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UNILATERAL IN VARIOUS SENSES: THE LIMIT, CONTINUITY,

PARTIAL DERIVATIVE AND THE DIFFERENTIAL FOR

FUNCTIONS OF TWO VARIABLES

O. DZAGNIDZE

Abstract. For functions of two variables we introduce the notions of

the unilateral in various senses: the limit, continuity, partial deriva-

tive and differential. Their connection with the limit, continuity, par-

tial derivative and total differential is established.

For functions of one variable we introduce the notions of the unilateral
limit, continuity and derivative. The naturalness here is motivated by the
uniqueness of a partitioning of the neighborhood of a point. The unique
method for such a partitioning is not available in the two-dimensional case:
the two-dimensional interval can be divided into parts by different methods.
It is of interest which of these partitionings is most suitable for the above-
formulated problem.

The ways of solving these problems are hidden in the notions of partial
continuities in the strong and angular as well as in those of partial derivatives
in the strong and angular ([1]–[4]).

P A R T I

The Unilateral Limit and Continuity in Various Senses

1
0. The notions of the unilateral limit and unilateral continuity for a func-

tion of one variable are well known. They consist in the following: the
existence of a limit on the right at the point t0 for the function λ(t), in
symbols λ(t0+), implies that λ(t) tend to λ(t0+) as t tends to t0 by values
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of t > t0 (the tending t → t0 by values of t > t0 is usually written symbol-
ically as t → t0+). A limit on the left for λ(t) at the point t0, denoted by
λ(t0−), is defined by λ(t) → λ(t0−) as t→ t0−.

The function λ(t) has the limit at the point t0, if and only if λ(t0−) =
λ(t0+), and in this case their common value is the limit for λ(t) at the point
t0.

The function λ(t) is said to be continuous on the right at the point t0 if
the value λ(t0) is finite and λ(t0+) = λ(t0). Similarly, λ(t) is continuous on
the left at the point t0 if λ(t0−) = λ(t0) for a finite λ(t0).

For the function λ(t) to be continuous at the point t0, it is necessary and
sufficient that the function λ(t) be continuous at the point t0 on the right
and on the left simultaneously.

Thus, if t0 is an interior point for the interval (a, b) and the function λ(t)
is defined in (a, b) or in (a, b)\{t0}, then the unilateral limits at the point
t0 for the function λ(t) are the limits at the point t0 for the function λ(t)
along the two open, non-intersecting intervals whose union is (a, b)\{t0}. In
particular, the limit on the right at the point t0 = 0 implies the limit at
the point t0 = 0 by values of t > 0. Therefore the limit on the right and
the continuity on the right at the point t0 = 0 is called the + limit and
the + continuity at the point t0 = 0. This terminology will be retained for
arbitrary point t0.

2
0. Such a terminological change is caused by the author’s intention to in-

vestigate analogous problems for functions of two variables. These problems
remain unstudied so far.

The limit and the continuity at the origin of the coordinates along a
suitable set which covers positive parts of the axes lying near the origin
and has the origin as a limiting point, will be called the + limit and the +
continuity at the origin. This terminology will be retained for any kind of
points.

Recall some well-known but ineffective notions and facts concerning the
functions of two variables denoted in symbols as ±.

Thus the notions of the + limit and + continuity as well as of the − limit
and − continuity at the given point with respect to individual variable can
be easily extended to the functions of two variables.

Namely, let the function ϕ(x), x = (x1, x2) be defined in the neighbor-
hood U(x0) or in the punctured neighborhood U0(x0) = U(x0)\{x0} of the
point x0 = (x0

1, x
0
2).

We introduce into consideration the functions 1ϕ and 2ϕ depending re-
spectively on the variables x1 and x2 by the equalities

1ϕ(x1) = ϕ(x1, x
0
2),

2ϕ(x2) = ϕ(x0
1, x2).

The function iϕ(xi) of one variable is called the i-th partial function at
the point x0 of the function ϕ(x), i = 1, 2. Obviously, 1ϕ(x0

1) = ϕ(x0) =
2ϕ(x0

2).
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If the function iϕ(xi) has at the point x0
i the unilateral + limit

lim
xi→x0

i
+

iϕ(xi),

then the function ϕ(x) has at the point x0 the partial + limit with respect
to the variable xi, and this is written as

lim
x1→x0

1
+
ϕ(x1, x

0
2) and lim

x2→x0
2
+
ϕ(x0

1, x2).

If the limit

lim
xi→x0

i
+

iϕ(xi)

is equal to iϕ(x0
i ) = ϕ(x0), then the function ϕ(x) is called the partial +

continuous at the point x0 with respect to the variable xi, i = 1, 2.
The partial − limit and the partial − continuity for the function ϕ(x) at

the point x0 with respect to the variable xi, i = 1, 2, are defined analogously.
The existence of equal between themselves partial ± limits both with

respect to x1 and to x2 is, in general, insufficient for the existence of the
limit at x0 = (x0

1, x
0
2) for the function ϕ(x), x = (x1, x2).

Analogously, simultaneous ± continuities does not imply the continuity,
in general.

Using the notions of partial continuities in the strong and angular senses
([1], [2], [4]), below we introduce the corresponding effective notions of the
unilateral limit and continuity and establish their connections with the ex-
istence of the limit and continuity.

§ I.1. The Unilateral Limit and Continuity in the Strong

1
0. Let the function f(x), x = (x1, x2) be defined in the neighborhood
U(x0) or in the punctured neighborhood U0(x0) = U(x0)\{x0} of the point
x0(x0

1, x
0
2).

We introduce the following sets:

A+
1 =

{
(x1, x2) ∈ U(x0) : x1 > x0

1

}
, A+

2 =
{
(x0

1, x2) ∈ U(x0) : x2 > x0
2

}
,

A−
1 =

{
(x1, x2) ∈ U(x0) : x1 < x0

1

}
, A−

2 =
{
(x0

1, x2) ∈ U(x0) : x2 < x0
2

}
,

A+
12 = A+

1 ∪A+
2 , A−

12 = A−
1 ∪A−

2 .

It is obvious that

A+
12 ∩A

−
12 = ∅ and A+

12 ∪A
−
12 = U0(x0). (1)

Hence the punctured neighborhood is represented as the union of two
non-intersecting sets, and the limit along each set will be called the + limit
in the strong and the − limit in the strong, according to the definitions
below.
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Definition I.1.1. We say that the function f(x) has at the point x0 the
+ limit in the strong, in symbols f(x0[+]), if there exists a limit which is
finite or with a fixed sign infinite,

f(x0[+]) = lim
x→x0

x∈A+

12

f(x). (2)

Analogously we define the − limit in the strong,

f(x0[−]) = lim
x→x0

x∈A−

12

f(x). (3)

If there exist the values f(x0[−]) and f(x0[+]), then we say that the
function f(x) has the ± limit in the strong at the point x0.

From these definitions and equality (1) follows

Proposition I.1.1. For the function f(x) to have the limit at the point x0,

it is necessary and sufficient that there exist f(x0[−]) and f(x0[+]) together

with the equality f(x0[−]) = f(x0[+]). When these assumptions are fulfilled,

we have

f(x0[−]) = lim
x→x0

f(x) = f(x0[+]). (4)

2
0. Definition I.1.2. The function f(x) is called the + continuous in the

strong at the point x0 if the value f(x0) is finite and

f(x0[+]) = f(x0). (5)

Analogously, the function f(x) is called the − continuous in the strong
at the point x0 if f(x0) is finite and

f(x0[−]) = f(x0). (6)

The function f(x) is called the ± continuous in the strong at the point
x0 if f(x) at x0 is both the + continuous and the − continuous.

The following proposition is valid:

Proposition I.1.2. For the function f(x) to be continuous at the point x0,

it is necessary and sufficient that f(x) be ± continuous in the strong at the

point x0.

It should be noted that Definitions I.1.1 and I.1.2 trace back to the well-
known facts ([1], Corollary 2.1; [2], Statements 3) and 4) from Theorem 1.1).
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§ I.2. Saltus in the Strong

1
0. Definition I.2.1. If f(x0[−]) and f(x0[+]) are finite for the function
f(x), then the value

Ω(f, x0) =
∣∣f(x0[+]) − f(x0[−])

∣∣ (1)

is called a saltus in the strong of the function f(x) at the point x0, and x0

is called a point in the strong of the finite saltus of f(x).

The proposition below is obvious.

Proposition I.2.1. For the function f(x) to have a finite limit at the point

x0, it is necessary and sufficient that the condition

Ω(f, x0) = 0 (2)

and in case this equality is fulfilled, we shall have

f(x0[−]) = lim
x→x0

f(x) = f(x0[+]) (3)

2
0. If x0 is a point of discontinuity of the function f(x) (i.e., f(x) is not

continuous at x0, and this means that the function f(x) has no or has the
limit which is different from f(x0), if f(x0) is finite. However, if the value
f(x0) is infinite, the function f(x) is likewise discontinuous at the point x0)
and equality (2) holds, then x0 is called a removable in the strong point of
discontinuity of the function f(x): if the limit

lim
x→x0

f(x),

which is finite and equal in the strong to the ± limits of f(x) at x0, is
recognized as the value of the function f(x) at the point x0, then a new
function obtained as a result of such a correction will be continuous at the
point x0.

This procedure is called the correction in the strong for the continuity
of the function f(x) at the point x0, and x0 the remediable in the strong
point of discontinuity of the function f(x).

If there are finite f(x0[−]) and f(x0[+]), but f(x0[−]) 6= f(x0[+]) or,
what is the same thing, if there is a bilateral inequality

0 < Ω(f, x0) < +∞, (4)

then x0 is called the first kind point of discontinuity in the strong of the
function f(x).

If at least one out of the values f(x0[−]) and f(x0[+]) does not exist, or
there exist the both values, but at least one is of fixed sign infinite, then x0

is called the second kind point of discontinuity in the strong of the function
f(x).
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§ I.3. The Angular Limit and the Angular Continuity

In Section I.1 we have considered the unilateral in the strong ± limits
and ± continuities. Our consideration was based on the partitioning of the
neighborhood of a point which in its turn was dictated by the notion of a
separate partial continuity in the strong.

Along with this, the continuity is likewise equivalent to the separate par-
tial continuity in the angular ([1], Theorem 3.1; [2], Theorem 1.1). This fact
allows one to introduce the angular limit, angular continuity and unilateral
angular limit, unilateral angular continuity.

Let the function ϕ(x), x = (x1, x2) be defined in the neighborhood of the
point x0 = (x0

1, x
0
2).

1
0. We begin with the introduction of the notion of angular limit with

respect to the given variable.

Definition I.3.1. We say that the function ϕ(x) has at the point x0 the
angular limit with respect to the variable x1, in symbols ϕ(x0 ∧ (x1)), if for
every constant c > 0 there exists an independent of c finite or of fixed sign
infinite limit

ϕ(x0 ∧ (x1)) = lim
h1→0

|h2|≤c|h1|

ϕ(x0
1 + h1, x

0
2 + h2). (1)

Analogously, the function ϕ(x) has at the point x0 the angular limit
with respect to the variable x2, if for every constant l > 0 there exists an
independent of l finite or of fixed sign infinite limit

ϕ(x0 ∧ (x2)) = lim
h2→0

|h1|≤l|h2|

ϕ(x0
1 + h1, x

0
2 + h2). (2)

If the values ϕ(x0 ∧ (x1)) and ϕ(x0∧ (x2)) exist, we say that the function
ϕ(x) has separated angular limits at the point x0.

Theorem I.3.1. The function ϕ(x) has the limit at the point x0 if and only

if there exist at the point x0 the equal between themselves separated angular

limits for ϕ(x). When these conditions are fulfilled, we have

ϕ(x0 ∧ (x1)) = lim
x→x0

ϕ(x) = ϕ(x0 ∧ (x2)). (3)

Proof. The existence of the limit at the point x0 for the function ϕ(x)
implies that of the function ϕ(x) along every subset with the limiting point
at the point x0. In particular, as such are the sets given in equalities (1)
and (2) under the limit sign. Therefore lim

x→x0
ϕ(x) is equal to each of the

limits (1) and (2).
If ϕ(x0 ∧ (x1)) = ϕ(x0 ∧ (x2)), then the function ϕ(x) has at the point

x0 limits equal with respect to those two subsets which correspond to the
particular cases c = 1 and l = 1. But the union of the two subsets results
in the neighborhood of the point x0. Thus the theorem is complete.
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2
0. Below we shall introduce the notion of an angular continuity with

respect to the given variable. This notion differs from the earlier adopted
by us notion of angular partial continuity with respect to the given variable
([1], [2]).

The matter is that the angular partial continuity is introduced with the
help of the specific difference. The subtrahend of the difference is obtained
by substituting the value of the given variable in the function under con-
sideration. Moreover, the minuend is the value of the function at the point
belonging to the angle, while the subtrahend is the value of the function at
the point not belonging to the given angle.

Now we introduce the notion of the angular continuity with respect to
the given variable. The notion will contain the values of the function only
at the points which belong to the angle corresponding to the given variable.

Definition I.3.2. The function ϕ(x) is said to be angular continuous at
the point x0 with respect to the variable x1, if ϕ(x0) is a finite number and

ϕ
(
x0 ∧ (x1)

)
= ϕ(x0). (4)

Similarly, the function ϕ(x) is said to be angular continuous at the point
x0 with respect to the variable x2, if the value ϕ(x0) is finite and

ϕ
(
x0 ∧ (x2)

)
= ϕ(x0). (5)

The function ϕ(x) is said to be separately angular continuous at the
point x0, if ϕ(x) is angular continuous at the point x0 with respect to each
of variables x1 and x2 separately (the separately angular partial continuity
can be found in [1] and [2]).

Theorem I.3.2. For the function ϕ(x) to be continuous at the point x0, it

is necessary and sufficient that ϕ(x) be separately angular continuous at the

point x0.

Proof. In case the function ϕ(x) is continuous at the point x0, the value
ϕ(x0) is finite and limx→x0 ϕ(x) = ϕ(x0). The limits (1) and (2) are the
particular cases on the left-hand side of that equality. Therefore

ϕ
(
x0 ∧ (x1)

)
= ϕ(x0) = ϕ

(
x0 ∧ (x2)

)
.

Hence the function ϕ(x) is separately angular continuous at the point x0.

Conversely, if each of the limits (1) and (2) is equal to the finite number
ϕ(x0), then the limits for ϕ(x) will likewise be equal to the value ϕ(x0) with
respect to the sets which correspond to the cases c = 1 and l = 1.

The union of these sets yield the neighborhood of the point x0. Hence the
limit of the function ϕ(x) at the point x0 is equal to the finite value ϕ(x0),
i.e., ϕ(x) is continuous at the point x0. Thus the theorem is complete.



8 O. DZAGNIDZE

§ I.4. The Unilateral Angular Limit and Continuity

The angular ± limits at the point x0 for the function ϕ(x) with respect
to the variable x1, in symbols ϕ(x0+̂(x1)) and ϕ(x0−̂(x1)), will be defined
below by equalities (6) and (7) if these limits exist and do not depend on
the constants a > 0 and b > 0,

ϕ(x0+̂(x1)) = lim
h1→0+
|h2|≤ah1

ϕ(x0
1 + h1, x

0
2 + h2), (6)

ϕ(x0−̂(x1)) = lim
h1→0−

|h2|≤−bh1

ϕ(x0
1 + h1, x

0
2 + h2). (7)

We define the angular ± limits at the point x0 for the function ϕ(x) with
respect to the variable x2 by equalities (8) and (9) under similar assumptions
for the constants c > 0 and d > 0,

ϕ(x0+̂(x2)) = lim
h2→0+
h2≥c|h1|

ϕ(x0
1 + h1, x

0
2 + h2), (8)

ϕ(x0−̂(x2)) = lim
h2→0−

h2≤−d|h1|

ϕ(x0
1 + h1, x

0
2 + h2). (9)

It can be easily seen that the following propositions holds.

Proposition I.4.1. The function ϕ(x) has at the point x0 the angular limit

with respect to the variable x1 if and only if there exist equal between them-

selves values ϕ(x0−̂(x1)) and ϕ(x0+̂(x1)). In this case we have

ϕ(x0−̂(x1)) = ϕ(x0 ∧ (x1)) = ϕ(x0+̂(x1)). (10)

Analogous proposition is obviously holds for the variable x2 as well.
Theorem I.3.1 and Proposition I.4.1 imply

Corollary I.4.1. The function ϕ(x) has at the point x0 the limit if and

only if there exist equal between themselves values defined by equalities (6)–
(9). In case these conditions are fulfilled, the lim

x→x0
ϕ(x) is equal to their

common value.

§ I.5. Saltus in the Angular

Definition I.5.1. If the function ϕ(x) has finite ϕ(x0 ∧ (x1)) and ϕ(x0 ∧
(x2)), then the value

ω(ϕ, x0) =
∣∣ϕ(x0 ∧ (x1)) − ϕ(x0 ∧ (x2))

∣∣ (1)

is called a saltus in the angular of the function ϕ(x) at the point x0.

The following proposition is valid.
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Proposition I.5.1. The equality

ω(ϕ, x0) = 0 (2)

is the necessary and sufficient condition for the function ϕ(x) to have the

finite limit at the point x0. If equality (2) is fulfilled, then the value ϕ(x0 ∧
(x1)) = ϕ(x0 ∧ (x2)) is the limit at the point x0 of the function ϕ(x).

Here we can also introduce the following notions: in the angular, a re-
movable point of discontinuity of the function ϕ(x); in the angular, the
correction for the continuity of the function ϕ(x) at the point x0; in the
angular, a correctable point of discontinuity of the function ϕ(x); in the
angular, point of the first kind discontinuity for the function ϕ(x); in the
angular, a point of the second kind discontinuity for the function ϕ(x).

§ I.6. Comparison of Corrections in the Strong and in the

Angular

Proposition I.6.1. If the function f(x) admits the correction in the strong

for the continuity at the point x0, then f(x) admits also that in the angular

for the continuity at the point x0.

The converse statement is valid as well.

Proof. Since f(x) admits the correction in the strong for the continuity at
the point x0, equality (2) from §I.2 is fulfilled. Consequently, there exists the
finite limit for the function f(x) at the point x0, by Proposition I.2.1. This
implies that equality (2) from §I.5 is fulfilled, by Proposition I.5.1. Therefore
the correctness in the angular of the function f(x) is quite possible for the
continuity at the point x0.

The converse statement is proved analogously. Thus the proposition is
complete.

Now Proposition I.6.1 allows one to come to the following agreement: the
function f(x) is called correctable for the continuity at the point x0 if f(x)
admits the correction in the strong or in the angular for the continuity at
the point x0.

Finally, if the function f(x) has at the point x0 the incorrectable, or what
is the same thing, unremovable discontinuity, then x0 is called the point of
essential discontinuity of the function f(x), and the function f(x) is called
essentially discontinuous at the point x0.
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P A R T II

The Unilateral Partial Derivatives in Various Senses and the

Differentials

Preliminary Facts

1
0. Let the function ψ(x), x = (x1, x2), be specified in the neighborhood
U(x0) of the point x0 = (x0

1, x
0
2). If the function iψ(xi) has at the point

x0
i a derivative (iψ(xi))

′(x0
i ), then the latter is called a partial derivative

with respect to the variable xi at the point x0 for the function ψ(x) and is
denoted by one of the symbols ψ′

xi
(x0), ∂ψ

∂xi

(x0), ∂xiψ(x0).

Of these notations we choose ∂xiψ(x0) because below we shall consider
the unilateral partial derivatives which require additional symbol + or −.

If there exist ∂x1ψ(x0) and ∂x2ψ(x0), then we consider the gradient of
the function ψ(x) at the point x0,

gradψ(x0) =
(
∂x1ψ(x0), ∂x2ψ(x0)

)
.

2
0. It is quite possible that the function iψ(xi) has no derivative at the

point x0
i , i.e., there is no ∂xiψ(x0), but iψ(xi) has the + derivative at the

point x0
i , in symbols ∂x+

i ψ(x0), which is called the right partial derivative
with respect to the variable xi at the point x0 for the function ψ(x). Hence

∂+
xi
ψ(x0) = lim

xi→x0
i
+

iψ(xi) −
iψ(x0

i )

xi − x0
i

= lim
xi→x0

i
+

iψ(xi) − ψ(x0)

xi − x0
i

.

The left partial derivative with respect to the variable xi at the point x0

for the function ψ(x) is defined analogously:

∂−xi
ψ(x0) = lim

xi→x0
i
−

iψ(xi) −
iψ(x0

i )

xi − x0
i

= lim
xi→x0

i
−

iψ(xi) − ψ(x0)

xi − x0
i

.

It is evident that for the existence of ∂xiψ(x0) it is necessary and sufficient
that the equal between themselves values ∂+xiψ(x0) and ∂−xiψ(x0) exist.

In case the values ∂+x1ψ(x0) and ∂+x2ψ(x0) exist, we introduce the +
gradient at the point x0 for the function ψ(x),

+ gradψ(x0) =
(
∂+x1ψ(x0), ∂+x2ψ(x0)

)
.

Similarly, if there exist ∂−x1ψ(x0) and ∂−x2ψ(x0), then we introduce
the − gradient at the point x0 for the function ψ(x) by the equality

− gradψ(x0) =
(
∂−x1ψ(x0), ∂−x2ψ(x0)

)
.

For the validity of the correlations

− gradψ(x0) = gradψ(x0) = + gradψ(x0)

the equalities of all components

∂−xiψ(x0) = ∂xiψ(x0) = ∂+xiψ(x0), i = 1, 2
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are necessary and sufficient.
The last equalities are, in general, insufficient for the existence of the

angular or of the strong gradient at the point x0 of the function ψ(x),
which are tightly connected with the function ψ(x) ([2], [3]).

Below we shall introduce the unilateral partial ± derivatives both in the
strong and in the angular senses. The necessary and sufficient conditions will
be proved for the existence of the strong and angular gradients. However,
the conditions for the existence of the angular gradient will at the same
time be the conditions for the existence of a total differential.

§ II.1. The Unilateral in the Strong Partial Derivatives

The notions ([2], [3]) of partial derivatives in the strong with respect to
the variables x1 and x2 at the point x0 = (x0

1, x
0
2) for the function ψ(x),

x = (x1, x2) allow one to introduce partial ± derivatives in the strong with
respect to x1 and x2 at the point x0 for the function ψ(x):

∂+
[x1]

ψ(x0) = lim
(h1,h2)→(0,0)

h1>0

ψ(x0
1 + h1, x

0
2 + h2) − ψ(x0

1, x
0
2 + h2)

h1
, (1)

∂−[x1]
ψ(x0) = lim

(h1,h2)→(0,0)
h1<0

ψ(x0
1 + h1, x

0
2 + h2) − ψ(x0

1, x
0
2 + h2)

h1
, (2)

∂+
[x1]

ψ(x0) = lim
(h1,h2)→(0,0)

h2>0

ψ(x0
1 + h1, x

0
2 + h2) − ψ(x0

1 + h1, x
0
2)

h2
, (3)

∂−[x2]
ψ(x0) = lim

(h1,h2)→(0,0)
h2<0

ψ(x0
1 + h1, x

0
2 + h2) − ψ(x0

1 + h1, x
0
2)

h2
. (4)

It is clear that for the existence of ∂[xi]ψ(x0) it is necessary and sufficient

that there exist equal between themselves ∂+
[xi]
ψ(x0) and ∂−[xi]

ψ(x0), and if

they are equal, we have

∂−[xi]
ψ(x0) = ∂[xi]ψ(x0) = ∂+

[xi]
ψ(x0), i = 1, 2. (5)

Let us now introduce the strong ± gradients at the point x0 for the
function ψ(x) by the equalities

+ str gradψ(x0) =
(
∂+
[x1]

ψ(x0), ∂+
[x2]

ψ(x0)
)
, (6)

− str gradψ(x0) =
(
∂−[x1]

ψ(x0), ∂−[x2]
ψ(x0)

)
, (7)

which are connected with the strong gradient ([2],[3])

str gradψ(x0) =
(
∂[x1]ψ(x0), ∂[x2]ψ(x0)

)
(8)

as follows:
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Theorem II.1.1. For the existence of str gradψ(x0) it is necessary and

sufficient that there exist equal between themselves − str gradψ(x0) and
+ str gradψ(x0), and if they are equal, we have

− str gradψ(x0) = str gradψ(x0) = + str gradψ(x0). (9)

Theorem II.1.2. The existence of finite ∂−[xi]
ψ|(x0) and ∂+

[xi]
ψ|(x0) im-

plies that the strong symmetric partial derivative is finite with respect to the

variable xi at the point x0 for the function ψ(x1, x2) ([5], [6]), denoted by

∂
(1)
[xi]
ψ(x0), for which the equality

∂
(1)
[xi]
ψ(x0) =

1

2

[
∂−[xi]

ψ(x0) + ∂+
[xi]
ψ(x0)

]
, i = 1, 2, (10)

holds.

In addition, there exists the function for which the left-hand side of equal-

ity (10) is finite, and the summands on the right-hand side of the same

equality are infinite of opposite signs.

Proof. The above-said will be checked for the variable x1. Since in the
equality (see [6], Definition 3)

∂
(1)
[x1]

ψ(x0) = lim
(h1,h2)→(0,0)

ψ(x0
1 + h1, x

0
2 + h2) − ψ(x0

1 − h1, x
0
2 + h2)

2h1
.

the relation appearing under the limit sign is the even function with respect
to h1, we can assume that h1 > 0 and have

∂
(1)
[x1]

ψ(x0) =
1

2
lim

(h1,h2)→(0,0)

ψ(x0
1 + h1, x

0
2 + h2) − ψ(x0

1, x
0
2 + h2)

2h1
+

+
1

2
lim

(h1,h2)→(0,0)

ψ(x0
1 − h1, x

0
2 + h2) − ψ(x0

1, x
0
2 + h2)

2h1
=

=
1

2

[
∂+
[x1]

ψ(x0) + ∂−[x1]
ψ(x0)

]
.

The function ϕ(x1, x2) = |x1|
1/2 + |x2|

1/2 in the neighborhood of the
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point x0 = (0, 0) fits for the second part of the theorem. We have

∂
(1)
[x1]

ϕ(x0) = lim
(h1,h2)→(0,0)

ϕ(h1, h2) − ϕ(−h1, h2)

2h1
=

= lim
(h1,h2)→(0,0)

|h1|
1/2 + |h2|

1/2 − | − h|1/2 − |h2|
1/2

2h1
= 0,

∂+
[x1]

ψ(x0) = lim
h1→0+
h2→0

ϕ(h1, h2) − ϕ(0, h2)

h1
=

= lim
h1→0+
h2→0

|h1|
1/2 + |h2|

1/2 − |h|1/2

|h1|
= +∞,

∂−[x1]
ψ(x0) = lim

h1→0−
h2→0

|h1|
1/2

h1
= − lim

h1→0−
h2→0

|h1|
1/2

|h1|
= −∞.

§ II.2. The Unilateral in the Angular Partial Derivatives

Below we shall introduce partial in the angular ± derivatives with respect
to the variables x1 and x2 at the point x0 = (x0

1, x
0
2) for the function ψ(x),

x = (x1, x2) by means of equalities (1)–(4) under the condition that each of
the limits exists and does not depend on the constant therein:

∂+

x̂1

ψ(x0) = lim
h1→0+
|h2|≤ah1

ψ(x0
1 + h1, x

0
2 + h2) − ψ(x0

1, x
0
2 + h2)

h1
, a > 0, (1)

∂+

x̂2

ψ(x0) = lim
h2→0+
h2≥b|h1|

ψ(x0
1 + h1, x

0
2 + h2) − ψ(x0

1, x
0
2 + h2)

h2
, b > 0, (2)

∂−
x̂1

ψ(x0) = lim
h1→0−

|h2|≤−ch1

ψ(x0
1 + h1, x

0
2 + h2) − ψ(x0

1, x
0
2 + h2)

h1
, c > 0, (3)

∂−
x̂2

ψ(x0) = lim
h2→0−

h2≤−d|h1|

ψ(x0
1 + h1, x

0
2 + h2) − ψ(x0

1 + h1, x
0
2)

h2
, d > 0. (4)

The existence and equality of the values ∂−
x̂i

ψ(x0) and ∂−
x̂i

ψ(x0) is the

necessary and sufficient condition for the existence of ∂
x̂i

ψ(x0) ([2], Defini-

tion 2.1).

The angular ± gradients at the point x0 for the function ψ(x) are intro-
duced by the equalities, if there exist their components:

+ ang gradψ(x0) =
(
∂+

x̂1

ψ(x0), ∂+

x̂2

ψ(x0)
)
, (5)

− ang gradψ(x0) =
(
∂−
x̂1

ψ(x0), ∂−
x̂2

ψ(x0)
)
. (6)
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This implies that for the angular gradient ([2], Definition 2.2)

ang gradψ(x0) =
(
∂+

x̂1

ψ(x0), ∂+

x̂2

ψ(x0)
)
, (7)

we arrive at the following

Theorem II.2.1. For the existence of ψ(x0) it is necessary and sufficient

that there exist equal values + ang gradψ(x0) and − ang gradψ(x0), and if

they are equal we have

− ang gradψ(x0) = ang gradψ(x0) = + ang gradψ(x0). (8)

From the above-said, by virtue of Theorem 2.2 from [2], we get

Theorem II.2.2. For the total differential dψ(x0) to exist, it is necessary

and sufficient that there exist finite and equal between themselves angular ±
gradients at the point x0 specified by equalities (5) and (6).

§ II.3. The Unilateral Differentials

Since the finiteness of ang gradψ(x0) is the necessary and sufficient con-
dition for the existence of a total differential dψ(x0) ([2], Theorem 2.2 and
[3], Theorem 1), using the angular ± gradients, we introduce the following

Definition II.3.1. The function ψ(x) is said to be + differentiable at the
point x0, if + ang gradψ(x0) is finite, while the + differential, in symbols
d+ψ(x0), for the function ψ(x) at the point x0 is defined by the equality

d+ψ(x0) = ∂+

x̂1

ψ(x0)dx1 + ∂+

x̂2

ψ(x0)dx2. (1)

Analogously, the − differential for the finite − ang gradψ(x0) is defined
by the equality

d−ψ(x0) = ∂−
x̂1

ψ(x0)dx1 + ∂−
x̂2

ψ(x0)dx2. (2)

Thus we have the following

Theorem II.3.1. For the existence of the total differential dψ(x0) it is

necessary and sufficient that there exist the equal between themselves ± dif-

ferentials d−ψ(x0) and d+ψ(x0), and if they are equal, we have

d−ψ(x0) = dψ(x0) = d+ψ(x0). (3)

Remark. The finiteness of + str gradψ(x0) implies that of + ang gradψ(x0)
and, consequently, the existence of the + differential d+ψ(x0). The fact
analogous to the above is available for the case of − str gradψ(x0).
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