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870 H. Inassaridze

1 Introduction

K -regularity is an important K -theoretical property of rings. It is closely related to
the homotopy property of functors and to the Fundamental Theorem of algebraic
K -theory.

The investigation of K -regularity appears in works of Grothendieck for regular
rings and is also treated by Bass in [2].

The starting point is the classical Grothendieck–Serre theorem stating that a regu-
lar ring is K0-regular. This result was further extended by Bass-Heller-Swan for the
Whitehead-Bass algebraic K -functor K1 and by Quillen for all algebraic K -functors
Kn , n ≥ 1, in [19]. The K -regularity property of rings was also introduced and studied
by Gersten in [6] and Karoubi in [16].

In this direction more recent results were obtained by Gubeladze for the general
case when the rings of polynomials are replaced by monoid rings satisfying certain
conditions and the relationship was established between the K -regularity of a monoid
ring R and its algebraic properties in [7,8]. Cortiñas, Haesemeyer and Weibel have
investigated the relationship between K-regularity and regularity for affine schemes
confirming a conjecture of Vorst in [5]. For commutative C

�
-algebras K -regularity

was established by Rosenberg in [21]. Further results about K -regularity of operator
algebras were obtained for stable C

�
-algebras in [10] and for stable profinite C

�
-

algebras in [13].
Our aim is to find a wide class of locally convex algebras for which the K -regularity

property holds. For this purpose first we will investigate the relationship between
Karoubi–Villamayor algebraic K -theory and topological K -theory in the category of
locally convex complex algebras. Then the existing comparison of Quillen algebraic
K -theory and topological K -theory [4,14,22,24,28,29] will be extended to monoid
algebras over locally convex algebras. To establish these results the topological invari-
ants introduced in [14,15] and called smooth K -groups will be used. It should be noted
that K -theories related to smooth K -groups have been treated in [4,26].

The novelty of our approach allowed us to confirm the Karoubi conjecture for
arbitrary Fréchet algebras (not necessarily multiplicatively convex) by using methods
of Higson and Suslin–Wodzicki that were not investigated previously for this general
case of Fréchet algebras with properly uniformly bounded approximate unit.

A short paper on these results (without proofs) has been published in [11].

2 Preliminaries

In this section we recall some definitions and propositions given in [14,15], which
will be used later.

By a locally convex algebra we mean an algebra over the field C of complex
numbers equipped with a Hausdorff complete locally convex topology and jointly
continuous multiplication The category ALC of locally convex algebras is closed
under the Grothendieck projective tensor product [27].
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K-regularity of locally convex algebras 871

Definition 2.1 Let

0 → C
f→ B

g→ A → 0

be a sequence of morphisms in the category LC of locally convex linear topological
spaces and continuous linear maps. It will be said that this sequence is an exact
sequence if f is a homeomorphism of C on Im f , g is an open surjective map and
Im f = Kerg. It will be said to be proper split exact if it is exact and g has a right
inverse in LC. A short exact sequence in the category ALC is said to be proper exact
sequence if it is split exact sequence in the category LC.

Proposition 2.2 If

0 → C → B → A → 0

is a proper exact sequence of locally convex algebras and D is a locally convex algebra,
then the sequence

0 → D̂⊗C → D̂⊗B → D̂⊗A → 0

is a proper exact sequence.

As noted above the smooth K -theory was introduced in [14,15] for locally convex
algebras. The same definition is valid for arbitrary real or complex topological algebras
and is completely similar.Namely, let A∞(I ) be the topological algebra of smoothmaps
from the unit interval I to the topological algebra A. Any continuous homomorphism
of topological algebras ϕ : A → A′ induces a homomorphism of topological algebras
ϕ∞(I ) : A∞(I ) → A′∞(I ). For any topological algebra A consider the evaluationmaps
at t = 0 and t = 1

A∞(I ) → A, ε0( f ) = f (0), ε1 = f (1).

Denote by I(A) the kernel of ε0 and by τA : I(A) → A the restriction of ε1 on
I(A). There is a smooth homomorphism δA : I(A) → I2(A) sending f ∈ I(A) to
δA( f )(s, t) = f (st). One gets the smooth path cotriple I (for locally convex algebras
see [14]) which induces the augmented simplicial group

GL(I+∗ (A)) = GL(I∗(A)) → GL(A).

Definition 2.3 For any topological algebra A the smooth K -functors K sm
n , n ≥ 0, are

defined as follows

K sm
n (A) = πn−2GL(I∗(A))

for n ≥ 3, K sm
0 (A) = K0(A) and for n = 1, 2 are defined by the exact sequence

0 → K sm
2 (A) → π0(GL(I∗(A)) → GL(A) → K sm

1 (A) → 0.
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872 H. Inassaridze

All defined smooth K -groups are abelian (the proof for the case n = 1, 2 is similar
to the case of locally convex algebras [14]).

Let F and P be the free cotriple and the polynomial cotriple respectively on the
category of associative rings and J the continuous path cotriple on the category of
topological algebras. Then one has natural morphisms

F
α→ P

δ→ I
β→ J.

For any topological algebra A the homomorphism αA : F(A) → P(A) is given by
αA(|a|) = ax , |a| ∈ FA, where FA is the free algebra generated by A, δA(ax)(t 	→
at), t ∈ I , and one has the inclusion βA : I(A) → J(A).

The topological K -groups K top
n (A) = πn−2GL(J+∗ (A)), K top

0 (A) = K0(A)), were
defined by Swan in [25] and the algebraic K-groups KVn(A) = πn−2GL(P+∗ (A))

by Karoubi and Villamayor in [17] for n ≥ 1. The morphisms α, δ and β induce
respectively functorial homomorphisms

Kn(A) → KVn(A) → K sm
n (A) → K top

n (A)

for n ≥ 1, where K∗(A) are Quillen’s K -groups, which are isomorphic to Swan’s
algebraic K -functors defined in [25] similarly to the topological case, but with the
continuous path cotriple replaced by the free cotriple. These homomorphisms are
surjective for n = 1 (see [12]).

Definition 2.4 Two homomorphisms f, g : A → B of topological algebras are said
to be smoothly homotopic if there exists a continuous homomorphism h : A → B∞(I )

such that f = ε0h, g = ε1h, which is called a smooth homotopy between f and g.

Denote by Gr and Ab the category of groups and abelian groups, respectively.

Definition 2.5 A functor T : A → Gr is called a smooth homotopy functor if T ( f ) =
T (g) for smoothly homotopic f and g.

Proposition 2.6 LetB be a full subcategory of the categoryA of topological algebras
containing with any topological algebra A the topological algebra A∞(I ). A functor
T : B → Gr is a smooth homotopy functor if and only if the inclusion i : A → A∞(I )

induces an isomorphism T (i) : T (A) → T (A∞(I )) for any topological algebra A of
the category B.

Proposition 2.7 The topological K -functors K top
n and the smooth K -functors K sm

n
are smooth homotopy functors for n ≥ 1 on the category of topological algebras.

Definition 2.8 Let (a.u) be an approximate unit of a Fréchet algebra A. If there exist
a Banach algebra B and a continuous injective algebra homomorphism f : B → A
such that (a.u) is the image of a bounded approximate unit of B, then it is called a
properly uniformly bounded approximate unit of the Fréchet algebra A.

If A is anm-convex Fréchet algebra, then the set Ab of uniformly bounded elements
in A becomes aBanach algebrawith respect to the norm ‖ a ‖= sup ‖ a ‖n . Suppose A
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K-regularity of locally convex algebras 873

has a bounded approximate unit in Ab. Then by considering the inclusion Ab ↪→ A and
by Definition 2.8 this approximate unit is a properly uniformly bounded approximate
unit and in this particular case it is called uniformly bounded approximate unit of A.

If A is an arbitrary unital Fréchet algebra with the sequence of determining semi-
norms ‖.‖n , then with respect to the inclusion Ce ↪→ A the unit e is a properly
uniformly bounded approximate unit of A. Note that the unit e may be unbounded in
A, depending on the given sequence of determining seminorms.

The Fréchet algebras considered in this article are not necessarily locally multi-
plicatively convex (m-convex). Finite projective tensor products of Fréchet algebras
with properly uniformly bounded approximate unit are again Fréchet algebras with
properly uniformly bounded approximate unit. The unit element of any unital Fréchet
algebra A is a properly uniformly bounded approximate unit of A. Projective limits of
countably many C*-algebras are Fréchet algebras with properly uniformly bounded
approximate unit.

Many important examples of functional algebras in analysis are not locally mul-
tiplicatively convex and are Fréchet algebras with properly uniformly bounded
approximate unit (for instance the Arens algebra of complex-valued measurable func-
tions on the unit interval [1], Schwartz convolution group algebras [23], Theorem 3.2.8
and Proposition 3.2.13; the algebra of functions holomorphic on the unit disk [30],
Theorem 26). Examples of non - m-convex Fréchet algebras are also given in [18,20].
If A is a Fréchet algebra with properly uniformly bounded approximate unit, then so
is the Fréchet algebra A∞(I ).

The main and needed K -theoretical property of Fréchet algebras with properly
uniformly bounded approximate unit is expressed in the following assertion:

Theorem 2.9 If A is a Fréchet algebra with properly uniformly bounded approximate
unit and not necessarily m-convex, then it possesses the TF-property and therefore the
excision property in algebraic K -theory and the H-unitality property [14].

3 Smooth Karoubi conjecture and K-regularity

First we recall the notion of K -regularity property for associative rings.

Definition 3.1 A ring A is called K -regular if the natural injection A → A[x1, x2,
. . . , xm] induces an isomorphism

Kn(A) ∼= Kn(A[x1, x2, . . . , xm])

for all n,m > 0.

Besides the aforementioned assertions given in [14] for locally convex algebras we
will use the following important property of smooth maps:

Lemma 3.2 There is an isomorphism

A∞(I )
̂⊗B ∼= (Â⊗B)∞(I )

for any locally convex algebras A and B.
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874 H. Inassaridze

Proof Aminor generalization of Theorem 44.1 [27] shows that C∞(I )
̂⊗ε A ∼= A∞(I ),

where ̂⊗ε is the completed ε-tensor product. By the nuclearity of C∞(I ) , Theorem
50.1 [27] says that C∞(I )

̂⊗A ∼= C
∞(I )

̂⊗ε A. Finally, one gets

A∞(I )
̂⊗B ∼= (C∞(I )

̂⊗A)̂⊗B ∼= C
∞(I )

̂⊗(Â⊗B) ∼= (Â⊗B)∞(I ).

This completes the proof. �

Remark 3.3 (1) For m-convex locally convex algebras Lemma 3.2 is proved in [27].
The proof for the general case is due to Larry Schweitzer.

(2) It should be noted that this property does not hold for continuous maps and
arbitrary locally convex algebras, even for Banach algebras. That is the reason
for which we have introduced smooth K -groups and smooth homotopy func-
tors instead of topological K -groups and homotopy functors respectively for
the investigation of Karoubi conjecture about the isomorphism of algebraic and
topological K -functors in the case of locally convex algebras, which we call the
smooth Karoubi conjecture (see [14,15]).

(3) This isomorphism also holds when (−)∞(I ) is replaced by I(−).

Theorem 3.4 Let B be a full subcategory of the category A of topological algebras
containing with any topological algebra A the topological algebra A∞(I ). Then

(1) the functors K1 and K sm
1 are isomorphic on the category B if and only if K1 is a

smooth homotopy functor on B,
(2) the functors KV1 and K sm

1 are isomorphic on the category B if and only if KV1
is a smooth homotopy functor on B.

Proof (1) Let K1 and K sm
1 be isomorphic functors on B. Consider for any topological

algebra A the following commutative diagram

K1(A) K1(A∞(I ))

K sm
1 (A) K sm

1 (A∞(I ))

where the vertical homomorphisms and the bottom homomorphism are isomorphisms.
Hence so is the top homomorphism. Now Proposition 2.6 shows the smooth homotopy
property of K1.

Let K1 be a smooth homotopy functor on B. The surjection I(A) → A induces the
following commutative diagram with exact rows and columns
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K-regularity of locally convex algebras 875

0 0

E(I(A)) E(A) 0

GL(I(A)) GL(A) K sm
1 (A) 0

K1(I(A))
K1(τ )

K1(A) Coker K1(τ ) 0

0 0

which implies the isomorphism Ksm
1 (A) ∼= Coker K1(τ ).

Now we will use the notion of smooth homotopization hsmT of any functor T :
A → Gr defined by

hsmT (A) = Coker(T (A∞(I )) ⇒ T (A))

where Coker denotes the coequaliser of these two homomorphisms induced by eval-
uation maps. By using the exactness property of the functor K1, it is easily shown
that

(h
sm
K1)(A) ≈ Coker(τ ).

Thus one gets the isomorphism K sm
1 (A) ≈ h

sm
K1(A). It follows that if K1(A) ≈

K1(A∞(I )) one obtains the required isomorphism.
(2) The first part of the proof is similar to the case 1. Let KV1 be a smooth homotopy
functor on B. Since K sm

1 is a smooth homotopy functor, the homomorphism δ1 :
KV1(A) → K sm

1 (A) just induces a homomorphism hsmδ1 : (hsm(KV1))(A) →
Ksm
1 (A).
The commutative diagram

0 0

GL(I(A)) GL(A) Ksm
1 (A) 0

hsm(KV1)(I(A)) hsm(KV1)(A) Ksm
1 (A) 0

0 0
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876 H. Inassaridze

with exact top row and vertical surjective homomorphisms implies the exactness of
the bottom row. The topological algebra I(A) is contractible because the trivial map
0I(A) and the identity map 1I(A) are smoothly homotopic with smooth homotopy
δA : I(A) → I2(A) between them. Since hsm(KV1) is a smooth homotopy functor,
one has hsm(KV1)(I(A)) = 0 implying the isomorphism hsm(KV1)(A) → K sm

1 (A).
Thus KV1(A) → K

sm

1 (A) is an isomorphism if KV1(A) → KV1(A∞(I )) is an
isomorphism. This completes the proof. �

Later this resultwill be applied just tomonoid algebras over quasi-stable locally convex
algebras.

Let M be a monoid and A[M] a monoid algebra over a locally convex algebra A.
Each determining seminormμ of A induces in a natural way a seminormμM on A[M]
as follows

μM

(
∑

a jm j

)

=
∑

μ(a j )

for any element
∑

a jm j of A[M]. Then A[M] becomes a topological algebra with
respect to these induced seminorms. Regarding the topology on the monoid algebra
A[M] over a locally convex algebra A, it can be considered as the union of the set S
of finite products of copies of A indexed by finite subsets of M and partially ordered
by inclusion. Then we take on A[M] the union topology induced by the topology of
these finite products.

To confirm Karoubi’s conjecture about the isomorphism of algebraic and topo-
logical K -functors we need the following important triple factorization property
introduced in [24]. We recall its definition.

Definition 3.5 It is said that a ring A possesses the property (T F)right if for any
finite collection of elements a1, a2, . . . , am of the ring A there exist elements
b1, b2, . . . , bm, c, d ∈ A such that ai = bi cd for 1 ≤ i ≤ m and the left annihi-
lators in A of c and cd are equal.

Proposition 3.6 If a ring A has the (T F)right property, then themonoid algebra A[M]
has the (T F)right property for any monoid M.

Proof Let

p1 = a11m01 + a12m11 + · · · + a1n1m1n1
p2 = a21m21 + a22m22 + · · · + a2n2m2n2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pk = ak1mk2 + ak2mk2 + · · · + aknkmknk

be elements of the monoid algebra A[M]. The (T F)right property of the ring A implies
that for the elements

a11, . . . , a1n1 , a21, . . . , a2n2 , . . . , ak1, . . . , aknk
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K-regularity of locally convex algebras 877

of the ring A there exist elements

b11, . . . , b1n1 , b22, . . . , b2n2 , . . . , bk1, . . . , bknk

and c, d of A such that

a1 j = b1 j cd, j = 1, . . . , n1
a2 j = b2 j cd, j = 1, . . . , n2
. . . . . . . . . . . . . . . . . . . . . . . .

akj = bkj cd, j = 1, . . . , nk

and if ycd = 0 then yc = 0 for y ∈ A.
Now consider the following elements of the monoid algebra A[M]:

q1 = b11m01 + b12m11 + · · · + b1n1m1n1
q2 = b21m21 + b22m22 + · · · + b2n2m2n2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

qk = bk1mk2 + bk2mk2 + · · · + bknkmknk

It is clear that one has pi = qi cd for 1 ≤ i ≤ k. If pcd = 0 for some monoid
algebra element p = a1m1 +a2m2 +· · ·+anmn , then a j cd = 0 for 0 ≤ j ≤ n. Thus
one gets a j c = 0, 0 ≤ j ≤ n, implying pc = 0. Therefore the monoid algebra A[M]
has the (T F)right property. �

This proposition generalizes Lemma 16 [10]. Therefore the polynomial algebra
A[x1, x2, . . . , xm], n ≥ 1, and the Laurent polynomial algebra A[t, t−1] over a Fréchet
algebra A with properly uniformly bounded approximate unit possess the excision
property in algebraic K -theory and the H -unitality property.

In what follows the following property of smooth maps will be used

(A[M])∞(I ) ≈ (A∞(I ))[M] (3.1)

for any locally convex algebra algebra A, which is in particular satisfied if the monoid
M is countable. It is clear that this condition implies the isomorphism I(A[M]) ≈
(I(A))[M] too.

Let M be a monoid and denote byALC[M] the category of monoid algebras A[M]
over locally convex algebras A and by C� the category of C�-algebras. Let T be an
arbitrary functor T from the category ALC[M] to the category Ab of abelian groups.

Definition 3.7 Alocally convex algebra B is called quasi-stable if it has the form Â⊗K
for some locally convex algebra A where K is the C�-algebra of compact operators
on the infinite dimensional Hilbert space H.

Theorem 3.8 If the functor

T ((Â⊗(− ⊗ K))[M]) : C� → Ab
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878 H. Inassaridze

is a stable and split exact functor for any fixed locally convex algebra A of a full
subcategory B of ALC , then the functor

T ((−̂⊗K)[M]) : B → Ab

is a smooth homotopy functor.

Proof The Higson homotopy invariance theorem [9], which is true for complex (or
real) C�-algebras, implies that the functor

T ((Â⊗(− ⊗ K))[M])) : C� → Ab

is homotopy invariant.
By using Lemma 3.2 one can create the following commutative diagram for any

C�-algebra D

T ((A∞(I )
̂⊗D)̂⊗K))[M])
≈

T ((Â⊗D)̂⊗K)[M])
≈

T ((Â⊗(D∞(I )
̂⊗K))[M]) T ((Â⊗(D̂⊗K))[M])

T ((Â⊗(DI ⊗ K))[M]) T ((Â⊗(D ⊗ K))[M])

where the horizontal maps are induced by evaluation maps. The homotopy invari-
ance of the functor T ((Â⊗(− ⊗ K))[M]) implies the equality of the bottom two
horizontal homomorphisms and therefore the equality of the top two horizontal
homomorphisms.Therefore, this equality holds for any locally convex algebra of the
subcategory B and we obtain the desired smooth homotopy invariance of the functor
T ((−̂⊗K)[M]). This completes the proof. �
Theorem 3.9 For any locally convex algebra A there is an isomorphism

KVn((Â⊗K)[M]) → K sm
n ((Â⊗K)[M])

for all n ≥ 1.

Proof First it will be shown that KVn((−̂⊗K)[M]), n ≥ 1, is a smooth homotopy
functor on the category of locally convex algebras.According toTheorem3.8 it suffices
to prove that the functor KVn(((Â⊗(− ⊗K))[M]), n ≥ 1, is stable and split exact on
the category of C*-algebras for any locally convex algebra A.

Let
0 → D1 → D → D2 → 0 (3.2)

be a split exact sequence of C*-algebras. Then the sequence

0 → (Â⊗(D1 ⊗ K))[M] → (Â⊗(D ⊗ K))[M] → (Â⊗(D2 ⊗ K))[M] → 0 (3.3)
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K-regularity of locally convex algebras 879

is also a split exact sequence for any locally convex algebra A. It is well known that
any short split exact sequence of rings is a GL-fibration with respect to polynomial
cotriple. ThereforeKaroubi–Villamayor algebraicK-functors preserve short split exact
exactness of rings and it follows that the sequence

0 → KVn((Â⊗(D1 ⊗ K))[M]) → KVn((Â⊗(D ⊗ K))[M])
→ KVn((Â⊗(D2 ⊗ K))[M]) → 0

is a short split exact sequence of abelian groups.
Let D be a C�-algebra. Then for any locally convex algebra A the canonical homo-

morphism D → D ⊗ K induces the homomorphism

KVn((Â⊗(D ⊗ K))[M]) → KVn((Â⊗((D ⊗ K) ⊗ K)[M]). (3.4)

On the other hand one has natural isomorphisms

KVn((Â⊗((D ⊗ K) ⊗ K)[M]) ∼= KVn((Â⊗(D ⊗ M2(K))[M])
∼= KVn((Â⊗M2(D ⊗ K))[M]) ∼= KVn((M2(Â⊗(D ⊗ K))[M])
∼= KVn((M2(Â⊗(D ⊗ K))[M]).

and the composite of the induced homomorphism (3.4) with theses isomorphisms
gives us the natural homomorphism

KVn((Â⊗(D ⊗ K))[M]) → KVn((M2(Â⊗(D ⊗ K))[M]).

It is well known [9] that for any ring B one has the isomorphism

KV1(B) → KV1(M2(B))

implying this isomorphism for all K-functors KVn , n ≥ 1. Therefore the homomor-
phism

KVn((Â⊗(D ⊗ K))[M]) → KVn(M2((Â⊗(D ⊗ K))[M])

is an isomorphism for all n ≥ 1 andwe conclude that the induced homomorphism (3.4)
is an isomorphism for all n ≥ 1. Thus by Theorem 3.8 the functor KVn((−̂⊗K)[M]),
for all n ≥ 1, is a smooth homotopy functor on the category of locally convex algebras.
Taking into account Lemma 3.2 we finally conclude that for any monoid M [satisfying
(3.1)] the functor KVn is a smooth homotopy functor on the category of monoid
algebras over quasi-stable locally convex algebras for all n ≥ 1.

The exact sequence

0 → �sm(A) → I(A) → A → 0
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880 H. Inassaridze

induces the exact sequence

0 → (�sm(A)̂⊗K)[M] → (I(A)̂⊗K)[M] → (Â⊗K)[M] → 0. (3.5)

Since I(A)̂⊗K)[M] is isomorphic to I(Â⊗K)[M]), this sequence is a GL-fibration
with respect to the smooth cotriple and therefore with respect to the polynomial
cotriple. Thus the sequence (3.4) induces the following long exact sequences

· · · → K sm
n+1((Â⊗K)[M]) → K sm

n ((�sm(A)̂⊗K)[M]) → K sm
n ((I(A)̂⊗K)[M])

→ K sm
n ((Â⊗K)[M]) → K sm

n−1((�sm(A)̂⊗K)[M]) → · · · ,

· · · → KVn+1((Â⊗K)[M]) → KVn((�sm (A)̂⊗K)[M]) → KVn((I(A)̂⊗K)[M])
→ KVn((Â⊗K)[M]) → KVn−1((�sm(A)̂⊗K)[M]) → · · · .

As we have seen the locally convex algebra I(A) is smoothly contractible. This imply
the contractibility of (I(A)̂⊗K)[M]. Since K sm

n and KVn are smooth homotopy func-
tors on the category of monoid algebras over quasi-stable locally convex algebras,
one gets the equalities K sm

n (I(A)̂⊗K)[M]) = 0 and KVn(I(A)̂⊗K)[M]) = 0 for all
n ≥ 1.

Therefore the above long exact sequences yield the following isomorphisms

K sm
n ((Â⊗K)[M]) ∼= K

sm

1 ((�n−1
sm (A)̂⊗K)[M]),

KVn((Â⊗K)[M]) ∼= KV1((�
n−1
sm (A)̂⊗K)[M])

for all n > 1, where �n
sm(A) = �1

sm(�n−1
sm (A)).

By Theorem 3.4 the abelian groups K sm
1 ((�n−1

sm (A)̂⊗K)[M]) and
KV1((�n−1

sm (A)̂⊗K)[M]) are isomorphic and finally we obtain the required isomor-
phism:

K smn((Â⊗K)[M]) ∼= KVn((Â⊗K)[M])

for all n ≥ 1. This completes the proof. �
Theorem 3.9 generalizes Higson’s result [9] on the isomorphism of Karoubi–

Villamayor algebraic K-functors and topological K-functors for stable C�-algebras,
since in this case the smooth K-functors are isomorphic to topological K-functors (see
Theorem 1.10, [14]).

Theorem 3.10 For any Fréchet algebra A with properly uniformly bounded approx-
imate unit and not necessarily m-convex there is an isomorphism

Kn((Â⊗K)[M]) → K sm
n ((Â⊗K)[M])

for all n ≥ 1.
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Proof To prove that Kn((Â⊗(− ⊗ K))[M]), n ≥ 1, is a smooth homotopy functor
on the category of Fréchet algebras with properly uniformly bounded approximate
unit we will again use Theorem 3.8 by taking for the functor T the Quillen algebraic
K-functor Kn . Consider the short exact sequences (3.2) and (3.3). The Fréchet algebra
Â⊗(C1 ⊗ K) has a properly uniformly bounded approximate unit and consequently
by Propostion 3.6 and Theorem 2.9 the monoid algebra (Â⊗(C1 ⊗ K))[M] has the
excision property in algebraic K-theory and is H-unital. Thus the split exact sequence
(3.2) induces the split exact sequence

0 → Kn((Â⊗(C1 ⊗ K))[M]) → Kn((Â⊗(C ⊗ K))[M])
→ Kn((Â⊗(C2 ⊗ K))[M]) → 0.

Since (Â⊗(D⊗K))[M] is H-unital for any Fréchet algebra Awith properly uniformly
bounded approximate unit and any C*-algebra D, it has the Morita equivalence prop-
erty implying the isomorphism

Kn((Â⊗(D ⊗ K))[M]) → Kn(M2((Â⊗(D ⊗ K))[M])

induced by the canonical homomorphism D → D ⊗ K.Therefore, by Theorem 3.8
the functor Kn((−̂⊗K)[M]), n ≥ 1, is a smooth homotopy functor on the category of
Fréchet algebras with properly uniformly bounded approximate unit. Applying now
Lemma 3.2 we show that the Quillen algebraic K-functor Kn is a smooth homotopy
functor on the category of monoid algebras over quasi-stable Fréchet algebras with
properly uniformly bounded approximate unit for all n ≥ 1.

If A is a Fréchet algebra with properly uniformly bounded approximate unit, then
�sm(A)̂⊗K is also a Fréchet algebra with properly uniformly bounded approximate
unit. Thus the algebra (�sm(A)̂⊗K)[M] has the excision property in algebraic K-
theory. It follows that the short exact sequence (3.5) induces the following long exact
sequence

· · · → Kn+1((Â⊗K)[M]) → Kn((�sm (A)̂⊗K)[M]) → Kn((I(A)̂⊗K)[M])
→ Kn((Â⊗K)[M]) → Kn−1((�sm((Â⊗K)[M]) → · · · .

Since Kn is a smooth homotopy functor, one has the equality
Kn((I(A)̂⊗K)[M]) = 0 for n ≥ 1 which implies the isomorphism

Kn((Â⊗K)[M]) ∼= K1((�
n−1
sm (Â⊗K)[M]), n > 1.

The group K1((�
n−1
sm (A)̂⊗K)[M]) is isomorphic to the group

K sm
1 ((�n−1

sm (A)̂⊗K)[M]) by Theorem 3.4 and the composition of these two isomor-
phisms with the isomorphism

K sm
1 ((�n−1

sm (A)̂⊗K)[M]) ∼= K sm
n ((Â⊗K)[M])
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gives us the required isomorphism

K sm
n ((Â⊗K)[M]) ∼= Kn((Â⊗K)[M])

for all n ≥ 1. This completes the proof. �
Theorem 3.11 For any Fréchet algebra A with properly uniformly bounded approx-
imate unit and not necessarily m-convex one has isomorphisms

Kn(Â⊗K) ∼= Kn((Â⊗K)[x1, x2, . . . , xm])

for n,m ≥ 1.

Proof Consider the following commutative diagram

Kn(Â⊗K) Kn((Â⊗K)[x1, . . . , xm])

KVn(Â⊗K) KVn((Â⊗K)[x1, . . . , xm])

with natural homomorphisms. According to Theorems 3.9 and 3.10 the Quillen alge-
braic K-groups Kn((Â⊗K)[M]) are isomorphic to Karoubi–Villamayor algebraic
K-groups KVn((Â⊗K)[M]) for monoid algebras over quasi-stable Fréchet algebras
with properly uniformly bounded approximate unit for n ≥ 1. Therefore, the vertical
homomorphisms are isomorphisms. Since the bottom homomorphism is an isomor-
phism for any ring, we conclude that the top homomorphism is an isomorphism too.
This completes the proof. �
Corollary 3.12 Let A be a Fréchet algebra with properly uniformly bounded approx-
imate unit. Then one has isomorphisms

Kn((Â⊗K)[t, t−1]) ∼= Kn(Â⊗K) ⊕ Kn−1(Â⊗K)

and

K sm
n ((Â⊗K)[t, t−1]) ∼= K sm

n (Â⊗K) ⊕ K sm
n−1(Â⊗K)

for all n ≥ 1.

Proof Denote B = Â⊗K and let B+ be the unital Fréchet algebra obtained by adding
the unit to B. The following split exact sequences

0 → B → B+ → C → 0,

0 → B[t] → B+[t] → C[t] → 0
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and

0 → B[t, t−1] → B+[t, t−1] → C[t, t−1] → 0

induce the split exact sequences of K-groups

0 → Kn(B) → Kn(B
+) → Kn(C) → 0,

0 → Kn(B[t]) → Kn(B
+[t]) → Kn(C[t]) → 0,

0 → Kn(B[t, t−1]) → Kn(B
+[t, t−1]) → Kn(C[t, t−1]) → 0

for n ≥ 0, since the algebras B, B[t] and B[t, t−1] have the excision property in
algebraic K-theory.

If we consider the commutative diagram

0 Kn(B) Kn(B+) Kn(C) 0

0 Kn(B[t]) Kn(B+[t]) Kn(C[t]) 0

with vertical homomorphisms of K-groups induced by natural injections, we conclude
that the middle vertical homomorphism is an isomorphism, since the right vertical
one is a well known isomorphism and the other left vertical homomorphism is an
isomorphism too by Theorem 3.11

Thus the fundamental theorem of algebraic K-theory gives us the following iso-
morphisms

Kn(B
+[t, t−1]) ∼= Kn(B

+) ⊕ Kn−1(B
+),

Kn(C[t, t−1]) ∼= Kn(C) ⊕ Kn−1(C)

for n ≥ 1. From these isomorphisms and the above obtained short split exact sequences
of K -groups immediately follows the required first isomorphism of the corollary. The
second isomorphism is a consequence of the first isomorphism and Theorem 3.10.
This completes the proof. �
Remark 3.13 G. Cortiñas let me know that in particular cases, namely for locally
multiplicatively convex algebras and countable monoid M , Theorems 3.8 and 3.9 can
be obtained respectively by Theorem 6.2.1 in [4] and for m-convex Fréchet algebra
with uniformly bounded approximate unit by applying argument of Theorem 12.1.1
and Remark 12.1.4 in [3].

When the locally convex algebras are not multiplicatively convex you have to use
the properly uniformly bounded approximate unit property we have introduced gen-
eralizing the well known uniformly bounded approximate unit property of locally
multiplicatively convex algebras. This property is crucial to prove the Karoubi con-
jecture for arbitrary (not necessarily m-convex) Fréchet algebras.
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