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Theory

On Precession of Entangled Spins in a Strong Laser Field*
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Abstract—A dynamics of the entanglement under an environmental influence is modelled by a bound
state composed of two heavy particles interacting with a strong laser. Adopting the semiclassical attitude,
a trajectory of the bound state’s center-of-mass is found from the Newton equations solved beyond the
dipole approximation and taking into account the magnetic field effect. At the same time the dynamics of
constituent spins under the laser coupling is studied quantum mechanically solving the nonrelativistic von
Neumann equation with the effective Hamiltonian determined by the bound state’s classical trajectory.
Based on the solution, the effects of an intense linearly polarized monochromatic plane wave on the
precession of entangled spins are discussed for a specific kind of mixed initial states including a family
of maximally entangled Werner states.
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1. INTRODUCTION

This article addresses the question how a high-
intensity laser interacting with a charged composite
system affects the evolution of its entangled subsys-
tems (for the definition and properties of the entangle-
ment see, e.g., recent books [1–3]). To understand the
dynamics of entanglement under a laser coupling a
simple model is formulated. A laser beam is modelled
by a strong linearly polarized monochromatic elec-
tromagnetic plane wave and a composite system is
represented by a bound state consisting of two heavy
spin-1/2 particles.

The behavior of a nonrelativistic charged particle
driven by a low intensity laser is completely deter-
mined by the electric component of electromagnetic
field with no mention at all of its magnetic component.
The electric-field dominance together with the dipole
approximation provides a consistent solution to the
equation of motion for a particle classical trajectory
and allows to determine the dynamics of spin degrees
of freedom [4]. However, as an intensity of radiation
is growing up, an accelerating-particle velocity can
attain the relativistic values [5, 6]. As a result the
dipole approximation becomes inconsistent and the
magnetic part of the Heaviside–Lorentz force is not
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negligible any more. This, in turn, makes an influence
on a particle spin evolution unavoidable.

In the present article, based on the recent re-
sults [7], we make a step forward to the relativistic
description and consider a particle motion beyond
the dipole approximation and taking into account the
magnetic-field effect. We neglect the influence of a
particle spin on the classical orbit and consider the
spin evolution quantum mechanically as precession
in a certain spatially homogeneous magnetic field
configuration which is determined solely by a parti-
cle classical trajectory3). Having derived the effective
Hamiltonian for spin degrees we analyze the influence
of a laser intensity on dynamics of the entanglement.

In accordance with the above drawn program we
formulate at first the model describing the interac-
tion of a charged composite system with an intense
monochromatic plane wave radiation. Then, in Sec-
tion 2, the semiclassical evolution of the model is
discussed. Section 3 is devoted to a description of
the classical trajectory of a composite system center-
of-mass as function of a laboratory-frame time. Be-
sides the classical treatment the results on quantum
dynamics of spin degrees of freedom in the linearly
polarized laser field are stated as well. In the next
section the detailed derivation of the oscillation of en-
tanglement is given for two special initial spin config-
urations including the so-called Werner states [3]. For
the Werner state the condition of the entanglement
stability under a laser coupling is formulated. Finally,

3)The discussion of such an approximation can be found, e.g.,
in [8].
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ON PRECESSION OF ENTANGLED SPINS 787

in Section 5, a few concluding remarks are given.
Appendices A and B contain some technical formulas
used in the main text.

2. THE MODEL FORMULATION

The model under consideration is formulated as
follows. A bound state with charge −qB interacting
with a laser radiation is modeled by the monochro-
matic plane wave propagating along the z-axis

A(t,x) (1)

:= a
(
ε cos(ωLξ),

√
1 − ε2 sin(ωLξ), 0

)
,

ξ = t − z

c
.

In (1) the parameter ε ∈ [0, 1], is the light polarization
parameter, ωL is the wave frequency and the constant
a measures the intensity of a radiation. The constant
a sets the scale for the dimensionless parameter η, the
so-called laser field strength [9, 10]:

η2 =
q2
Ba2

M2
Bc4

.

Here, MB is the mass of a bound state traveling in
the electromagnetic background (1). The bound state
is considered to be composed of two heavy particles
(p, n) with the binding potential

VB = V0(r) + VSS, (2)

VSS := VS(r)s(n) ⊗ s(p),

where V0(r) and VS(r) are scalar functions of the
relative distance between bound state’s constituents,
r = |rn − rn|, the vectors s(n) and s(p) denote the spin
of constituent (n) and constituent (p), respectively.

Concerning the coupling of a bound state with
an external radiation the mixed type of interac-
tion is proposed; a direct bound-state charge–laser
interaction—VCL, and spin–laser coupling—VSL via
the individual magnetic moments of constituents.
The former charge–laser term VCL is chosen sup-
posing that the bound state interacts as a whole with
radiation via a point electric charge qB positioned at

the center of mass R = m(n)rn+m(p)rp

m(n)+m(p) ,

VCL :=
qB

c
vR ·A(t,R), vR :=

dR
dt

. (3)

Apart from the effective charge–laser interaction (3),
we take into account the coupling of laser field to
each constituent spin in the relativistically modified
Larmor form:

VSL := −Ω(n)(t, rn) · s(n) − Ω(p)(t, rp) · s(p), (4)

where vector Ω(i) reads

Ω(i) :=
e(i)g(i)

2m(i)c

(
B− 1

c

[
v(i) ×E

])
(5)

+
1

2c2

[
v(i) × a(i)

]
.

Here, vectors E and B are the electric and magnetic
components of a laser field evaluating along the tra-
jectory of the ith particle (with charge e(i), mass m(i),

and gyromagnetic ratio g(i)) moving in the laboratory
frame with the velocity v(i) and acceleration a(i). This
form of spin–laser coupling has a clear meaning. The
first term in parentheses is the magnetic field in the
instantaneous rest frame of a charged particle, while
the last contribution in (5) is the so-called leading
Thomas-precession correction [11] due to the nonva-
nishing curvature of a particle trajectory, cf., e.g., [4].

Gathering all the above together, the evolution
of a bound state travelling in laser background is
governed by the total Hamiltonian

H = H0 + VSS + VCL + VSL, (6)

where H0 is the Hamiltonian of free spinless con-
stituents. Note that, in accordance with the semiclas-
sical picture we follow, the contribution to the phase
of our system’s wave function coming from the spin–
laser interaction term, VSL, is negligibly small in the
leading approximation. This term in (6) will come into
play only later when we turn to a study of dynamics of
spin degrees.

Concluding the model formulation it is worth to
stress that the consideration given below is well jus-
tified only if the bound state constituents move with
the nonrelativistic relative velocities. Mean time, con-
cerning the velocity of the center of mass, the used ap-
proach is still valuable for the semirelativistic regime,
υR/c ∼ 1, which may be attainable due to the accel-
eration of a bound state as a whole by a laser field.

3. THE CLASSICAL AND QUANTUM
DYNAMICS

In this section the semiclassical evolution of our
model is described. At first the classical dynamics of
the center of mass of a bound state will be presented.
Afterwards, based on these results, the quantum evo-
lution of the spins of constituents will be established.

3.1. Classical Trajectory
for a Bound-State Center of Mass

Ignoring for a moment radiation coupling to the
spins of constituents consider the dynamics of a
bound state governed by the Hamiltonian H0 +
VSS + VCL. Since this Hamiltonian admits separation
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of the relative and absolute motion, we are able to
write down the trajectory of a bound-state center of
mass exploiting the exact solution to the analogous
Hamilton–Jacobi problem for a single charged parti-
cle found in [7].

Based on the solution given in [7] one can verify
that the bound-state center of mass moves along the
trajectory R(t) given by the following expressions4):

Rx(t) = − c

ωL

√
ε2

1 − 2ε2
arcsin

[
µsn

(
ω′

Lt, µ
)]

, (7)

Ry(t) =
c

ωL

√
1 − ε2

1 − 2ε2
(8)

× ln

[
µcn

(
ω′

Lt, µ
)

+ dn
(
ω′

Lt, µ
)

1 + µ

]
,

and

Rz(t) = ct − c

ωL
am

(
ω′

Lt, µ
)
. (9)

The trajectory (7)–(9) is expressed in terms of the
Jacobian elliptic functions sn(z, µ), cn(z, µ), dn(z, µ)
and amplitude function am(z, µ) [12] whose modulus
is5):

µ2 = η2 1 − 2ε2

(1 − βz)2
.

The argument of Jacobian functions represents the
laboratory-frame time, t, scaled by the nonrelativisti-
cally-Doppler-shifted laser frequency ω′

L = (1 −
βz)ωL, βz = (vR)z(0)/c. From this solution it follows
that the velocity of the center of mass is

vR =
(
−cηεcn

(
ω′

Lt, µ
)
, (10)

−cη
√

1 − ε2sn
(
ω′

Lt, µ
)
, c − c(1 − βz)dn

(
ω′

Lt, µ
))

.

The Jacobian functions in (10) tell us that compo-
nents of a charged-particle velocity in the plane or-
thogonal to the wave propagation are periodic func-
tions of time with the period6)

TP =
4K
ω′

L

:=
2π
ωP

, (11)

4)The condition R(0) = 0 is supposed and the frame is fixed,
where time average of a bound-state velocity component, or-
thogonal to the wave propagation, is vanishing: 〈〈v⊥

R〉〉 = 0.
5)It is assumed that µ is from the fundamental domain, 0 <
µ2 < 1. The solution outside the fundamental domain fol-
lows from the modular properties of the Jacobian functions,
cf. details in [7].

6)Note, that the quarter period K of the Jacobian elliptic func-
tion depends nonlinearly on laser intensity and its polariza-
tion.

while in the direction of propagation the oscillation
period is twice smaller (TP /2). The fundamental cir-
cular frequency of the particle motion, ωP , differs from
the frequency ωL of a laser field due to the nonlineari-
ties of the dynamical equations taken into account.

3.2. The Evolution of Spin Degrees

Now we pass to a second issue of our study, below
the evolution of the spin degrees is discussed. The
classical orbit described in the preceding section will
be used to evaluate forces acting on the spins of
constituents, while a bound state is moving in a laser
background.

We follow the conventional quantum mechanical
approach when a spin-j state is described by the
(2j + 1) × (2j + 1) density matrix �, that evolves ac-
cording to the nonrelativistic von Neumann equation

�̇(t) = − i

�
[HS(t), �(t)]. (12)

For the problem under consideration the effective spin
Hamiltonian HS is defined as the Hamiltonian VSS +
VSL projected to the constituent-particle classical
trajectory:

HS(t) (13)

= {VSS + VSL}
∣∣∣∣

Classical trajectory
.

Evaluating (13), two approximations, consistent with
our assumption on the large mass of the bound state
constituents are made. Namely, we “freeze” the rel-
ative motion of constituents inside the bound state,
i.e., approximate their relative trajectory by its mean
value r(t) = r and, correspondingly, neglect all con-
tributions of order υr/c, where υr is the relative ve-
locity of constituents. Within this type of the Born–
Oppenheimer approximation [13] the effective spin–
laser Hamiltonian (13) admits the following decom-
position:

HS = −B(n)(t) · s(n) ⊗ I (14)

− I ⊗ s(p) · B(p)(t) + HI .

Our calculations using expressions (7)–(9) for a tra-
jectory of the bound-state center of mass, show that
the effective-time-depending potential B(i)(t), i =
(n, p), reads

B
(i)
x (t) = η

ω′
L

2

√
1 − ε2 (15)

×
[
(g̃(i) + 1)dn(ω′

Lt, µ) − (1 − βz)
]

cn(ω′
Lt, µ),

B(i)
y (t) = η

ω′
L

2
ε
[
(g̃(i) + 1)dn(ω′

Lt, µ)
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− (1 − βz)(1 − µ2)
]

sn(ω′
Lt, µ),

B
(i)
z (t) = −η2 ω′

L

2
ε
√

1 − ε2

[
g̃(i)

1 − βz
− dn(ω′

Lt, µ)

]
,

where g̃(i) =
(
e(i)/m(i)

)
(MB/qB) g(i).

The spin–spin interaction term HI in (14) orig-
inates from the potential VSS under the same static
approximation for the spatial relative degrees of free-
dom:

�HI = gs(n) ⊗ s(p). (16)

The constant g in (16) is determined by the spin–spin
potential evaluated at the mean value of the relative
distance between constituents, g := �VS(r).

3.2.1. Single spin-1/2 dynamics in the lin-
early polarized laser field. Now we fix the spin of
constituents, s(i) = �σ/27), and restrict ourselves by
considering the linearly polarized radiation (1) with
ε = 0. Before studying a two-spin system let at first
write down the evolution operator for a single, say
s(n)-spin precession problem with an external mag-
netic field of the form (15).

For the linearly-polarized case the effective mag-
netic field (15) significantly simplifies and we arrive
at the exactly solvable problem; spin-1/2 precession
in time depending magnetic field directed along the
x-axis. The solution for the density matrix with the
initial condition, �(0) = �0, reads

�(t) = U(n)(t)�0U
+
(n)(t), (17)

where

U(n)(t) = exp
(

i

2
ϑ(n)(t)σ1

)
. (18)

The explicit form of the phase factor ϑ(n)(t) can be
easily calculated:

ϑ(n)(t) :=

t∫

0

dτBx

∣∣∣∣
ε=0

(19)

=
η

2

[
g̃(n) + 1

]
sn(ω′

Lt, µ) − 1
2

arcsin
[
µsn(ω′

Lt, µ)
]
.

The angle (19) contains nontrivial dependence on
laser intensity via the particle fundamental circular
frequency ωP , cf. (11). Only for small intensities η �
1 the expression for the angle ϑ reduces to the well-
known nonrelativistic precession result:

ϑNR :=
1
2
ηg̃(n) sin(ωLt). (20)

7)The spin-1/2 is assumed to be in a generic mixed state
with the standard density matrix parametrization: � =
1
2

(I + χu · σ), u2 = 1, 0 < χ < 1.

3.2.2. Interacting spins in the linearly polar-
ized laser field. Having results of the preceding
paragraphs one can study the evolution of con-
stituent’s spins taking into account the spin–spin
interaction term (16) as well.

We start with the observation, that the tensor
product of the single spin evolution operators

W (t) := U(n)(t) ⊗ U(p)(t),

“gauges” out the Hamiltonians of both subsystems,
while under the action of the operator W the interac-
tion Hamiltonian (16) changes as (see Appendix B for
notations and useful formulas):

H ′
I(t) := W+HIW (21)

= g�
(
cos ϑ−σ ⊗ σ + sin ϑ−σ[12]

)
,

where

ϑ−(t) := ϑ(n) − ϑ(p) =
1
2
η

(
g̃(n) − g̃(p)

)
sn(ω′

Lt, µ).

Therefore, the evolution operator for the interacting
spins is convenient to represent as

U(t) = W (t)X(t). (22)

The unknown operator X is subject to the equation

Ẋ(t) = − i

�
H ′

I(t)X(t). (23)

This equation admits the formal solution with
T-exponent factor:

X(t) = eigψ(t)σ⊗σT

⎛
⎝exp

i

�

t∫

0

VI(τ)dτ

⎞
⎠ , (24)

where

ψ(t) :=

t∫

0

dt cos ϑ−(t), (25)

and

VI(t) := g� (26)

× sin ϑ−

[
cos(4gψ(t))σ[12] +

3
4

sin(4gψ(t))σ[30]

]
.

The first factor in (24) has a remarkable Eulerian
exponent-type representation8):

eigψ(t)σ⊗σ =
1
2
eigψ(t) (27)

+
1
2
e−igψ(t)

[
cos(2gψ(t)) + iσ ⊗ σ sin(2gψ(t))

]
,

8)For completeness the derivation of the Euler-type represen-
tation for the exponent from the scalar tensorial product of
sigma matrices is given in Appendix B.
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while the T-exponent factor in (24) is much cumber-
some one. However, it turns into unity if the con-
stituents have equal gyromagnetic ratios. Note also
that in the leading order, for small laser intensities,
the interaction potential VI reads

VI(t) =
�

2
gη

(
g̃(n) − g̃(p)

)
sin(ωLt) (28)

×
[
cos(4gt)σ[12] +

3
4

sin(4gt)σ[30]

]
+ O(η2).

4. EVOLUTION
OF THE ENTANGLED STATES

We arrived now at a place where the intrigued
quantal phenomenon, entanglement, comes into
play. Analyzing this phenomenon, it is very important
to understand the dynamics of entanglement under
the environment coupling [14]. In our model the en-
vironment is realized as a background laser radiation.
In this context, below the effect of a laser coupling on
the quirk of fate of the entangled state is analyzed.

The most generic density matrix for two spins
written in the so-called Fano form [3],

�2×2 =
1
4

(I ⊗ I + αiσ0i + βiσi0 + γijσij) , (29)

is characterized by a set of 15 parameters αi, βi, and
γij , i, j = 1, 2, 3. The density matrix is non-negative
matrix and the requirement of non-negativity imposes
the following set of algebraic inequalities on these
parameters:

∑
2-principal minors

tr2�2×2 ≥ 0, (30)

∑
3-principal minors

tr3�2×2 ≥ 0, det �2×2 ≥ 0.

We postpone for the future analysis the evolution of a
generic density matrix (29) and deal here only with the
initial density matrices �2×2(0) of two special types.

Werner states. Consider at first a family of entan-
gled mixed states9), the so-called Werner states [15],
characterized by a single real parameter,

�W (31)

:=

⎛
⎜⎜⎜⎜⎜⎜⎝

(1 + p)/4 0 0 p/2

0 (1 − p)/4 0 0

0 0 (1 − p)/4 0

p/2 0 0 (1 + p)/4

⎞
⎟⎟⎟⎟⎟⎟⎠

.

9)It is worth to mention that Werner states enjoy the largest
entanglement accessible by unitary transformations [16].

In compact notations the Werner state (32) can be
written as

�W =
1
4

(I ⊗ I + pσ ⊗ σ) . (32)

The parameter p in (32) is simply related to the impor-
tant characteristics of quantum states, the so-called
fidelity (F ), which measures the overlap of a given
Werner state with the maximally entangled pure Bell
state:

p =
4F − 1

3
.

According to (30), the matrix (32) is non-negative
for values of parameter p from the closed interval

−1/3 ≤ p ≤ 1. (33)

For the fidelity F ≤ 1/2 the Werner state is unentan-
gled, while if

1/3 < p ≤ 1, (34)

Werner density matrix describes the mixed entangled
state.

To find the fate of the entanglement of the ini-
tial Werner state note that since the entanglement
properties are invariant under the local unitary trans-
formation [2] of the form W (t) := U(n)(t) ⊗ U(p)(t),
only the action of the operator X(t) may change the
entanglement. Moreover, in that action only the T-
exponent factor is a relavant one. With this obser-
vation one can easily evaluate the leading, in laser
intensity, change of the density matrix

δt�W =
i

�
[VI , �W] = −1

2
gηp

(
g̃(n) − g̃(p)

)
(35)

× sin(ωLt)
[
cos(4gt)σ[30] +

3
4

sin(4gt)σ[12]

]
.

Introducing the partial traced matrices

�n(t) := TrpU(t)�WU+(t), (36)

�p(t) := TrnU(t)�WU+(t),

the subsystem properties can be analyzed. Particu-
larly, using (35), it follows that the maximally mixed
initial state, �n(0) = 1

2I evolves to a state corre-
sponding to a spin whose projection along the z-axis
is oscillating according to the equation:

〈s(n)
z 〉 = �ηp

(
g̃(n) − g̃(p)

)
(37)

× g

[
sin2(ωL/2 + 2g)t

ωL + 4g
+

sin2(ωL/2 − 2g)t
ωL − 4g

]
.

Note, deriving (37) it was assumed that ω2
L 	= 16g2.
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The “αβγαβγαβγ” state. Let us consider another special
three-parameter family of density matrices given by

�0 =
1
4

(
I + α

1
2

(σ03 + σ30) (38)

+ β
1
2

(σ03 − σ30) +
1
2
γ (σ12 − σ21)

)
.

One can verify that �0 has the eigenvalues:

λ1 =
1
4
(1 − α), λ2 =

1
4
(1 −

√
β2 + γ2), (39)

λ3 =
1
4
(1 +

√
β2 + γ2), λ4 =

1
4
(1 + α).

Therefore, the non-negativity of the density matrix is
provided by α, β, and γ if and only if:

α2 ≤ 1, β2 + γ2 ≤ 1. (40)

Having in mind this restriction to the moduli pa-
rameters consider the evolution of the partial traced
matrices (36). We state results only for the reduced
density matrix �n, the corresponding expressions for
the spin s(p) can be derived in a similar way. With the
aid of formulas collected in the Appendix A we obtain

�n(t) :=
1
2

(I + a · σ) , (41)

where a stands for the vector

a =
1
2

(42)

× (0, sin ϑ+ cos ϑ−Fn(t) − cos ϑ+ sinϑ−Gn,

cos ϑ+ cos ϑ−Fn(t) − sin ϑ+ sin ϑ−Gn).

In (42) two angles ϑ± := ϑ(n) ± ϑ(p) and functions:

Fn(t) :=
1
2

(
α − β cos(4gt) +

3
4
γ sin(4gt)

)
, (43)

Gn(t) :=
1
2

(α cos(4gt) − β) (44)

were introduced. As (42) shows, s(n) oscillates in
a very complicated manner. The amplitude and the
frequency of the oscillation depend on the coupling
between spins as well as laser field intensity. The
detailed analysis of the spin precession will be given
in forthcoming publications. Below, only a few trans-
parent results on spin oscillation will be given.

The modulus |a| measures the deviation from a
pure state, if |a| < 1 the spin is in mixed state. Ac-
cording to (42)

a2 = (cos ϑ−Fn + sin ϑ−Gn)2 (45)

− sin(2ϑ−)(1 + cos(2ϑ+))FnGn.

If the constituents have equal magnetic moments,
formula (45) reduces to the expression depending
only on the coupling constant between spins:

a2 = F 2
n . (46)

For nonzero g̃(n) − g̃(p), the spin evolution depends
nonlinearly on a laser intensity. In the leading, O(η2),
order the modulus |a| oscillates as

a2 = F 2
n(t) +

1
4
η2(g̃(n) − g̃(p))2 sin2(ωLt)G2

n(t).

(47)

If the initial state is chosen with α = −β and γ = 0
(both spins along the z-axis) Eq. (47) simplifies to

a2 = α2 cos2(2gt) (48)

×
[
1 +

1
4
η2(g̃(n) − g̃(p))2 sin2(ωLt)

]
.

This tells that the spin of an individual constituent
oscillates between the initial state and maximally
mixed state which is attainable at moments t =
(2n + 1)π/(4g), n ∈ Z.

5. CONCLUDING REMARKS

In the present note we aimed to study some fea-
tures of a strong laser effect on a composite system
which are sensitive to the intensity of the electro-
magnetic radiation. We formulated the model for a
laser interaction with the bound state composed from
two heavy particles. The relative motion of constitutes
was treated in the spirit of the Born–Oppenheimer
method [13] and the semiclassical approximation has
been used to find the evolution operator. According to
our result, if the bound-state constituents have equal
magnetic moments, then the entanglement properties
of the initial spin configuration chosen as the Werner
state are unchangeable under the evolution. For the
constituents with different gyromagnetic ratios the
entanglement of our model evolves with time in a very
complicated manner, depending on the intensity of
the laser beam as well as on the coupling between
spins.

Two generic problems—quantification of the de-
gree of entanglement and classification of nonlocal-
ities exposing by a composite quantum-mechanical
system, are of fundamental importance in the quan-
tum information theory as well as the quantum me-
chanics itself. In the proposed model we plan to inves-
tigate both issues. Particularly, we intend to perform
the detailed analysis of various characteristics of the
entanglement, including the evolution of the concur-
rence for pure and mixed initial states in a strong laser
environment.

PHYSICS OF ATOMIC NUCLEI Vol. 72 No. 5 2009



792 ELIASHVILI et al.

ACKNOWLEDGMENTS

We thank S.B. Gerasimov, Yu.G. Palii, and
S.I. Vinitsky for valuable comments and discussions.
The research was supported in part by the Georgian
National Science Foundation (grant
no. GNSF/ST06/4-050), by the Russian Founda-
tion for Basic Research (grant no. 07-01-00660)
and by the Ministry of Education and Science of the
Russian Federation (grant no. 1027.2008.2).

APPENDIX

6. THE FANO BASIS AND A LITTLE BIT
ALGEBRA

For some applications an arbitrary 4 × 4 Hermi-
tian matrice is convenient to represent in the so-
called Fano basis, written as

I ⊗ I, σ0j := I ⊗ σj, σj0 := σj ⊗ I, (A.1)

σij := σi ⊗ σj, i, j = 1, 2, 3,

or in dense notation simply as

σµν := σµ ⊗ σν , σµ := (I, σi), µ, ν = 0, 1, 2, 3.

Here, σ1, σ2, and σ3, are the Pauli σ matrices

σ1 =

⎛
⎜⎝

0 1

1 0

⎞
⎟⎠ , σ2 =

⎛
⎜⎝

0 −i

i 0

⎞
⎟⎠ , (A.2)

σ3 =

⎛
⎜⎝

1 0

0 −1

⎞
⎟⎠ ,

satisfying the algebra

[σi, σj ] = 2iεijkσk. (A.3)

In the main text and in formulae below the follow-
ing notation is used also

σ[µν] := σµ ⊗ σν − σν ⊗ σµ,

σ{µν} := σµ ⊗ σν + σµ ⊗ σν .

Elements of the Fano basis obey the follow-
ing commutator, anticommutator relations with the
scalar tensorial product of the Pauli matrices, M :=
σ ⊗ σ,

[σij,M ] = 2iεijkσ[k0], (A.4)

{σij ,M} = 2δij (I ⊗ I − M) + 2σji, (A.5)

[σ0i,M ] = 2iεijkσjk, (A.6)

[σi0,M ] = −2iεijkσjk,

{σ0i,M} = 2σi0, {σi0,M} = 2σ0i, (A.7)

as well as the cubic equations

MσijM = −σij + 2σji + 2δij (I ⊗ I − M) , (A.8)

Mσ0iM = −σ0i + 2σi0. (A.9)

Using the above formulae and the generalized Euler’s
exponent identity (B.1) derived in the forthcoming
Appendix one can be convinced that

eiθMσije
−iθM = cos2(2θ)σij (A.10)

+ sin2(2θ)σji +
3
8

sin(4θ)εijkσ[k0],

eiθMσ0ie
−iθM = cos2(2θ)σ0i (A.11)

+ sin2(2θ)σi0 +
3
8

sin(4θ)εijkσjk.

7. THE EULER’S GENERALIZED EXPONENT

Here the following generalization of the Euler’s
exponent formula10):

eiθσ⊗σ =
1
2
eiθ (B.1)

+
1
2
e−iθ (cos(2θ) + iσ ⊗ σ sin(2θ))

is proved. The derivation we give is straightforward.
Let us introduce the shorthand notation for 4 × 4
matrix Z

Ẑ − I ⊗ I := σ ⊗ σ,

with identity 2 × 2 matrix I. Using the properties of
the Pauli matrices σ one can easily verify the identity

Ẑ2 = 22I ⊗ I. (B.2)

The left-hand side of (B.1) can be rewritten with aid
of the Newton binomial formula and identity (B.2) in
the following way

eiθσ⊗σ =
∞∑

n=0

(−iθ)n

n!
(1 − Z)n (B.3)

=
∞∑

n=0

(−iθ)n

n!

n∑
k

⎛
⎝n

k

⎞
⎠ Zn =

∞∑
n=0

(−iθ)n

n!

×

⎡
⎣

[n/2]∑
r=0

⎛
⎝ n

2r

⎞
⎠ · 22r − Ẑ

[(n−1)/2]∑
r=0

⎛
⎝ n

2r + 1

⎞
⎠ · 22r

⎤
⎦ .

In the last line of (B.3) the notation [a] means the
integer part of a number a. Now summing up the finite

10)Particularly, the Euler’s identity eiπ = −1, admits a direct
generalization eiπσ⊗σ = −I .
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series in (B.3)

j∑
r=0

⎛
⎝2j

2r

⎞
⎠ · 22r =

1
2
(1 + 32j), (B.4)

j∑
r=0

⎛
⎝2j + 1

2r

⎞
⎠ · 22r = −1

2
(1 − 32j+1), (B.5)

and
j∑

r=0

⎛
⎝ 2j

2r + 1

⎞
⎠ · 22r = −1

4
(1 − 32j), (B.6)

j∑
r=0

⎛
⎝2j + 1

2r + 1

⎞
⎠ · 22r =

1
4
(1 + 32j+1), (B.7)

after the rearrangement of the infinite series we find

eiθσ⊗σ =
3
4
eiθ +

1
4
e−i3θ (B.8)

− 1
4
σ ⊗ σ

(
e−i3θ − eiθ

)
.

The identity (B.1) is an equivalent form of this
expression.
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