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ON ONE NONLINEAR VERSION OF CHARACTERISTIC

PROBLEM WITH A FREE SUPPORT OF DATA

J. GVAZAVA

Abstract. For quasi-linear, second-order, non-strictly hyperbolic
equations, the problem with an oblique derivative prescribed on un-
known characteristics is considered. Using complete systems of char-
acteristic invariants, the integral of the problem and its domain of
definition are constructed explicitly.

îâäæñéâ. éâëîâ îæàæï �î�éç�ùî�á ÿæìâî�ëèñîæ çã�äæûîòæ-

ãæ à�êðëèâ�â�æï�åãæï à�êýæèñèæ� á�ýîæèû�îéëâ�ñèâ�æ�êæ �éë-

ù�ê� ñùêë� é�ý�ïæ�åâ�èâ�äâ éëùâéñèæ ìæîë�â�æå. é�ý�ïæ�åâ�âèæ

æêã�îæ�êðâ�æï ïîñèæ ïæïðâéâ�æï ï�òñúãâèäâ ùý�áæ ï�ýæå �îæï

û�îéëáàâêæèæ �éëù�êæï æêðâàî�èæ á� éæïæ à�êï�ä�ãîæï �îâ.

Statement of the Problem

On a plane of variables x, t we consider second order the equation of with
real characteristics

L(u) = Auxx +Buxt + Cutt = F, (0.1)

where the coefficients and the right-hand side are the given, sufficiently
smooth functions which may depend on the arguments x, t, on a solution
u(x, t) and its first order derivatives ux(x, t) and ut(x, t). According to
our assumption, through every point of the domain of representation of the
equation passes only by one characteristic from two different families. In
one case, these characteristics can be defined completely, for example, if
the principal part of the given equation is linear. In the other case, these
curves may depend on the values of an unknown solution u, and hence be
undefined.

Let (x0, t0) be an arbitrary point of the domain of representation of the
equation. Characteristics of different families passing through this point we
denote by Γ and ∆. Note that the directions of the curves at the point
(x0, t0) may coincide.
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Consider the following problem: simultaneously with the domain of its
definition, find a regular solution of equation (0.1) which satisfies the con-
ditions:

u(x0, t0) = u0 (0.2)

(α1ux + β1ut)|Γ = γ, (0.3)

(α2ux + β2ut)|∆ = δ, (0.4)

where u0 is the given number. Coefficients and the right-hand sides in the
conditions (0.3), (0.4) depend on the argument in which terms it is more
convenient to represent characteristic curves Γ and ∆. Below, this aspect
will be considered in detail.

Consider the problem (0.1)-(0.4) for three different cases, when:
a) both characteristics Γ and ∆ are defined;
b) one of the characteristics is defined and the other depends on the

values of an unknown solution;
c) both characteristics are unknown.
Thus step by step we will try, at least partially, to clear up to what

extent and how the nonlinearity of equation (0.1) affects the statement and
solvability of the problem under consideration.

1. The Linear Case

For the time being, we will restrict ourselves to the consideration of the
simplest linear equation

� u ≡ uxx − utt = 0, (1.1)

for which the characteristics Γ = {(x, t) : t = x − x0 + t0, x ∈ [x0, x1]} and
∆ = {(x, t) : t = −x+x0+t0, x ∈ [x0, x2]} are completely defined. Therefore
we have no undefined components in the statement of the problem. Thus
using three particular conditions

u(x0, t0) = u0 (1.2)

(α1(x)ux + β1(x)ut)|Γ = γ(x), x ∈ [x0, x1] (1.3)

(α2(x)ux + β2(x)ut)|∆ = δ(x), x ∈ [x0, x1] (1.4)

we have to construct a solution of equation (1.1) and find a domain of
its definition. Parameters of the conditions (1.3), (1.4) are required to be
continuously differentiable.

It is not difficult to see that the problem (1.1)-(1.4) is well-posed. With-
out restriction of generality, we assume that x0 = t0 = u0 = 0. As it
becomes clear, the conditions (1.2), (1.3), (1.4) specify the values u(x, t),
ux(x, t) and ut(x, t) first at the point (x0, t0) and then on the characteristics
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Γ and ∆. Towards this end, the functions αi(x) and βi(x) are required to
have supplementary conditions. For example, the condition

α1(0)β2(0) 66= α2(0)β1(0) (1.5)

allows us to obtain values of the first order derivatives ux and ut at the
point (x0 = 0, t0 = 0):

ux(0, 0) =
γβ2 − δβ1

α1β2 − α2β1

∣

∣

x=0
≡ p0, ut(0, 0) =

δα1 − γα2

α1β2 − α2β1

∣

∣

x=0
≡ q0.

To determine values of these derivatives along the characteristics Γ and ∆,
we will, naturally, need the conditions (1.3), (1.4). But these conditions
are not sufficient, hence they should be supplemented with relations and
conditions inherent in all solutions of equation (1.1).

In particular, along every characteristic of the family t = x + const to
which the curve Γ belongs, the difference ux−ut of the the first order deriva-
tives for any solution is constant. This difference is one of the characteristic
invariants on the basis of which we construct a general solution of equation
(1.1). Thus we find that along the curve Γ, the difference ux − ut of the
derivatives retains the same value as it has at the point (0, 0).

Consequently, we have

ux(x, x) − ut(x, x) = θ1,

where the constant

θ1 = p0 − q0 =
γ(β2 + α2) − δ(β1 − α1)

α1β2 − α2β1

∣

∣

∣

x=0
.

If we assume that

α1(x) + β1(x) 6= 0, x ∈ [x0, x1], (1.6)

then on the characteristic Γ the condition (1.3) and the above-obtained
equality guarantee values of the derivatives

ux(x, x) =
γ(x) + θ1β1(x)

α1(x) + β1(x)
, ut(x, x) =

γ(x) − θ1α1(x)

α1(x) + β1(x)
.

The inequality

α2(x) − β2(x) 66= 0, x ∈ [x0, x2] (1.7)

similar to the condition (1.6), guarantee values of the derivatives ux, ut on
the characteristic ∆:

ux(x,−x) =
δ(x) − θ2β2(x)

α2(x) − β2(x)
, ut(x,−x) =

θ2α2(x) − δ(x)

α2(x) − β2(x)
,

where

θ2 =
γ(β2 − α2) − δ(β1 − α1)

α1β2 − α2β1

∣

∣

∣

x=0
= p0 + q0.



94 J. GVAZAVA

This follows from the characteristic invariant ux + ut. Using the values of
the derivatives ux, ut and the condition (1.2), we can define uniquely the
values of the unknown solution on the characteristics Γ and ∆:

u|
Γ

= u(x, x) =

x
∫

0

2γ(z) + θ1[β1(z) − α1(z)]

α1(z) + β1(z)
dz ≡ ϕ(x), (1.8)

for x ∈ [x0, x1], and

u|
∆

= u(x,−x) =

x
∫

0

2δ(z) − θ2[β2(z) + α2(z)]

α2(z) − β2(z)
dz ≡ ψ(x), (1.9)

for x ∈ [x0, x2].
Relations (1.8) and (1.9) allow one to determine uniquely the solution of

the Goursat problem in the rectangle

R =
{

(x, t) : x+ t ∈ [0, 2x1], x− t ∈ [0, 2x2

}

.

The solution itself has the form

u(x, t) =

x+t

2
∫

0

2γ(z) + θ1[β1(z) − α1(z)]

α1(z) + β1(z)
dz+

+

x−t

2
∫

0

2δ(z) − θ2[β2(z) + α2(z)]

α2(z) − β2(z)
dz. (1.10)

As is seen, (1.5), (1.6) and (1.7) are the conditions for the unique solvability
of the above-formulated problem.

We will follow this scheme in considering the problem (0.2), (0.3), (0.4)
for the equation whose one family is given just as in the case of equation
(1.1). Another family of characteristics is unknown.

2. The Case of Equation with One Unknown Characteristic

Such kind of equations exceeds, naturally, the limits of linear equations.
One of the simplest equations of that class has the form

(1 + ut)uxx + (1 + ut − ux)uxt − uxutt = 0. (2.1)

The roots
λ = 1, µ = −ux(1 + ut)

−1

of the characteristic equation corresponding to (2.1) specify two families
of characteristics. The family, corresponding to the characteristic root λ
is defined by two combinations of independent variables and first order
derivatives of an unknown solution

ξ = t− x, ξ1 =
ux

1 + ut
. (2.2)
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Combinations ξ, ξ1 called as characteristic invariants, are constant along
every curve of characteristic family under consideration. As is seen from
the structure of the invariant ξ, this family of characteristics is represented
by the straight lines t− x = const.

In this respect, equations (2.1) and (1.1) are characterized equally. The
only difference is that equation (2.1) has instead of ut−ux the invariant ξ1.

An essential difference between equations (2.1) and (1.1) becomes ap-
parent from the invariants of the characteristic family defined by the root
µ:

η = u+ t, η1 = ux + ut. (2.3)

As is seen, both invariants η, η1 depend either on the values of an unknown
solution, or on its first order derivatives. Consequently, in this case, direct
interconnection between independent variables x, t which define the given
characteristic family does not take place. Therefore the characteristic family
of the root µ is not defined yet. This is one of the nonlinear effects of
equation (2.1) which in fact determines a general solution of the equation

u(x, t) = −t+ f [x+ g(x− t)], (2.4)

where f and g are arbitrary, twice continuously differentiable functions ([1]).
Moreover, it should be noted that the type of equation (2.1) depends also

on the solution. The coincidence of the values of characteristic roots λ, µ
expressed by the relation ut + 1 = ux determines parabolic degeneration of
equation (2.1). Consequently, the class of hyperbolic solutions is defined by
the inequality

ux + ut + 1 66= 0. (2.5)

Thus equation (2.1), unlike equation (1.1), is not strictly hyperbolic and
it can be attributed to the class of parabolically degenerating hyperbolic
equations (see [2], [3], [4]).

Information we have presented here is sufficient enough to proceed to
considering the problem (0.2-4) for equation (2.1).

First of all, it should be noted that equation (2.1) is invariant with respect
to the parallel displacement and does not explicitly contain a solution u(x, t).
Therefore again, without restriction of generality, we assume that x0 = t0 =
u0 = 0.

The support Γ of the condition (0.3) will be assumed to be the segment
of the characteristic family, corresponding to the root λ = 1:

Γ = {(x, t) : t = x, x ∈ [0, x1]},

where x1 is an arbitrarily given number. Since the segment Γ is defined
by the relation in which the value t is written in terms of the argument x,
the coefficients and the right-hand sides of the conditions (0.3), (0.4) are
assumed to be the functions of the same argument. If the condition (1.5) is
fulfilled at the origin of coordinates, which at the same time is the common
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point of characteristic support of data, then we will have at hand the values
p0 = ux(0, 0), q0 = ut(0, 0). This can be realized in a complete analogy with
the previous case.

When determining the derivatives ux and ut along Γ there may take
place insignificant discrepancy. The values of the invariant ξ1 on Γ and at
the point (0, 0) are the same. Therefore

[ux(1 + ut)
−1]

∣

∣

Γ
= ξ0,

where the constant ξ0 = p0(1 + q0)
−1. Thus we have the relation

ux(x, x) − ξ0ut(x, x) = ξ0, x ∈ [0, x1],

which we consider together with the condition (0.3) in the capacity of a
system for finding derivatives ux and ut on the segment Γ. The condition

β1(x) + ξ0α1(x) 6= 0, x ∈ [0, x1] (2.6)

ensures the solvability of that system, and we calculate the values ux and
ut:

ux(x, x) = ξ0
β1(x) + γ(x)

β1(x) + ξ0α1(x)
,

ut(x, x) =
γ(x) − ξ0α1(x)

β1(x) + ξ0α1(x)
.

By virtue of the values obtained above, we find that

u(x, x) =

x
∫

0

(1 + ξ0)γ(z) + ξ0(β1(z) − α1(z))

β1(z) + ξ0α1(z)
dz ≡

≡ ϕ(x), x ∈ [0, x1] (2.7)

Thus we have found all possible values connected with the characteristic
segment Γ, and we achieved this by two simple conditions, one of which
(1.5) is point wise, and the other one (2.6) is given on the segment [0, x1].

Let us now find out whether it is possible to calculate all these values on
another characteristic, when the domain of representation of the condition
(0.4) is unknown. Here we deal with the version of the problem with a free
boundary. Such kind of problems take place in the theory of transonic flows
in aerohydrodynamics (see [5], [6], [7]). In these problems, a free portion of
the boundary should be defined simultaneously with a solution. Instead of
a missing portion of the boundary it is necessary to assign supplementary
boundary conditions. However, our case does not involve such conditions.
Thus we have to find out whether the condition (0.4) and invariants (2.3)
are sufficient for determination of an exact form of the characteristic arc ∆.

Although the arc ∆ is unknown, the invariant ξ = u + t is constant
along the whole characteristic. The origin of the coordinates lies on ∆, and
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therefore (u + t)|
∆

= 0. This fact allows us to conclude that

u|
∆

= −t|
∆
, x ∈ [0, x2]. (2.8)

Thus it is obvious that if we find an explicit representation of the curve
∆, then we will be able to find all values of the unknown solution, and
vice versa. But neither the first, nor the second is known yet. As for the
first order derivatives ux and ut on that arc, from the representation of the
invariant η1 we can conclude that

(ux + ut)|∆ = p0 + q0 ≡ η0.

It is this relation that should be considered together with the condition
(0.4).

Assuming that for the above system the condition

α2(x) 6= β2(x), x ∈ [0, x2], (2.9)

is fulfilled, we define uniquely

ux|∆ =
η0β0(x) − δ(x)

β2(x) − α2(x)
, ut|∆ =

δ(x) − η0α2(x)

β2(x) − α2(x)
.

Substituting the obtained on the arc ∆ values of derivatives into the
expression of characteristic root µ, we can find direction of that arc at
every point. Hence for the function representing explicitly the arc ∆, we
have the first order ordinary differential equation

dt

dx
=

η0β0(x) − δ(x)

(η0 + 1)α2(x) − δ(x) − β2(x)
, x ∈ [0, x2]. (2.10)

which should be supplemented with the initial condition t|x=0 = 0. The
solution of the Cauchy problem

t =

x
∫

0

η0β2(z) − δ(z)

(η0 + 1)α2(z) − δ(z) − β2(z)
dz = ψ(x), x ∈ [0, x2] (2.11)

provides us with the explicit representation of the characteristic arc ∆. It is
clear that for the solution to be regular and to exist, it is necessary to have
some conditions with respect to the right-hand side of the relation (2.10).
Towards this end, we will require a sufficiently strict condition

δ(x) + β2(x) 66= (η0 + 1)α2(x) (2.12)

with respect to the parameters of the condition (0.4). Thus the validity of
the following proposition is stated.

If the conditions (1.5), (2.9) and (2.12) are fulfilled, then there exists
the characteristic arc ∆ of regular curvature representable explicitly by the
formula (2.11).

As it can be seen from the above reasoning that the above-mentioned
conditions are not only enough for determining the characteristic arc ∆,
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but also for finding derivatives ux and ut of the unknown solution and
hence the values of the solution itself along ∆ according to formula (2.8).

Theorem. If the conditions (1.5), (2.6), (2.9) and (2.12) are satisfied,

the problem (2.1), (0.2), (0.3), (0.4) is equivalent to the following Gour-

sat problem: Simultaneously with its domain of definition, find a regular

solution u(x, t) of equation (2.1) satisfying the characteristic conditions

u|t=x = ϕ(x), x ∈ [0, x1] (2.13)

u|t=ψ(x) = −ψ(x), x ∈ [0, x2] (2.14)

where the functions ϕ and ψ are defined by formulas (2.7) and (2.11), re-

spectively.

Let us now proceed to constructing a solution of the problem (2.1), (2.13),
(2.14). To this end, we use the representation (2.4) of the general solution
of equation (2.1) and subject it first to the condition (2.13),

u|t=x = −x+ f [x+ g(0)] = ϕ(x),

whence
f(ζ) = ϕ(ζ − g(0)) + ζ − g(0).

Taking into account the type of the function ϕ defined by formula (2.7), the
last relation can be rewritten as follows:

f(ζ) = (1 + ξ0)

ζ−g(0)
∫

0

β1(z) + γ(z)

β1(z) + ξ0α1(z)
dz.

As is seen from the above formula, the function f can be defined for ξ0 6= −1.
In the opposite case this means that the value of the characteristic root µ
at the origin of the coordinates is equal to unity and coincides with that of
the root λ. Thus for ξ0 = −1, equation (2.1) parabolically degenerates at
the common point of characteristic arcs Γ and ∆, but for the present such
a degeneration of equation (2.1) will be excluded.

Substituting the function f in the general solution (2.4),

u(x, t) = −t+

x+g(x−t)−g(0)
∫

0

(1 + ξ0)
β1(z) + γ(z)

β1(z) + ξ0α1(z)
dz,

the condition (2.14) is satisfied. Since (2.8) holds on the characteristic arc
∆, we have

x+g[x−ψ(x)]−g(0)
∫

0

(1 + ξ0)
β1(z) + γ(z)

β1(z) + ξ0α1(z)
dz = 0,

for all x ∈ [0, x2]. But this is possible in two cases: either the integrand
or the upper limit of integration are identically equal to zero. The first
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assumption transforms the condition (0.3) into the relation ξ1|Γ = ξ0, and
hence it can be neglected. The second assumption

x+ g[x− ψ(x)] − g(0) ≡ 0,

should be identically fulfilled on the whole segment [0, x2]. With regard for
the formula (2.11), we rewrite it in the form

g

{

(1 + η0)

x
∫

0

α2(z) − β2(z)

(1 + η0)α2(z) − δ(z) − β2(z)

}

= g(0) − x.

The problem of finding an arbitrary function g is closely connected with the
solvability of the functional equation

x
∫

0

α2(z) − β2(z)

(1 + η0)α2(z) − δ(z) − β2(z)
dz = ζ (2.15)

with respect to the value x as the function of the argument ζ. The deriva-
tive of that function with respect to x is bounded and different from zero,
according to the conditions (2.12) and (2.9). Consequently, the integrand
function does not change its sign everywhere on [0, x2]. Therefore from
ζ = 0 it immediately follows that x = 0. Formally, all the conditions of
the theorem on the implicit function are satisfied. But in such a way we
will arrive only at a local result. To achieve the result in the whole, we
assume that there exists the unique branch, inverse to the left-hand side of
the relation (2.15),

x = G(ζ), G(0) = 0.

Then the function g will be defined,

g(ζ) = g(0) −G
( ζ

1 + η0

)

, ζ ∈ [0, ζ1],

where the number

ζ1 =

x2
∫

0

α2(z) − β2(z)

(1 + η0)α2(z) − δ(z) − β2(z)
dz.

Substituting the above obtained values of the function g(ζ) into the general
solution, we get

u(x, t) = −t+

x−G( x−t

1+η0
)

∫

0

(1 + ξ0)
β1(z) + γ(z)

β1(z)
dz + ξ0α1(z). (2.16)

which in fact determines the solution of the problem (2.1), (2.13), (2.14)
and hence of the initial problem with a free support of data ∆.

In the statement of the problem it is required to find the domain of
definition of its solution. As is known ([8]), such a domain is bounded by
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characteristics, i.e. by data supports and by the characteristics coming out
of finite points of the support. This implies that the arcs Γ and ∆ represent
a part of the boundary of the unknown domain. But they are known. It
is required to find an exact form of characteristics coming out of the end
points of the support (x1, x1) and (x2, ψ(x2)). Equation for one of the
characteristics has a simple form,

t = x+ ψ(x2) − x2. (2.17)

Equation for the other characteristic can be obtained from the solution of
the problem (2.16). Note that along the unknown characteristic the value
u + t = η must be constant and is defined by the value u(x1, x1) + x1.
Consequently,

x−G( x−t

1+η0
)

∫

0

β1(z) + γ(z)

β1(z) + ξ0α1(z)
dz =

x1
∫

0

β1(z) + γ(z)

β1(z) + ξ0α1(z)
dz.

This relation is, in fact, the equation of the unknown characteristic, and we
rewrite it as follows:

x−G( x−t

1+η0
)

∫

x1

β1(z) + γ(z)

β1(z) + ξ0α1(z)
dz = 0. (2.18)

Thus we have proved that the following theorem is valid.

Theorem. If the conditions (1.5), (2.6), (2.9) and (2.12) are fulfilled,

and the functional equation (2.15) is uniquely solvable, then the problem

(2.1), (0.2), (0.3), (0.4) has the unique solution which is defined in the

domain bounded by the curves Γ, (2.14), (2.17) and (2.18).

It should be noted that when the conditions (2.9) and (2.12) violate si-
multaneously at some point (a, ψ(a) of the characteristic ∆, equation (2.1)
degenerates parabolically. The point itself is singular for the family of char-
acteristics of the root µ. We put these questions aside and proceed to con-
sidering the case when both families of characteristics of the given equation
depend the values of an unknown solution.

3. The Problem with Two Free Characteristics

In this section we also consider the simplest equation

(u2
t − 1)uxx − 2uxutuxt + u2

xutt = 0 (3.1)

with roots of the characteristic equation

λ = −
ux

ut + 1
, µ = −

ux

ut − 1
.
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Characteristic invariants of the family, corresponding to the root λ, have
the form

ξ = u(x, t) + t, ξ1 =
ux

ut − 1
. (3.2)

The family of characteristic curves defined by the root µ has the following
invariants:

η = u(x, t) − t, η1 =
ux

ut + 1
. (3.3)

As is seen, unlike equation (2.1), none of the characteristic invariants pro-
vides us with the definition of characteristic curves. Therefore the curves Γ
and ∆ depend on the values of an unknown solution and should be defined
together.

The general integral of equation (3.1) can be represented by two arbitrary
functions f , g ∈ C2(R1) as follows ([9]):

f(u, t) + g(u− t) = x. (3.4)

A class of hyperbolic solutions is defined by a simple condition

ux 6= 0, (3.5)

and equation (3.1), just as (2.1), belongs to the class of parabolically de-
generating hyperbolic equations.

Reasoning analogously as in the previous cases, without loss of generality,
we assume that x0 = t0 = u0 = 0 and proceed to investigating the problem
(0.2-4) for equation (3.1).

In this case, the whole data support is unknown with the exclusion at the
origin from which the characteristics Γ and ∆ come out. Unlike the foregoing
cases, none of the characteristic invariants depends on the argument x.
Therefore it is more convenient to assume that the coefficients and the
right-hand sides in the conditions (0.3), (0.4) are the given functions of the
argument t. Let α1, β1, γ ∈ C2[0, t1] and α2, β, γ ∈ C2[0, t2] where t1 and
t2 are the given numbers.

To study the problem, we will again take advantage of the method sug-
gested above. First of all, let the first order derivatives ux(0, 0) ≡ p0 and
ut(0, 0) ≡ q0 of the unknown solution be endowed at the origin with the
assumption (1.5). Using the already known values p0, q0 and u0 = u(0, 0),
we can find constant values of the invariants ξ, ξ1 and η, η1 along Γ and ∆,
respectively:

ξ|
Γ

= (u+ t)|
Γ

= u0 + t0 = 0, ξ1|Γ =
ux

ut − 1

∣

∣

Γ
=

p0

q0 − 1
= ξ0,

η|
∆

= (u− t)|
∆

= u0 − t0 = 0, η1|∆ =
ux

ut + 1

∣

∣

∆
=

p0

q0 + 1
= η0.
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From the above invariants it follows that along Γ

u|
Γ

= −t

(ux − ξ0ut)|Γ = −ξ0,
(3.6)

and along ∆ we have
u|

∆
= t

(ux − η0ut)|∆ = −η0.
(3.7)

This does not, surely, imply that the values of the solution u(x, t) are
defined on the arcs of characteristics Γ and ∆. Such a conclusion can be
made only after the functions representing these curves are found explicitly.

To determine these functions, it is necessary to consider pairs of relations
(0.3), (3.6) and (0.4), (3.7) along the curves Γ and ∆, respectively.

The first pair, as a system of two linear algebraic equations with respect
to the derivatives ux and ut along Γ, is solvable under the condition

β1(t) + ξ0α1(t) 6= 0, t ∈ [0, t1]. (3.8)

The values of these derivatives

ux|Γ = ξ0
γ(t) − β1(t)

β1(t) + ξ0α1(t)
, ut|Γ = ξ

γ(t) + ξ0α1(t)

β1(t) + ξ0α1(t)

are defined everywhere in the interval [0, t1].
Reasoning analogously, we obtain the condition

β2(t) + η0α2(t) 6= 0. (3.9)

which provides us with the values of the above derivatives:

ux|∆ = η0
β2(t) + δ(t)

β2(t) + η0α2(t)
, ut|∆ =

δ(t) − η0α2(t)

β2(t) + η0α2(t)
, t ∈ [0, t2]

along the curve ∆.
Having obtained the values of the derivatives ux, ut at all points of the

curve Γ, we can define inclination of its tangents everywhere. This can
be achieved by substituting the values ux and ut in the expression of the
characteristic root λ. Thus we have

dt

dx
= ξ0

β1(t) − γ(t)

2ξ0α1(t) + β1(t) + γ(t)
, t ∈ [0, t1].

Taking into account the initial condition x(0) = 0, after integration the
obtained ordinary differential equation gives the explicit representation of
the characteristic arc Γ,

x =
1

ξ0

t
∫

0

2ξ0α1(z) + β1(z) + γ(z)

β1(z) − γ(z)
dz ≡ ϕ(t), t ∈ [0, t1]. (3.10)

Repeating the same operations and substituting the values of the derivatives
ux, ut on the arc ∆ into the characteristic root µ, we obtain the differential
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relation of the first order. The solution of the Cauchy problem with the
condition x(0) = 0 allows us to get an explicit representation of the curve
∆. It has the form

x =
1

η0

t
∫

0

δ(z) − β2(z) − 2η0α2(z)

β2(z) + δ(z)
dz ≡ ψ(t), t ∈ [0, t2]. (3.11)

It should be noted that the curves Γ and ∆ are defined by means of equations
(3.10) and (3.11) on the corresponding intervals.

As is seen, the characteristic conditions (0.4) and (0.4) together with the
condition (0.2) guite enough for determination of unknown data supports
Γ and ∆ explicitly and globally. For this we only need the conditions (1.5),
(3.8) and (3.9) under the assumption that the denominators of integrands
in (3.10) and (3.11) are different from zero.

Having constructed (3.10) and (3.11), we can proceed to the final step of
our investigating of the problem formulated above. This can be realized on
the basis of the general integral (3.4) of equation (3.1).

First, let us consider the relation which follows from the representation
of the general integral (3.4) taken on the arc Γ,

[f(u+ t) + g(u− t)]Γ = x|
Γ
. (3.12)

Along Γ, the sum u+ t is constant and equal to zero. The difference u− t =
u+ y − 2t = −2t. Therefore

f(0) + g(−2t) = ϕ(t), (3.13)

where the function ϕ(t) is defined by formula (3.10). This expression allows
one to determine an arbitrary function g to within the constant summand

g(ζ) = ϕ
(

−
ζ

2

)

− f(0), ζ ∈ [0,−2t1].

On the other characteristic arc ∆, reasoning analogously, we obtain the
equality f(2t)+g(0) = ψ(t) from which one can define an arbitrary function
f , appearing in the representation of the general integral

f(ζ) = ψ
(ζ

2

)

− g(0), ζ ∈ [0, 2t2]

also to within the constant summand.
Substituting the obtained in such a way functions f and g in (3.4), we

get the integral of the problem (3.1), (0.2), (0.3), (0.4). The integral has
the form

ψ
(u+ t

2

)

+ ϕ
( t− u

2

)

= x, (3.14)

since f(0)+g(0) = 0. As is seen from the representation (3.14), the integral
of the problem under consideration does not contain arbitrary parameters.
This integral is defined on the whole by means of the conditions (0.2-4). As
for the solvability on the whole, there may arise complications if the point is
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the construct not of an integral, but of a solution of the problem. In such a
case, the relation (3.14) is considered as a functional equation with respect
to the value u(x, t), and from all possible solutions we choose those which
satisfy the condition (0.2) for normalization.

Clear now up the structure of the domain in which we have defined the
integral (3.14). To this end, we will need all characteristics of both families,
coming out of the points of already known supports of the data Γ and ∆.

First, we consider characteristics of the µ-family which come out of the
points of the characteristic arc Γ. An arbitrarily taken value t = t0 from
the interval [0, t1] allows us to find the point of the arc Γ. (ϕ(t0), t0) are
the coordinates of the point at which the solution of the problem is known.
We define it by the first of formulas (3.6) and find that it is equal to (−t0).
Besides the arc Γ, through that point passes the characteristic of another
family which corresponds to the root µ. The invariants η, η1 along that
characteristic should be constant. The constant value of the invariant η on
the entire characteristic is the same as at the point (ϕ(t0), t0).

Thus along the characteristic we have η = u−t = −2t0. As for the values
of another invariant ξ, on the characteristic we have

ξ = 2(t− t0), t0 ∈ [0, t1]. (3.15)

If we substitute the values of the invariants η = −2t and (3.15) into the
representation of the integral (3.14), we will obtain the relation connecting
the values x and t along the whole characteristic. The form of the relation
looks as

x = ψ(t− t0) + ϕ(t0), t0 ∈ [0, t1], t ∈ [t0, t2 + t0]. (3.16)

It represents an explicit equation of arc of the characteristic curve of the
family of the root µ coming out of the point (ϕ(t0), t0). Taking into account
the fact that t0 ∈ [0, t1] is chosen arbitrarily, we can conclude: formula
(3.16) makes it possible to determine the family of all characteristics of the
root µ, coming out of all points of the arc Γ. This family is one-parametric,
and the value t0 of the ordinate of the point Γ plays the role of a parameter.
For the parameter t0 = 0, we have equation (3.11) of the arc ∆.

Omitting quite similar reasoning, we can write out the final form of the
family of characteristics of the root λ, coming out of the points (ψ(τ0), τ0)
of the arc ∆.

x = ϕ(t − τ0) + ψ(τ0), τ0 ∈ [0, t2], t ∈ [τ0, t1 + τ0]. (3.17)

This family is likewise one-parametric with the ordinate τ0 of an arbitrary
point of the arc ∆ taken as a parameter.

It should be noted that in all the above reasoning we did not restrict
ourselves to the class of hyperbolic solutions of equation (3.1). As it was
said, hyperbolicity of the solution of equation (3.1) is defined by a simple
condition ux(x, t) 6= 0. Therefore to avoid parabolic degeneration of the



ON ONE NONLINEAR VERSION 105

solution on the supports of data Γ and ∆, we should, according to our
calculations, require that

β1(t) 6= γ(t), β2(t) 6= −δ(t) (3.18)

respectively. Our reasoning admits violation of these requirements within
the limits of the conditions for the existence of integrals in formulas (3.10)
and (3.11). Consequently, at some isolated points of the arcs Γ and ∆ the
parabolic degeneration of equation (3.1) is admissible.

However, under the assumption of parabolic degeneration at isolated
points of supports of the data Γ and ∆, the numerators of integrands in
(3.10) and (3.11) will be different from zero, according to the conditions
(3.8) and (3.9). Therefore we should not expect the existence of any dis-
criminant points or singular curves in the families (3.16) and (3.17).

Thus the following theorem is valid.

Theorem. If the conditions (1.5), (3.8), (3.9) and (3.18) are fulfilled,

then there exists the integral of the problem (3.1), (0.2 − 4) which is repre-

sented by formula (3.14) and defined in the domain bounded by the charac-

teristics (3.10), (3.11), (3.16) for t0 = t1 and (3.17) for τ0 = t2.

In conclusion, it should be noted that the above-formulated problem with
the data (0.2-4) for equation (1.1) and, in general, for linear equations and
systems is, in fact, the ordinary characteristic problem which has been inves-
tigated by using various methods in various functional spaces (see, for e.g.,
[10-13]). Consequently, for equation (1.1) we have not present here any no-
val results of important scientific value, but simply push into the foreground
the details which subsequently were used in the case of nonlinear equations.
For nonlinear equations we suggested the variants of characteristic problems
with the given supports of data which allowed one to perceive a connection
with the linear theory and a degree of its generalization ([14-19]).

In the case of equation (2.1) we dealt with the characteristic problem
with partially unknown supports of data. This problem for equation (3.1)
is characteristic with an oblique derivative and entirely free support of data.

Noteworthy is the fact that the complete system of characteristic invari-
ants of equations (1.1), (2.1) and (3.1) made it possible to combine and put
to general frames the problems, remote from each other in a sense of their
statement as well as of their investigation.
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