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Let D = {z ∈ C : |z| < 1} be the unit circle in the complex plane and T := ∂D.
Lp = Lp(T), p > 0, is the Lebesgue space of p-integrable complex functions and
Hp = Hp(D) is the Hardy space of analytic functions in D. HO

p denotes the set of
outer analytic functions from the Hardy space Hp. Let L+

p = L+
p (T) be the space of

boundary values of functions from Hp. For f(z) ∈ Hp, we write f(z)|z=t = f(t) ∈ L+
p

and thus these two classes Hp(D) and L+
p (T) will be identified in usual way. It is well

known that for p ≥ 1, L+
p = {f ∈ Lp : f(t) ∼

∑∞
n=0 cn(f)t

n} where ∼ stands for

the Fourier expansion sign. We also deal with L−
p = {f : f ∈ L+

p (T)}. Let P be the
set of trigonometric polynomials, P± := P ∩ L±

∞, P+
n = {f : f(t) =

∑n
k=0 ckt

k} and
P−
n = {f : f(t) =

∑n
k=0 ckt

−k}.
For a class of functions K and r ≥ 1, let K(r×r) be the set of matrices with entries

from K. HO
2 (r × r) denotes the set of outer analytic matrix functions, i.e. the set of

those S ∈ H2(r × r) for which detS ∈ HO
2/r (see [2]).

We are now ready to formulate Wiener’s matrix spectral factorization theorem [10]
which represents integrable matrix function on T as a product of boundary values of
two invertible analytic matrix functions defined, respectively, on D+ = D and D− =
C ∪ {∞}\D.

Theorem 1. Let S(t) ∈ L1(r × r) be a positive definite matrix function with
integrable logarithm of determinant

log detS(t) ∈ L1(T). (1)

Then it admits a (left) spectral factorization

S(t) = S+(t)S−(t), (2)

where S+(z) ∈ HO
2 (r × r) and S−(z) =

(
S+(1/z)

)∗
.

The right factorization can be obtained by the left factorization of ST . This theorem
is the special positive definite case of a general matrix factorization theorem where the
diagonal term in the middle of the product in (2) might appear which determines the
partial indices of the matrix function S. It should be noted that the partial indices are
equal to 0 in the positive definite case.

The condition (1) is also a necessary one for the factorization (2) to exist. A spectral
factor S+(z) is unique up to a constant right unitary multiplier (see, e.g., [4] for a simple
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proof), and the unique spectral factor with an additional requirement that S+(0) be
positive definite is called canonical. We always assume that the spectral factor in (2) is
canonical. In the scalar case, r = 1, the canonical spectral factor S+ can be explicitly
written by the formula

S+(z) = exp

(
1

4π

∫ 2π

0

eiθ + z

eiθ − z
logS(eiθ) dθ

)
. (3)

However, there is no analog of this formula in the matrix case because, generally
speaking, eA+B ̸= eAeB for non-commutative matrices A and B. This is the main
reason why the matrix spectral factorization is more demanding than the scalar spectral
factorization.

In the present note we would like to review some results obtained by the authors
in a matrix spectral factorization theory. These results appeared in print recently, and
we would like to emphasize the relationships between them as well.

Since the Wiener’s existence theorem was proved, there were numerous efforts for
constructing an algorithm for approximate computation of matrix coefficients of S+

for a given spectral density S (see the survey papers [7], [9]). In [6], a new algorithm
for matrix spectral factorization is proposed. The decisive role in this algorithm plays
the constructive proof of the following

Theorem 2. Let N ≥ 1. For any matrix function F (t) ∈ P(m×m) of the form

F (t) =



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 0

ζ−1 (t) ζ−2 (t) ζ−3 (t) · · · ζ−m−1(t) f+(t)


, (4)

where
ζ−j (t) ∈ P−

n , j = 1, 2, . . . ,m− 1, and f+(t) ∈ P+
n , f

+(0) ̸= 0, (5)

there exists a unitary matrix function U(t), U(t)U∗(t) = I, of the form

U(t) =



u+11(t) u+12(t) · · · u+1,m−1(t) u+1m(t)
u+21(t) u+22(t) · · · u+2,m−1(t) u+2m(t)

...
...

...
...

...
u+m−1,1(t) u+m−1,2(t) · · · u+m−1,m−1(t) u+m−1,m(t)

u+m1(t) u+m2(t) · · · u+m,m−1(t) u+mm(t)

 , (6)

where u+ij(t) ∈ P+
n , i, j = 1, 2, . . . ,m, with determinant 1, detU(t) = 1, such that

F (t)U(t) ∈ P+. (7)
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It turned out that unitary matrix functions of this type are closely related with
compact wavelet matrices ([8] p. 41). Thus Theorem 2 can be used to completely
parameterize them [1].

In order to prove Theorem 2, we write a simple system of linear conditions, which
is actually equivalent to (6), (7), and can be solved explicitly.

Lemma 1. For given functions ζ−j (t), j = 1, 2, . . . ,m − 1, and f+(t) satisfying
(5), the columns of matrix function (6) satisfy the system of conditions (when xi = uij,
i = 1, 2, . . . ,m)

ζ−1 (t)x
+
m(t)− f+(t)x+1 (t) ∈ P+,

ζ−2 (t)x
+
m(t)− f+(t)x+2 (t) ∈ P+,

· · ·
ζ−m−1(t)x

+
m(t)− f+(t)x+m−1(t) ∈ P+,

ζ−1 (t)x
+
1 (t) + ζ−2 (t)x

+
2 (t) + . . .+ ζ−m−1(t)x

+
m−1(t) + f+(t)x+m(t) ∈ P+,

Theorem 2 is further extended in [5].
Theorem 3. For any matrix function F (t) ∈ L2(m×m) of the form (4), where

ζj(t) ∈ L−
2 (T), j = 1, 2, . . . ,m− 1, and f(t) ∈ HO

2 ⊂ L+
2 (T),

there exists a unitary matrix function U(t) of the form (6) where u+ij(t) ∈ L+
∞, i, j =

1, 2, . . . ,m, with determinant 1, such that

F (t)U(t) ∈ L+
2 .

The Wiener’s existence theorem is used in [5] to prove Theorem 3, but we would like
to emphasize that this theorem can be proved directly applying the ideas developed
in [6], [5] (this is important since Theorem 3 is also used in an analytic proof of the
existence theorem itself which is described in [3]). The proof can be carried out applying
the following theorem to the L2-approximation ζn(t) =

∑n
k=0 ck(ζ)t

−k of ζ(t) (see [5],
Theorem 3)

Theorem 4. Let F {n}(t), n = 0, 1, 2, . . ., be a sequence of matrix functions of the

form (4), where the last row is replaced by a row
(
ζ
{n}
1 (t), ζ

{n}
2 (t), · · · , ζ{n}m−1(t), f

{n}(t)
)

with ζ
{n}
j (t) ∈ P−

n , j = 1, 2, . . . ,m − 1, f {n}(t) ∈ P+
n , f

{n}(0) ̸= 0, and let UF {n}(t),
n = 0, 1, 2, . . ., be a sequence of the corresponding unitary matrix functions determined
according to Theorem 2. If

lim
n→∞

∥F {n}(t)− F (t)∥L2 = 0,

then UF {n}(t) is convergent in measure and FUF is a spectral factor of FF ∗, where UF
is the limit of UF {n}.

This theorem can be proved exactly in the same manner as Theorem 2 in [5] using
Lemma 1 instead of Lemma 5 of [5].

In our method of spectral factorization first we perform the lower-upper triangular
factorization of S with outer analytic entries on the diagonal, and then step-by-step
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make analytic m ×m left-upper submatrices of the factor, m = 2, 3, . . . , r, using the
unitary matrices of Theorem 3.

The main result of [5] is the stability criteria of spectral factorization:
Theorem 5. Let Sn(t), n = 1, 2, . . ., be a sequence of positive definite r× r matrix

functions with integrable entries such that

log detSn(t) ∈ L1(T), n = 1, 2, . . . , (8)

and let (Sn)
+(t), n = 1, 2, . . ., be the sequence of corresponding spectral factors. If

∥Sn(t)− S(t)∥L1 → 0 (9)

and ∫ 2π

0

log detSn(e
iθ) dθ →

∫ 2π

0

log detS(eiθ) dθ, (10)

then
∥(Sn)+ − S+∥H2 → 0. (11)

It is well-known that, in general, (9) alone does not imply (11) even in the scalar
case. On the other hand, if (11) holds, then S+

n (0)→ S+(0) =⇒ detS+
n (0)→ detS+(0),

and since Wiener’s matrix spectral factorization theorem provides the scalar spec-
tral factorization of the determinant

(
detS

)
(t) =

(
detS

)+
(t)
(
detS

)−
(t) = detS+(t)

detS−(t) and
(
detSn

)+
(0) = exp

(
1
4π

∫ 2π

0
log detSn(e

iθ) dθ
)
, n = 1, 2, . . . (see (3)), we

have that (10) is valid. Thus one can easily see that the condition (10) is necessary for
the convergence (11) to hold.

One more important practical consequence of Theorem 5 is the following fact: as
is well known (see, e.g., [4]), if

S(t) =
∑N

k=−N
σkt

k (12)

is a trigonometric polynomial matrix function, then

S+(t) =
∑N

k=0
ρkt

k (13)

is a polynomial (of the same order N) matrix function. If a sequence of the considered
spectral densities are matrix polynomials of fixed order N , then (9) always implies (10)
and consequently (11) follows directly from (9). Thus it should be expected that a
“small” perturbation of the coefficients σk in (12) will not much affect the coefficients
ρk in (13) even in the case where the determinant of S(t) has the zeros on the boundary.
This fact was empirically observed during computer simulations of different numerical
polynomial spectral factorization algorithms.
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