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THE SMOOTHNESS OF FUNCTIONS OF
TWO VARIABLES AND DOUBLE

TRIGONOMETRIC SERIES

Abstract

The notion of smoothness (according to Riemann) is introduced for
functions of two variables and some of their properties are established.
As an application we prove the uniform smoothness of an everywhere
continuous sum of a double trigonometric series in the complex form
which is obtained by twice term-by-term integration, over every variable
rectangle [0, x]× [0, y] ⊂ [0, 2π]× [0, 2π] of a double trigonometric series
in the complex form absolutely converging at some point. An analogous
consideration is given to a double trigonometric series in the real form,
the absolute values of whose coefficients form a converging series.

0 Introduction.

0A. According to Riemann, a function ϕ(x) defined in the neighborhood of
a point x0 ∈ R is called smooth at x0 (the term was introduced by Zygmund
[5]) if the equality

lim
h→0

ϕ(x0 + h) + ϕ(x0 − h)− 2ϕ(x0)
h

= 0 (0.1)

is fulfilled.
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Riemann showed that the twice term-by-term integration of a trigonometric
series in real form with coefficients converging to zero gives a function that
satisfies equality (0.1) for all x0 ∈ R ([4, p. 245], even uniformly [1, p. 184],
[5], [6, p. 320]).

A detailed investigation of Riemann-smooth functions with various appli-
cations to different classes of functions and to trigonometric series was carried
out by Zygmund [5].

0B. Throughout the paper we will use the notions of angular and strong
gradients.

Definition 0.1 ([2, p. 71]). A finite function F in a neighborhood of a point
(x0, y0) ∈ R2 has the angular partial derivative F ′bx(x0, y0) at (x0, y0) with
respect to x if for every constant c > 0 there exists the limit

F ′bx(x0, y0) = lim
h→0
|k|≤c|h|

F (x0 + h, y0 + k)− F (x0, y0 + k)
h

(0.2)

and this limit does not depend on c. Analogously,

F ′by(x0, y0) = lim
k→0
|h|≤l|k|

F (x0 + h, y0 + k)− F (x0 + h, y0)
k

, l > 0. (0.3)

The angular gradient of the function F at the point (x0, y0) is

anggradF (x0, y0) =
(
F ′bx(x0, y0), F ′by(x0, y0)

)
. (0.4)

Definition 0.2 ([2, p. 79]). If the relations from (0.2) and (0.3) have the
limits as (h, k)→ (0, 0), then we call them the strong partial derivatives of the
function F at (x0, y0) with respect to x and y and denote them by F ′[x](x0, y0)
and F ′[y](x0, y0), respectively.

The strong gradient of the function F at (x0, y0) is

strgradF (x0, y0) =
(
F ′[x](x0, y0), F ′[y](x0, y0)

)
. (0.5)

1 The Smoothness of Functions of Two Variables.

1A. Let us begin with some preliminary material.
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Definition 1.1. A function f(x, y) defined in a neighborhood of a point
(x0, y0) ∈ R2 is called smooth at the point (x0, y0) if the following equality is
fulfilled:

lim
(h,k)→(0,0)

f(x0 + h, y0 + k) + f(x0 − h, y0 − k)− 2f(x0, y0)
|h|+ |k|

= 0. (1.1)

If f(x, y) is a smooth function at every point from some open set E ⊂ R2,
then f is called smooth in E. If f is continuous and satisfies condition (1.1)
uniformly with respect to all points (x0, y0) ∈ E, then f is called uniformly
smooth in E.

It is obvious that:
1) if a function f(x, y) is smooth at a point (x0, y0), then the partial func-

tions f(x, y0) and f(x0, y) of one variable are smooth at the points x0 and y0,
respectively.

2) If the functions a(x) and b(y) are smooth at the points x0 and y0,
respectively, then their sum f(x, y) = a(x) + b(y) is smooth at (x0, y0).

Theorem 1.2. A function of two variables which is differentiable at some
point is smooth at the same point. The converse statement is not true.

Proof. Let a function f(x, y) be differentiable at a point (x0, y0). Then we
have the equality

lim
(h,k)→(0,0)

f(x0 + h, y0 + k)− f(x0, y0)−Ah−Bk
|h|+ |k|

= 0, (1.2)

where the coefficients A and B of the differential df(x0, y0) = Ah + Bk are
equal to the angular partial derivatives of the function f(x, y) at the point
(x0, y0) with respect to the variables x and y ([2, p. 71]):

A = f ′bx(x0, y0), B = f ′by(x0, y0). (1.3)

The desired statement follows from the equality

f(x0 + h, y0 + k) + f(x0 − h, y0 − k)− 2f(x0, y0)
|h|+ |k|

=
f(x0 + h, y0 + k)− f(x0, y0)−Ah−Bk

|h|+ |k|

+
f(x0 − h, y0 − k)− f(x0, y0)−A(−h)−B(−k)

| − h|+ | − k|
,
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because its right-hand part tends to zero as (h, k)→ (0, 0).
To verify that the converse statement is not true, it is sufficient to take the

continuous and smooth on (0, 2π) functions α(x) and β(y) which are differen-
tiable only on a set of measure zero ([6, p. 48]). Then the function ϕ(x, y) =
α(x) + β(y) is continuous and smooth on the rectangle (0, 2π) × (0, 2π), but
it is nondifferentiable almost everywhere on (0, 2π)× (0, 2π).

Corollary 1.3. If the functions a(x) and b(y) are differentiable at the points
x0 and y0, respectively, then the product φ(x, y) = a(x) · b(y) is a smooth
function at the point (x0, y0).

Corollary 1.4. The smoothness of a function f(x, y) at a point (x0, y0) takes
place when one of the following sufficient conditions for f to be differentiable
at (x0, y0) is fulfilled: the angular gradient is finite, the gradient is continuous,
the strong gradient is finite, of the partial derivatives one is finite and the other
is continuous ([2, pp. 71–74 and 79–80]).

1B. In the class of almost everywhere differentiable functions of two variables
we distinguish an important subclass of functions, every one of which is every-
where continuous and is smooth almost everywhere on a rectangle. Namely,
we have

Theorem 1.5. Let a function f(x, y) be summable on the rectangle [a, b] ×
[c, d]. Then the function

F (x, y) =
∫ x

a

∫ y

c

f(t, τ) dt dτ (1.4)

is continuous everywhere and is smooth at almost all interior points (x0, y0)
of this rectangle.

Proof. We obtain the proof from Theorem 1.2 and the fact that the function
F is differentiable at almost all points of the rectangle ([2, p. 102]).

This statement can be supplemented in the following manner.

Theorem 1.6. Let (x0, y0) be the point at which the function F defined by
equality (1.4) is differentiable. Then the function

Φ(x, y) =
∫ x

x0

∫ y

y0

f(t, τ) dt dτ (1.5)

is smooth at the point (x0, y0).
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Proof. We have the equality

Φ(x0 + h,y0 + k) + Φ(x0 − h, y0 − k)− 2Φ(x0, y0)

=
∫ x+h

x0

∫ y+k

y0

f(t, τ) dt dτ +
∫ x−h

x0

∫ y−k

y0

f(t, τ) dt dτ.
(1.6)

If both parts of this equality are divided by the sum |h|+ |k|, then in the right-
hand part we obtain the sum of two integrals with coefficients (|h|+ |k|)−1 and
(| − h| + | − k|)−1 and this sum tends to zero as (h, k) → (0, 0) ([2, p. 104]).
Therefore the function Φ(x, y) is smooth at (x0, y0).

1C. In case we wish to have a condition on a function in the neighborhood of
some points such that this function is smooth at this point, we can use

Theorem 1.7. Assume that a function f(x, y) in the neighborhood of a point
(x0, y0) satisfies the condition

|f(x0 + u, y0 + v) + f(x0 − u, y0 − v)| ≤M, (1.7)

in particular, if f is bounded near the point (x0, y0). Then the function Φ(x, y)
defined by equality (1.5) is smooth at the point (x0, y0).

Proof. Let us write the right-hand part of equality (1.6) in the form∫ h

0

∫ k

0

[f(x0 + t, y0 + τ) + f(x0 − t, y0 − τ)] dt dτ.

Therefore

|Φ(x0 + h, y0 + k) + Φ(x0 − h, y0 − k)− 2Φ(x, y)|
|h|+ |k|

≤M |h| |k|
|h|+ |k|

→ 0, (h, k)→ (0, 0).

Thus the function Φ is smooth at the point (x0, y0).

2 The Differentiability of a Smooth Function of Two
Variables at a Point of Extremum.

Though a function of two variables at the point of smoothness may be nondif-
ferentiable (see Section 1), there may nevertheless occur a case where smooth-
ness implies differentiability.
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Theorem 2.1. If a smooth function f(x, y) at a point (x0, y0) has a maximum
or a minimum at (x0, y0), then f(x, y) at (x0, y0) has zero angular partial
derivatives f ′bx(x0, y0) = 0, f ′by(x0, y0)=0 and therefore df(x0, y0)=0.

Proof. We have the equality

f(x0 + h, y0 + k) + f(x0 − h, y0 − k)− 2f(x0, y0)
|h|+ |k|

=
f(x0 + h, y0 + k)− f(x0, y0)

|h|+ |k|
+
f(x0 − h, y0 − k)− f(x0, y0)

|h|+ |k|
,

(2.1)

the left-hand part of which tends to zero as (h, k)→ (0, 0) because f is smooth
at (x0, y0). Therefore the sum of two summands in the right-hand part of
equality (2.1) tends to zero as (h, k)→ (0, 0).

But both summands are of the same sign for h and k sufficiently small.
Therefore each of the two summands tends to zero as (h, k) → (0, 0). Hence
in particular we obtain the equality f ′x(x0, y0) = 0 for k = 0 and the equality
f ′y(x0, y0) = 0 for h = 0.

Further, keeping in mind that the first summand tends to zero, using the
equality

lim
(h,k)→(0,0)

f(x0 + h, y0 + k)− f(x0, y0 + k) + f(x0, y0 + k)− f(x0, y0)
|h|+ |k|

= 0,

we obtain by virtue of f ′y(x0, y0) = 0

lim
(h,k)→(0,0)

f(x0 + h, y0 + k)− f(x0, y0 + k)
|h|+ |k|

= 0. (2.2)

Let now c > 0 be an arbitrary constant and assume that h → 0 and
|k| ≤ c|h|. Then, writing |h|+ |k| = |h|(1 + |k|/|h|) ≤ |h|(1 + c), from (2.2) we
have

lim
(h,k)→(0,0)
|k|≤c|h|

f(x0 + h, y0 + k)− f(x0, y0 + k)
h

= 0.

This means that f ′bx(x0, y0) = 0. In an analogous manner we obtain
f ′by(x0, y0) = 0 and therefore df(x0, y0) = 0.
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3 The Smoothness and Symmetrical Differentiability of
Functions of Two Variables.

From the differentiability of a function of two variables we have its symmet-
rical differentiability without the converse statement [3]. Let us now prove
that the symmetrical differentiability implies that the considered function is
differentiable when it is smooth.

Definition 3.1 ([3]). A function ϕ(x, y) is called symmetrically differentiable
at a point (x0, y0) if there exist finite constants A and B with the property

lim
(h,k)→(0,0)

ϕ(x0 + h, y0 + k)− ϕ(x0 − h, y0 − k)− 2Ah− 2Bk
|h|+ |k|

= 0. (3.1)

Proposition 3.2. Let a function f(x, y) be smooth at a point (x0, y0). Then
for f to be differentiable at (x0, y0) it is necessary and sufficient that f be
symmetrically differentiable at (x0, y0).

Proof. We obtain the proof from the equality

f(x0 + h, y0 + k) + f(x0 − h, y0 − k)− 2f(x0, y0)
|h|+ |k|

+
f(x0 + h, y0 + k)− f(x0 − h, y0 − k)− 2Ah− 2Bk

|h|+ |k|

= 2
f(x0 + h, y0 + k)− f(x0, y0)−Ah−Bk

|h|+ |k|
.

(3.2)

Corollary 3.3. The everywhere smooth and almost everywhere nondifferen-
tiable function ϕ(x, y) indicated in the proof of Theorem 1.2 is even symmet-
rically nondifferentiable almost everywhere.

4 The Smoothness and Unilateral Differentiability of
Functions of Two Variables.
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Let U(O) and U0(O) = U(O) \ {O} denote the neighborhood and the punc-
tured neighborhood of the point O = (0, 0). We use the following sets ([2, p.
43]):

A+
1 = {(h, k) ∈ U(O) : h > 0}, A+

2 = {(0, k) ∈ U(O) : k > 0},
A−1 = {(h, k) ∈ U(O) : h < 0}, A−2 = {(0, k) ∈ U(O) : k < 0},

A+
12 = A+

1 ∪A
+
2 , A−12 = A−1 ∪A

−
2 .

It is obvious that A+
12 ∩A

−
12 = ∅ and A+

12 ∪A
−
12 = U0(O).

Let us introduce the following two definitions.

Definition 4.1. A function f(x, y) is called right-differentiable at the point
p0 = (x0, y0) if the equality

lim
(h,k)→(0,0)

(h,k)∈A+
12

f(x0 + h, y0 + k)− f(x0, y0)−A+h−B+k

|h|+ |k|
= 0 (4.1)

is fulfilled for some finite numbers A+ and B+, and the linear function A+h+
B+k for (h, k) ∈ A+

12 is called a right-differential of f at the point p0, denoted
by d+f(p0) and we write

d+f(p0) = A+h+B+k. (4.2)

Definition 4.2. A function f(x, y) is called left-differentiable at the point
p0 = (x0, y0) if there exist finite numbers A− and B− such that the equality

lim
(h,k)→(0,0)

(h,k)∈A−12

f(x0 + h, y0 + k)− f(x0, y0)−A−h−B−k
|h|+ |k|

= 0 (4.3)

is fulfilled, and the linear function A−h+B−k is called a left-differential of f
at the point p0, denoted by d−f(p0), for (h, k) ∈ A−12, and we write

d−f(p0) = A−h+B−k. (4.4)

The next two propositions are obvious.

Proposition 4.3. A differentiable at a point p0 function f(x, y) is bilaterally
differentiable at p0 and the equalities d+f(p0) = df(p0), d−f(p0) = df(p0),

A+ = A− = f ′bx(p0), B+ = B− = f ′by(p0) (4.5)

are fulfilled.
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Proposition 4.4. If a function f(x, y) is bilaterally differentiable at a point p0

and the equalities A+ = A− and B+ = B− are fulfilled, then f is differentiable
at p0 and

A+ = f ′bx(p0) = A−, B+ = f ′by(p0) = B−. (4.6)

We have

Theorem 4.5. A smooth at some point p0 = (x0, y0) function f(x, y) is
differentiable at p0 if and only if it is unilaterally differentiable at the point p0.

Proof. For every finite constants A and B we have

f(x0 + h, y0 + k) + f(x0 − h, y0 − k)− 2f(x0, y0)
|h|+ |k|

=
f(x0 + h, y0 + k)− f(x0, y0)−Ah−Bk

|h|+ |k|

+
f(x0 − h, y0 − k)− f(x0, y0)−A(−h)−B(−k)

| − h|+ | − k|
.

(4.7)

The left-hand part of equality (4.7) tends to zero as (h, k) → (0, 0), in
particular for (h, k) ∈ A+

12, since the function f is smooth at (x0, y0). Fur-
thermore, the first summand in the right-hand part of (4.7) tends to zero
as (h, k) → (0, 0) under the condition (h, k) ∈ A+

12 in the case of right-hand
differentiability of f at (x0, y0). Therefore the second summand in the right-
hand part of equality (4.7) also tends to zero as (h, k)→ (0, 0) provided that
(h, k) ∈ A+

12. This means that f is left-hand differentiable at the point (x0, y0)
since (−h,−k) ∈ A−12. Thus we obtain the equalities d+f(p0) = Ah + Bk
and d−f(p0) = Ah + Bk. Hence it follows that the function f is differen-
tiable at the point p0 by virtue of Proposition 4.4 and we have the equality
df(p0) = f ′bx(p0) dx+ f ′by(p0) dy. As a result we obtain

d+f(p0) = f ′bx(p0) dx+ f ′by(p0) dy, (4.8)

d−f(p0) = f ′bx(p0) dx+ f ′by(p0) dy. (4.9)

The theorem is proved.
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5 Smoothness and Separately Smoothness in an Angular
Sense.

The differentiability of a function of two variables, generally speaking, of a
function of many variables is equivalent to the finiteness of its angular partial
derivatives ([2, pp. 62, 65, 71]). Therefore it is natural to investigate the
smoothness of a function of two variable by an analogous method. To this
end, we introduce some definitions.

Definition 5.1. A function f(x, y) is called smooth in an angular sense with
respect to the variable x at a point p0 = (x0, y0) if the equality

lim
h→0
|k|≤c|h|

f(x0 + h, y0 + k) + f(x0 − h, y0 + k)− 2f(x0, y0)
h

= 0 (5.1)

is fulfilled for all constants c > 0.

Definition 5.2. A function f(x, y) is called smooth in an angular sense with
respect to a variable y at the point p0(x0, y0) if for all constants ` > 0 we have

lim
k→0
|k|≥`|h|

f(x0 + h, y0 + k) + f(x0 + h, y0 − k)− 2f(x0, y0)
k

= 0. (5.2)

If a function f(x, y) satisfies the equalities (5.1) and (5.2) simultaneously,
then f is called smooth in an angular sense at the point p0 with respect to
each variable or, which is the same, in an angular sense separately smooth at
p0.

Definition 5.3 ([3, p. 109]). The limit

lim
(h,k)→(0,0)

f(x0 + h, y0 + k)− f(x0 − h, y0 + k)
2h

= f
(′)
[x](p0) (5.3)

(
respectively the limit

lim
(h,k)→(0,0)

f(x0 + h, y0 + k)− f(x0 + h, y0 − k)
2k

= f
(′)
[y] (p0)

)
(5.4)

is called a symmetrical strong partial derivative of a function f(x, y) with
respect to x (with respect to y) at the point p0 = (x0, y0), denoted by f (′)

[x](p0)

(respectively by f (′)
[y] (p0)).
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Remark 5.4. 1) The finiteness of the symmetrical strong partial derivatives
(5.3) and (5.4) implies the symmetrical differentiability (see Definition 3.1)
of a function f(x, y) at the point p0 without the converse statement ([3, p.
110]); 2) a function f(x, y) has, at the point p0, the following, noncomparable
in general, properties: 2a) the differentiability (see equalities (1.2) and (1.3))
and finiteness of the symmetrical strong partial derivatives (5.3) and (5.4) ([3,
p. 111]), 2b) the symmetrical differentiability and finiteness of symmetrical
angular partial derivatives ([3, p. 113]).

Theorem 5.5. The smoothness of a function f(x, y) at a point p0 = (x0, y0)
implies its smoothness in an angular sense at p0 with respect to the variable x
provided that

f
(′)
[y] (p0) = 0. (5.5)

Proof. We have the equality

f(x0 + h, y0 + k) + f(x0 − h, y0 + k)− 2f(x0, y0)
= [f(x0 + h, y0 + k) + f(x0 − h, y0 − k)− 2f(x0, y0)]

+ [f(x0 − h, y0 + k)− f(x0 − h, y0 − k)] .
(5.6)

The smoothness of the function f(x, y) at the point p0 and the fulfilment
of equality (5.5) imply that for every number ε∗ > 0 there exists a number
δ∗ = δ∗(p0, ε) > 0 with the properties

|f(x0 + h, y0 + k)− f(x0 − h, y0 − k)− 2f(x0, y0)| < ε∗(|h|+ |k|), (5.7)
|f(x0 − h, y0 + k)− f(x0 − h, y0 − k)| < ε∗|k| (5.8)

provided that |h| < δ∗ and |k| < δ∗. Therefore from (5.6) we obtain

|f(x0 + h, y0 + k) + f(x0 − h, y0 + k)− 2f(x0, y0)|
< 2ε∗(|h|+ |k|), |h| < δ∗, |k| < δ∗. (5.9)

Hence it follows that∣∣∣∣f(x0 + h, y0 + k) + f(x0 − h, y0 + k)− 2f(x0, y0)
h

∣∣∣∣
< 2ε∗

(
1 +
|k|
|h|

)
, |h| < δ∗, |k| < δ∗.

(5.10)
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Let c > 0 be any number and ε > 0 be an arbitrarily small number. Assume
that the point (h, k) tends to the point (0, 0) when the condition |k| ≤ c|h| is
fulfilled. Now putting ε∗ = ε

2(1+c) and δ = δ(ε, p0, c) > 0 in inequality (5.10),
we obtain∣∣∣∣f(x0 + h, y0 + k) + f(x0 − h, y0 + k)− 2f(x0, y0)

h

∣∣∣∣ < ε,

|h| < δ, |k| < δ, |k| ≤ c|h|.
(5.11)

This means the fulfilment of equality (5.1); i.e., the function f(x, y) is smooth
in an angular sense at the point p0 with respect to the variable x.

The next statement is proved analogously.

Theorem 5.6. The smoothness of a function f(x, y) at a point p0 = (x0, y0)
implies its smoothness in an angular sense at p0 with respect to the variable y
provided that

f
(′)
[x](p0) = 0. (5.12)

Finally, let us prove the following theorem.

Theorem 5.7. Let a function f(x, y) defined in a neighborhood of a point
p0 = (x0, y0) satisfy conditions (5.5) and (5.12). Then for f to be smooth
at p0 it is necessary and sufficient that it is separately smooth in an angular
sense at the point p0.

Proof. The necessity follows from Theorems 5.5 and 5.6. We begin proving
the sufficiency with the fact that for the particular case c = 1, inequality (5.11)
takes the form

|f(x0 + h, y0 + k) + f(x0 − h, y0 + k)| < ε|h|,
|h| < δ, |k| < δ, |k| ≤ |h|.

(5.13)

Since ε∗ < ε, from inequality (5.8) it follows that

|f(x0 − h, y0 + k)− f(x0 − h, y0 − k)| < ε|k|, |k| < δ. (5.14)

Inequalities (5.13) and (5.14) obviously imply

|f(x0 + h, y0 + k) + f(x0 − h, y0 + k)− 2f(x0, y0)|
< ε(|h|+ |k|), |h| < δ, |k| < δ, |k| ≤ |h|,

(5.15)

|f(x0 − h, y0 + k)− f(x0 − h, y0 − k)| < ε(|h|+ |k|), |k| < δ. (5.16)
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Applying inequalities (5.15) and (5.16) to the equality (5.6) we obtain

|f(x0 + h, y0 + k) + f(x0 − h, y0 − k)− 2f(x0, y0)| < 2ε(|h|+ |k|),
|h| < δ, |k| < δ, |k| ≤ |h|.

(5.17)

By a similar reasoning, using equality (5.12) and the fact that the function
f is smooth in an angular sense at p0 with respect to the variable y, we obtain
the inequality

|f(x0 + h, y0 + k) + f(x0 − h, y0 − k)− 2f(x0, y0)| < 2ε(|h|+ |k|),
|h| < δ, |k| < δ, |k| ≥ |h|.

(5.18)

It is obvious that the set {(h, k) : |h| < δ, |k| < δ, |k| ≤ |h|} ∪ {(h, k) :
|h| < δ, |k| < δ, |k| ≥ |h|} is the δ-neighborhood of the point p0. Therefore
from inequalities (5.17) and (5.18) it follows that

|f(x0 + h, y0 + k) + f(x0 − h, y0 − k)− 2f(x0, y0)| < 2ε(|h|+ |k|),
|h| < δ, |k| < δ.

(5.19)

Thus equality (1.1) is fulfilled; i.e., the function f(x, y) is smooth at the
point p0.

6 The Smoothness of Sums of Double Trigonometric
Series.

6A. The complex case. Assume that there is a double trigonometric series
in the complex form

∞∑
m,n=−∞

cmne
i(mx+ny), (6.1)

which we rewrite as

c00 +
∞∑

m=−∞
m 6=0

cm0e
imx +

∞∑
n=−∞

n 6=0

c0ne
iny +

∞∑
m,n=−∞

m·n 6=0

cmne
i(mx+ny)

≡ c00 +A(x) +B(y) + C(x, y).

(6.2)
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It is assumed that series (6.1) absolutely converges at some point of the square
I = [0, 2π]× [0, 2π]; i.e., it is assumed that there exists the finite limit1

L = lim
M→∞
N→∞

M∑
m=−M

N∑
n=−N

|cmn| =
∞∑

m,n=−∞
|cmn|. (6.3)

By twice term-by-term integration of expression (6.2) over every variable rect-
angle [0, x]× [0, y] ⊂ I we obtain the expressions

c00
4
x2y2 from c00, (6.4)

∞∑
m=−∞

m6=0

cm0

[
y2

m2
− y2

m2
eimx +

i

m
xy2

]
from A(x), (6.5)

∞∑
n=−∞

n 6=0

c0n

[
x2

n2
− x2

n2
einy +

i

n
x2y

]
from B(y), (6.6)

∞∑
m,n=−∞

m·n 6=0

cmn

[
ei(mx+ny)

m2n2
− eimx

m2n2
− einy

m2n2
− iyeimx

m2n

− ixe
iny

mn2
+

ix

mn2
+

iy

m2n
− xy

mn
+

1
m2n2

]
from C(x, y).

(6.7)

It is obvious that in these expressions, in the square brackets we have
everywhere differentiable functions of one or two variables as summands.

It can be verified that these functions satisfy equalities (0.1) or (1.1) uni-
formly with respect to (x, y) ∈ I and also uniformly with respect to m and n.

Let us see whether this property is true for some typical functions.
1) For the function νmn(x, y) = ei(mx+ny) we have

νmn(x+ h, y + k) + νmn(x− h, y − k)− 2νmn(x, y)

= 2ei(mx+ny) [cos(mh+ nk)− 1] = −4ei(mx+ny) sin2 1
2

(mh+ nk).

Therefore for the function

Φ(x, y) =
∞∑

m,n=−∞
m·n 6=0

cmn

m2n2
ei(mx+ny) (6.8)

1In the author’s opinion, the assumption of absolute converging is caused by those radical
difficulties which in the past 40 years had been revealed in several very interesting works on
multiple trigonometric series.
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we have the equality

Φ(x+ h, y + k) + Φ(x− h, y − k)− 2Φ(x, y)

= −4
∑

m,n=−∞
m·n 6=0

cmn

m2n2
ei(mx+ny) sin2 1

2
(mh+ nk). (6.9)

Now we will prove the inequality

|Φ(x+ h, y + k) + Φ(x− h, y − k)− 2Φ(x, y)|
|h|+ |k|

≤ 2L(|h|+ |k|), (6.10)

where the finite constant L is defined by equality (6.3). This inequality follows
obviously from equality (6.9) taking into account that

4
|h|+ |k|

·
sin2 1

2 (mh+ nk)
m2n2

≤ 2(m2h2 + n2k2)
m2n2(|h|+ |k|)

≤ 2m2h2

m2n2|h|
+

2n2k2

m2n2|k|
=

2|h|
n2

+
2|k|
m2
≤ 2(|h|+ |k)).

(6.11)

2) For the 5th summand in the square brackets, from (6.7) we have

1
|h|+ |k|

∣∣∣∣ −imn2

[
(x+ h)ein(y+k) + (x− h)ein(y−k) − 2xeiny

]∣∣∣∣
=

1
|h|+ |k|

· 1
|m|n2

∣∣∣∣2einy

(
−2x sin2 1

2
nk + ih sinnk

)∣∣∣∣
≤ 1
|h|+ |k|

· 1
|m|n2

· 2
(

2 · 2π · 1
4
n2k2 + |h| |n| |k|

)
≤ 2π
|h|+ |k|

(
k2

|m|
+
|h| · |k|
|mn|

)
=

2π|k|2

|m|(|h|+ |k|)
+

2π|h| · |k|
|mn|(|h|+ |k|)

≤ 2π|k|2

|m||k|
+

2π|h| · |k|
|mn|k|

=
2π
|m|
|k|+ 2π

|mn|
|h| ≤ 2π(|h|+ |k|).

(6.12)

3) For the numerator of the second summand in the square brackets, from
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(6.5) we have∣∣∣eim(x+h)(y + k)2 + eim(x−h)(y − k)2 − 2y2eimx
∣∣∣

=
∣∣y2(eimh + e−imh) + 2ky(eimh − e−imh) + k2(eimh + e−imh)− 2y2

∣∣
=
∣∣2y2(cosmh− 1) + 4iky sinmh+ 2k2 cosmh

∣∣
=
∣∣∣∣−4y2 sin2 1

2
mh+ 4iky sinmh+ 2k2 cosmh

∣∣∣∣
≤ 4(2π)2

m2h2

4
+ 4 · 2π|m| |h| |k|+ 2k2.

If all the terms of the last relations are divided by m2(|h|+ |k|), then the
first ratio turns out to be less than 10π2(|h|+ |k|).

We have thereby proved the following:

Theorem 6.1. Let series (6.1) converge absolutely at some point from the
square I. Then by twice term-by-term integration of series (6.1) over every
variable rectangle [0, x] × [0, y] ⊂ I we obtain functions (6.4)–(6.7), the sum
Ω(x, y) of which is an everywhere continuous and uniformly smooth function
on the square I. Moreover, Ω(x, y) satisfies inequality (6.10) for some constant
M instead of 2L.

6B. The real case. Let us consider a double trigonometric series in the real
form

1
4

+
1
2

∞∑
m=1

(am0 cosmx+ dm0 sinmx) +
1
2

∞∑
n=1

(a0n cosny + c0n sinny)

+
∞∑

m,n=1

(amn cosmx cosny + bmn sinmx sinny + cmn cosmx sinny

+ dmn sinmx cosny) ≡ 1
4

+
1
2
A(x) +

1
2
B(y) + C(x, y). (6.13)

It is assumed that
∞∑

m=1

(|am0|+ |dm0|) <∞,
∞∑

n=1

(|a0n|+ |c0n|)) <∞, (6.14)

∞∑
m,n=1

(|amn|+ |bmn|+ |cmn|+ |dmn|)) <∞. (6.15)



The Smoothness of Functions 467

The twice integration of series (6.13) over [0, x]× [0, y] ⊂ I gives

1
16
x2y2 from

1
4
, (6.16)

−1
4
y2

∞∑
m=1

am0 cosmx+ dm0 sinmx
m2

+
1
4
y2

∞∑
m=1

am0

m2

+
1
4
xy2

∞∑
m=1

dm0

m
from A(x),

(6.17)

−1
4
x2
∞∑

n=1

a0n cosny + c0n sinny
n2

+
1
4
x2

∞∑
m=1

a0n

n2

+
1
4
x2y

∞∑
n=1

c0n

n
from B(y),

(6.18)

∞∑
m,n=1

[
amn cosmx cosny + bmn sinmx sinny

m2n2

+
cmn cosmx sinny + dmn sinmx cosny

m2n2

− amn cosmx+ cmn sinny + dmn sinmx
m2n2

− amn cosny
m2n2

− y bmn sinmx+ cmn cosmx
m2n

− x bmn sinny + dmn cosny
mn2

+ x
dmn

mn2
+ y

cmn

m2n
+ xy

bmn

mn
+

amn

m2n2

]
from C(x, y).

(6.19)

By virtue of Riemann’s theorem ([1], [5], [6]), functions (6.16)–(6.18) and
the sums of one-dimensional series from (6) are continuous and uniformly
smooth functions.

Let us now find the expression

∆2
F (x, y;h, k) = F (x+ h, y + k) + F (x− h, y − k)− 2F (x, y) (6.20)

for the basic function

F (x, y) =
∞∑

m,n=1

amn cosmx cosny + bmn sinmx sinny
m2n2

+
cmn cosmx sinny + dmn sinmx cosny

m2n2
.

(6.21)
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For this we will consider the following cases:
1) For αmn(x, y) = cosmx cosny we have

αmn(x+ h, y + k) + αmn(x− h, y − k)− 2αmn(x, y)
= 2 cosmx cosny cosmh cosnk

+ 2 sinmx sinny sinmh sinnk − 2 cosmx cosny
= 2 cosmx cosny(cosmh cosnk − 1)

+ 2 sinmh sinnk sinmx sinny.

(6.22)

But cosmh cosnk = 1
2 cos(mh− nk) + 1

2 cos(mh+ nk) and therefore

cosmh cosnk − 1 = − sin2 1
2

(mh− nk)− sin2 1
2

(mh+ nk). (6.23)

Thus

αmn(x+ h, y + k) + αmn(x− h, y − k)− 2αmn(x, y)

= −2 cosmx cosny
[
sin2 1

2
(mh+ nk) + sin2 1

2
(mh− nk)

]
+ 2 sinmh sinnk sinmx sinny.

(6.24)

2) For the function βmn(x, y) = sinmx sinny we obtain

βmn(x+ h, y + k) + βmn(x− h, y − k)− 2βmn(x, y)

= −2 sinmx sinny
[
sin2 1

2
(mh+ nk) + sin2 1

2
(mh− nk)

]
+ 2 sinmh sinnk cosmx cosny.

(6.25)

3) For the function γmn = cosmx sinny we have

γmn(x+ h, y + k) + γmn(x− h, y − k)− 2γmn(x, y)

= −2 cosmx sinny
[
sin2 1

2
(mh+ nk) + sin2 1

2
(mh− nk)

]
− 2 sinmh sinnk sinmx cosny.

(6.26)

4) For the function δmn = sinmx cosny we obtain

δmn(x+ h, y + k) + δmn(x− h, y − k)− 2δmn(x, y)

= −2 sinmx cosny
[
sin2 1

2
(mh+ nk) + sin2 1

2
(mh− nk)

]
− 2 sinmh sinnk cosmx sinny.

(6.27)
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Therefore

∆2
F (x, y;h, k) = −2

∞∑
m,n=1

Amn(x, y)
1

m2n2

[
sin2 1

2
(mh+ nk)

+ sin2 1
2

(mh− nk)
]
− 2

∞∑
m,n=1

Amn(x, y)
1

m2n2
sinmh sinnk

≡ F1(x, y;h, k) + F2(x, y;h, k),

(6.28)

where

Amn = amn cosmx cosny + bmn sinmx sinny + cmn cosmx sinny
+ dmn sinmx cosny,

Amn = amn sinmx sinny + bmn cosmx cosny − cmn sinmx cosny
− dmn cosmx sinny.

Further,

sin2 1
2

(mh+ nk) ≤
(
mh+ nk

2

)2

=
m2h2 + n2k2 + 2mhnk

4
,

sin2 1
2

(mh− nk) ≤ m2h2 + n2k2 − 2mhnk
4

,

sin2 1
2

(mh+ nk) + sin2 1
2

(mh− nk) ≤ 1
2

(m2h2 + n2k2).

(6.29)

Therefore

1
m2n2

[
sin2 1

2
(mh+ nk) + sin2 1

2
(mh− nk)

]
≤ m2h2 + n2k2

2m2n2

=
h2

2n2
+

k2

2m2
≤ 1

2
(h2 + k2) ≤ 1

2
(|h|+ |k|)2.

(6.30)

Thus uniformly with respect to (x, y) ∈ I we have

|F1(x, y;h, k)| ≤ C(|h|+ |k|)2, (6.31)

where C is the sum of series (6.15).
Further,

| sinmh sinnk|
m2n2

≤ mn|h| · |k|
m2n2

≤ |h| · |k| ≤ 1
2

(|h|+ |k|)2. (6.32)
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Therefore we have uniformly with respect to (x, y) ∈ I

|F2(x, y;h, k)| ≤ C(|h|+ |k|)2. (6.33)

From (6.31) and (6.33) it follows that the inequality

|∆2
F (x, y;h, k)| ≤ 2C(|h|+ |k|)2 (6.34)

holds uniformly with respect to (x, y) ∈ I.
Inequality (6.34) implies in particular that the continuous function F (x, y)

defined by equality (6.21) is uniformly smooth on the square I.
The theorem consists of the following.

Theorem 6.2. Let the coefficients of the double trigonometric series (6.13) in
the real form satisfy conditions (6.14) and (6.15). Then by twice term-by-term
integration of series (6.13) over every variable rectangle [0, x] × [0, y] ⊂ I we
obtain the double series (6.21), the function (6.16), the one-dimensional series
(6.17), (6.18) and also the one-dimensional series from expression (6). The
sum ω(x, y) of all these functions is an everywhere continuous and uniformly
smooth function on the square I = [0, 2π]× [0, 2π]. Moreover, ω(x, y) satisfies
inequality (6.34) for some constant N instead of 2C.
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