced in Sec. 3 (Definition 3.1). We develop certain aspects of this

mod q version of the homology theory of discrete groups. According to Proposition 6.29 we can think
of mod q homology (in case q = 0) as a generalization of classical group homology. We give universal
coefficient formulas for the mod q homology of groups (Proposition 6.29). Then we calculate the mod q

homology of free groups and finite cyclic groups (Proposition 6.33, Example 6.34, Proposition 6.35).
In Sec. 4, we investigate the derived functors of the non-Abelian ‘absolute’ tensor product modulo

q of groups establishing their relations with classical homology and q-homology of groups (Proposi-

tions 6.37, 6.38, 6.41). The main result of Sec. 4 is Theorem 6.40, showing that if A is a q-torsion free

G-module and q > 0, then there are natural isomorphisms LP ′
n−1(G⊗ qA) ∼= Hn(G,A;Z/q) for n ≥ 2.

In Sec. 5, we introduce the mod q cohomology, H∗(G,A;Z/q), of a group G with coefficients in

a G-module A (Definition 6.27). Given a group G we introduce the notion of a (G, q)-torsor over a
G-module A (Definition 6.49) and describe the first mod q cohomology group in terms of (G, q)-torsors
over A (Theorem 6.50). Using our notions of pointed q-extension and q-extension (Definitions 6.51

and 6.54), we describe the second mod q cohomology of groups (Theorems 6.52 and 6.56).
In Sec. 6, we express the mod q cohomology of groups in terms of cotriple derived functors of the

kernels of higher dimensions of the mapping cone of the q multiplication on the standard cohomological
complex (Theorem 6.57).

In Sec. 7, we give an account of Vogel cohomology theory [125]. In [52] Goichot gave a detailed
exposition of Vogel’s homology theory and its relations to Tate and Farrell theories. We shall give
here the cohomological approach (see also [128, Sec. 5]). At least in the case of finite groups it is the

same, but the point of view is slightly different.
In Sec. 8, the mod q Tate–Farrell–Vogel cohomology of groups is introduced (Definition 6.74).

Finally we show how periodicity properties of finite periodic groups extend to mod q Tate coho-

mology (Theorem 6.81) and give a property of cohomogically trivial G-modules for G a p-group
(Theorem 6.85).

In this chapter, q denotes a positive integer, and its product on any module A is represented by qA

and A/q = A/qA. We denote by IG the augmentation ideal of the group ring Z[G] over a group G.
The groups Z and Z/q are trivial G-modules. We consider the group H−1(G,A) trivial. A ring R is
always associative and unitary; an R-module A is a left R-module. DR is the category of (unbounded)

complexes of projective R-modules, and CR is the category of complexes of R-modules. Considering a
group G, and given two G-modules A and A′ we write A⊗G A′ and HomG(A,A

′) for A⊗Z[G] A
′ and

HomZ[G](A,A
′), respectively.

1. The Tensor Product Modulo q of Groups

We begin this section by recalling some definitions of the mod q non-Abelian tensor product of

groups [32].

1.1. Various definitions. Let μ : M −→ P and ν : N −→ P be two crossed P -modules and
consider the pullback

(pull)

M ×P N
π1 ��

π2

��

M

μ

��
N

ν
�� P

.
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Let K = M ×P N = {(m,n) ∈ M ×N | m ∈ M, n ∈ N, μ(m) = ν(n)}. In this diagram each group

acts on any other group via its image in the group P .

Definition 6.1. The tensor product modulo q, M⊗qN , of the crossed P -modules μ and ν is the group

generated by the symbols m⊗ n and {k}, m ∈ M , n ∈ N , k ∈ K subject to the following relations:

mm′ ⊗ n = (mm′ ⊗ mn)(m⊗ n), (6.1)

m⊗ nn′ = (m⊗ n)(nm⊗ nn′), (6.2)

{k}(m⊗ n){k}−1 = kqm⊗ kqn, (6.3)

{kk′} = {k}
q−1∏

i=1

(
π1k

−1 ⊗ (k
1−q+i

π2k
′)i
)
{k′}, (6.4)

[
{k}, {k′}

]
= π1k

q ⊗ π2k
′q, (6.5)

{
(mnm−1,mnn−1)

}
= (m⊗ n)q (6.6)

for all m,m′ ∈ M , n, n′ ∈ N , k, k′ ∈ K.

Definition 6.2 ( [32]). The exterior product modulo q, M ∧q N , of the crossed P -modules μ and ν is
obtained from the tensor product M ⊗ qN by imposing the additional relation

π1k ⊗ π2k = 1, k ∈ K. (6.7)

The image of a generic element m⊗ n in M ∧q N is written m ∧ n.

Note that we can add the case q = 0; then under M ⊗ 0N we mean the tensor product of Brown
and Loday, M ⊗ N , which is the group generated by elements m ⊗ n, m ∈ M , n ∈ N and subject
to relations (6.1) and (6.2) (see Chap. 4, Sec. 1 or [16–18]). Furthermore, under M ∧0 N we mean

Brown–Loday’s exterior product, M ∧N , which is the group generated by elements m ∧ n, m ∈ M ,
n ∈ N and subject to relations (6.1), (6.2), and (6.7) (see [16, 18, 43]).

Assume that (M,μ), (N, ν) are crossed P -modules and (M ′, μ′), (N ′, ν ′) are crossed P ′-modules.

Assume that α = (f, ϕ) : (M,μ) −→ (M ′, μ′) and β = (g, ψ) : (N, ν) −→ (N ′, ν ′) are crossed module
morphisms such that ϕ = ψ. Then there is a unique homomorphism

α⊗ qβ : M ⊗ qN −→ M ′ ⊗ qN ′ (
α ∧q β : M ∧q N −→ M ′ ∧q N ′ ),

such that

(α⊗ qβ)(m⊗ n) = f(m)⊗ g(n)
(
(α ∧q β)(m ∧ n) = f(m) ∧ g(n)

)
,

(α⊗ qβ)({k}) =
{
(f(π1k), g(π2k))

} (
(α ∧q β)({k}) = {(f(π1k), g(π2k))}

)

for all m ∈ M , n ∈ N , and k ∈ K. Further, if α, β are onto, so also is α⊗ qβ (α ∧q β).

Recall the definition of the function βt(k, k
′) from [32], where k, k′ ∈ K and t is a positive integer:

βt(k, k
′) =

t−1∏

i=1

(π1k
−1 ⊗ k1−t+i

π2k
′i). (6.8)

Then for any k, k′ ∈ K and any positive integer t we have the following equality:

βt(k, k
′) =

t−1∏

i=1

(k
′i−1

π1k
i−t ⊗ π2k

′). (6.9)

We only prove this equality when t is odd, since the case where t is even is similar. In fact, by the

definition of β in (6.8), we have
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βt(k, k
′) =

t−1∏

i=1

(π1k
−1 ⊗ k1−t+i

π2k
′i) = (π1k

−1 ⊗ k2−t
π2k

′)(π1k−1 ⊗ k3−t
π2k

′2) · · ·

· · · (π1k−1 ⊗ k−j
π2k

′j) · · · (π1k−1 ⊗ k−1
π2k

′t−2)(π1k
−1 ⊗ π2k

′t−1),

where j = t−1
2 .

Thus,

βt(k, k
′) = (π1k

−1 ⊗ k2−t
π2k

′) · (π1k−1 ⊗ k3−t
π2k

′2) · · · (π1k−1 ⊗ k−j
π2k

′j) · · ·

· · · (π1k−1 ⊗ k−1
π2k

′t−2) · (π1k−1 ⊗ π2k
′t−2)(k

′t−2
π1k

−1 ⊗ π2k
′) =

= (π1k
−1 ⊗ k2−t

π2k
′) · (π1k−1 ⊗ k3−t

π2k
′2) · · ·

· · · (π1k−1 ⊗ k−j
π2k

′j) · · · (π1k−2 ⊗ π2k
′t−2)(k

′t−2
π1k

−1 ⊗ π2k
′) =

= (π1k
−1 ⊗ k2−t

π2k
′) · (π1k−1 ⊗ k3−t

π2k
′2) · · ·

· · · (π1k−1 ⊗ k−j
π2k

′j)(π1k−j ⊗ π2k
′j+1) · (k′j+1

π1k
1−j ⊗ π2k

′) · · · (k′t−2
π1k

−1 ⊗ π2k
′) =

= (π1k
−1 ⊗ k2−t

π2k
′) · (π1k−1 ⊗ k3−t

π2k
′2) · · ·

· · · (π1k−1⊗ k−j
π2k

′j) · (π1k−j ⊗π2k
′j) · (k′jπ1k−j ⊗π2k

′) · (k′j+1
π1k

1−j ⊗π2k
′) · · · (k′t−2

π1k
−1⊗π2k

′).

Now we compute the other part:

t−1∏

i=1

(k
′i−1

π1k
i−t ⊗ π2k

′) =

= (π1k
1−t ⊗ π2k

′)(k
′
π1k

2−t ⊗ π2k
′) · · · (k′t−3

π1k
−2 ⊗ π2k

′) · (k′t−2
π1k

−1 ⊗ π2k
′) =

= (π1k
−1 ⊗ k2−t

π2k
′)(π1k2−t ⊗ π2k

′) · (k′π1k2−t ⊗ π2k
′) · · ·

· · · (k′jπ1k−j ⊗ π2k
′) · · · (k′t−2

π1k
−1 ⊗ π2k

′) =

= (π1k
−1 ⊗ k2−t

π2k
′) · (π1k2−t ⊗ π2k

′2) · · · (k′jπ1k−j ⊗ π2k
′) · · · (k′t−2

π1k
−1 ⊗ π2k

′) =

= (π1k
−1 ⊗ k2−t

π2k
′) · (π1k−1 ⊗ k3−t

π2k
′2) · · ·

· · · (π1k−j−1 ⊗ π2k
′j)(k

′j
π1k

−j ⊗ π2k
′) · · · (k′t−2

π1k
−1 ⊗ π2k

′) =

= (π1k
−1 ⊗ k2−t

π2k
′) · (π1k−1 ⊗ k3−t

π2k
′2) · · ·

· · · π1k−1 ⊗ k−j
π2k

′j)(π1k−j ⊗ π2k
′j) · (k′jπ1k−j ⊗ π2k

′) · · · (k′t−2
π1k

−1 ⊗ π2k
′).

Hence we have proved that

bet(k, k
′) =

t−1∏

i=1

(k
′i−1

π1k
i−t ⊗ π2k

′),

when t is odd.
Then there is a unique isomorphism

τ : M ⊗ qN −→ N ⊗ qM (τ : M ∧q N −→ N ∧q M),

such that τ(m ⊗ n) = (n ⊗m)−1 (τ(m ∧ n) = (n ∧m)−1), τ({k}) = {k−1}−1, where k = (π2k, π1k)

for all m ∈ M , n ∈ N , and k ∈ K.
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In fact, We have only to show that τ commutes with relations (6.1)–(6.7); for instance, by (6.9) we

have

τ({kk′}) = {k ′ −1
k
−1}−1 = {k−1}−1βq(k

′ −1
, k

−1
)−1{k ′ −1}−1 =

= τ({k}) ·
[ q−1∏

i=1

(
k
1−i

π1k
′q−i ⊗ π2k

−1)
]−1

τ({k′}) =

= τ({k})
q−1∏

i=1

(
k1−q+i

π2k
′i ⊗ π1k

−1
)−1 · τ({k′}) =

= τ({k})
q−1∏

i=1

τ
(
π1k

−1 ⊗ (k
1−q+i

π2k
′)i
)
τ({k′}).

Now let G and H be groups that act on themselves by conjugation (xy = xyx−1) and each of which
acts upon the other in such a way that the compatibility conditions (4.1) hold.

Consider the Peiffer product G �� H, which was defined by Whitehead in [126] and is the quotient of

the free product G ∗H by the normal subgroup generated by the elements ghgh−1g−1 and hghg−1h−1

for all g ∈ G, h ∈ H. As a consequence of the compatibility conditions (4.1), the actions of G ∗H on
G and on H factor through G �� H and the canonical maps G −→ G �� H and H −→ G �� H are

crossed modules; see [51] for more details.

Definition 6.3 ( [32]). An ‘absolute’ tensor product modulo q of two groupsG andH with compatible
actions on each other is the tensor product modulo q of crossed modules G and H over the group
G �� H.

It is easy to deduce [32] that for groups G and H acting trivially on each other there is a natural
isomorphism

G⊗ qH ∼= (Gab/q)⊗Z/q (H
ab/q).

1.2. Functorial properties. Now some properties of non-Abelian tensor product modulo q will be
given.

We begin by giving for the non-Abelian tensor product modulo q of crossed modules the properties
of right exactness and compatibility with the direct limit of crossed modules.

Let (L, λ), (M,μ), and (N, ν) be crossed P -modules. A short exact sequence of groups

1 �� L
α �� M

β �� N �� 1

is called a short exact sequence of crossed P -modules if α and β are morphisms of crossed P -modules.

Proposition 6.4. Let 1 �� L
α �� M

β �� N �� 1 be a short exact sequence of crossed P -

modules. Then there is an exact sequence of groups

P ⊗ qL
α′

�� P ⊗ qM
β′

�� P ⊗ qN �� 1, (6.10)

where α′ = 1P ⊗ qα, β′ = 1P ⊗ qβ.

Proof. Using (6.1), (6.2), and (6.4) we can easily check that β′α′ is the trivial homomorphism. It is

also clear that β′ is surjective (see Sec. 1.1).
Now we show that Imα′ is a normal subgroup of P ⊗ qM . In effect, by [16, Propostion 3]

(p ⊗m)(p′ ⊗ α(l))(p ⊗m)−1 = [p,m]p′ ⊗ [p,m]α(l) ∈ Imα′,
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for all l ∈ L, m ∈ M , p ∈ P . By (6.3)

{(p,m)}(p′ ⊗ α(l)){(p,m)}−1 = pqp′ ⊗ pqα(l) ∈ Imα′,

for all l ∈ L, m ∈ M , p, p′ ∈ P , where μ(m) = p. By [32, Proposition 1.16 and Lemma 1.10]

{(p,m)}α′{(1, l)}{(p,m)}−1 = (pq ⊗ α(l)q){(1, α(l))} ∈ Imα′

and

(p′ ⊗m′)α′{(1, l)}(p′ ⊗m′)−1 = (p′μ(m′)p′−1μ(m′)−1 ⊗ α(l)q){(1, α(l))} ∈ Imα′,

for all l ∈ L, m,m′ ∈ M , p, p′ ∈ P , where μ(m) = p, λ(l) = 1.

Therefore, we have the diagram of groups

P ⊗ qL
α′

�� P ⊗ qM
β′

�� P ⊗ qN �� 1

P ⊗ qL
α′

�� P ⊗ qM
τ

�� Cokerα′ �� 1

,

where the bottom row is exact. Thus, there exists a natural homomorphism γ : Cokerα′ −→ P ⊗ qN

such that γτ = β′.
Let us define a homomorphism γ′ : P⊗qN −→ Cokerα′ as follows: γ′(p⊗n) = [p⊗m], γ′{(p′, n′)} =

[{(p′,m′)}], where β(m) = n, β(m′) = n′ and μ(m′) = ν(n′) = p′. It is correctly defined. In effect, let

m1 = mα(l) and m′
1 = α(l)m′; then

p⊗m1 = p⊗mα(l) = (p⊗m)(μ(m)pμ(m)−1 ⊗mα(l)m−1),

and

{(p′,m′
1)} =

{
(p′, α(l′)m′)

}
=
{
(1, α(l′))(p′,m′)

}
=
{
(1, α(l′))

}
{(p′,m′)}.

Hence [p ⊗m1 = p⊗m] and [{(p′,m′
1)}] = [{(p′,m′)}].

It is easy to verify that γ′ is compatible with the relations (6.1)–(6.6) and γγ′, γ′γ are identity
maps.

Note that in general the non-Abelian tensor product modulo q of crossed P -modules is not a right

exact functor, i.e., the sequence (6.10) is not exact when the group P is replaced by any crossed
P -module A.

Let M and N be crossed P -modules. By [32, Lemma 1.3] we have two homomorphisms ξ : M ⊗
qN −→ M and ξ′ : M ⊗ qN −→ N defined by

ξ(m⊗ n) = mnm−1, ξ({k}) = π1k
q, (6.11)

ξ′(m⊗ n) = mnn−1, ξ′({k}) = π2k
q. (6.12)

Furthermore, these homomorphisms factor through M ∧q N .

Proposition 6.5. Let 1 �� L �� M �� N �� 1 be a short exact sequence of crossed P -
modules. Then there is an exact sequence of groups

Ker ξ′L �� Ker ξ′M �� Ker ξ′N �� Coker ξ′L �� Coker ξ′M �� Coker ξ′N �� 1,

where the homomorphisms ξ′L : P ⊗ qL −→ L, ξ′M : P ⊗ qM −→ M , and ξ′N : P ⊗ qN −→ N are
defined according to (6.12).
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Proof. It follows from the commutative diagram of groups with exact rows and columns

1

��

1

��

1

��
Ker ξ′L ��

��

Ker ξ′M ��

��

Ker ξ′N ��

��
P ⊗ qL ��

ξ′L
��

P ⊗ qM ��

ξ′M
��

P ⊗ qN ��

ξ′N
��

1

1 �� L ��

��

M ��

��

N ��

��

1

Coker ξ′L ��

��

Coker ξ′M ��

��

Coker ξ′N ��

��

1

1 1 1

.

Proposition 6.6. Let {Mα,Φ
β
α, α ≤ β} and {Pα,Ψ

β
α, α ≤ β} be two directed systems of groups. Let

μα : Mα −→ Pα be a crossed Pα-module for every α such that (Φβ
α,Ψ

β
α) : (Mα, Pα) −→ (Mβ , Pβ),

α ≤ β, is a crossed module morphism. Let να : N −→ Pα be a crossed Pα-module for every α such

that (1,Ψβ
α) : (N, να) −→ (N, νβ), α ≤ β, is a crossed module morphism. Then there is a natural

isomorphism

(
lim−→
α

{Mα}
)
⊗ qN ∼= lim−→

α

{Mα ⊗ qN},
(
lim−→
α

{Mα}
)
∧q N ∼= lim−→

α

{Mα ∧q N}.

Proof. First, note that the tensor product modulo q of lim−→
α

{Mα} and N are considered as crossed

modules over the group lim−→
α

{Pα}.

It is clear that a homomorphism ν : N −→ lim−→
α

{Pα} defined as ν(n) = [να(n)], n ∈ N , with action

[pα]n = pαn, is a crossed module.
Now we show that a homomorphism μ : lim−→

α

{Mα} −→ lim−→
α

{Pα} defined by μ([mα]) = [μα(mα)] with

action [pα][mβ] = [Ψ
γ
α(pα)Φγ

β(mβ)], where γ ≥ α, β (the existence of such γ follows from the directness

of the system), is a crossed module. Proof of correctness here is easy and is omitted. Next

μ([pα][mβ]) = μ
(
Ψγ

αΦγ
β(mβ)

)
=
[
μγ

(
Ψγ

α(pα)Φγ
β(mβ)

)]
=
[
Ψγ

α(pα)μγΦ
γ
β(mβ)Ψ

γ
α(p

−1
α )
]
=

=
[
Ψγ

α(pα)Ψ
γ
βμβ(mβ)Ψ

γ
α(p

−1
α )
]
= [pα]μ[mβ][p

−1
α ], where γ ≥ α, β;

μ([mα])[mβ] =
[μα(mα)][mβ ] =

[
Ψγ

αμα(mα)Φγ
β(mβ)

]
=
[
μgmΦγ

α(mα)Φγ
β(mβ)

]
=

=
[
Φγ
α(mα)Φ

γ
β(mβ)Φ

γ
α(m

−1
α )
]
= [mα][mβ ][m

−1
α ], where γ ≥ α, β.

Let us define a homomorphism

κ :
(
lim−→
α

{Mα}
)
⊗ qN −→ lim−→

α

{Mα ⊗ qN}
(
κ : (lim−→

α

{Mα}) ∧q N −→ lim−→
α

{Mα ∧q N}
)
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as follows: κ([mα]⊗n) = [mα⊗n] (κ([mα]∧n) = [mα∧n]) and κ({([mα], n)}) = [{(Φβ
α(mα), n)}], since

[μα(mα)] = [να(n)] and therefore there exists β ≥ α such that Ψβ
αμα(mα) = Ψβ

ανα(n); μβΦ
β
α(mα) =

νβ(n).

Let (Φγ
α)′ = Φγ

α ⊗ q1N and (Φγ
β)

′ = Φγ
β ⊗ q1N . If [mα] = [mβ], then there exists γ ≥ α, β such that

Φγ
α(mα) = Φγ

β(mβ). Thus,

(Φγ
α)

′(mα ⊗ n) = Φγ
α(mα)⊗ n = Φγ

α(mβ)⊗ n = (Φγ
β)

′(mβ ⊗ n).

If there exists β′ ≥ α such that Ψβ′
α μα(mα) = Ψβ′

α να(n) and therefore μβ′Φβ′
α (mα) = νβ′(n), then

there exists γ ≥ β, β′. Thus

(Φγ
β)

′({(Φβ
α(mα), n)

})
=
{
(Φγ

α(mα), n)
}
= (Φγ

β′)
′({(Φβ′

α (mα), n)
})

.

If [mα] = [mα′ ], then there exists γ ≥ α,α′ such that Φγ
α(mα) = Φγ

α′(mα′). Hence we have

(Φγ′
β )′
({

(Φβ
α(mα), n)

})
=
{(

Φγ′
α (mα), n

)}
= (Φγ′

β′)
′({(Φβ′

α′(mα′), n)
})

,

where γ′ ≥ γ, β, β′. Therefore κ is correctly defined. Commutativity of κ with relations (6.1)–(6.7) is
easy to verify and is omitted from the text.

On the other hand, the canonical homomorphisms Φα : Mα ⊗ qN −→ (lim−→
α

{Mα}) ⊗ qN (Φα :

Mα∧qN −→ (lim−→
α

{Mα})∧qN), Φα(mα⊗n) = [mα]⊗n (Φα(mα∧n) = [mα]∧n), and Φα({(mα, n)}) =

{([mα], n)}, induce a homomorphism κ′ : lim−→
α

{Mα ⊗ qN} −→ lim−→
α

{Mα} ⊗ qN (κ′ : lim−→
α

{Mα ∧q N} −→

lim−→
α

{Mα} ∧q N), and it is easy to see that κκ′, κ′κ are identity maps.

Let r be a nonnegative integer and μ : M −→ P be a crossed P -module. (M,μ) is called a r-crossed
P -module if ar = 1 for all a ∈ Kerμ.

We have the following proposition.

Proposition 6.7. Let μ : M −→ P and ν : N −→ P be r-crossed and l-crossed P -modules re-
spectively. Let s be the least common multiple of r and l. Then α : M ∧q N −→ P , given by
α(m ∧ n) = [μ(m), ν(n)], α({k}) = μ(π1k)

q = ν(π2k)
q, is a qs-crossed P -module.

Proof. By [32, Corollary 1.17], (M ∧q N,α) is a crossed P -module. Let x ∈ Kerα. Then by [32,
Corollary 1.21] and [32, Lemma 1.20], we have

xqs = {∂′x}s = {∂′xs},
where ∂′ : M ∧q N −→ K is defined by the following way:

∂′x = (ξx, ξ′x)

and the homomorphisms ξ and ξ′ are defined according to (6.11) and (6.12).
Since α = μξ = νξ′, we have

xqs = {∂′xs} =
{
(ξx, ξ′x)s

}
=
{
(ξxs, ξ′xs)

}
= {(1, 1)} = 1.

From here till the end of this subsection we investigate the ’absolute’ tensor product modulo q. In

effect, we have the following theorem.

Theorem 6.8. Let G and H be groups acting compatibly on each other. Then we have the following
exact sequence of groups

0 �� q(H1(G,H) ∩H1(H,G)) �� G⊗H
ϕ �� G⊗ qH �� 1,
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where ϕ is given by ϕ(g ⊗ h) = g ⊗ h.

Proof. By [32, Proposition 1.6] for any crossed modules μ : G −→ P and ν : H −→ P over any group
P we have the exact sequence of groups

G⊗H
ϕ �� G⊗ qH �� K/[G,H] �� 1, (6.13)

where [G,H] is the subgroup of K = G×P H generated by the elements (ghg−1, ghh−1), g ∈ G, h ∈ H.
In our case, when P is the Peiffer product of G and H, according to [12], P = G �� H = (G�H)/L,

where L is the subgroup of G � H (semidirect product of G and H) generated by the elements

(ghg−1, hgh−1), g ∈ G, h ∈ H and we show that K = [G,H]. In effect, let k = (g, h) ∈ K. Then
(g, h−1) ∈ L ⊆ G�H and therefore we have

(g, h−1) =
(
g1

h1g−1
1 , h1

g1h−1
1

)
· · ·
(
gk

hkg−1
k , hk

gkh−1
k

)
=
(
gk

hkg−1
k · · · g1h1g−1

1 , h1
g1h−1

1 · · · hkgkh−1
k

)
.

Hence,

g = gk
hkg−1

k · · · g1h1g−1
1 and h = gkhkh

−1
k · · · g1h1h−1

1 .

Thus k = (gk
hkg−1

k , gkhkh
−1
k ) · · · (g1h1g−1

1 , g1h1h
−1
1 ), i.e., K = [G,H] and by (6.13) the homomorphism

ϕ is surjective.

By Definition 4.13, H1(G,H) andH1(H,G) are the kernels of the homomorphisms G⊗H
λ′

�� H ,

λ′(g ⊗ h) = ghh−1 and G⊗H
λ �� G , λ(g ⊗ h) = ghg−1 respectively, which are crossed modules

(see Proposition 4.4), and therefore

q(H1(G,H) ∩H1(H,G)) ⊆ (H1(G,H) ∩H1(H,G)) ⊆ Z(G⊗H).

First, we show that ϕ(q(H1(G,H) ∩H1(H,G))) = 1.
Let (g1 ⊗ h1) · · · (gm ⊗ hm) ∈ H1(G,H) ∩ H1(H,G) ⊆ G ⊗ H; then by the formulas (6.4), (6.6),

and [32, Lemma 1.13], we have

ϕ
(
(g1 ⊗ h1) · · · (gm ⊗ hm)

)q
=
(
(g1 ⊗ h1) · · · (gm ⊗ hm)

)q
=

=
{
(g1

h1g1
−1, g1h1h

−1
1 ) · · · (gmhmgm

−1, gmhmh−1
m )
}
=
{
(1, 1)

}
= 1.

Hence ϕ induces a natural homomorphism

Φ : G⊗H/q(H1(G,H) ∩H1(H,G)) −→ G⊗ qH.

Now define a homomorphism Ψ : G⊗ qH −→ G⊗H/q(H1(G,H) ∩H1(H,G)) as follows:

Ψ(g ⊗ h) = [g ⊗ h], Ψ({k}) =
[(
(g1 ⊗ h1) · · · (gn ⊗ hn)

)q]
,

since k = (g1
h1g1

−1 · · · gnhngn
−1, g1h1h1

−1 · · · gnhnhn−1) (see above). If

k = (g′1
h′
1g′1

−1 · · · g′mh′
mg′m

−1
, g

′
1h′1h

′
1
−1 · · · g′mh′mh′m

−1
),

then

(g1 ⊗ h1) · · · (gn ⊗ hn)
(
(g′1 ⊗ h′1) · · · (g′m ⊗ h′m)

)−1 ∈ H1(G,H) ∩H1(H,G) ⊆ Z(G⊗H).

Hence

(
(g1 ⊗ h1) · · · (gn ⊗ hn)

)q(
(g′1 ⊗ h′1) · · · (g′m ⊗ h′m)

)−q
=

=
(
(g1 ⊗ h1) · · · (gn ⊗ hn) ·

(
(g′1 ⊗ h′1) · · · (g′m ⊗ h′m)

)−1
)q

∈ q
(
H1(G,H) ∩H1(H,G)

)
.

Thus Ψ is correctly defined. It is easy to see that Ψ commutes with relations (6.1)–(6.6) and ΦΨ and
ΨΦ are identity maps.
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Remark 6.9. Let G and H be two normal subgroups of a group P , and let them act on each other

by conjugation in P . Then the tensor product modulo q, G⊗ qH, of G and H may be considered as
crossed G �� H-modules (‘absolute’) or as crossed P -modules with canonical inclusions. In general
these two definitions are different, but when [G,H] = G ∩H (in the first case K = [G,H] and in the
second case K = G ∩H), they coincide, e.g., when G = H = P is a perfect group.

Corollary 6.10. If G is a perfect group then we have the following short exact sequence of groups:

0 �� qH2(G) �� G⊗G �� G⊗ qG �� 1.

Proof. It follows from Theorem 6.8 and the fact that if G is perfect, then by Proposition 4.5 and [97],
H1(G,G) = H2(G).

Now let us consider two infinite cyclic groups X and Y generated by x and y respectively, acting
on each other by the following ‘funny’ actions:

xy = y−1, yx = x−1,

which cannot arise as conjugation in a big group containing X and Y as normal subgroups.

In [51] it is proved that these actions are compatible and X ⊗ Y ∼= Z
2 with basis x⊗ y and x2 ⊗ y.

Proposition 6.11. Let X and Y be infinite cyclic groups generated by x and y respectively, acting
on each other by xy = y−1, yx = x−1. Then

X ⊗ qY ∼= X ⊗ Y ∼= Z
2.

Proof. Using Theorem 6.8 we have

X ⊗ qY ∼= X ⊗ Y/q(Kerλ ∩Kerλ′),

where λ : X ⊗ Y −→ X, λ′ : X ⊗ Y −→ Y are canonical homomorphisms.

Now compute Kerλ ∩ Kerλ′ using the fact that X ⊗ Y ∼= Z × Z and the basis of X ⊗ Y is x⊗ y,
x2 ⊗ y.

We have

Z× Z
λ ��

∼=
��

Z

i∼=
��

X ⊗ Y
λ

�� X

,

Z× Z
λ ′

��

∼=
��

Z

j∼=
��

X ⊗ Y
λ′

�� Y

,

where i(x) = 1, j(y) = 1, and λ, λ ′ are defined as follows:

λ(m,n) = iλ
(
(x⊗ y)m(x2 ⊗ y)n

)
= 2m+ 4n,

λ ′(m,n) = jλ
(
(x⊗ y)m(x2 ⊗ y)n

)
= −2m.

It is easy to see that Kerλ ∩Kerλ ′ = 0.

Let I(G, q) = Ker ε̃ with ε̃ : Z[G] −→ Z/q, ε̃
(∑

i
nigi

)
=
[∑

i
ni

]
. It is easy to see that an element

∑

i
nigi of Z[G] belongs to I(G, q) if and only if q divides

∑

i
ni.

Proposition 6.12. There is a short exact sequence of G-modules:

0 �� IG
α �� I(G, q)

ϕ �� Z �� 0,

where α is the natural inclusion.
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Proof. Let define the homomorphism ϕ by the following formula:

ϕ(n1g1 + · · ·+ nkgk) =
n1 + · · ·+ nk

q
,

since q divides n1 + · · ·+ nk.

It is easy to see that ϕα = 0 and if ϕ(n1g1 + · · · + nkgk) = 0 for any n1g1 + · · · + nkgk ∈ I(G, q),
then n1 + · · · + nk = 0 and thus n1g1 + · · · + nkgk ∈ IG.

Assume that G is a group and A is a G-module. Let us define a homomorphism Φ : G ⊗ qA ∼=
G ⊗ A/qH1(G,A) −→ I(G, q) ⊗G A as follows: Φ[g ⊗ a] = (g − e) ⊗ a. We must show correctness.
In effect, let g1 ⊗ a1 · · · gn ⊗ an ∈ H1(G,A) ⊆ G ⊗ A i.e., g1a1 − a1 + · · · + gnan − an = 0; then
(g1⊗a1 · · · gn⊗an)

q �−→ q(g1−e)⊗a1+· · ·+q(gn−e)⊗an = qe⊗(g1a1−a1+· · ·+gnan−an) = qe⊗0 = 0.

Proposition 6.13. Let G be a group and A be a G-module. There is a short exact sequence of groups

0 �� G⊗ qA
Φ �� I(G, q) ⊗G A

ϕ⊗1A �� qZ⊗G A �� 0,

where ϕ is defined in Proposition 6.12.

Proof. By Proposition 6.12 and if we replace Z by its isomorphic G-module qZ, we obtain the com-
mutative diagram of groups with exact rows:

0 �� IG ��

×q

��

Z[G]
ε ��

×q

��

qZ �� 0

0 �� IG
α

�� I(G, q)
ϕ

�� qZ �� 0

This diagram induces the following commutative diagram of left derived functors of the functor

−⊗G A:

· · · �� 0 �� H1(G,A) �� IG⊗G A ��

×q

��

Z[G]⊗G A ��

×q

��

qZ⊗G A �� 0

· · · �� • �� H1(G,A) �� IG⊗G A �� I(G, q) ⊗G A �� qZ⊗G A �� 0

, (6.14)

where the rows are long exact sequences of groups. From [53], Theorem 6.8, and (6.14) follows the
assertion.

Remark 6.14. We can consider this theorem as a generalization of D.Guin’s isomorphism

G⊗A ∼= IG⊗G A, g ⊗ a �−→ (g − e)⊗ a,

when q = 0 (see [53, Proposition 3.2]).

1.3. Applications to algebraicK-theory with Z/q coefficients of local rings. This subsection
is devoted to an application of the non-Abelian tensor product modulo q to the algebraic K-theory

with Z/q coefficients of Browder [9].
Recall the definition of algebraic K-functors with Z/q coefficients [9].
The algebraic K-functors of a discrete ring A has been defined by Quillen [110] by

Ki(A) = πi(BGL(A)+), i ≥ 1,

where GL(A) = lim−→
n

GL(n,A) and BGL(A) is its classifying space, and BGL(A)+ is the plus construc-

tion on BGL(A) obtained by attaching 2-cells and 3-cells to kill the subgroup of elementary matrices

E(A) ⊂ GL(A) = π1(BGL(A)) in such a way that H∗(BGL(A)) ∼= H∗(BGL(A)+). Then define

Ki(A;Z/q) = πi(BGL(A)+;Z/q) = the homotopy group with Z/q coefficients,
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where πi(X) = [Si,X] =homotopy classes of maps of the sphere Si to X, and πi(X;Z/q) = [Y i,X],

where Y i = Si−1 ∪q e
i (attaching an i-cell by a map of degree q).

We can obtain the universal coefficient formula for algebraic K-functors with Z/q coefficients (see [9,
102]).

Proposition 6.15. Let A be a discrete ring. Then for q > 1, there is a short exact sequence of groups

0 �� Kn(A)⊗ Z/q �� Kn(A,Z/q) �� Tor(Kn−1(A),Z/q) �� 0.

Let A be a ring with unit. Then Sym(A) is the group generated by the symbols {u, v}, where
u, v ∈ A∗ (A∗ is the group of units of the ring A), subject to the relations

(S1) {u, 1 − u} = 1, u �= 1, u, 1− u ∈ A∗;

(S2) {uu′, v} = {u, v}{u′, v};
(S3) {u, vv′} = {u, v}{u, v′}.

Note that Sym(A) is an Abelian group. It is well known, by Matsumoto’s theorem, that for any field

A there exists the isomorphism K2(A) ∼= Sym(A) (see [97, Sec. 11, Theorem 11.1]).
Assume A is a (noncommutative) local ring such that A/RadA �= F2. From [53, 84] it is known

that there exists a group D0(A) generated by elements {u, v}, where u, v ∈ A∗, subject to the relations

(U0) {u, 1 − u} = 1, u �= 1, u, 1− u ∈ A∗;

(U1) {uu′, v} = u{u′, v}{u, v};
(U2) {u, vw}{v,wu}{w, uv} = 1,

where u{v,w} = {uv,u w}, such that there is a short exact sequence of crossed A∗-modules

1 �� K2(A) �� D0(A) �� [A∗, A∗] �� 1 ,

{u, v} � �� [u, v] .
(6.15)

From this exact sequence D.Guin obtained his six-term exact non-Abelian homology sequence [53,
Theorem 4.2]

(A∗)ab ⊗Z K2(A) �� H1(A
∗,D0(A)) �� H1(A

∗, [A∗, A∗]) ��

�� K2(A) �� Sym(A) −→ [A∗, A∗]/[A∗, [A∗, A∗]] �� 1 ,

where the first non-Abelian homology of group A∗ is defined as H1(A
∗,D0(A)) = Ker(λ′ : A∗ ⊗

D0(A) −→ D0(A)) and H1(A
∗, [A∗, A∗]) = Ker(λ′ : A∗ ⊗ [A∗, A∗] −→ [A∗, A∗]) (for the definition of

λ′, see the proof of Theorem 6.8).

Let A be a local ring such that A/RadA �= F2. Let us denote by Sym(A;Z/q) the pushout

(push)

K2(A)/q ��

��

K2(A;Z/q)

��
Sym(A)/q �� Sym(A;Z/q)

.

Proposition 6.16. Let A be a field and q > 1. Then there exists an isomorphism

K2(A;Z/q) ∼= Sym(A;Z/q).
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Proof. From the definition of Sym(A;Z/q), Proposition 6.15, and the Matsumoto theorem, we have

the following commutative diagram of groups with exact rows:

K2(A)
q ��

∼=
��

K2(A) ��

∼=
��

K2(A;Z/q) ��

��

K1(A)
q �� K1(A)

Sym(A)
q

�� Sym(A) �� Sym(A;Z/q) �� K1(A) q
�� K1(A)

.

Now the assertion follows from the five lemma.

This is an analog of Matsumoto’s Theorem in the q-modular aspect.
Let A be a (noncommutative) local ring such that A/RadA �= F2 and q > 1. By Proposition 6.5

the short exact sequence (6.15) of crossed A∗-modules induces the exact sequence of groups

Ker ξ′K2(A)
�� Ker ξ′D0(A)

�� Ker ξ′[A∗,A∗]
��

�� Coker ξ′K2(A)
�� Coker ξ′D0(A)

�� Coker ξ′[A∗,A∗]
�� 0,

where ξ′K2(A) : A∗ ⊗ qK2(A) −→ K2(A), ξ′D0(A) : A∗ ⊗ qD0(A) −→ D0(A) and ξ′[A∗,A∗] : A∗ ⊗
q[A∗, A∗] −→ [A∗, A∗] are defined according to (6.12). It is easy to see that Coker ξ′ = (Coker λ′)/q;
therefore, the calculations of D. Guin [53] imply that

Coker ξ′K2(A) = (Coker λ′
K2(A))/q = K2(A)/q,

Coker ξ′D0(A) = (Coker λ′
D0(A))/q = Sym(A)/q

and

Coker ξ′[A∗,A∗] = (Coker λ′
[A∗,A∗])/q =

(
[A∗, A∗]/

[
A∗, [A∗, A∗]

])/
q.

By [53, Lemma 4.1], A∗ acts trivially onK2(A). Then using Proposition 1.6 [32], the same arguments
as in Theorem 6.8, and the splitting ψ : A∗⊗qK2(A) −→ (A∗⊗K2(A))/q defined by ψ(a⊗x) = [a⊗x],
ψ({(1, y)}) = 1 for a ∈ A, x, y ∈ K2, we see that there is an exact sequence of Abelian groups

1 �� q(A∗ ⊗K2(A)) �� A∗ ⊗K2(A) �� A∗ ⊗ qK2(A) �� K2(A) �� 1 .

Moreover, A∗ ⊗ qK2(A) ∼= (A∗ ⊗K2(A))/q ⊕K2(A). The triviality of actions induces A∗ ⊗K2(A) ∼=
(A∗)ab ⊗Z K2(A). Now it is easy to see that Ker ξ′K2(A)

∼= ((A∗)ab ⊗Z K2(A))/q ⊕ Tor(K2(A),Z/q).

We can construct the connecting homomorphism

Ker ξ′[A∗,A∗] −→ Coker ξ′K2(A) = K2(A)/q −→ K2(A;Z/q).

Then the following commutative diagram of groups with exact rows and columns:

0 �� K2(A)/q ��

��

K2(A;Z/q) ��

��

Tor(K1(A),Z/q) �� 0

0 �� Sym(A)/q ��

��

Sym(A;Z/q) ��

��

Tor(K1(A),Z/q) �� 0

(
[A∗, A∗]/

[
A∗, [A∗, A∗]

])/
q

��

(
[A∗, A∗]/

[
A∗, [A∗, A∗]

])/
q

��
0 0

induces
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Theorem 6.17. Let A be a (noncommutative) local ring such that A/RadA �= F2 and q > 1. Then

there is an exact sequence of groups

(
(A∗)ab ⊗Z K2(A)

)
/q ⊕Tor(K2(A),Z/q) �� Ker ξ′D0(A)

�� Ker ξ′[A∗,A∗]
��

�� K2(A;Z/q) �� Sym(A;Z/q) �� ([A∗, A∗]/[A∗, [A∗, A∗]])/q �� 0.

2. Mod q Homology and Cohomology of Chain Complexes

Given a covariant (contravariant) functor Φ : DR −→ CZ and an object in the category DR

C∗ ≡ · · · �� Cn+1
∂n+1 �� Cn

∂n �� Cn−1
∂n−1 �� · · · , n ∈ Z,

the product by q defines a morphism ×q : C∗ −→ C∗ of chain complexes and the mapping cone of this

morphism

· · · �� Cn+1 ⊕ Cn
∂̃n+1 �� Cn ⊕ Cn−1

∂̃n �� Cn−1 ⊕ Cn−2
∂̃n−1 �� · · · ,

∂̃n(xn, xn−1) = (∂n(xn) + qxn−1,−∂n−1(xn−1)), denoted by Mc(C∗, q)∗.

Definition 6.18. For n ∈ Z

(i) the mod q homology of the complex C∗ is given by

Hn(C∗;Z/q) := Hn(Mc(C∗, q)∗);

(ii) the Φ-homology (Φ-cohomology) of C∗ is given by

HΦ
n (C∗) := Hn(Φ(C∗)) (Hn

Φ(C∗) := H−n(Φ(C∗)))

and the mod q Φ-homology (Φ-cohomology) of C∗ is given by

HΦ
n (C∗;Z/q) := Hn(Φ(C∗);Z/q) = Hn(Mc(Φ(C∗), q)∗)

(
Hn

Φ(C∗;Z/q) := H−n+1(Φ(C∗);Z/q) = H−n+1(Mc(Φ(C∗), q)∗)
)
.

Proposition 6.19 (universal coefficient formula for mod q homology). Given C∗ ∈ DR, we have an
exact sequence

0 �� Hn(C∗)⊗ Z/q �� Hn(C∗;Z/q) �� Tor(Hn−1(C∗),Z/q) �� 0 , n ∈ Z.

Proof. The mapping cone gives rise to an exact homology sequence

· · · �� Hn(C∗)
×q �� Hn(C∗) �� Hn(C∗;Z/q) �� Hn−1(C∗)

×q �� Hn−1(C∗) �� · · · .

Now the product by q in a module A has cokernel A/qA ∼= A ⊗ Z/q and kernel Tor(A,Z/q). The
exactness of the homology sequence gives the result.

Corollary 6.20 (universal coefficient formula for mod q Φ-cohomology). Given C∗ ∈ DR and a co-
variant (contravariant) functor Φ : DR −→ CZ we have an exact sequences

0 �� HΦ
n (C∗)⊗ Z/q �� HΦ

n (C∗;Z/q) �� Tor(HΦ
n−1(C∗),Z/q) �� 0

(
0 �� Hn−1

Φ (C∗)⊗ Z/q �� Hn
Φ(C∗;Z/q) �� Tor(Hn

Φ(C∗),Z/q) �� 0
)
,

n ∈ Z.
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Remark 6.21. In the examples we shall consider that the morphism Φ(×q) is the product by q and,

up to isomorphism, Mc(Φ(C∗), q)n = Φ(Mc(C∗, q))n for a covariant functor Φ and Mc(Φ(C∗), q)n+1 =
Φ(Mc(C∗, q))n for a contravariant functor Φ. This motivates the index shift in the definition of mod
q Φ-cohomology.

Let q = rs; then there are canonical morphisms of chain complexes

αr,∗ : Mc(C∗, q)∗ −→ Mc(C∗, r)∗ and αs,∗ : Mc(C∗, q)∗ −→ Mc(C∗, s)∗

given by αr,n(xn, xn−1) = (xn, sxn−1) and αs,n(xn, xn−1) = (xn, rxn−1) for all n ∈ Z, respectively. It
follows that we obtain a canonical homomorphism

αn : Hn(C∗;Z/q) −→ Hn(C∗;Z/r)×Hn(C∗;Z/s), n ∈ Z.

Theorem 6.22. If q = rs and the integers r, s are relatively prime, we have a canonical isomorphism

Hn(C∗;Z/q) ∼= Hn(C∗;Z/r)×Hn(C∗;Z/s)

for all n ∈ Z.

Proof. The inverse homomorphism to αn, n ∈ Z, will be constructed. Since r and s are relatively
prime, there exist k, l ∈ Z such that

kr + ls = 1. (6.16)

Define two morphisms of chain complexes

βr,∗ : Mc(C∗, r)∗ −→ Mc(C∗, q)∗

and

βs,∗ : Mc(C∗, s)∗ −→ Mc(C∗, q)∗
by

βr,n(xn, xn−1) = (lsxn, lxn−1) and βs,n(xn, xn−1) = (krxn, kxn−1)

for n ∈ Z. These maps are compatible with boundary operators. We verify it for βr,∗. In fact,

∂̃nβr,n(xn, xn−1) = ∂̃n(lsxn, lxn−1) = (ls∂n(xn) + lqxn−1,−l∂n−1(xn−1)) =

= βr,n−1

(
∂n(xn) + rxn−1,−∂n−1(xn−1)

)
= βr,n−1∂̃n(xn, xn−1).

Therefore, we obtain a homomorphism

βn : Hn(C∗;Z/r)×Hn(C∗;Z/s) −→ Hn(C∗;Z/q), n ∈ Z,

induced by βr,n and βs,n. It remains to prove that α∗β∗ and β∗α∗ are identity maps.
Let (xn, xn−1) be an nth chain of Mc(C∗, q)∗. Then, using (6.16), we have

βnαn(xn, xn−1) = βn
(
(xn, sxn−1), (xn, rxn−1)

)
= (lsxn, lsxn−1) + (krxn, krxn−1) = (xn, xn−1),

thus β∗α∗ = 1.

Let (xn, xn−1) be an nth cycle of Mc(C∗, r)∗, i.e.,

∂n(xn) + rxn−1 = 0, ∂n−1(xn−1) = 0. (6.17)

We have

αnβn(xn, xn−1) = αn(lsxn, lxn−1) = (lsxn, lsxn−1) + (lsxn, lrxn−1).

Whence the equality

(xn, xn−1)− αnβn(xn, xn−1) = (krxn, krxn−1) + (−lsxn,−lrxn−1)

in the R-module Mc(C∗, r)n ×Mc(C∗, s)n.
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By (6.17) we get

∂̃n+1(0, kxn) = (krxn,−k∂n(xn)) = (krxn, krxn−1)

and
∂̃n+1(0,−lxn) = (−lsxn, l∂n(xn)) = (−lsxn,−lrxn−1).

Therefore

(xn, xn−1)− αnβn(xn, xn−1) = ∂̃n+1

(
(0, kxn), (0,−lxn)

)
.

Obviously, the same is true for an nth cycle of Mc(C∗, s)∗. Thus α∗β∗ = 1.

Corollary 6.23. Let Φ : DR −→ CZ be a covariant (contravariant) functor, C∗ ∈ DR and q = rs
with r and s relatively prime integers. Then there is a canonical isomorphism

HΦ
n (C∗;Z/q) ∼= HΦ

n (C∗;Z/r)×HΦ
n (C∗;Z/s)

(
Hn

Φ(C∗;Z/q) ∼= Hn
Φ(C∗;Z/r)×Hn

Φ(C∗;Z/s)
)

for all n ∈ Z.

As the product by q is obviously functorial, the homotopy properties of Φ, if any, induce homotopy

properties on the mod q Φ-homology (Φ-cohomology).

Lemma 6.24.

(i) Let C∗ ∈ DR, Φ
′ : DR −→ CZ be a second covariant (contravariant) functor and θ : Φ −→ Φ′ a

natural transformation, such that θ(C∗) is a weak equivalence between Φ(C∗) and Φ′(C∗). Then

θ induces isomorphisms

HΦ
n (C∗;Z/q) ∼= HΦ′

n (C∗;Z/q)
(
Hn

Φ(C∗;Z/q) ∼= Hn
Φ′(C∗;Z/q)

)

for all n ∈ Z.

(ii) Assume that Φ is a homotopy functor, i.e., homotopic complexes are sent to homotopic com-
plexes. Let C∗, C ′∗ ∈ DR be homotopic. Then we have isomorphisms

HΦ
n (C∗;Z/q) ∼= HΦ

n (C
′
∗;Z/q)

(
Hn

Φ(C∗;Z/q) ∼= Hn
Φ(C

′
∗;Z/q)

)

for all n ∈ Z.

Proof. The proof will be only for the mod q Φ-cohomology.
(i) As the mapping cone construction is functorial we have a commutative diagram with exact rows

Hn−1
Φ (C∗) ��

��

Hn−1
Φ (C∗) ��

��

Hn
Φ(C∗;Z/q) ��

��

Hn
Φ(C∗) ��

��

Hn
Φ(C∗)

��
Hn−1

Φ′ (C∗) �� Hn−1
Φ′ (C∗) �� Hn

Φ′(C∗;Z/q) �� Hn
Φ′(C∗) �� Hn

Φ′(C∗)

.

By hypothesis the two vertical maps on the left and the two on the right are isomorphisms. The
five-lemma gives the result.

(ii) It works the same with the diagram

Hn−1
Φ (C ′∗) ��

��

Hn−1
Φ (C ′∗) ��

��

Hn
Φ(C

′∗;Z/q) ��

��

Hn
Φ(C

′∗) ��

��

Hn
Φ(C

′∗)

��
Hn−1

Φ (C∗) �� Hn−1
Φ (C∗) �� Hn

Φ(C∗;Z/q) �� Hn
Φ(C∗) �� Hn

Φ(C∗)

.

Example 6.25. Let K∗ be an object of the category CR.
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(i) Let Φ : DR −→ CZ be the covariant functor defined by the tensor product complex, i.e.,

Φ(C∗) = (C∗ ⊗K∗)∗, where

(C∗ ⊗K∗)n =
⊕

i∈Z
Ci ⊗R Kn−i

with the differential Δ given by

Δ(x⊗ y) = dx⊗ y + (−1)ix⊗ dy, x ∈ Ci, y ∈ Kn−i.

(See any book on algebraic homology.) Then we write Hn(C∗,K∗) = HΦ
n (C∗) and

Hn(C∗,K∗;Z/q) = HΦ
n (C∗;Z/q).

(ii) Let Φ : DR −→ CZ be the contravariant functor defined by Φ(C∗) = Hom(C∗,K∗)∗, where

Hom(C∗,K∗)n =
∏

i∈Z
HomR(Ci,Ki+n)

with the differential Δ given by

(Δf)i(x) = d(fi(x)) + (−1)n+1fi−1(d(x))

for f = (fi) ∈ Hom(C∗,K∗)n and x ∈ Ci. Then we write Hn(C∗,K∗) = Hn
Φ(C∗) and

Hn(C∗,K∗;Z/q) = Hn
Φ(C∗;Z/q).

If the complex K∗ is concentrated in degree 0, we get with Hn(C∗,K∗) and Hn(C∗,K∗) the usual

homology and cohomology, respectively, with coefficients in K0. If A is an R-module and K∗ a
resolution of A, the morphism K∗ −→ A defined by the map K0 −→ A induces isomorphisms

Hn(C∗,K∗;Z/q) −→ Hn(C∗, A;Z/q), Hn(C∗,K∗;Z/q) −→ Hn(C∗, A;Z/q)

for all n ∈ Z by Lemma 6.24 (i).

The “internal Hom functor” in the category of chain complexes of R-modules was first studied by

R. Brown [11].

Lemma 6.26. Let C∗ ∈ DR and K∗ ∈ CR. We have, for all n ∈ Z, a canonical isomorphism

Hom
(
Mc(C∗, q)∗,K∗

)
n
∼= Mc

(
Hom(C∗,K∗), q

)
n+1

.

Proof. We have

HomR(Mc(C∗, q)i,Kn+i) = HomR(Ci ⊕Ci−1,Kn+i) ∼= HomR(Ci,Kn+i)⊕HomR(Ci−1,Kn+i)

which gives, taking the product over Z and exchanging the factors on the right-hand side of the
equality,

Hom(Mc(C∗, q)∗,K∗)n ∼= Hom(C∗,K∗)n ⊕Hom(C∗,K∗)n+1 = Mc(Hom(C∗,K∗), q)n+1.

Another example of the functor Φ will be considered in Sec. 7. Note that all results of this section

are true when DR is an additive subcategory of CR.
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3. Mod q Homology of Groups

We begin this section by introducing a mod q homology of groups by using Definition 6.18 and

then expressing it as the Tor∗ functors. Then we will establish some properties of mod q homology
groups and do some calculations. The relation of mod q homology of groups to the non-Abelian tensor
product modulo q of groups, particularly with its non-Abelian left derived functors, will be studied in

the next section.
Let G be a group, A a G-module, and P∗ −→ Z a projective G-resolution of Z. According to

Example 6.25 −⊗A is a covariant functor from DZ[G] to CZ.
Definition 6.27. The nth mod q homology, Hn(G,A;Z/q), of the group G with coefficients in the
G-module A is

Hn(G,A;Z/q) := H−⊗A
n (P∗;Z/q), n ≥ 0.

Note that by Lemma 6.24(ii) these homology groups are well defined and do not depend on the

choice of the projective G-resolution of Z.
The following lemma is useful for expressing mod q homology of groups as the Tor∗ functors.

Lemma 6.28. The morphism Mc(P∗, q)∗ −→ Z/q defined by the composed map Mc(P∗, q)0 = P0 −→
Z −→ Z/q is a projective G-resolution of Z/q.

Proof. It is straightforward by the exact homology sequence of mapping cone [93] and the fact that Z
is torsion free.

Proposition 6.29. Hn(G,A;Z/q) ∼= Tor
Z[G]
n (Z/q,A), n ≥ 0.

Proof. It follows from Lemma 6.28 and the fact that there is an isomorphism (Mc(P∗, q)∗ ⊗ A)n ∼=
Mc((P∗ ⊗A)∗, q)n, n ≥ 0.

It is easy to see that H0(G,A;Z/q) ∼= H0(G,A)/q and Hn(G,Z;Z/q) ∼= Hn(G,Z/q), n ≥ 0.

Proposition 6.30 (universal coefficient formulas). Let G be any group, A be a G-module, and n ≥ 0.
Then

(a) there is a short exact sequence of groups

0 �� Hn(G,A) ⊗ Z/q �� Hn(G,A;Z/q) �� Tor(Hn−1(G,A),Z/q) �� 0;

(b) for a trivial G-module A there is a short exact sequence (splits nonnaturally) of groups

0 �� Hn(G,Z/q) ⊗A �� Hn(G,A;Z/q) �� Tor(Hn−1(G,Z/q), A) �� 0.

Proof.
Assertion (a) follows directly from Corollary 6.20; assertion (b) can be proved classically.

Proposition 6.31. Let G be a finite group of order k (|G| = k) and (k, q) = 1; then

Hn(G,A;Z/q) = 0, n ≥ 2.

Proof. It is well known (see [93]) that Hn(G,A), n > 0 is a group of exponent k. Then Hn(G,A)⊗Z/q,
n > 0 is a group of exponent q and k and by assumption Hn(G,A) ⊗ Z/q = 0, n > 0. By the same
reasoning Tor(Hn(G,A),Z/q) = 0, n > 0. It remains to apply Proposition 6.30 (a).

Proposition 6.32. Let G be a finite group and A be a divisible, torsion free G-module. Then

Hn(G,A;Z/q) = 0, n ≥ 2,

H1(G,A;Z/q) = Tor(H0(G,A),Z/q),

H0(G,A;Z/q) = 0.
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Proof. By Proposition 6.30(a) and [93], Hn(G,A;Z/q) = 0, n ≥ 2 and H1(G,A;Z/q) =

Tor(H0(G,A),Z/q). As we know H0(G,A;Z/q) ∼= H0(G,A)/q. But H0(G,A) = A/IGA and since A
is divisible, then H0(G,A) is also a divisible group. Therefore H0(G,A;Z/q) = 0.

Proposition 6.33. Let F be a free group and A be a F -module, then Hn(F,A;Z/q) = 0, n ≥ 3.

Proof. It follows from Proposition 6.30(a) and Hn(F,A) = 0, n ≥ 2.

Example 6.34. Let Z be the additive group of integers and Q/Z be the quotient of the additive
group of rational numbers by Z. Assume that Z acts trivially on Q/Z. By Proposition 6.33 we obtain
Hn(Z,Q/Z;Z/q) = 0, n ≥ 3. Using Proposition 6.30(a) we have the following short exact sequences

of groups

0 �� H2(Z,Q/Z)⊗ Z/q �� H2(Z,Q/Z;Z/q) �� Tor(H1(Z,Q/Z),Z/q) �� 0 ,

0 �� H1(Z,Q/Z)⊗ Z/q �� H1(Z,Q/Z;Z/q) �� Tor(H0(Z,Q/Z),Z/q) �� 0 .

It is easy to see that

H1(Z,Q/Z) = H0(Z,Q/Z) = Q/Z.

Since

H1(Z,Q/Z)⊗ Z/q = H1(Z,Q/Z)/q = (Q/Z)/q = 0

(because Q is divisible) and H2(Z,Q/Z) = 0, we have

H2(Z,Q/Z;Z/q) = H1(Z,Q/Z;Z/q) = Tor(Q/Z,Z/q).

Tor(Q/Z,Z/q) is the kernel of the homomorphism Q/Z
×q �� Q/Z and by [22, Chap. VII, Propo-

sition 2.2] we have Tor(Q/Z,Z/q) = Z/q. Therefore

H2(Z,Q/Z;Z/q) = H1(Z,Q/Z;Z/q) = Z/q.

Finally,

H0(Z,Q/Z;Z/q) = H0(Z,Q/Z)/q = (Q/Z)/q = 0.

A good example is to show that H∗(G,A;Z/q) is not isomorphic to H∗(G,A)/q or H∗(G,A/q). In
this case Hn(Z, (Q/Z)/q) = 0, n ≥ 0 (since (Q/Z)/q = 0) and Hn(Z,Q/Z)/q = 0, n ≥ 0.

Now we compute the mod q homology of finite cyclic groups. Let G = Cm(t) be a multiplicative
cyclic group of order m and generated by t. It is well known that the elements

N = 1 + t+ · · ·+ tm−1, D = t− 1

induce G-module homomorphisms

N∗ : Z[G] −→ Z[G], N∗u = Nu,

D∗ : Z[G] −→ Z[G], D∗u = Du, u ∈ Z[G],

respectively, and the following long exact sequence of G-modules:

· · · N∗ �� Z[G]
D∗ �� Z[G]

N∗ �� Z[G]
D∗ �� Z[G]

ε �� Z �� 0

is a free G-resolution of Z, which gives us the possibility to compute Eilenberg–Maclane homology

H∗(G,A) of the finite cyclic group G = Cm(t) with coefficients in any G-module A (see [93]).
By Lemma 6.28, we obtain the following free G-resolution of Z/q:

· · · Ñ∗�� Z[G]⊕ Z[G]
D̃∗ �� Z[G]⊕ Z[G]

Ñ∗ �� Z[G]⊕ Z[G]
˜̃
D∗ �� Z[G]

ε̃ �� Z/q �� 0 ,
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where
˜̃
D∗(u, u′) = Du+ qu′, Ñ∗(u, u′) = (Nu+ qu′,−Du′), and D̃∗(u, u′) = (Du+ qu′,−Nu′) for all

u, u′ ∈ Z[G]. The mod q homology groups of the finite cyclic group G = Cm(t) with coefficients in
G-module A are the homology groups of the following chain complex of G-modules:

· · · Ñ∗
�� A⊕A

D̃∗
�� A⊕A

Ñ∗
�� A⊕A

˜̃
D∗

�� A,

where

˜̃
D∗(a, a′) = Da+ qa′, Ñ∗(a, a′) = (Na+ qa′,−Da′), D̃∗(a, a′) = (Da+ qa′,−Na′)

for all a, a′ ∈ A.

It is easy to see that the mod q homology of finite cyclic groups is periodic from n ≥ 2 with period
2. We obtain the following proposition.

Proposition 6.35. For a finite cyclic group Cm(t) of order m and with generator t and for any

Cm(t)-module A

H0(Cm, A;Z/q) = A/
˜̃
D∗ = H0(Cm, A)/q = CokerD∗, where D∗ : A/q −→ A/q, D∗[a] = [Da],

H1(Cm, A;Z/q) =
[
(a, a′)|Da+ qa′ = 0

]
/Ñ∗(A⊕A),

H2n(Cm, A;Z/q) =
[
(a, a′)|Na+ qa′ = 0, ta′ = a′

]
/D̃∗(A⊕A), n ≥ 1,

H2n+1(Cm, A;Z/q) =
[
(a, a′)|Da+ qa′ = 0, Na = 0

]
/Ñ∗(A⊕A), n ≥ 1.

Proposition 6.36. Let G be a group and 0 �� A1
�� A �� A2

�� 0 be a short exact se-
quence of G-modules. Then there is a long exact sequence of mod q homology groups

· · · �� Hn(G,A1;Z/q) �� Hn(G,A;Z/q) �� Hn(G,A2;Z/q) �� · · · ��

�� H0(G,A1;Z/q) �� H0(G,A;Z/q) �� H0(G,A2;Z/q) �� 0.

Proof. It is straightforward by Proposition 6.29.

4. Derived Functors of the Non-Abelian Tensor Product Modulo q of Groups

Let A denote a fixed Abelian group and consider the category A′
A a subcategory to that of AA

examined in Chap. 4, Sec. 2, which denotes the category whose objects are all groups G together with
an action of G on A (and a trivial action of A on G). Morphisms in the category A′

A are all group

homomorphisms α : G −→ H that preserve the actions, namely ga = α(g)a, for all a ∈ A and g ∈ G.

Let F ′ : A′
A −→ A′

A be the restriction of the endofunctor F : AA −→ AA while τ ′ : F ′ −→ 1A′
A
and

δ′ : F ′ −→ F ′2 be the restrictions of the natural transformations τ : F −→ 1AA
and δ : F −→ F 2,

respectively, given in Chap. 4, Sec. 2. We obtain a cotriple F ′ = (F ′, τ ′, δ′), and we denote by P ′ the
projective class induced by this cotriple F ′.

Since the actions of the groups G and A on each other satisfy the compatibility conditions (4.1) for
any object G ∈ A′

A, the non-Abelian ‘absolute’ tensor product modulo q of groups defines a covariant

functor − ⊗ qA : A′
A −→ AbGr. Consider the non-Abelian left derived functors LP ′

n (− ⊗ qA), n ≥ 0,
of the functor −⊗ qA relative to the projective class P ′ (see Chap. 1).

Proposition 6.37. Assume that G is a group and the groups A and A/q are trivial G-modules. Then

there are isomorphisms

Hn(G,A/q) ∼= LP ′
n−1(G⊗ qA), n ≥ 2,

H1(G,A/q) ∼= Ker ξ′, H0(G,A/q) ∼= (Coker ξ′)/q,
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where ξ′ : G⊗ qA −→ A, ξ′(g ⊗ a) = ga · a−1, ξ′({k}) = π2k
q.

Proof. It is obvious that H0(G,A/q) ∼= A/q, H1(G,A/q) ∼= G ⊗ A/q ∼= Gab ⊗Z A/q ∼= (Gab ⊗Z A)/q
and Hn(G,A/q) ∼= πn−1C∗, n ≥ 2, where C∗ is the following simplicial group:

· · ·
��

��
... Fn(G)⊗A/q

��

��
...

∼=
��

· · ·
��
��
�� F

2(G)⊗A/q

∼=
��

��
�� F 1(G) ⊗A/q

∼=
��

· · ·
��

��
... (Fn(G)ab ⊗Z A)/q

��

��
... · · ·

��
��
�� (F

2(G)ab ⊗Z A)/q
��
�� (F 1(G)ab ⊗Z A)/q

,

and

· · ·
��

��
... Fn(G)

��

��
... · · ·

��
��
�� F

2(G)
��
�� F 1(G) �� G

is the cotriple resolution of G.

By Theorem 6.8 (Coker ξ′)/q = (Coker λ′)/q = A/q, Ker ξ′ = Kerλ′/qKerλ′ = (Gab ⊗Z A)/q, and

LP ′
n−1(G⊗ qA) = πn−1C

′∗, n ≥ 2, where C ′∗ is the following simplicial group:

· · ·
��

��
... Fn(G) ⊗ qA

��

��
...

∼=
��

· · ·
��
��
�� F

2(G)⊗ qA
��
��

∼=
��

F 1(G)⊗ qA

∼=
��

· · ·
��

��
... (Fn(G)ab ⊗Z A)/q

��

��
... · · ·

��
��
�� (F

2(G)ab ⊗Z A)/q
��
�� (F 1(G)ab ⊗Z A)/q

.

Now the relation between classical homology of groups and non-Abelian left derived functors of the
tensor product modulo q will be established.

Proposition 6.38. Let G be a group and A be a G-module. Then there is a long exact sequence of
groups

· · · �� LP ′
n−1(qH1(G,A)) �� Hn(G,A) �� LP ′

n−1(G⊗ qA) �� · · · ��

�� LP ′
2 (G⊗ qA) �� LP ′

1 (qH1(G,A)) �� H2(G,A) �� LP ′
1 (G⊗ qA) ��

�� LP ′
0 (qH1(G,A)) �� H1(G,A) �� Ker ξ′ �� 0 . (6.18)

Proof. Let consider the cotriple resolution of G in the category A′
A

· · ·
��

��
... Fn(G)

��

��
... · · ·

��
��
�� F

2(G)
��
�� F 1(G) �� G.
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By Theorem 6.8 we have a commutative diagram of groups

0

��

0

��

0

��
· · ·

��

��
... qH1(F

n(G), A)
��

��
...

��

· · ·
��
��
�� qH1(F

2(G), A)
��
��

��

qH1(F
1(G), A)

��
· · ·

��

��
... Fn(G)⊗A

��

��
...

��

· · ·
��
��
�� F

2(G)⊗A
��
��

��

F 1(G) ⊗A

��
· · ·

��

��
... Fn(G)⊗ qA

��

��
...

��

· · ·
��
��
�� F

2(G)⊗ qA
��
��

��

F 1(G) ⊗ qA

��
0 0 0

,

where the columns are short exact sequences of groups.
From this diagram we have exactness till LP ′

0 (qH1(G,A)). Exactness in H1(G,A) and in

Ker ξ′ follows from Theorem 6.8 and from the fact that H1(F
1(G), A) −→ H1(G,A) and hence

qH1(F
1(G), A) −→ qH1(G,A) are epimorphisms and therefore LP ′

0 (qH1(G,A)) −→ qH1(G,A) is
also an epimorphism.

We establish sufficient conditions for the isomorphism between non-Abelian left derived functors of

the tensor product modulo q of groups and mod q homology of groups.

Lemma 6.39. Let G be a group and A be a q-torsion free G-module. There are natural isomorphisms

Hn(G,A/q) ∼= Hn(G,A;Z/q), n ≥ 0.

Proof. Consider two sequences of functors

1) H0(G,−/q),H1(G,−/q), . . . ,Hn(G,−/q), . . . ;

2) H0(G,−;Z/q),H1(G,−;Z/q), . . . ,Hn(G,−;Z/q), . . ..

These both sequences satisfy the following axioms for a connected sequence of additive functors
{Tn, δn, n ≥ 0} from the category of q-torsion free G-modules to the category of Abelian groups:

(i) T0(−) = H0(G,−/q) = H0(G,−;Z/q);

(ii) for any short exact sequence of q-torsion free G-modules

0 �� A1
�� A �� A2

�� 0

there exists a long exact sequence of Abelian groups

· · · �� Tn+1(A2)
δn+1 �� Tn(A1) �� Tn(A) ��

�� Tn(A2)
δn �� · · ·T1(A2) ��δ1 �� T0(A1) �� T0(A) �� T0(A2) �� 0 ;

(iii) if A is an induced q-torsion free G-module (it is easy to see that if M is q-torsion free G-module,

then Z[G]⊗Z M is also a q-torsion free G-module), then Tn(A) = 0, n ≥ 1.

This proves the existence of the required natural isomorphisms.
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Theorem 6.40. Let G be a group and A be a q-torsion free G-module. There are natural isomor-

phisms

LP ′
n−1(G⊗ qA) ∼= Hn(G,A;Z/q), n ≥ 2.

Proof. Let us consider the non-Abelian left derived functors, LP ′
n ((− ⊗ A)/q), n ≥ 0, of the functor

(−⊗A)/q. By [53] we have the isomorphisms

G⊗A/q ∼= IG⊗G A/q ∼= (IG⊗G A)/q ∼= (G ⊗A)/q.

Therefore by [68, Theorem 6]

LP ′
n−1((G⊗A)/q) ∼= Hn(G,A/q), n ≥ 2. (6.19)

If F is a free group, then the well-known fact that IF is a free ZF -module, i.e., IF ∼=
∑

ZF , implies
the following isomorphism:

F ⊗A ∼= IF ⊗F A ∼=
∑

A.

Assume that A is a q-torsion free F -module; then, according to this isomorphism H1(F,A) ⊆ F ⊗ A

is also q-torsion free. Thus H1(F,A)
×q∼= qH1(F,A). From this fact and Theorem 4.20 we can conclude

that LP ′
n (qH1(G,A)) ∼= LP

n (H1(G,A)) ∼= Hn+1(G,A), n ≥ 0. Therefore by Proposition 6.38 it is easy

to get the following long exact sequence of groups:

· · · �� Hn(G,A)
q �� Hn(G,A) �� LP

n−1(G⊗ qA) �� · · · �� LP
2 (G⊗ qA) ��

�� H2(G,A)
q �� H2(G,A) �� LP

1 (G⊗ qA) ��

�� H1(G,A)
q �� H1(G,A) �� (H1(G,A))q �� 0. (6.20)

(6.20) implies the short exact sequences of groups

0 �� Hn(G,A) ⊗ Z/q �� LP ′
n−1(G⊗ qA) �� Tor(Hn−1(G,A),Z/q) �� 0 , n ≥ 2.

To prove the assertion, we must only construct homomorphisms κ : LP ′
n−1(G ⊗ qA) −→

Hn(G,A;Z/q), n ≥ 2, in our case (when A is q-torsion free) such that the following diagram is

commutative:

0 �� Hn(G,A) ⊗ Z/q �� LP ′
n−1(G⊗ qA) ��

κ

��

Tor(Hn−1(G,A),Z/q) �� 0

0 �� Hn(G,A) ⊗ Z/q �� Hn(G,A;Z/q) �� Tor(Hn−1(G,A),Z/q) �� 0

, (6.21)

where the bottom row is by Proposition 6.30 (a) in the case where A is a q-torsion free G-module.
By Theorem 6.8 there is a natural homomorphism

G⊗ qA ∼= (G⊗A)/qH1(G,A) −→ (G⊗A)/q

and by (6.19) and Lemma 6.39 it induces homomorphisms κ : LP ′
n−1(G⊗ qA) −→ LP ′

n−1((G⊗A)/q) ∼=
Hn(G,A/q) ∼= Hn(G,A;Z/q), n ≥ 2. It is easy to see that (6.21) is commutative.

It is interesting to consider derived functors of the additive functor G ⊗ q− from the category of
G-modules to the category of Abelian groups. Let us denote these derived functors by Ln(G ⊗ q−),

n ≥ 0; then we have the following assertion.

Proposition 6.41. Let A be a G-module; then there are isomorphisms

Ln(G⊗ qA) ∼= Hn+1(G,A), n ≥ 1.
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Proof. Consider a projective G-resolution P∗ −→ A of A.

Since H1(G,Pn) = 0, by Theorem 6.8 and [53] we have

G⊗ qPn
∼= (G⊗ Pn)/qH1(G,Pn) = G⊗ Pn

∼= IG⊗G Pn.

The well-known short exact sequence of Z[G]-modules

0 �� IG �� Z[G] �� Z �� 0

gives a short exact sequence of chain complexes of Abelian groups

0

��

0

��

0

��
· · · �� IG⊗G Pn

��

��

· · · �� IG⊗G P1
��

��

IG⊗G P0

��
· · · �� Pn

��

��

· · · �� P1
��

��

P0

��
· · · �� Z⊗G Pn

��

��

· · · �� Z⊗G P1
��

��

Z⊗G P0

��
0 0 0

.

The induced long homology exact sequence proves the assertion.

5. Mod q Cohomology of Groups

In this section we shall define a mod q cohomology of groups by using Definition 6.18 and then
express it as the Ext∗ functors in the same way as the mod q homology of groups is expressed as the

Tor∗ functors. The first and the second mod q cohomology of groups will be described in terms of
q-torsors and q-extensions of groups respectively.

Let G be a group, A be a G-module, and P∗ −→ Z be a projective G-resolution of Z. According to
Example 6.25 Hom(−, A) is a contravariant functor from DZ[G] to CZ.

Definition 6.42. The nth mod q cohomology, Hn(G,A;Z/q), of the group G with coefficients in the
G-module A is

Hn(G,A;Z/q) := Hn
Hom(−,A)(P∗;Z/q), n ≥ 0.

Note, Lemma 6.24 (ii) implies that these cohomology groups are well defined and do not depend on

the choice of the projective G-resolution of Z.
The next proposition immediately follows from Corollary 6.20.

Proposition 6.43 (universal coefficient formula). Let G be a group and A a G-module. Then there

is a short exact sequence of Abelian groups

0 �� Hn−1(G,A) ⊗ Z/q �� Hn(G,A;Z/q) �� Tor(Hn(G,A),Z/q) �� 0 (6.22)

for n ≥ 0.

Now applying Lemmas 6.26 and 6.28, we have the following

Proposition 6.44. Hn(G,A;Z/q) ∼= Extn
Z[G](Z/q,A), n ≥ 0.
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Let us consider the standard bar G-resolution of Z (see [93])

C∗(G) : · · · �� Cn+1
∂n+1 �� Cn

∂n �� Cn−1
∂n−1 �� · · · �� C1

∂1 �� C0
ε �� Z �� 0,

where Cn is the free G-module generated by all symbols [x1, . . . , xn], n ≥ 1, xi ∈ G, and C0 is a free
G-module generated by only one symbol [ ]. The differential is defined by the formula

∂[x1, . . . , xn] = x1[x2, . . . , xn] +

n−1∑

i=1

(−1)i
[
x1, . . . , xixi+1, . . . , xn

]
+ (−1)n[x1, . . . , xn−1],

and ε[ ] = 1.
According to Theorem 6.44, using also the classical convention converting chain complexes into

cochain complexes, we call Hom(Mc(C∗(G)∗, q), A)∗ the standard cochain complex for the mod q
cohomology of G with coefficients in A and denote it by D∗(G,A;Z/q). We denote its cocycles
by Z∗(G,A;Z/q) and its coboundaries by B∗(G,A;Z/q), while Z∗(G,A) and B∗(G,A) denote the

cocycles and coboundaries of the standard cochain complex, respectively.
As usual, we identify HomG(Cn, A) with the G-module Set(Gn, A) of maps from Gn to A for n ≥ 1

and with A for n = 0. In the complex D∗(G,A;Z/q) we get, for (f, g) ∈ Set(Gn, A)× Set(Gn−1, A)

δ̃(f, g) = (δ(f), qf − δ(g)), (6.23)

where δ is the classical differential given by

δ(f)(x1, . . . , xn+1) = x1f(x2, . . . , xn+1)+

+

n∑

i=1

(−1)if(x1, . . . , xixi+1, . . . , xn+1) + (−1)n+1f(x1, . . . , xn).

In the following example H∗(G,A;Z/q) is neither isomorphic to H∗(G,A)/q nor to H∗(G,A/q).

Example 6.45. Let Z be the group of integers, and Q/Z the quotient of the group of rational numbers

by Z. Assume that Z acts trivially on Q/Z. We have, for n ≥ 2, Hn(Z, A) = 0 for any G-module A,
especially Q/Z, andH0(Z,Q/Z) = H1(Z,Q/Z) = Q/Z. Since the group Q/Z is divisible, Q/Z⊗Z/q =
0. Whence the exact sequence (6.22) gives Hn(Z,Q/Z;Z/q) = 0 for n ≥ 2, and we have

H0(Z,Q/Z;Z/q) = H1(Z,Q/Z;Z/q) = Z/q.

While, for n ≥ 0, Hn(Z, (Q/Z)/q) = 0 and (Hn(Z,Q/Z))/q = 0.

Proposition 6.46. Let G be a group and A a G-module.

(a) If A has exponent q, then

Hn(G,A;Z/q) ∼= Hn(G,A) ⊕Hn−1(G,A), n ≥ 0.

(b) If A is q-torsion-free, then

H0(G,A;Z/q) = 0 and Hn(G,A;Z/q) ∼= Hn−1(G,A/q), n ≥ 1.

Proof. (a) Follows from the triviality of the homomorphism ×q in the equality (6.23).

(b) Obviously H0(G,A;Z/q) = Tor(H0(G,A),Z/q) = 0. The short exact sequence

0 �� A
×q �� A �� A/q �� 0 (6.24)
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induces a long exact cohomology sequence, and we have only to construct the homomorphism

Hn−1(G,A/q) −→ Hn(G,A;Z/q), n ≥ 1, compatible with the exact cohomology sequences and then
apply the five lemma at each level. Using the short exact sequence of standard cochain complexes

0 �� Hom(C∗, A)∗
×q �� Hom(C∗, A)∗ �� Hom(C∗, A/q)∗ �� 0

induced by the exact sequence (6.24), for any (n − 1)-cocycle of Hom(C∗, A/q)∗ we find in a natural
way an n-cocycle of Hom(Mc(C∗, q)∗, A)∗. This map of cocyles induces the required homomorphism

Hn−1(G,A/q) −→ Hn(G,A;Z/q), n ≥ 1.

Proposition 6.46 provides a general reason why the mod q cohomology and homology of groups play
a distinguished role especially for G-modules having torsion elements.

A q-derivation from G to A is a pair (f, a) consisting of a derivation f : G −→ A and an element

a ∈ A such that qf(x) = xa− a for all x ∈ G.
Let Der(G,A;Z/q) denote the Abelian group of q-derivations from G to A. We write Der(G,A) for

the Abelian group of derivation from G to A and PDer(G,A) for the subset of principal derivations.

Plainly any pair of the form (fa, qa), with fa the principal derivation from G to A induced by
a ∈ A, is a q-derivation. We call it a principal q-derivation. The set PDer(G,A;Z/q) of principal
q-derivations is a subgroup of Der(G,A;Z/q).

Clearly, using the identification of HomG(C1, A) with Set(G,A) and of HomG(C0, A) with A, a pair
(f, a) ∈ D1(G,A;Z/q) is a cocycle if and only if it is a q-derivation. Furthermore it is a coboundary
if and only if it is a principal q-derivation. Hence the identification induces a natural isomorphism

H1(G,A;Z/q) ∼= Der(G,A;Z/q)/PDer(G,A;Z/q).

Note that the map PDer(G,A;Z/q) −→ PDer(G,A) given by (fa, qa) �−→ fa, a ∈ A, is an isomor-
phism if and only if H0(G,A) is a group of exponent q.

Proposition 6.47. The group Der(G,A;Z/q) is isomorphic to the group of pairs (α, a), where α is
an automorphism of the semidirect product A � G inducing identity maps on A and G, and a is an
element of A such that αq is equal to the inner automorphism βa of A � G induced by a. Moreover

PDer(G,A;Z/q) is isomorphic to the group of pairs (βa, qa).

Proof. It is similar to the classical case.

It is well known [93] that any derivation f can be extended to the Abelian group homomorphism

γ : Z[G] −→ A given by γ
(∑

i
nigi

)
=
∑

i
nif(gi) satisfying the condition γ(rs) = rγ(s) + ε(s)γ(r) for

all r, s ∈ Z[G]. The restriction of γ to IG induces a G-module homomorphism β : IG −→ A, and we

obtain the well-known isomorphism Der(G,A)
ϑ �� HomG(IG, A) with ϑ(f) = β.

The set K of elements (f, a) ∈ Der(G,A;Z/q) for which there exists a G-module homomorphism
α : I(G, q) −→ A such that α(x) = ϑ(f)(x) for x ∈ IG and α(q1) = a, is a subgroup of Der(G,A;Z/q).

Let αa : I(G, q) −→ A be the G-module homomorphism given by αa(u) = ua, u ∈ I(G, q). Since, for
any principal derivation fa and for x ∈ IG, ϑ(fa)(x) = xa, we obtain αa(x) = ϑ(fa)(x), x ∈ IG and
αa(q1) = q1a = qa. Therefore K ⊇ PDer(G,A;Z/q).

Proposition 6.48. There is a short exact sequence of Abelian groups

0 �� HomG(I(G, q), A)
ϕ �� Der(G,A;Z/q) �� Der(G,A;Z/q)/K �� 0.

Proof. Define the homomorphism ϕ by ϕ(α) = (f, a) for α ∈ HomG(I(G, q), A), where ϑ(f) = α|IG
and a = α(q1). The pair (f, a) is a q-derivation. Indeed we have qα(x) = α(xq1) = xa for x ∈ IG.
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Since {q1} ∪ {g− 1|g ∈ G} is a generating set of I(G, q) as a G-module, ϕ(α) = ϕ(α′) implies α = α′.
Clearly the image of ϕ is the subgroup of K.

Now the groupH1(G,A;Z/q) will be expressed by torsors. Recall [114] that a principal homogeneous
space over A is a nonempty G-set P with right action (p, a) �−→ pa of A compatible with G-action
such that, given p, p′ ∈ P , there exists a unique a ∈ A such that p′ = pa. We introduce the following

notion.

Definition 6.49. A (G, q)-torsor over a G-module A is a pair (P, f), where P is a principal homoge-

neous space over A and f is a map from P to A subject to the following conditions:

(i) f(xb) = f(x) + qb for x ∈ P , b ∈ A;

(ii) qas = sf(x)− f(x) with as defined by sx = xas, s ∈ G, x ∈ P .

Two (G, q)-torsors (P, f) and (P ′, f ′) over a G-module A are said to be equivalent if there is a
bijection ϑ : P −→ P ′ such that ϑ is compatible with the actions of G and A, and f = f ′ϑ.

Denote by P (G,A;Z/q) the set of equivalence classes of (G, q)-torsors over A. We can construct a
natural sum on P (G,A;Z/q) given by (P, f) + (P ′, f ′) = (P ′′, f ′′), where P ′′ is a quotient of P × P ′

by the relation (x, x′) = (xa, x′(−a)) for x ∈ P , x′ ∈ P ′, a ∈ A, and f ′′ = f + f ′. Under this sum
P (G,A;Z/q) is an Abelian group with zero element (A,× q).

Theorem 6.50. For any G-module A there is a canonical isomorphism

P (G,A;Z/q) ∼= H1(G,A;Z/q).

Proof. We have a natural homomorphism

α : P (G,A;Z/q) −→ H1(G,A;Z/q)

defined as follows: Given a (G, q)-torsor (P, f), take an element x ∈ P . Then the equality sx = xas
defines a derivation ϕx : G −→ A given by ϕx(s) = as. It is easily checked that the pair (ϕx, f(x)) is

a q-derivation (use the equality (ii) of Definition 6.49). The element [(ϕx, f(x))] does not depend on
the element x ∈ P , and therefore the map α given by α[(P, f)] = [(ϕx, f(x))] is well defined (use the
equality (i) of Definition 6.49).

Conversely, if (ϕ, a) is a q-derivation, define a (G, q)-torsor (P, f) over A as follows: Take P = A;
A acts on P by xa = x + a for x ∈ P , a ∈ A. The group G acts on P by sx = ϕ(s) + sx. The map
f : P −→ A is given by f(x) = a+ qx.

It is easily checked that the pair (P, f) is a (G, q)-torsor over A, that we obtain a well-defined
homomorphism

β : H1(G,A;Z/q) −→ P (G,A;Z/q)

given by β([(ϕ, a)]) = [(P, f)] and that αβ and βα are identity maps.

To describe the group H2(G,A;Z/q) in terms of extensions, some definitions will be introduced.

Definition 6.51. Let G be a group and A a G-module. A pointed q-extension of G by A is a triple

(E, u, g) consisting of an extension E : 0 �� A �� B �� G �� 1 of G by A, a section map
u : G −→ B, and a map g : G −→ A, such that

qv(x, y) = (δg)(x, y) = xg(y) − g(xy) + g(x)

for all x, y ∈ G, where v : G×G −→ A is the factorization system induced by the section u.
The pointed q-extension (E, u, g) is said to be equivalent to the pointed q-extension (E′, u′, g′) if

there exists a morphism (1A, σ, 1G) : E −→ E′ and an element a ∈ A such that

g′(x)− g(x) = q(u′(x)− σu(x)) − xa+ a
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for all x ∈ G.

This binary relation ∼ is an equivalence. The proof is routine and is omitted.
Let us denote by E1(G,A;Z/q) the set of equivalence classes of pointed q-extensions of the group

G by the G-module A.

Theorem 6.52. Let G be a group and A a G-module. There is a natural bijection

E1(G,A;Z/q)
ω �� H2(G,A;Z/q) .

Proof. Define a map ω by ω[(E, u, g)] = [(v, g)] for [(E, u, g)] ∈ E1(G,A;Z/q), where v : G×G −→ A
is the factorization system induced by the section u.

Correctness: we must show that if (E, u, g) ∼ (E′, u′, g′), then [(v, g)] = [(v′, g′)]. It is well known

[93] that
v′(x, y)− v(x, y) = xh(y)− h(xy) + h(x)

for all x ∈ G, where h(x) = u′(x)−σu(x). But there exists an element a ∈ A such that g′(x)− g(x) =
qh(x)− xa+ a for all x ∈ G. This means that we have (v′, g′)− (v, g) ∈ B2(G,A;Z/q).

Injectivity of ω: Let [(E, u, g)], [(E′ , u′, g′)] ∈ E1(G,A;Z/q) and [(v, g)] = [(v′, g′)], i.e., there exists
h ∈ Set(G,A) and a ∈ A such that v′(x, y) − v(x, y) = (δh)(x, y) and g′(x) − g(x) = qh(x) − xa + a,
for all x, y ∈ G. We can choose in the second extension a section u′′ and a map g′′ in such a way that

v′′ = v and g′′ = g. In effect, let us define the section u′′(x) = u′(x) − h(x), for x ∈ G, and the map
g′′ : G −→ A by g′′(x) = g(x) − qh(x) + xa− a. It is easy to show that

(E′, u′, g′) ∼ (E′, u′′, g′′) ∼ (E, u, g),

implying [(E, u, g)] = [(E′, u′, g′)].
Surjectivity of ω: Let (v, g) ∈ Z2(G,A;Z/q). We take the extension

E : 0 �� A �� B �� G �� 0

induced by the 2-cocycle v and the section u0(x) = (0, x). Then we get the equality ω([E, u0, g]) =

[(v, g)].

Remark 6.53. If G is a group and A a G-module, and they satisfy the following condition:

for any map h : G −→ A, δ(qh) = 0 =⇒ qh is cohomologically trivial, (6.25)

then the group H2(G,A;Z/q) can be described in terms of pairs (E, g) consisting of a map g : G −→ A
and an extension E of G by A having a factorization system v such that qv = δg. The relation ∼
between such pairs will be similar, requiring that the sections u and u′ inducing the 2-cocycles v and
v′, respectively, such that qv = δg and qv′ = δg′, satisfy the equality of the equivalence relation.

Clearly, the condition H1(G,A) = 0 implies condition (6.25) and both conditions are equivalent to
each other if A is a q-divisible group.

Moreover, for any G-module A, it is possible to introduce a “Baer sum” on the set E1(G,A;Z/q),

making the map ω an isomorphism.

Before defining q-extensions of groups, we recall some properties on extensions of groups induced
by derivations [57].

Let G be a group and

E : 0 �� A′ �� A �� A′′ �� 0

an exact sequence of G-modules. Given a derivation f : G −→ A′′, we obtain an induced extension
f∗(E). If f is a principal derivation, the induced extension splits. If two derivations f1, f2 : G −→ A
are equivalent, the induced extensions f∗

1 (E) and f∗
2 (E) are equivalent. Given two derivations f1, f2 :

G −→ A, the extension (f1 + f2)
∗(E) is the “Baer sum” of the extensions f∗

1 (E) and f∗
2 (E).
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Let G be a group, A a G-module, and f : G −→ A/q a derivation. We consider the exact sequence

0 �� qA �� A
c �� A/q �� 0 and call f∗(q) the induced extension of G by qA.

Given an extension
E : 0 �� A �� B �� G �� 1,

we call qE the extension induced by the q-multiplication from A to qA.

Definition 6.54. Let G be a group and A a G-module. A q-extension of G by A is a pair (E, f),
where E is an extension of G by A and f : G −→ A/q a derivation, such that the induced extensions

qE and f∗(q) are equivalent. Two q-extensions (E, f) and (E′, f ′) are equivalent if the extensions E
and E′ are equivalent and the derivations f and f ′ are equivalent.

Let Ext(G,A;Z/q) be the set of equivalence classes of q-extensions of G by A. If (E, u, g) is a pointed

q-extension, then (E, c ◦ g) is a q-extension, since qv = δg, whence the extensions qE and (c ◦ g)∗(q)
are equivalent. Furthermore the map (E, u, g) �−→ (E, c◦g) sends two equivalent pointed q-extensions
onto two equivalent q-extensions. So it induces a map Φ : E1(G,A;Z/q) −→ Ext(G,A;Z/q).

Lemma 6.55. Let G be a group, and A a G-module. The map Φ is surjective. Furthermore for

any q-extension (E, f) of G by A with E : 0 �� A �� B �� G �� 1 there exists a pair

(u, g) ∈ Set(G,B) × Set(G,A) such that c ◦ g = f and qv = δg, where v ∈ Z2(G,A) is induced by u.

Proof. The first sentence is a consequence of the second. Let u ∈ Set(G,B) be a section map of the

morphism B −→ G and v1 ∈ Z2(G,A) be given by

v1(x, y) = u1(x)u1(y)u1(xy)
−1.

Let g : G −→ A/q such that f = c ◦ g; then, as the extensions f∗(q) and qE are equivalent, there is a
map h0 : G −→ qA such that δ(g) = v1 + δ(h0). Let h : G −→ A be such that h0 = qh. Let u = u1h.
There is a section map of B −→ G, and the associated 2-cocycle is v = v1 + δh.

The morphism Φ is not, generally, injective: consider a q-extension (E, f) and two pairs (u1, g1)

and (u2, g2) as in Lemma 6.55; then we have u1 = u2 + h, g1 = g2 + h′ with h, h′ : G −→ A. Now
we must have qδh = qδh′, but this does not imply h = h′; we have only the condition qδ(h − h′) =
δ(q(h − h′)) = 0.

Note that a map k : G −→ A with qδk = 0 corresponds to the inclusion

Z1(G, qA) �
� �� HomG(C1, qA)

� � �� HomG(C1, A)
� � �� HomG(C2 ⊕ C1, A).

Theorem 6.56. Let G be a group and A a G-module. The group Ext(G,A;Z/q) of equivalence classes

of q-extensions of G by A is isomorphic to the quotient H2(G,A;Z/q)/L, where L is the image of
H1(G, qA) induced by the composed map

Set(G, qA) �
� �� Set(G,A) �

� �� Set(G2, A) × Set(G,A) ,

where the first map is induced by the inclusion qA � � �� A .

Proof. The remark we made for two pointed q-extensions inducing the same extension works as well
for pointed q-extensions inducing equivalent q-extensions. Let (E, f) be a q-extension of G by A.

Let (E, u, g) be a pointed q-extension such that Φ([(E, u, g)]) = [(E, f)]. Let Ψ([(E, f)]) = (c′ ◦
ω)([(E, u, f)]), where c′ : H2(G,A;Z/q) −→ H2(G,A;Z/q)/L is the canonical map. By Remark 6.53
if (E′, f ′) is equivalent to (E, f) and (E′, u′, g′) such that Φ([(E′, u′, g′)]) = [(E′, g′)], we have

(c′ ◦ ω)
(
[(E′, u′, g′)]

)
= (c′ ◦ ω)

(
[(E, u, g)]

)
.

Then Ψ([(E, f)]) = Ψ([(E′, f ′)]), and the map Ψ is well defined. Furthermore it is surjective, since

(c′ ◦ ω) is surjective.
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Now we assume that Ψ([(E, f)]) = 0. There is a q-extension (E, u, g) such that ω([(E, u, g)]) ∈ L,

that is, ω([(E, u, g)]) = [(v, g′)] with v = 0 and qδg′ = 0. So the q-extension (E, f) is equivalent to
(E′, 0), where E′ is the trivial extension.

6. Mod q Cohomology of Groups as Cotriple Cohomology

In this section the mod q cohomology of groups will be described as cotriple cohomology.

Let us consider again the category A′
A and the cotriple F ′ = (F ′, τ ′, δ′) in A′

A. Let F∗(G)
τG �� G

be the cotriple resolution of an object G in the category GrA (see Chap. 1, Sec. 1.2).
Let T : GrA −→ AbGr be a contravariant functor to the category of Abelian groups. Applying

T dimension-wise to the simplicial group F∗(G) yields an Abelian cosimplicial group TF∗(G). Then

the nth cohomology group of the Abelian cosimplicial group TF∗(G) is called the nth right derived
functor Rn

FT of the functor T with respect to the cotriple F .
It is well known that the right derived functors of the contravariant functor of derivations

Der(−, A) = Z1(−, A) : GrA −→ AbGr with respect to the cotriple F are isomorphic, up to di-
mension shift, to the group cohomology functors H∗(−, A) [4]. A similar assertion is not true for
mod q cohomology of groups, i.e., the cotriple derived functor Rn

FZ
1(−, A;Z/q) of the contravariant

functor of q-derivations Der(−, A;Z/q) = Z1(−, A;Z/q) : GrA −→ AbGr is not isomorphic to the mod
q group cohomology functor Hn+1(−, A;Z/q) for some n ≥ 1. In effect, if G is a free group acting on
A, then R1

FZ
1(G,A;Z/q) = 0, while, using Proposition 6.19, we see that H2(G,A;Z/q) is isomorphic

to H1(G,A)/q.

Theorem 6.57. Let G be a group and A a G-module. Then there are natural isomorphisms

R0
FZ

k(G,A;Z/q) ∼= Zk(G,A;Z/q),

Rn
FZ

k(G,A;Z/q) ∼= Hn+k(G,A;Z/q),

for k > 1 and n > 0.

Proof. The augmented simplicial group τG : F∗(G) −→ G is simplicially exact and therefore is left

(right) contractible as an augmented simplicial set. Since

Dk(L,A;Z/q) = Set(Lk, A)⊕ Set(Lk−1, A)

for any group L acting on A, the Abelian cochain complex

0 �� Dk(G,A;Z/q) �� Dk(F0(G), A;Z/q) �� Dk(F1(G), A;Z/q) ��

�� Dk(F2(G), A;Z/q) �� · · · �� Dk(Fn(G), A;Z/q) �� · · · (6.26)

becomes exact for k ≥ 0, implying

R0
FD

k(G,A;Z/q) ∼= Dk(G,A;Z/q) and Rn
FD

k(G,A;Z/q) = 0, n > 0.

For any k ≥ 0 the short exact sequence of Abelian cochain complexes

0 �� Zk(F∗(G), A;Z/q) �� Dk(F∗(G), A;Z/q) �� Bk+1(F∗(G), A;Z/q) �� 0 (6.27)

induces a long exact sequence of cotriple derived functors

0 �� R0
FZ

k(G,A;Z/q) �� R0
FD

k(G,A;Z/q) �� R0
FB

k+1(G,A;Z/q) ��

�� R1
FZ

k(G,A;Z/q) �� R1
FD

k(G,A;Z/q) �� · · · .
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The injection

R0
FB

k+1(G,A;Z/q) � � �� R0
FD

k+1(G,A;Z/q) ∼= Dk+1(G,A;Z/q)

yields the exact sequence

0 �� R0
FZ

k(G,A;Z/q) �� Dk(G,A;Z/q) �� Dk+1(G,A;Z/q) ,

showing that R0
FZ

k(G,A;Z/q) ∼= Zk(G,A;Z/q).
It is easily checked that any short exact sequence of G-modules

0 �� A1
�� A �� A2

�� 0

induces a long exact cohomology sequence

0 �� Zk(G,A1;Z/q) �� Zk(G,A;Z/q) �� Zk(G,A2;Z/q) �� Hk+1(G,A1;Z/q) ��

�� Hk+1(G,A;Z/q) �� Hk+1(G,A2;Z/q) �� Hk+2(G,A1;Z/q) �� · · · .

It follows that for a free group G the sequence

0 �� Zk(G,A1;Z/q) �� Zk(G,A;Z/q) �� Zk(G,A2;Z/q) �� 0

is exact for k > 1, since in this case Hk+1(G,A;Z/q) = 0. Hence for k > 1 there is a long exact
sequence of cotriple right derived functors

0 �� Zk(G,A1;Z/q) �� Zk(G,A;Z/q) �� Zk(G,A2;Z/q) �� R1
FZ

k(G,A1;Z/q) ��

�� R1
FZ

k(G,A;Z/q) �� R1
FZ

k(G,A2;Z/q) �� R2
FZ

k(G,A1;Z/q) �� · · · .

Now it will be shown that Rn
FZ

k(G,A;Z/q) = 0 for k ≥ 1 and n > 0, if A is an injective G-module.
The following complex of Abelian cosimplicial groups:

0 �� D0(F∗(G), A;Z/q)
δ̃0∗ �� D1(F∗(G), A;Z/q)

δ̃1∗ �� D2(F∗(G), A;Z/q)
δ̃2∗ ��

δ̃2∗ �� D3(F∗(G), A;Z/q)
δ̃3∗ �� · · · δ̃k−1∗ �� Dk(F∗(G), A;Z/q)

δ̃k∗ �� · · · , (6.28)

is exact at the terms Dk(F∗(G), A;Z/q), k ≥ 3, since Hk(F∗(G), A;Z/q) = 0, k ≥ 3, by the universal
coefficient formula (Proposition 6.43).

It is easy to show that any injective G-module is a q-divisible group, and the proof is similar to the

case of injective Abelian groups.
Since Fn(G), n ≥ 0, is a free group, the group Z1(Fn(G), A) of 1-cocycles is isomorphic to a direct

product
∏

i∈J
Ai of copies Ai = A, where the set J is a basis of Fn(G). Hence, if A is injective, then

Z1(Fn(G), A), n ≥ 0, is q-divisible; thus, H1(Fn(G), A), n ≥ 0, is also q-divisible. Therefore for an
injective G-module A the short exact sequence of Abelian cosimplicial groups

0 �� Tor(H1(F∗(G), A),Z/q) �� H1(F∗(G), A)
×q �� H1(F∗(G), A) �� 0

together with the well-known isomorphism Rn
FH

1(G,A) ∼= Hn+1(G,A), n ≥ 0, imply the equality

Rn
F Tor(H1(G,A),Z/q) = 0, n ≥ 0.
The universal coefficient formula yields a short exact sequence of Abelian cosimplicial groups

0 �� H0(F∗(G), A) ⊗ Z/q �� H1(F∗(G), A;Z/q) �� Tor(H1(F∗(G), A),Z/q) �� 0 ,
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implying the isomorphism Rn
FH

1(G,A;Z/q) ∼= Rn
F Tor(H1(G,A),Z/q), n > 0. By (6.27) and the

following short exact sequence of Abelian cosimplicial groups

0 �� B1(F∗(G), A;Z/q) �� Z1(F∗(G), A;Z/q) �� H1(F∗(G), A;Z/q) �� 0

it is easily seen that Rn
FZ

1(G,A;Z/q) ∼= Rn
FH

1(G,A;Z/q), n > 0. Hence, for an injective G-module A
we deduce that Rn

FZ
1(G,A;Z/q) = 0, n > 0, and using again (6.27) we obtain Rn

FB
2(G,A;Z/q) = 0,

n > 0.
Let us consider the short exact sequence of Abelian cosimplicial groups

0 �� H1(F∗(G), A) ⊗ Z/q �� H2(F∗(G), A;Z/q) �� Tor(H2(F∗(G), A),Z/q) �� 0

induced by the universal coefficient formula, which for an injective G-module A, implies that
H2(Fn(G), A;Z/q) ∼= Tor(H2(Fn(G), A),Z/q) = 0 for all n ≥ 0.

We also have the following short exact sequence of Abelian cosimplicial groups

0 �� B2(F∗(G), A;Z/q) �� Z2(F∗(G), A;Z/q) �� H2(F∗(G), A;Z/q) �� 0.

Finally this implies that Rn
FZ

2(G,A;Z/q) = 0, n > 0, if A is an injective G-module.

Now by induction on k, using (6.26) and (6.28), we easily obtain that Rn
FZ

k(G,A;Z/q) = 0, n > 0,
for an injective G-module A and k ≥ 3.

Clearly, by the universal coefficient formula, we have Hn(G,A;Z/q) = 0, n ≥ 2, if A is an injective
G-module.

Thus we have shown that two sequences of functors

1) Zk(G,−;Z/q),Hk+1(G,−;Z/q),Hk+2(G,−;Z/q), . . .;

2) Zk(G,−;Z/q), R1
FZ

k(G,−;Z/q), R2
FZ

k(G,−;Z/q), . . .

satisfy the following axioms for a connected sequence of additive functors {Tn, θ
n, n ≥ 0} from the

category of G-modules to the category of Abelian groups:

(i) T0(−) = Zk(G,−;Z/q);

(ii) for any short exact sequence of G-modules 0 �� A1
�� A �� A2

�� 0 there is a long
exact sequence of Abelian groups

0 �� T0(A1) �� T0(A) �� T0(A2)
θ0 �� T1(A1) ��

�� · · · θn−1
���� Tn(A1) �� Tn(A) �� Tn(A2)

θn �� Tn+1(A1) �� · · · ;

(iii) if A is an injective G-module, then Tn(A) = 0 for all n ≥ 1.

In particular, Theorem 6.57 allows us to describe the mod q cohomology groups Hn(G,A;Z/q),
n ≥ 3, in terms of the non-Abelian derived functors of the functor Z2(−, A;Z/q).

Remark 6.58. An assertion similar to Theorem 6.57 has been proved in [64] for the classical

(co)homology of groups and associative algebras. Moreover, we can obtain a similar result for mod q
homology of groups.
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7. Vogel Cohomology of Groups

In this section we recall the definition of Vogel cohomology and give the proof, due to Vogel [125],

that it is a generalization of Tate–Farrell cohomology.
Recall from Example 6.25 the Hom complex Hom(C∗,K∗)∗ in the category DR. Given C∗ and K∗

in DR, the bounded Hom complex Homb(C∗,K∗)∗ is the subcomplex of Hom(C∗,K∗)∗ given by

Homb(C∗,K∗)n =
⊕

i∈Z
HomR(Ci,Ki+n).

Proposition 6.59. Let Ci, i ∈ Z be a finitely generated R-module. Then there is an isomorphism of
complexes

Homb(C∗,K∗)∗ ∼= Hom(C∗, R)∗ ⊗K∗.

Proof. It is easy to verify that for a finitely generated projective R-module Ci there is an isomorphism

HomR(Ci,Ki+n) ∼= HomR(Ci, R)⊗R Ki+n.

Then we have

Homb(C∗,K∗)n =
⊕

i∈Z
HomR(Ci,Ki+n) ∼=

⊕

i∈Z
(HomR(Ci, R)⊗R Ki+n) =

=
⊕

i∈Z
(HomR(C−i, R)⊗R Kn−i) = (Homb(C∗, R)∗ ⊗K∗)n.

Let K∗ ∈ DR. Our second example of a functor Φ (see Sec. 2 of this chapter) associates to C∗ ∈ DR

the quotient complex

Ĥom(C∗,K∗)∗ = Hom(C∗,K∗)∗/Homb(C∗,K∗)∗.
Then the Φ-cohomology of this complex is written

Ĥn(C∗,K∗) := Hn
Φ(C∗) = H−n(Ĥom(C∗,K∗)∗).

These cohomology groups have the expected property:

Lemma 6.60. Let C∗,K∗ ∈ DR. Then the cohomology groups Ĥn(C∗,K∗) depend only on the homo-

topy classes of C∗ and K∗.

This lemma allows the following:

Definition 6.61. Let A and A′ be two R-modules. Let L∗ be a projective resolution of A and L′∗ a

projective resolution of A′. Then we set

Êxt
n

R(A,A
′) := Ĥn(L∗, L′

∗).

Proposition 6.62. Let K∗ ∈ DR and 0 �� C ′∗ �� C∗ �� C ′′∗ �� 0 be an exact sequence in

DR. Then we have two long exact sequences

· · · �� Ĥn−1(C ′∗,K∗) �� Ĥn(C ′′∗ ,K∗) �� Ĥn(C∗,K∗) ��

�� Ĥn(C ′∗,K∗) �� Ĥn+1(C ′′∗ ,K∗) �� · · ·

and

· · · �� Ĥn−1(K∗, C ′′∗ ) �� Ĥn(K∗, C ′∗) �� Ĥn(K∗, C∗) ��

�� Ĥn(K∗, C ′′∗ ) �� Ĥn+1(K∗, C ′∗) �� · · · .
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Proof. The short exact sequence of complexes

0 �� Hom(C ′′∗ ,K∗)∗ �� Hom(C∗,K∗)∗ �� Hom(C ′∗,K∗)∗ �� 0

is restricted to an exact sequence

0 �� Homb(C
′′∗ ,K∗)∗ �� Homb(C∗,K∗)∗ �� Homb(C

′∗,K∗)∗ �� 0 .

By diagram chasing these two exact sequences induce a third one

0 �� Ĥom(C ′′∗ ,K∗)∗ �� Ĥom(C∗,K∗)∗ �� Ĥom(C ′∗,K∗)∗ �� 0

implying the first long exact sequence. The second long exact sequence is obtained in the same way.

Corollary 6.63. Let M be an R-module and 0 �� A′ �� A �� A′′ �� 0 an exact sequence
of R-modules. Then we have two long exact sequences

· · · �� Êxt
n−1

(A′,M) �� Êxt
n
(A′′,M) �� Êxt

n
(A,M) �� Êxt

n
(A′,M) �� · · ·

and

· · · �� Êxt
n−1

(M,A′′) �� Êxt
n
(M,A′) �� Êxt

n
(M,A) �� Êxt

n
(M,A′′) �� · · · .

Vogel’s Ext functors have applications outside group theory [95, 128], but, to keep to our subject,
we just relate them, when R is a group ring, to Farrell cohomology theory (see [50] or, e.g., [10]).
From now on, the ring R is Z[G] with G a group, and we give the definition of Vogel cohomology of

groups.

Definition 6.64. Let G be a group and A a G-module. Then Vogel cohomology groups are given,

for n ∈ Z, by

Ĥn(G,A) := Êxt
n

G(Z, A).

Before giving the proof, due to Vogel, that his cohomology theory is a generalization of Farrell
cohomology we recall the definition of Farrell cohomology [50].

Definition 6.65. A complete resolution for a group G is a pair (F∗, F ′′∗ ) of complexes of G-modules
such that

(i) F∗ is acyclic;

(ii) F ′′∗ is a resolution of the G-module Z;

(iii) F∗ and F ′′∗ coincide in higher dimensions.

In the sequel, we will always assume that a complete resolution is projective, i.e., F∗ and F ′′∗ are
complexes of projective G-modules. We shall say that a group G satisfies condition (CR) if there

exists a complete resolution (F∗, F ′′∗ ) for G, if such a complete resolution is unique up to homotopy,
and if there exists a surjective morphism F∗ −→ F ′′∗ which is the identity in higher dimensions. We
shall say that G satisfies condition (CRf ) if, furthermore, there exists a complete resolution with each

Fi and F ′′
i finitely generated, i ∈ Z.

Remark 6.66. The existence of the morphism F∗ −→ F ′′∗ is a consequence of the construction of the

complete resolution [10, Proposition X 2.3]. Furthermore this morphism can be made surjective by a
change of F∗.

Definition 6.67. Let G be a group satisfying condition (CR), A a G-module and (F∗, F ′′∗ ) a complete

resolution for G. Then Farrell cohomology groups with coefficients in A are the groups Ĥn
Fa(G,A) =

Hn(F∗, A).
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Tate cohomology is Farrell cohomology for finite groups. Tate first built complete resolutions in this

case by splicing a resolution and a coresolution [10]. Then Farrell checked the condition (CR) for groups
with finite virtual cohomological dimension (vcd) [50]. Finally Ikenaga, introducing a generalized
cohomological dimension, proved that condition (CR) is valid for a wider class of groups [58].

Theorem 6.68 (see [125]). Let G be a group satisfying condition (CRf ). We assume that, given an

acyclic projective complex F∗, the complex Hom(F∗,Z[G])∗ is acyclic. Then the Farrell cohomology of
G and the Vogel cohomology of G coincide.

Proof. Let A be a G-module and L∗ a projective G-resolution of A. By condition (CRf ) there exists

a complete projective resolution (F∗, F ′′∗ ) for G with each Fi and F ′′
i finitely generated, i ∈ Z.

Let F ′∗ be the kernel of the canonical epimorphism F∗ −→ F ′′∗ . We have an exact sequence of

complexes 0 �� F ′∗ �� F∗ �� oF ′′∗ �� 0 , and thus an exact sequence

0 �� Ĥom(F ′′∗ , L∗)∗ �� Ĥom(F∗, L∗)∗ �� Ĥom(F ′∗, L∗)∗ �� 0. (6.29)

As L∗ is bounded beneath and F ′∗ is bounded overhead, we have

Hom(F ′
∗, L∗)n =

∏

i∈Z
HomG(F

′
i , Ln+i) =

⊕

i∈Z
HomG(F

′
i , Ln+i) = Homb(F

′
∗, L∗)n.

Thus Hom(F ′∗, L∗)∗ = Homb(F
′∗, L∗)∗ and Ĥom(F ′∗, L∗)∗ = 0. Sequence (6.29) gives an isomorphism

Ĥom(F ′′∗ , L∗)∗ ∼= Ĥom(F∗, L∗)∗.
As the complex Hom(F∗,Z[G])∗ is acyclic, the complex Hom(F∗,Z[G])∗ ⊗ L∗ is acyclic and, by

Proposition 6.59, Homb(F∗, L∗)∗ is also acyclic. Thus, the canonical morphism Hom(F∗, L∗)∗ −→
Ĥom(F ′′∗ , L∗)∗ is a homology equivalence. The complexes Hom(F∗, L∗)∗ and Hom(F∗, A[0])∗, where
A is in degree 0, are homotopy equivalent, since L∗ is a resolution of A (see Example 6.25). Finally

the complexes Ĥom(F ′′∗ , L∗)∗ and Hom(F∗, A[0])∗ have the same homology, that is, Vogel and Farrell
cohomology coincide.

Remark 6.69. Let (K∗,K ′′∗ ) be another complete projective resolution for G. Plainly, as, by con-
dition (CR), the complexes F∗ and K∗ are homotopy equivalent the complexes Homb(F∗, L∗)∗ and

Homb(K∗, L∗)∗ are equivalent. Whence Homb(K∗, L∗)∗ is acyclic even if the groups Ki are not finitely
generated.

Finite groups G satisfy condition (CRf ) and, given an acyclic projective complex F∗, the complex

Hom(F∗,Z[G])∗ is acyclic [10]. Thus we have

Corollary 6.70. For a finite group G, Tate and Vogel cohomology of G coincide.

Condition (CR) is true for a group G with vcd(G) finite, but condition (CRf ) is not always true.
Nevertheless Remark 6.69 allows to extend the corollary in this case.

Corollary 6.71. Let G be a group satisfying condition (CR). We assume that for any G-module

A, if Ĥn
Fa(H,A) = 0 for any finite subgroup H of G, then Ĥn

Fa(G,A) = 0. Then Farrell and Vogel

cohomology of G coincide.

Proof. Let (F∗, F ′′∗ ) be a complete resolution for G. It is a complete resolution as well for any (fi-
nite) subgroup H, and a complex L∗ of projective G-modules is a complex of projective H-modules.

By definition Ĥn
Fa(G,A) = 0 (resp Ĥn

Fa(H,A) = 0) means that the complex HomG(C∗, A)∗ (resp
HomH(C∗, A)∗) is acyclic. Either by hand calculation or by use of a spectral sequence associated to
the bicomplex HomG(Ci, L

′
j), we see that, for any bounded G-complex L′∗, the complex Hom(C∗, L′∗)∗
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is acyclic if and only if, for each i ∈ Z, the complex Hom(C∗, L′
i)∗ is acyclic. Thus the hypothesis is

equivalent to the same hypothesis where the G-module A is replaced by a bounded complex.
Let A be a G-module and L∗ a projective G-resolution of A. Then, for any subgroup H of G and

bounded subcomplex L′∗ ∈ DR of L∗, the complex HomH(F∗, L′∗) is acyclic by Proposition 6.59, the
proof of Theorem 6.68 and Remark 6.69. Thus, the complex HomG(F∗, L′∗) is acyclic. Whence, as a

colimit, the complex Hom(F∗, L∗) is acyclic, and we apply the end of the proof of Theorem 6.68.

The hypothesis in Corollary 6.71 is true for groups with finite vcd [10, Lemma X 5.1]. It does
not work for all groups considered by Ikenaga, but he exhibited among them a large class of groups,
called C∞, containing a class of groups with finite vcd but larger and for which this hypothesis is true;

see [58] for details. Thus we have

Corollary 6.72. If the group G belongs to the class C∞ of Ikenaga, in particular if G has a finite
vcd, then Farrell and Vogel cohomology of G coincide.

Remark 6.73.

(i) Vogel introduced also a cohomology theory in which he replaces the complex Homb(C∗,K∗)∗
by the subcomplex Homf (C∗,K∗)∗ of morphisms which factor through bounded complexes of
finitely generated projective R-modules. This gives the same theory for a finite group but not
generally.

(ii) Proposition 6.59 is still valid if instead of Ci finitely generated we assume that Ki, i ∈ Z, is
finitely generated. Hence, if the G-module A admits a projective resolution by finitely generated

projective G-modules, Vogel and Ikenaga cohomology with coefficients in A coincide ifG satisfies
condition (CR).

8. Mod q Vogel Cohomology of Groups

In this section we extend Vogel’s definition to get mod q cohomology. Then we investigate its

properties, among which we generalize some classical properties of Tate–Farrell cohomology.
Lemmas 6.24 and 6.60 allow the following definition.

Definition 6.74. Let G be a group and A a G-module. Let L∗ (respectively, K∗) be a projective
G-resolution of Z (respectively, A). Then mod q Vogel cohomology groups are given by

Ĥn(G,A;Z/q) := H−n+1(Ĥom(L∗,K∗)∗;Z/q).

Now, as an immediate consequence of Lemma 6.26, the mapping cones of L∗ and of Ĥom(L∗,K∗)∗
are related:

Lemma 6.75. Let C∗,K∗ ∈ DR. For all n ∈ Z we have a canonical isomorphism

Ĥom(Mc(C∗, q)∗,K∗)n ∼= Mc(Ĥom(C∗,K∗)∗, q)n+1.

Hence we have the following proposition.

Proposition 6.76. Let G be a group and A a G-module. Then, for all n ∈ Z, we have an isomorphism

Ĥn(G,A;Z/q) = Êxt
n

G(Z/q,A).

Proof. If L∗ is a projective G-resolution of Z, we claim that Mc(L∗, q)∗ is a projective G-resolution of

Z/q. This is always true, but for our purpose it is enough to consider the standard bar resolution; see
Sec. 5 of this chapter. Whence Lemma 6.75 gives the result.

120



Remark 6.77. The Farrell mod q cohomology of a group of finite virtual cohomological dimension

can be defined in the same way Farrell defined his cohomology by taking a complete resolution of
Z/q instead of Z. For instance, the pair of mapping cones (Mc(F∗, q)∗,Mc(F ′′∗ , q)∗), where (F∗, F ′′∗ )
is a complete resolution of Z, is a complete resolution of Z/q. Then the proofs of Theorem 6.68 and
Corollary 6.71 work to show that Farrell mod q cohomology coincides with Vogel mod q cohomology.

In this context Corollary 6.20 becomes

Proposition 6.78 (universal coefficient formula). Let G be a group and A a G-module. Then, for all
n ∈ Z, there is a short exact sequence of Abelian groups

0 �� Ĥn−1(G,A) ⊗ Z/q �� Ĥn(G,A;Z/q) �� Tor(Ĥn(G,A),Z/q) �� 0 .

Corollary 6.79. Let G be a group with vcd(G) < ∞ and A a G-module. Then the canonical map

Hn(G,A;Z/q) −→ Ĥn(G,A;Z/q) induces an isomorphism for n ≥ vcd(G) + 2 and a surjection for

n = vcd(G) + 1.

Proof. We have the following commutative diagram of groups:

0 �� Hn−1(G,A) ⊗ Z/q ��

��

Hn(G,A;Z/q) ��

��

Tor(Hn(G,A),Z/q) ��

��

0

0 �� Ĥn−1(G,A) ⊗ Z/q �� Ĥn(G,A;Z/q) �� Tor(Ĥn(G,A),Z/q) �� 0

with exact rows; the vertical homomorphisms are the canonical maps. By [10] the first vertical map
is surjective, and the third vertical map is an isomorphism for n − 1 ≥ vcd(G); furthermore the first
vertical map is an isomorphism still for n−1 > vcd(G), whence the result given by the five-lemma.

Corollary 6.80. Let G be a finite group and A a G-module. Then

Ĥn(G,A;Z/q) = Hn(G,A;Z/q), n ≥ 2;

Ĥ−n(G,A;Z/q) = Hn(G,A;Z/q), n ≥ 2;

furthermore, the groups Ĥ−1(G,A;Z/q), Ĥ0(G,A;Z/q), and Ĥ1(G,A;Z/q) are new and enter into
short exact sequences

0 �� H1(G,A) ⊗ Z/q �� Ĥ−1(G,A;Z/q) �� Tor(Ĥ−1(G,A),Z/q) �� 0,

0 �� Ĥ−1(G,A) ⊗ Z/q �� Ĥ0(G,A;Z/q) �� Tor(Ĥ0(G,A),Z/q) �� 0,

0 �� Ĥ0(G,A) ⊗ Z/q �� Ĥ1(G,A;Z/q) �� Tor(H1(G,A),Z/q) �� 0.

Using again the universal coefficient formula for a group G of order k, we see that, for n ∈ Z and

x ∈ Ĥn(G,A;Z/q), we have k2x = 0. Whence the groups Ĥn(G,A;Z/q) are finite when G is finite

and A is a finitely generated G-module.
It is easy to verify that Shapiro’s lemma holds for mod q Vogel cohomology of groups which states

that, if H is a subgroup of finite index in a group G and A is an H-module, we have an isomorphism

Ĥ∗(H,A;Z/q) ∼= Ĥ∗(G,Z[G] ⊗Z[H] A;Z/q).

The proof is similar to the case of Vogel homology [52, Lemma 4.4].

We have a cup product, actually a composition product [10], on Vogel cohomology Ĥ∗(G,−) [52].
For vcd(G) < ∞, a fortiori for G finite, we recover the usual cup product. We shall extend this cup

product to mod q cohomology for groups with finite virtual cohomology dimensions.
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A group G is said to have periodic cohomology if there exists an integer d �= 0 such that, for any

n ∈ Z, the functors Ĥn(G,−) and Ĥn+d(G,−) are isomorphic. In the case vcd(G) ≤ ∞, it is equivalent

to the existence of an element u ∈ Ĥd(G,Z) that is invertible in the ring Ĥ∗(G,Z). Then [10] the cup

product with u gives, for any n ∈ Z and any G-module A, a periodicity isomorphism

u ∪ − : Ĥn(G,A) ∼= Ĥn+d(G,A).

Note that, at least for vcd(G) < ∞, if G has periodic cohomology, the period d is even.

Theorem 6.81. Let G be a finite group, L∗ a complete resolution of Z for G, and A and B two
G-modules. Then

(i) the cochain product ∪ of Tate cohomology induces a cup product

Ĥp(G,A) ⊗ Ĥn(G,B;Z/q)
∪ �� Ĥp+n(G,A⊗B;Z/q)

given by

f · (g, h) =
(
f · g, (−1)pf · h

)
,

where f ∈ HomG(L∗, A)p and (g, h) ∈ HomG(Mc(L∗, q)∗, B)n;

(ii) for G with periodic cohomology of period d, the cup product with u ∈ Ĥd(G,Z) induces an

isomorphism

Ĥn(G,B;Z/q) ∼= Ĥn+d(G,B;Z/q)

for all n ∈ Z and any G-module B.

Proof.

(i) It is easily checked that we have the equality

δ(f(g, h)) = δf · (g, h) + (−1)pf · δ(g, h)

implying the correctness of the cup product.

(ii) To prove the periodicity, the defining properties of the Tate cohomology cup product are used [2,
Theorem 7.1]. We obtain the following commutative diagram of groups:

· · · ×q �� Ĥn−1(G,B) ��

��

Ĥn(G,B;Z/q) ��

��

Ĥn(G,B)
×q ��

��

· · ·

· · · ×q
�� Ĥn−1+d(G,B) �� Ĥn+d(G,B;Z/q) �� Ĥn+d(G,B) ×q

�� · · ·

with exact rows, and the vertical homomorphisms are induced by the cup product given in (i). Since
the periodicity holds for the Tate cohomology [2, 10], it remains to apply the five lemma.

Remark 6.82. By the same way the periodicity theorem can be proved for groups with vcdG < ∞
having periodic cohomology.

Notice too that there is a cup product action of Tate cohomology on the right:

Ĥn(G,B;Z/q)⊗ Ĥp(G,A)
∪ �� Ĥn+p(G,B ⊗A;Z/q)

given by (g, h) · f = (g · f, h · f). In this case

δ((g, h) · f) = δ(g, h) · f + (−1)n (g, h) · δf,

where (g, h) ∈ HomG(Mc(L∗, q)∗, B)n, f ∈ HomG(L∗, B)p, and the mod q Tate cohomology

Ĥ∗(G,B;Z/q) becomes an Ĥ∗(G,Z)-bimodule for any G-module B.
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From Theorem 6.81 we deduce that we have periodicity of the mod q Tate cohomology for finite

cyclic groups having periodic cohomology of period 2 and for finite subgroups of the multiplicative
group of the quaternion algebra having periodic cohomology of period 4. Moreover we have

Corollary 6.83. Let Cm be a cyclic group of order m and t be a generator of Cm. Then for any
Cm-module A, we obtain

Ĥ2n(Cm, A;Z/q) =
{
(a, a′) | Na+ qa′ = 0, ta′ = a′

}
/D̃(A⊕A), n ∈ Z,

Ĥ2n+1(Cm, A;Z/q) =
{
(a, a′) | Da+ qa′ = 0, Na′ = 0

}
/Ñ(A⊕A), n ∈ Z,

with N = 1 + t+ · · · + tm−1, D = t− 1 ∈ Z[G] and where the homomorphisms D̃ : A⊕A −→ A⊕ A

and Ñ : A⊕A −→ A⊕A are defined by D̃(a, a′) = (Da+qa′,−Na′) and Ñ(a, a′) = (Na+qa′,−Da′).

Proof. It follows from Theorem 6.81 (ii) and Proposition 6.35.

Remark 6.84. The question of periodic cohomology for a wider class of groups has been considered
in classical cohomology in the context of “periodicity after k steps” [121, 122].

Theorem 6.85. Let G be a p-group whose order |G| = pm divides q, and A a G-module. Then the

following conditions are equivalent :

(i) Ĥn(G,A;Z/q) = 0 for some n ∈ Z;

(ii) A is cohomologically trivial.

If in addition A is p-torsion-free, then (i) and (ii) are equivalent to

(iii) A/pA is free over (Z/p)[G].

Proof. First, assume that A is p-torsion-free. According to [2, Theorem 9.2], it suffices to show the
equivalence of the following two conditions:

(i) Ĥn(G,A;Z/q) = 0 for some n ∈ Z;

(iv) Ĥn(G,A) = 0 for two consecutive integers n.

(iv) =⇒ (i): if Ĥn(G,A) = Ĥn+1(G,A) = 0, then, by Theorem 6.78, Ĥn+1(G,A;Z/q) = 0.

(i) =⇒ (iv): if Ĥn(G,A;Z/q) = 0, the homomorphism Ĥn−1(G,A)
×q �� Ĥn−1(G,A) is surjective,

and the homomorphism Ĥn(G,A)
×q �� Ĥn(G,A) is injective. Thus, for x ∈ Ĥn−1(G,A), there is

an element y ∈ Ĥn−1(G,A) with qy = x. On the other hand, we have pmy = 0, whence qy = 0. If

x ∈ Ĥn(G,A), the equality pmx = 0 implies qx = 0, and therefore x = 0.
The equivalence of (i) and (ii) for any G-module A is reduced to the previous case by use of

dimension-shifting. Take a short exact sequence of G-modules

0 �� A′ �� F �� A �� 0

with F free over Z[G]. Then we have the isomorphisms

Ĥn(G,A) ∼= Ĥn+1(G,A′) and Ĥn(G,A;Z/q) ∼= Ĥn+1(G,A′;Z/q)

for all n ∈ Z with A′ torsion-free.

We end with a final example of extension of a classical property to Vogel cohomology:

Proposition 6.86. Let G be a group and A a projective G-module. Then

Ĥ∗(G,A;Z/q) = 0.

Proof. We take L0 = A and Ln = 0 for n �= 0 as a projective resolution of A.
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117. R. Stöhr, “A generalized Hopf formula for higher homology groups,” Comment. Math. Helv.,
64, No. 2, 187–199 (1989).

118. A. A. Suslin, “Homology of GLn, characteristic classes and Milnor K-theory,” in: Algebraic K-

Theory, Number Theory, Geometry, and Analysis (Bielefeld, 1982), Lect. Notes Math., 1046,
Springer-Verlag, Berlin (1984), pp. 357–375.

119. A. Suslin and V. Voevodsky, “Bloch–Kato conjecture and motivic cohomology with finite coef-

ficients,” in: The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), NATO Sci.
Ser. C. Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht (2000), pp. 117–189.

120. R. G. Swan, “Some relations between higher K-functors,” J. Algebra, 21, 113–136 (1972).

121. O. Talelli, “On cohomological periodicity for infinite groups,” Comment. Math. Helvet., 55,
No. 2, 178–192 (1980).

122. O. Talelli, “On groups with periodic cohomology after 1 step,” J. Pure Appl. Algebra, 30, No. 1,

85–93 (1983).
123. M. Tierney and W. Vogel, “Simplicial resolutions and derived functors,” Math. Z., 111, 1–14

(1969).

124. V. Voevodsky, The Milnor conjecture, K-theory preprint archive, No. 170 (1996).
125. P. Vogel, Talks given at Paris and Rennes (1983–84).
126. J. H. C. Whitehead, “On adding relations to homotopy groups,” Ann. Math. (2), 42, 409–428

(1941).
127. J. H. C. Whitehead, “Combinatorial homotopy, II,” Bull. Am. Math. Soc., 55, 453–496 (1949).
128. Y. Yoshino, “Tate–Vogel completions of half-exact functors,” Alg. Represent. Theory, 4, No. 2,

171–200 (2001).

N. Inassaridze

A. Razmadze Mathematical Institute
of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
E-mail: niko.inas@gmail.com

129


	Abstract
	INTRODUCTION
	Chapter 1. 
DERIVED FUNCTORS
	1. Non-Abelian Derived Functors
	2. N-Fold ˇCech Derived Functors

	Chapter 2. 
HOMOTOPY (n + 1)-TYPES AND HOMOLOGY
	1. Crossed n-Cubes and cat n-Groups
	2. Homology of Crossed n-Cubes
	3. Homology of Precrossed Modules

	Chapter 3. 
HOPF-TYPE FORMULAS
	1. From Simplicial Groups to Hopf-Type Formulas
	2. Generalized Hopf-Type Formulas
	3. Hopf Type Formulas for the Homology of Homotopy (n + 1)-Types

	Chapter 4. 
NON-ABELIAN HOMOLOGY OF GROUPS
	1. The Non-Abelian Tensor Product of Groups
	2. Construction of Non-Abelian Homology of Groups
	3. Some Properties of the Non-Abelian Homology of Groups
	4. Second and Third Non-Abelian Homologies of Groups

	Chapter 5. 
NON-ABELIAN (CO)HOMOLOGY OF LIE ALGEBRAS
	1. The Tensor Products of Lie Algebras
	2. Construction of Non-Abelian Homology
	3. Some Properties of Non-Abelian Homology
	4. Application to Cyclic Homology
	5. The Lie Algebra of Derivations
	6. Non-Abelian Cohomology

	Chapter 6. 
MOD q NON-ABELIAN TENSOR PRODUCTSAND (CO)HOMOLOGY OF GROUPS
	1. The Tensor Product Modulo q of Groups
	2. Mod q Homology and Cohomology of Chain Complexes
	3. Mod q Homology of Groups
	4. Derived Functors of the Non-Abelian Tensor Product Modulo q of Groups
	5. Mod q Cohomology of Groups
	6. Mod q Cohomology of Groups as Cotriple Cohomology
	7. Vogel Cohomology of Groups
	8. Mod q Vogel Cohomology of Groups

	Acknowledgements
	REFERENCES

