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THE CONTINUITY AND THE LIMIT IN THE WIDE. THEIR

CONNECTION WITH THE CONTINUITY AND LIMIT

O. DZAGNIDZE

Abstract. The notions of a continuity and limit in the wide are
introduced. It is proved that the continuity implies the continuity in
the wide, without a converse statement, and the existence of a finite
limit entails the existence of an equal limit in the wide, again without
a converse statement.

§ 1. The Continuity in the Wide and Its Connection with the

Continuity

1.1. Increment in the Wide. 1◦. For the point x = (x1, . . . , xn) from the
real Euclidean n-dimensional space R

n, by ‖x‖ will be denoted any of the

three equivalent norms ‖x‖1 = max
1≤i≤n

|xi|, ‖x‖2 =
n
∑

i=1

|xi|, ‖x‖3 = (
n
∑

i=1

x2
i )

1/2.

A neighborhood U(x0) of the point x0 = (x0
1, . . . , x

0
n) ∈ R

n is defined as
a set of all points x = (x1, . . . , xn) ∈ R

n for which ‖x − x0‖ < δ for some
δ > 0.

Along with the points x = (x1, . . . , xn) and x0 = (x0
1, . . . , x

0
n), we intro-

duce the following symbols of the points ([1])

x(x0
k) = (x1, . . . , xk−1, x

0
k, xk+1, . . . , xn),

x0(xj) = (x0
1, . . . , x

0
j−1, xj , x

0
j+1, . . . , x

0
n).

By x(x0
k, x

0
j) is denoted a point obtained after simultaneous replacement

of xk and xj by, respectively, x0
k and x0

j in x = (x1, . . . , xn), j 6= k.
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Let a real finite function f(x) be given in U(x0).
By ∆x0f(x) we denote an increment (called sometimes a complete incre-

ment) at the point x0 for f(x), i.e.,

∆x0f(x) = f(x) − f(x0). (1.1)

The continuity of the function f(x) at the point x0 is equivalent to the
fulfilment of the equality

lim
x→x0

∆x0f(x) = 0. (1.2)

Furthermore, by ∆x0

k
f(x) is denoted a partial increment with respect to

the variable xk for f(x) at x0, i.e.,

∆x0

k
f(x) = f(x0(xk)) − f(x0). (1.3)

The function f(x) is called a partial continuous with respect to the vari-
able xk at the point x0 if

lim
x→x0

∆x0

k
f(x) = 0. (1.4)

Unlike ∆x0

k
f(x), the notion of a strong partial increment with respect to

the variable xk for f(x) at the point x0 is available ([2]):

∆[x0

k
]f(x) = f(x) − f(x(x0

k)). (1.5)

The function f(x) is strongly partial continuous with respect to the vari-
able xk at the point x0 if ([2], [3])

lim
x→x0

∆[x0

k
]f(x) = 0. (1.6)

It is well known that the fulfilment of equality (1.4) for k = 1, . . . , n is
not sufficient for the function f(x) to be continuous at the point x0.

But the fulfilment of equality (1.6) for k = 1, . . . , n is equivalent to the
continuity of f(x) at x0. Moreover, the following theorem holds.

Theorem 1 ([2],[3]). For the function f(x) to be continuous at the point

x0, it is necessary and sufficient that equality (1.6) be fulfilled for k =
1, . . . , n.

2◦. The structure of the expression ∆x0f(x) indicates that all coordinates
of the point x0 receive simultaneously the increments xj − x0

j , j = 1, . . . , n.
Now we construct an expression which later will be called an increment

in the wide.
It is clear from equality (1.5) that the expression ∆[x0

k
]f(x) depends on

variables x1, . . . , xn. Introduce the function λ(x1, . . . , xn) = ∆[x0

k
]f(x) and

for the function λ(x1, . . . , xn) write equality (1.5) with respect to some vari-
able xj with j 6= k. As a result, we obtain a new function µ(x1, . . . , xn) =
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∆[x0

j
]λ(x) depending again on variables x1, . . . , xn. For the function µ(x1,

. . . , xn) we write equality (1.5) for some variable xe where e 6= k and e 6= j.
We continue this procedure until all variables x1, . . . , xn are exhausted.

A final result will be called an increment in the wide for the function f(x)
at the point x0, and we denote it by the symbol ∆n

[x0]f(x).
An important property of the procedure is the fact that the final result

does not depend on the order of forming, by formula (1.5), of strong partial
increments for the required functions.

On this basis we introduce the following

Definition 1. In the wide, an increment at the point x0 for the finite in
U(x0) function f(x), x = (x1, . . . , xn), will be called the value

∆n
[x0]f(x) = ∆[x0

1
]

(

∆[x0

2
]

(

· · ·
(

∆[x0
n]f(x)

)

· · ·
))

, (1.7)

where (see (1.5))

∆[x0

j
]F (x) = F (x) − F

(

x(x0
j )

)

. (1.8)

Thus, to obtain ∆n
[x0]f(x) it is necessary instead of F (x) and j in (1.8) to

take successively f(x) and j = n, ∆[x0
n]f(x) and j = n− 1, etc., and finally,

∆[x0

2
](· · · (∆[x0

n]f(x)) · · · ) and j = 1.

3◦. Case n = 2. If a finite function of two variables ϕ(x1, x2) is defined in
the neighborhood of the point x0 = (x0

1, x
0
2), then a strong partial increment

with respect to the variable x1 at x0 for ϕ(x1, x2) is given by the equality

∆[x0

1
]ϕ(x1, x2) = ϕ(x1, x2) − ϕ(x0

1, x2), (1.9)

and a strong partial increment with respect to the variable x2 is obtained
by the equality

∆[x0

2
]ϕ(x1, x2) = ϕ(x1, x2) − ϕ(x1, x

0
2). (1.10)

Therefore the increment in the wide at the point x0 for ϕ(x1, x2) is equal
to

∆2
[x0]ϕ(x1, x2) =

= ϕ(x1, x2) − ϕ(x0
1, x2) − ϕ(x1, x

0
2) + ϕ(x0

1, x
0
2). (1.11)

1.2. The Continuity in the Wide.

Definition 2 ([3]). A finite function f(x) given in U(x0) is in the wide
continuous at the point x0 if

lim
x→x0

∆n
[x0]f(x) = 0. (1.12)

In the sequel, it is advisable to formulate the continuity in the wide for
the functions of two variables in the form of the following two equivalent
equalities.
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The function ϕ(x1, x2), finite in the neighborhood of the point x0 =
(x0

1, x
0
2), is in the wide continuous at the point x0 if

lim
x1→x0

1

x2→x0

2

[

ϕ(x1, x2) − ϕ(x0
1, x2) − ϕ(x1, x

0
2) + ϕ(x0

1, x
0
2)

]

= 0 (1.13)

or, what is the same thing, if

lim
x1→x0

1

x2→x0

2

[

ϕ(x0
1, x2) + ϕ(x1, x

0
2) − ϕ(x1, x2)

]

= ϕ(x0
1, x

0
2). (1.14)

1.3. The Increment in the Wide for the Sum. Given in U(x0) finite func-
tions f1(x1, . . . , xn), . . . , fm(x1, . . . , xn), we have

∆n
[x0]

m
∑

j=1

fj(x) =
m

∑

j=1

∆n
[x0]fj(x), x = (x1, . . . , xn) ∈ U(x0). (1.15)

1.4. Equality to Zero of an Increment in the Wide for a Sum of Functions
of Special Type. Let in U(x0) be given finite functions of special types:

ψk(x1, . . . , xk−1, xk+1, . . . , xn), k = 1, . . . , n, (1.16)

each depending on variables in number n− 1.

Consider a summary function, depending on x = (x1, . . . , xn),

ψ(x) = ψ1(x2, x3, . . . , xn) + ψ2(x1, x3, . . . , xn) +

+ · · ·+ ψn(x1, . . . , xn−1). (1.17)

Since the function ψk does not depend on the variable xk, from (1.5) we
obtain equalities

∆[x0

k
]ψk(x) = 0, k = 1, . . . , n. (1.18)

Because of the fact that an order of succession in (1.7) is not of impor-
tance, from (1.18) it follows that

∆n
[x0]ψk(x) = 0, k = 1, . . . , n. (1.19)

Equalities (1.15) and (1.19) yield

∆n
[x0]ψ(x) = 0. (1.20)

Consequently, every finite in U(x0) function ψ(x) of type (1.15) is in the
wide continuous at every point x0 = (x0

1, . . . , x
0
n), even for discontinuous at

x0 functions ψk(x), k = 1, . . . , n.
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1.5. The Sufficient Condition for the Continuity in the Wide.

Theorem 2 ([3]). If the function f(x) with respect to at least of one varia-

ble is strongly partial continuous at x0, then the function f(x) is continuous

in the wide at the point x0.

The converse statement is invalid.

Proof. 1 Suppose that the function f(x) is strongly partial continuous with
respect to the variable xj at the point x0. Then the equality

lim
x→x0

[

f(x) − f(x(x0
j ))

]

= 0. (1.21)

holds. Since ∆n
[x0]f(x) does not depend on the order of forming strong

partial increments, we begin forming the right-hand side of equality (1.7)
with ∆[x0

j
]f(x). The next step is to form with respect to the variable xe

with e 6= j, a strong partial increment for ∆[x0

j
]f(x) at x0. We have

∆[x0
e]

(

∆[x0

j
]f(x)

)

= ∆[x0

j
]f(x) −

(

∆[x0

j
]f(x)

)

xe=x0
e

=

=
[

f(x) − f(x(x0
j ))

]

−
[

f(x) − f(x(x0
j ))

]

xe=x0
e

=

=
[

f(x) − f(x(x0
j ))

]

−
[

f(x(x0
e)) − f(x(x0

j , x
0
e))

]

.

Both differences in the square brackets tend to zero by equality (1.21), as
x→ x0.

As a result of finite number of steps, we obtain equality (1.12), i.e. f(x)
is in the wide continuous at x0.

The fact that the converse statement is invalid follows from the reasoning
at the end of Section 1.4. Indeed, for any finite functions α(x1) and β(x2),
not necessarily continuous, we have

∆2
[x0]w(x1, x2) = 0,

where x0 = (x0
1, x

0
2) is an arbitrary point from R

2, and

ω(x1, x2) = α(x1) + β(x2). (1.22)

Hence ω(x1, x2) is in the wide continuous at every point from R
2. Thus

the theorem is proved.

It should be noted here that the function ω(x1, x2) defined by equality
(1.22) is continuous at some point x0 = (x0

1, x
0
2) if and only if α(x1) is

continuous at x0
1 and β(x2) is continuous at x0

2. This follows from Theorem
1 and from the fact that

ω(x1, x2) − ω(x0
1, x2) = α(x1) − α(x0

1),

ω(x1, x2) − ω(x1, x
0
2) = β(x2) − β(x0

2).

Theorems 1 and 2 result in

1This proof of Theorem 2 differs from that suggested in [3].
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Corollary 1 ([3]). If the function f(x) is continuous at the point x0, then

f(x) is likewise continuous in the wide at the point x0 . The converse

statement is invalid.

1.6. The Continuity of a Function of Two Variables is Equivalent both to
the Separate Continuity and to the Continuity in the Wide. It is well-known
that the separate partial continuity, i.e., the fulfilment of equality (1.4) for
all k = 1, . . . , n does not imply the continuity. Moreover, we have just
convinced ourselves that the continuity in the wide is the property, far from
the continuity.

Let us prove that these two properties simultaneously guarantee the con-
tinuity, and vice versa.

Indeed, we have obtained an answer to the question: what useful infor-
mation carries the notion of the continuity in the wide?

Theorem 3. A finite function ϕ(x1, x2) defined in the neighborhood of the

point x0 = (x0
1, x

0
2) is continuous at x0, if and only if ϕ(x1, x2) at x0 is both

separately partial continuous and continuous in the wide.

Proof. If ϕ(x1, x2) possesses at the point x0 the two properties mentioned
in the theorem, then its continuity at x0 follows from the equality

ϕ(x0
1 + h, x0

2 + k) − ϕ(x0
1, x

0
2) =

=
[

ϕ(x0
1 + h, x0

2 + k) − ϕ(x0
1, x

0
2 + k) − ϕ(x0

1 + h, x0
2) + ϕ(x0

1, x
0
2)

]

+

+
[

ϕ(x0
1 + h, x0

2) − ϕ(x0
1, x

0
2)

]

+
[

ϕ(x0
1, x

0
2 + k) − ϕ(x0

1, x
0
2)

]

. (1.23)

It is obvious that the continuous at the point x0 function ϕ(x1, x2)
possesses both properties mentioned in Theorem 3. Thus the theorem is
proved.

§ 2. The Limit in the Wide and Its Connection with the Limit

2.1. The Notion of the Limit in the Wide. In the classical analysis, the
notion of the continuity is introduced on the basis of the notion of the limit.
For better understanding of the notion of the continuity in the wide we can
apply to the preceding notion of the limit in the wide.

Bearing this in mind, we shall take advantage of the notion of the conti-
nuity in the wide.

It is evident that the defined by equality (1.7) increment in the wide for
f(x) at the point x0 contains the value f(x0).

We now replace in ∆n
[x0]f(x) the value f(x0) by a finite value B and

denote it by the symbol

∆n
[x0]f(x)

∣

∣

f(x0)=B
. (2.1)

Introduce the following
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Definition 3. A finite value B is called a limit in the wide for the function
f(x) at the point x0 if the equality

lim
x→x0

(

∆n
[x0]f(x)

∣

∣

f(x0)=B

)

= 0 (2.2)

holds.

Definition 2 can now be rephrased in the form of

Definition 4. The function f(x) is in the wide continuous at the point x0

if the value f(x0) is finite and f(x0) is in the wide limit for f(x) at x0.
Proceeding from equality (1.11), the finite value B is the limit in the

wide at the point x0 = (x0
1, x

0
2) for the function ϕ(x1, x2) if

lim
x1→x0

1

x2→x0

2

[

ϕ(x1, x2) − ϕ(x0
1, x2) − ϕ(x1, x

0
2) +B

]

= 0. (2.3)

In general, the number L, finite or of fixed sign infinite, is the limit in
the wide at the point (x0

1, x
0
2) for the function ϕ(x1, x2) if

lim
x1→x0

1

x2→x0

2

[

ϕ(x0
1, x2) + ϕ(x1, x

0
2) − ϕ(x1, x2)

]

= L. (2.4)

Proposition 1. If the function f(x) has at the point x0 the finite limit in

the wide, then this limit is unique.

To see that this is so, we have to write equality (2.2) for finite values
B and B1 and then to consider their difference. As a result, we obtain
B −B1 = 0.

2.2. The Existence of a Limit in the Wide.

Theorem 4. If the function f(x) has a finite limit B at x0, then B is

likewise a limit in the wide for f(x) at x0.

Proof. If the function f(x) is continuous at the point x0, then f(x) is con-
tinuous in the wide at the point x0, by Corollary 1. Therefore the finite
value f(x0) is, by Definition 4, the limit in the wide for the function f(x)
at the point x0.

Suppose now that the function f(x), possessing at the point x0 the finite
limit B, is discontinuous at x0.

If we introduce a new function f∗(x) = f(x) for x 6= x0 and f∗(x0) = B,
then f∗(x) is continuous at x0, and the inequality f∗(x) 6= f(x) is fulfilled
only for x = x0. Therefore

∆n
[x0]f(x) − ∆n

[x0]f
∗(x) = f(x0) − f∗(x0) = f(x0) −B,

from which we get

∆n
[x0]f(x)

∣

∣

f(x0)=B
− ∆n

[x0]f
∗(x) = B −B = 0. (2.5)
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But, according to Corollary 1, we have

lim
x→x0

∆n
[x0]f

∗(x) = 0. (2.6)

Equality (2.2) is now obtained from (2.5) and (2.6). Thus the theorem
is proved.

Proposition 2. The existence at the point x0 of a finite limit in the wide

for the function ψ(x1, . . . , xn), n > 1, does not imply that there exist a finite

or of a fixed sign infinite limit for ψ(x1, . . . , xn) at x0.

Proof. The function ψ(x1, x2), considered in [2] on p. 26, possesses at every
point (x0

1, 0) the following two properties: with respect to variable x1, it
is strongly partial continuous and has no a finite or of a fixed sign infinite
limit.

According to Theorem 2 and Definition 4, the function ψ(x1, x2) has at
all points (x0

1, 0) equal to ψ(x0
1, 0) = 0 limit in the wide.

As the second example, we take the function ω(x1, x2) defined by equality
(1.22), which in the wide is continuous at every point (x0

1, x
0
2) and therefore

possesses at (x0
1, x

0
2) a limit in the wide, equal to the value α(x0

1) + β(x0
2).

On the other hand, it is not necessary for the function ω(x1, x2) to have
a finite or of a fixed sign infinite limit at (x0

1, x
0
2). Thus the proposition is

proved.

2.3. The Necessary and Sufficient Conditions for Functions of Two Vari-
ables to Have a Finite Limit. We are already aware that the existence of
a finite limit does not follow from the existence of equal separated partial
limits ([2], p. 23 and functions ϕ(x1, x2), g(x1, x2) on p. 24) and from the
existence of a finite limit in the wide (see Proposition 2).

It is noteworthy that these two properties together result in the existence
of a finite limit, and vice versa.

Thus we have found that useful information load which carries the notion
of a limit in the wide.

Theorem 5. A finite number A is a limit at the point x0 = (x0
1, x

0
2) for the

function ϕ(x1, x2), if and only if ϕ(x1, x2) has simultaneously at the point

x0 separated partial limits and a limit in the wide, equal to A.

Proof. If A is a limit at the point x0 for the function ϕ(x1, x2), then for
ϕ(x1, x2) A is both a limit in the wide (see Theorem 4) and, obviously,
separated partial limits at the point x0.

The converse follows from the equality obtained as a result of substitution
of the value ϕ(x0

1, x
0
2) by the number A in (1.23). Thus the theorem is

proved.
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2.4. Application to the Continuity of Functions of One Variable. Using The-
orem 5, we can obtain the necessary and sufficient condition for the conti-
nuity of functions of one variable. To this end, we take advantage of the
notion of symmetric continuity.

The function λ(t) prescribed in the interval (t0 − δ, t0 + δ) is called sym-
metrically continuous at the point t0 if the equality

lim
h→0

[

λ(t0 + h) − λ(t0 − h)
]

= 0 (2.7)

is fulfilled.
There naturally arises the question: What property the function λ(t)

possesses at the point t0 if the equality

lim
(h,k)→(0,0)

[

λ(t0 + h) − λ(t0 − k)
]

= 0, (2.8)

which is stronger than (2.7), is fulfilled.

Theorem 6. In order for the function λ(t) to be continuous at the point

t0, it is necessary and sufficient to have equality (2.8).

Proof. For the particular case A = 0, Theorem 5 shows that equality (2.8)
takes place if and only if the function of two variables µ(h, k) = λ(t0 +h)−
λ(t0 − k) possesses at the point t0 zero separated partial limits, as well as
zero limits in the wide.

Consequently, in order for the equality (2.8) to be fulfilled, it is nec-
essary and sufficient that the following three equalities lim

h→0
µ(h, 0) = 0,

lim
k→0

µ(0, k) = 0 and lim
(h,k)→(0,0)

[µ(h, k)−µ(0, k)−µ(h, 0)+ 0] = 0, or what is

the same, lim
h→0

λ(t0 + h) = λ(t0), lim
k→0

λ(t0 − k) = λ(t0) and lim
(h,k)→(0,0)

0 = 0,

be fulfilled.
Thus the fulfilment of equality (2.8) implies the continuity of the function

λ(t) at the point t0.
The converse statement follows from the equality λ(t0 + h)−λ(t0 − k) =

[λ(t0 + h) − λ(t0)] − [λ(t0 − k) − λ(t0)]. Thus the theorem is proved.

For the continuous only at the point t0 = 0 function ν(t) = t ·D(t), where
D(t) is everywhere discontinuous Dirichlet function, the above theorem re-
sults in the following equality for the function D(t):

lim
(h,k)→(0,0)

[

hD(h) + kD(k)
]

= 0. (2.9)
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