UDC 539.1 СРАВНИТЕЛЬНЫЙ АНАЛИЗ СРЕДНЫХ КИНЕМАТИЧЕСКИХ ХАРАКТЕРИСТИК АДРОНОВ ИМЕЮЩИХ МАКСИМАЛЬНОЕ КУМУЛЯТИВНОЕ ЧИСЛО И СОПРОВОЖДАЮЩИХ ИХ ЧАСТИЦ, ОБРАЗОВАННЫХ В СТОЛКНОВЕНИЯХ РЕЛАТИВИСТСКИХ ЯДЕР

Л. Н. Абесалашвили, Л. Т. Ахобадзе, В. Р. Гарсеванишвили, Т. Р. Джалагания, Ю.В.Тевзадзе

Институт физики высоких энергий Тбилисского Государственного Университета им. И. Джавахишвили

Аннотация. В работе рассматриваются и анализируются средние кинематические характеристики (скх) адронов (образованных в столкновениях релятивистских ядер) имеющих n_k^{max}-максимальное кумулятивное число и они сравниваются скх сопровождающих адронов. Показано, что скх-и p^{max} и p_i^{max} адронов (p^{\max} и p_i^{\max} --протоны и мезоны, соответственно ,которые имеют n_k^{\max} p^{ass} в данном событии) существенно отличаются от скх $u p_i^{ass}$ сопровождающих адронов. pass pass y 24 стицы все летят вперёд в Lab-системе - возможно , они образуются из кварков спектаторов, которые проходят ядро без взаимодействия. p^{max} и p^{max}-частицы (во всяком случае те, которые летят назад в Lab-системе) дают информацию о жестком столкновений другого кварка с флуктоном (с многокварковой системой).

<u>Ключевые слова</u>: релятивистские ядра, кварки, флуктоны.

Введение

В лептон-лептонных, лептон-адронных, лептон-ядерных, адрон-адронных, адрон-ядерных и ядро-ядерных взаимодействиях для выделения кумулятивных частиц, кумулятивных событий, струй адронов используют кинематическую переменную, которая определяется, как

$$n_k = \frac{(E - p_{\parallel})}{m_N} \tag{1}$$

где, *Е*-энергия, *p*_{||}.продольный имлульс в Lab-лабораторной системе, *m*_N-масса нуклона. Определённая таким образом *n*_k является переменной партонных моделей (или, переменной светового фронта) [1,2,3].

Экспериментальный материал получен на двухметровой пропановой пузырковой камере PBC-500 Лаборатории Высоких Энергий Объдинённого Института Ядерных Исследовании (ЛВЭ ОИЯИ, ДУБНА). Камера облучалась пучками лёгких релятивистских ядер p, d, He, C, F, Mg в импульсном интервале (2-10)AGeV/c. Другая часть (MgMg-магний-магний центральные и центральные ССи-углерод-медь соударения) экспериментального материала получена с помощью SKM-200 двухметрового стримерного спектрометра. Детектор облучался на синхрофазотроне ЛВЭ ОИЯИ (Дубна) пучками Mg-магния (4.5AGeV/c) и С-

углерода (4,3AGeV/c). Вопросы, которые касаются методике обработки и анализа данных рассмотрены в работах [4-11]

<u>а) Средние кинематические характеристики *p*^{max}-протонов и *p*^{ass}-сопровождающих протонов</u>

образованных в СТа-углерод-танталовых и СС- углерод- углеродных соударениях.

Настоящая работа является продолжением иследований начатых в [12,13] и посвящается сравнительному анализу импульсных и угловых характеристик частиц (рождённых в столкновениях релативистслих ядер), имеющих максимальное кумулятивное число (n_k^{\max}) и сопровождающих частиц.

Введем обозначения: p^{\max} -протоны которые имеют n_k^{\max} (в данном событии), p^{ass} сопровождающие протоны (в том же событии). p_i^{\max} -мезоны которые имеют n_k^{\max} ; p_i^{ass} сопровождающие мезоны (в том же событии).

Из каждого события выбырается частица с n_k^{\max} (протон - p^{\max} или , мезон- p_i^{\max}) и сопровождающие частицы - p^{ass} -протоны и p_i^{ass} -мезоны; и сравниваются скх p^{\max} и p^{ass} - протонов; (а также - p_i^{\max} и p_i^{ass} -мезонов) .

В таблицах приведены скх протонов - p_i^{max} и мезонов - p_i^{max} имеющих n_k^{max} максимальное кумулятивное число, а также скх сопровождающих протонов - p_i^{ass} и мезонов - p_i^{ass} .

Как видно из Таблицы №1, скх-и p^{max} -протонов и сопровождающих p^{ass} -протонов(за исключением поперечных импульсов) существенно отличаются друг от друга:

$$< p_L^{ass} > GeV/c \approx 1.5 < p_L^{max} > GeV/c; < \theta_L^{max} > \approx 2.2 < \theta_L^{ass} >;$$

p^{ass} все сопровождающие протоны летят вперёд в Lab-системе – повидимому они

образуются из кварков спектаторов, которые проходят ядро без взаимодействия. В скх p^{\max} -протонов чувствуется сильное влияние Та-тантала - тяжелого ядра мишени- $<\cos\theta_{NN}^{*\max}>=-0.829\pm0.229; < Y_L^{\max}>=0.077\pm0.006. p^{\max}$ -протоны, которые имеют $n_k>1$, летят назад Lab-системе – произошло жесткое столкновение с многокварковой системои (флуктоном).

Надо отметить что скх p^{max} -протонов и сопровождающих протонов - p^{ass} образованных в СС-углерод-углеродных соударениях существенно отличаются не только друг от друга, но и от соответствующих данных СТа- соударений, особенно угловые характеристики

$$< \theta_L^{\max}(CTa) > \approx 2 < \theta_L^{\max}(CC) >; < \theta_L^{ass}(CTa) > \approx 2.4 < \theta_L^{ass}(CC)$$

(см. Табл. 1 и 2). Это естественно, так как в NTa-нуклон-танталовых соударениях (при наших энергиях) происходит ≈ 3.2 столкновения (в среднем 3.2 нуклона от ядра Та –тантала принимают участие во взаимодействиях); а в NC-нуклон-углеродных ~1.3 нуклонов.

ISSN 1512-1461 Таблица №1

Средние кинематические характеристики (скх) протонов имеющих n_k^{max} -максимальное кумулативное число (p^{max}) и сопровождающих протонов (p^{ass}). (СТа-углерод-танталовое соударение.4.2AGev/с).

5	1 / /			
1	$< p_L^{\max} > (GeV/c)$	0.732±0.025	$< p_L^{ass} > (GeV/c)$	1.114±0.010
2	$< p_{\perp}^{\max} > (GeV/c)$	0.484±0.020	$< p_{\perp}^{ass} > (GeV/c)$	0.468±0.006
3	$< \theta_L^{\max} > \deg rees$	92.83±2.00	$< \theta_L^{ass} > \deg rees$	42.34±0.33
4	$< Y_L^{\rm max} >$	0.077±0.006	$< Y_L^{ass} >$	0.633±0.007
5	$<\cos heta_{_{NN}}^{*\max}>$	-0.829±0.029	$<\cos heta_{_{NN}}^{*ass}>$	0.521±0.006
6	$T_{p^{\max}}(mev)$	170±3	$T_{p^{assx}}(mev)$	150±2

Таблица №2

Тоже самое, что и в Таблице №1, только для СС-углерод-углеродных соударении.

1	$< p_L^{\max} > (GeV/c)$	1.060±0.016	$< p_L^{ass} > (GeV/c)$	2.228±0.015
2	$< p_{\perp}^{\max} > (GeV/c)$	0.488±0.009	$< p_{\perp}^{ass} > (GeV/c)$	0.451±0.005
3	$< \theta_L^{\max} > \deg rees$	46.78±0.511	$< \theta_L^{ass} > \deg rees$	17.60±0.110
4	$< Y_L^{\rm max} >$	0.579±0.011	$< Y_L^{ass} >$	1.305±0.011
5	$<\cos\theta_{_{NN}}^{*\max}>$	-0.551±0.010	$<\cos heta_{_{NN}}^{*ass}>$	0.234±0.003
6	$T_{p^{\max}}(mev)$	120±3	$T_{p^{assx}}(mev)$	100±1

СС-соударения(4.2AGeV/c)

<u>б) Средние кинематические характеристики</u> p_i^{max} -мезонов и p_i^{ass} -мезонов образованных в MgMg-магний-магний центральных и CC-углерод-углеродных столкновениях

Средние кинематические характеристики (скх) p_i^{\max} и p_i^{ass} -мезонов образованных в центральных MgMg-соударениях существенно отличаются друг от друга (см.табл. 3) При сравнении скх в MgMg-соударениях с СС- углерод-углеродными(табл. 4) надо отметить, что средние импульсы мезонов $\langle p_{i,L}^{\max}(MgMg) \rangle$ и $\langle p_{i,L}^{\max}(CC) \rangle$ (а также средние импульсы сопровождающих частиц- $\langle p_{i,L}^{ass}(MgMg) \rangle$ и $\langle p_{i,L}^{ass}(CC) \rangle$) не отличаются, но средние поперечные импульсы $\langle p_{\perp,L}^{\max}(MgMg) \rangle$ и $\langle p_{\perp,L}^{\max}(CC) \rangle$, а также средние углы вылета ($\langle \theta_{i,L}^{\max}(MgMg) \rangle$ и $\langle \theta_{i,L}^{\max}(CC) \rangle$) сильно отличаются. Причиной этого может бить является то, что мы анализируем мезоны от

ISSN 1512-1461 Таблица №3

Средние кинематические характеристики p_i -мезонов имеющих n_k^{\max} -максимальное кумулативное число (p_i^{\max}) и сопровождающих мезонов (p_i^{ass}). МgMg-соударения ,при 4.5AGeV/с.

1	$< p_{i,L}^{\max} > (GeV/c)$	0.515±0.001	$ < p_{i,L}^{ass} > (GeV/c) $	0.646±0.003	
2	$< p_{i,\perp}^{\max} > (GeV/c)$	0.367±0.009	$< p_{i,\perp}^{ass} > (GeV/c)$	(/c) 0.212±0.002	
3	$< \theta_{i,L}^{\max} > \text{degrees}$	73.69±1.050	$< \theta_{i,L}^{ass} > \deg rees$	28.51±0.010	
4	$< Y_{i,L}^{\max} >$	0.345±0.008	$< Y_{i,L}^{ass} >$	1.330±0.001	
5	$<\cos heta_{i,NN}^{*\max}>$	-0.558±0.012	$<\cos heta_{i,NN}^{*ass}>$	0.181±0.002	
6	$T_{i^{\max}}(mev)$	137±1.3	$T_{i^{assx}}(mev)$	77±0.500	

Таблица №4

Тоже самое, что и в Таблице №4, но для СС-углерод-углеродных соударении

1	$< p_{i,L}^{\max} > (GeV/c)$	0.503±0.016	$< p_{i,L}^{ass} > (GeV/c)$	0.652±0.015
2	$< p_{i,\perp}^{\max} > (GeV/c)$	0.300±0.009	$< p_{i,\perp}^{ass} > (GeV/c)$	0.203±0.007
3	$< \theta_{i,L}^{\max} > \deg rees$	58.92±1.14	$< \theta_{i,L}^{ass} > \deg rees$	26.78±0.39
4	$< Y_{i,L}^{\max} >$	0.600±0.019	$< Y_{i,L}^{ass} >$	1.405±0.027
5	$<\cos heta_{i,NN}^{*\max}>$	-0.358±0.013	$<\cos heta_{i,NN}^{*ass}>$	0.240±0.008
6	$T_{i^{\max}}(mev)$	51±1	$T_{i^{ass}}(mev)$	38±1

СС-соударения(4.2А GeV/c)

МgMg-центральных соударений, в отличие от СС-углерод-углеродных. Надо отметить, что все p_i^{ass} -мезоны (как в MgMg, так и в СС- соударениях) летят вперёд в Lab-системе, а p_i^{max} -мезоны -вперёд, только те у которых $n_k^{max} \leq 2(\langle n_k \rangle)$,а остальные летят назад и дают информацию (сигнал) о жёстком столкновении с мишенью (см. Рис. 1 и 2)

Рис. 1. Зависимость среднего угла вылета π^- мезонов образованных в MgMgсоударениях, от n_k^{\max} . $< \theta_{iL}^{\max} > -\bullet$, $\theta_{iL}^{ass} - \Box$.

Рис.2. Зависимость среднего поперечного импульса π^- мезонов от n_k^{\max} , образованных в MgMg-соударениях . $< p_{i\perp}^{\max} > -\bullet$, $p_{i\perp}^{ass} - \Box$.

в) Зависимость температуры
$$p^{\max}$$
 и p^{ass} -протонов, а также p_i^{\max} и p_i^{ass} -мезонов от n_k^{\max} максимального кумулятивного числа

Температура возбуждённой ядерной материи адронов является одним из важнейших канонических параметров, определяющих состояние системы.

Температуру мы оцениваем с использованием распределения по p_{\perp} -поперечному импульсу – метод был предложен Хагедорном [14].

Распределение по p_{\perp} -поперечному импульсу аппроксимировано следующей формулой

$$\frac{dN}{dp_{\perp}} = Ap_{\perp}(E_{\perp}T)^{\frac{1}{2}}\exp(-\frac{E_{\perp}}{T})$$
(2)

Где $E_{\perp} = \sqrt{p_{\perp}^2 + m^2}$ -поперечная энергия

Результаты аппроксимации приведены в таблицах №5 и №6.

Таблица №5

Зависимость Т-температуры p^{\max} и p^{ass} -протонов от n_k^{\max}

(СТа- соударения 4.2AGeV/с)

Ν	n_k^{\max}	$T_{p^{\max}}(mev)$	$T_{p^{ass}}(mev)$
1	0.1	130±15	90±10
2	0.3	150±5	100±10
3	0.5	150±6	105±5
4	0.7	100±8	107±10
5	0.9	100±7	108±15
6	1.1	100±9	102±3
7	1.3	100±5	107±3

ISSN 1512-1461

8	1.5	100±4	111±3
9	1.7	150±8	110±4
10	1.9	150±12	109±5
11	2.1	157±8	110±3
12	2.3		100±8

Таблица №6

Тоже самое,что и в Табл №5,только для p_i^{\max} –мезонов и p_i^{ass} -мезонов(MgMg-магниймагний и CCu –углерод-медь центральные соударения)

		MgMg(4.:	5AGeV/c)	CCu(4.3A	GeV/c)
Ν	n_k^{\max}	$T_{p_i^{\max}}(mev)$	$T_{p_i^{ass}}(mev)$	$T_{p_i^{\max}}(mev)$	$T_{p_i^{ass}}(mev)$
1	0.1	114±1	70±1	94±1	65±1
2	0.3	139±1	81±1	115±1	75±1
3	0.5	189±2	88±1	162±5	78±1
4	0.7		86±1		96±2
5	0.9		110±2		101±3
6	1.1		111±2		
7	1.3		102±2		
8	1.5		114±2		

Как видно из таблицы №5, функция $< T_{p^{\max}}(n_k^{\max}) >$ сперва уменьшается, потом в интервале $0.6 \le n_k^{\max} \le 1.5$ выходит на плато, а при $n_k^{\max} > 1.5$ снова увеличивается. Зависимость $< T_{p^{\max}}(n_k^{\max}) >$ ведёт себя так же, как соответствующая зависимость импульсов, $< p_L^{\max}(n_k^{\max}) >$ для $A_i A_i$ -соударении [12]. А зависимость $< T_{p^{\alpha ss}}(n_k^{\max}) >$ не зависит от n_k^{\max} и ведёт себя как соответствующая зависимость $< p_{\perp}^{ass}(n_k^{\max}) >$ [12].

Что касается зависимости температуры мезонов от n_k^{\max} т.е. $\langle T_{p_i^{\max}}(n_k^{\max}) \rangle$ и $\langle T_{p_i^{\max}}(n_k^{\max}) \rangle$ они приведены в таблице №6. Температуры p_i^{\max} мезонов как правило всегда существенно больше, чем температуры p_i^{ass} - мезонов (как в MgMg- соударениях, так и в ССu- соударениях).

Сравнительный анализ средных кинематических характеристик вторичних частиц, имеющих n_k^{max} - максимальное кумулятивное число (как протонов- p^{max} , так и мезонов - p_i^{max}) и сопровождающих их частиц (как протонов- p^{ass} , так и мезонов - p_i^{ass}) показал:

- Средние кинематические характеристики *p^{max}*-протонов и *p^{ass}*-протонов существенно отличаются друг от друга имеют различные механизмы рождения –в характеристиках *p^{max}* протонов чувствуется сильное влияние тяжелого ядра мишени Та- тантала;
- Средние кинематические характеристики p_i^{max} мезонов и p_i^{ass} мезонов также сильно отличаются друг от друга – чувствуется влияние более тяжелого ядра мишени - Мg-магния;

3. Зависимость температуры p^{\max} - протонов (а так же p_i^{\max} - мезонов) от n_k^{\max}

существенно сильное, чем соответствующая зависимость p^{ass} -протонов и p_i^{ass} мезонов.

Литература

- 1. А. М. Балдин ОИЯИ, Е-80-545, Дубна, 1980;
- 2. А. И. Аношин и др. ЯФ, 1982, <u>36</u>, 409;
- 3. В. С. Ставинский ЭЧАЯ, 1979, <u>10</u>, 950;
- Агакишиев Г. Н. и др. Сообщения ОИЯИ, Р1-86-370, Дубна, 1986; Р1-89-488, Дубна, 1989
- 5. Agakishiev H. et. al. JINR, E1-84-448, Dubna, 1984;
- 6. Агакишиев Г. Н. и др. ЯФ,1987,<u>45 1373;</u>
- 7. Gazdzicki M., Rohrlich D, Z. Phys, <u>C65</u>, 215, 1995;
- 8. Lu J. J. et al., Phys, Rev. Lett, <u>46</u>, 898, 1981;
- 9. Chkhaidze L. et al; Phys. Particles and Fields, 54, 179, 1988
- 10. Ставинский В. С. ЭЧАЯ, 1979, 10, 949;
- 11. А. М. Балдин ОИЯИ, Е-80-545, Дубна, 1980;
- 12. Л. Н. Абесалашвили, ...,Ю. В. Тевзадзе GESJ: Physics 2011, #2(6), 83;
- 13. Л. Н. Абесалашвили, ...,Ю. В. Тевзадзе GESJ: Physics 2011, #2(6), 57;
- 14. R. Hagedron, Phys Lett, B97(1980)_136

Работа выполнена при частичной поддержке Грузинского национального научного фонда им. Руставели

Article received: 2012-03-24