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CATEGORICAL, HOMOLOGICAL, AND HOMOTOPICAL PROPERTIES
OF ALGEBRAIC OBJECTS
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Abstract. This monograph is based on the doctoral dissertation of the author defended in the

Iv. Javakhishvili Tbilisi State University in 2006. It begins by developing internal category and in-

ternal category cohomology theories (equivalently, for crossed modules) in categories of groups with

operations. Further, the author presents properties of actions in categories of interest, in particular,

the existence of an actor in specific algebraic categories. Moreover, the reader will be introduced to a

new type of algebras called noncommutative Leibniz–Poisson algebras, with their properties and coho-

mology theory and the relationship of new cohomologies with well-known cohomologies of underlying

associative and Leibniz algebras. The author defines and studies the category of groups with an action

on itself and solves two problems of J.-L. Loday. Homotopical and categorical properties of chain

functors category are also examined.
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INTRODUCTION

The monograph is dedicated to the study of properties of different algebraic objects: internal cat-

egories, equivalently crossed modules, their cohomologies, actor objects, noncommutative Leibniz–
Poisson algebras, their cohomologies and their dual algebras, groups with action and Leibniz algebras,
the solution of two problems of J.-L. Loday, and the category of chain functors.

In Chaps. 1–4, we examine problems of the internal category theory in the category of groups
with operations and develop the cohomology theory of such categories and the cohomology theory
for crossed modules of the appropriate type. This field of research was suggested by G. Janelidze,

and problems presented in these chapters were proposed by him. This kind of investigation became
more attractive after the publication of the paper [78] of T. Porters, where the equivalence of internal
categories within categories of groups with operations with the category of crossed modules in this

category was established. The idea of the definition of categories of groups with operations comes from
J. Higgins [48] and G. Orzech [76]. The result of [78] was known for some specific types of categories
(e.g., groups, associative rings and algebras, Lie and Jordan algebras) in works of J. L. Verdier,

R. Brown, and C. B. Spencer [19], R. Lavendhomme and J. Roisin [58], and J.-L. Loday [60], but the
above result led to a study of internal categories within different algebraic categories simultaneously.
We hope that the structure of a category and the internalization of the well-known categorical notions

and constructions can lead to obtaining interesting properties of new introduced objects and notions.
The statements of Chaps. 2–4 give examples of such results: we define internal category cohomologies
in categories of groups with operations, calculate the corresponding complex, and describe completely

the cohomologies; we characterize cohomologically trivial internal categories and examine relations
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between internal category equivalence and homological and cohomological equivalences of internal

categories; under certain assumptions, we obtain necessary and sufficient conditions for the existence
of the internal Kan extensions, which was not known for ordinary categories.

The notion of a crossed module was introduced by J. H. C. Whitehead in 1949 during the study of
homotopy systems of connected CW-complexes (see [89]). The notion of an internal category appeared

later. It was a pleasant surprise to find the equivalence between internal categories in groups and
crossed modules defined byWhitehead. In Chap. 1, we study internal analogs of well-known categorical
notions and the relations between them. These notions for groups, in particular cases, give the notions,

or special cases of those, defined by Whitehead for homotopy systems; for example, in the case of
groups, the study of morphisms between internal functors gives a map called a crossed homomorphism
associated with a certain homomorphism. In the case where internal categories correspond to free

crossed modules with free groups of operators, the existence of a morphism between internal functors
is a special case of the existence of a deformation operator associated with a homomorphism, between
the homotopy systems of dimension 2, and it is a special case of the equivalence of these internal

functors considered as homomorphisms between homotopy systems in the sense of Whitehead. In the
same case, the equivalence of internal categories is a special case of the equivalence of the corresponding
homotopy systems (see [89]).

The crossed-module approach to the study of internal categories enables us at the same time to
develop the theory of crossed modules from the categorical point of view, for example, to define internal
equivalence of crossed modules, Kan extensions, crossed module cohomologies as the cohomologies of

the corresponding internal categories, etc. Thus, results obtained for internal categories give the
corresponding results for crossed modules. In the special cases where a category of groups with
operations is the category of groups, modules over a ring, associative, associative commutative, Lie,

Leibniz, or alternative algebras, we obtain the results for internal categories (equivalently, for crossed
modules) in these categories.

Another type of categories with structures called G-categories, where G is a group, was studied by

R. Gordon (see [47]). This type of categories occurs in the representation theory of finite-dimensional
algebras and algebraic topology and is also of independent interest in investigations. Note that crossed
modules in groups can be considered as G-categories (see [47]).

Chapter 5 is devoted to actor objects in categories of interest. This type of categories was defined by
G. Orzech (see [76]). This problem was posed by J. M. Casas after he was introduced to the work [32]
(see Chap. 3), where cohomologically trivial internal categories were characterized and the actions in

categories of interest were studied. Actions in algebraic categories were studied by G. Hochschild [50],
S. Mac Lane [70], A. S.-T. Lue [67], K. Norrie [75], J.-L. Loday [62], R. Lavendhomme and T. Lucas [57],
and others. The authors were looking for the analogs of automorphisms of groups in associative

algebras, rings, Lie algebras, crossed modules, and Leibniz algebras. We see different approaches to
this problem. Lue and Norrie (based on the results of Lue [68] and Whitehead [88]) associate to any
object a certain type of object—the construction in the corresponding category, called an actor of

this object [75], that has special properties analogous to group automorphisms, under which is meant
that the actor fits into a certain commutative diagram (see Chap. 5, diagram (5.1.7)). Lavendhomme
and Lucas introduced the notion of a Γ-algebra of derivations for an algebra A, which is the terminal

object in the category of crossed modules under A. Recently F. Borceux, G. Janelidze, and G. M. Kelly
[11, 12] proposed a categorical approach to this problem. They study internal object actions defined
in [18] and introduce the notion of a representable action, which in the case of a category of interest
is equivalent to the definition of an actor given in [21] (see Chap. 5).

We define an actor and a general actor object in categories of interest; we give a construction of
a general actor object and study the problem of the existence of actors. The examples of groups,
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modules over a ring, Lie, Leibniz, associative, associative commutative algebras, crossed modules,

and precrossed modules in groups are considered. The construction and the results obtained in this
direction enable us to show the existence of an actor in the category of precrossed modules and to
define special objects in the categories of Leibniz and associative algebras respectively, for which actors
always exist.

In Chap. 6, we study noncommutative Leibniz–Poisson algebras (NLP-algebras), which are general-
izations of classical Poisson algebras. The study of this type of algebras was proposed by T. Pirashvili
to me and J. M. Casas. Another type of algebras with bracket operation was studied in [22]. We give a

construction of free NLP-algebras, define the cohomology of NLP-algebras, study their properties, and
relate them to the known cohomologies. The dual algebras of NLP-algebras are also considered. The
cohomology defined by us gives in a special case the cohomology of Poisson algebras. Cohomologies

of Poisson algebras were defined and studied by J. Hubschmann [52] in a different way.
Graded generalized Poisson algebras (satisfying the graded Leibniz identity) were studied by

I. Kanatchikov [53]. Note that a different type of algebras with brackets, namely, algebras with two

bracket operations (Lie–Leibniz algebras), appears in the study of the Witt construction for categories
of groups with action on itself [36] (see Sec. VII).

Chapters 7 and 8 are devoted to the solution of problems of J.-L. Loday. In 1999, Loday proposed

to me three questions, and later he informed me that he had stated these problems in [62, 64]. These
problems concern Leibniz algebras. This notion was introduced by Loday himself in 1989 and was
considered in a certain sense as a noncommutative analog of Lie algebras. There is a well-known

construction of E. Witt [83, 90], due to which we can associate to lower central series of a group the
graded object, which has a Lie-algebra structure; this actually defines the functor Gr −→ Lie. The
first problem of Loday: to define algebraic objects called “coquecigrues” that would have an analogous

role for Leibniz algebras as groups have for Lie algebras. The second problem: Witt’s theorem states
that if a group is free, then the corresponding associated Lie algebra is also free [83, 90]. “A free
coquecigrue should give rise to a free Leibniz algebra.” The third problem can be formulated as

follows. Coquecigrues should have groups as examples. Thus, it is reasonable to define the homology
of the general linear group GL(A) of a ring A as the homology of a coquecigrue in the corresponding
category. These homology objects should have certain interesting properties (see [64]). This problem

also involves the study of universal central extensions of concrete type of objects; the kernels of such
extensions must have the special description in terms of the objects defined by Loday. The solution
of this problem leads us to a new notion of the Leibniz K-theory of a ring (for details, see [64]).

Thus, we search for the category and the functor

?

��
Leibniz

with the properties stated above.
Note that, according to Encyclopedia Britannica, a coquecigrue is an imaginary creature regarded

as an embodiment of absolute absurdity.
We introduce the category of groups (abelian groups) with action on itself Gr• (Ab•), the notions

of an ideal, commutator, and central series in this category, and Lie–Leibniz algebras (LL). Then we

introduce Condition 1 on the action and according to this condition define the full subcategories

Grc �
� �� Gr• , Abc �

� �� Ab• .

We construct Witt’s analogous functor

LL : Grc −→ LL.
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This functor leads us to Leibniz algebras over the ring of integers Z by taking either the composite

Grc
A �� Abc

L �� Leibniz

or the composite

Grc
LL �� LL

S2 �� Leibniz,

where A is the abelianization functor, L = LL
∣
∣
Abc

and S2 is the functor that makes the Lie bracket

operation trivial. We introduce two more conditions (Conditions 2 and 3) between round and square
brackets for the objects of Grc and according to these conditions define subcategories Gr and LL of
Grc and LL, respectively. We prove that the functor LL takes free objects from Gr to free objects in

LL. The composite

S2 LL
∣
∣
Gr

: Gr −→ Leibniz

gives free Leibniz algebras for free objects from Gr. It is proved that on free objects in Gr this functor is
isomorphic to the composite L◦Ā, where Ā is the abelianization functor; thus it is another isomorphic

way which leads us from free objects in Gr to free Leibniz algebras. Here we apply our result that,
in particular, the functor L : Abc −→ Leibniz takes free objects to free Leibniz algebras. Note that
our proof of the freeness theorem is different; it is not a generalization of E. Witt’s proof for the case
of groups. We propose constructions of free objects in the categories of groups with action on itself

defined by us and free Leibniz algebras. The properties of commutators and related questions are also
studied. The results obtained in Chaps. 7 and 8 give solutions to the two above stated problems of
J.-L. Loday [62, 64]. The third problem suggests developing the (co)homology theory and to study

universal central extensions in Gr. We hope that the constructions and the results obtained in these
chapters will lead us to interesting investigations in this direction.

In Chap. 9, we study homotopical and categorical properties of chain functors category. This kind of

work was proposed by F. W. Bauer, and the material presented here is a part of our joint work on chain
functors [6, 7]. Chain functors were introduced by Bauer himself [4] (see Sec. 9.7 for the definition)
for calculating generalized homology theories by means of chains and cycles like what one does for

ordinary, simplicially defined homology theories by chain complexes. Like chain complexes, these chain
functors form a category displaying interesting properties by themselves. In [6], we introduce a closed
model structure in the category Ch of chain functors. More precisely, we define fibrations, cofibrations,

and weak equivalences satisfying D. Quillen’s axioms CM2–CM5 for a closed model category [79]. It
turns out that the first Quillen axiom (the existence of finite limits and colimits) fails for Ch. In
particular, not every map has a kernel or a cokernel, and we do not detect arbitrary pullbacks and

pushouts in Ch. The main issue of [7] is to exhibit that (1) all cofibrations have a cokernel, (2) all
regular fibrations have a kernel, and (3) every pushout of a cofibration along a cofibration exists in
Ch (respectively, for pullbacks and fibrations). All this deserves independent interest, constituting a

surprising justification for the concepts of fibrations and cofibrations in Ch. By using these results,
we investigate interesting properties of exact sequences for fibrations and cofibrations. We will apply
the results presented in this chapter in a forthcoming paper [8] for revealing the given closed model

structure as a certain approximation to a simplicial one (satisfying, in addition to CM1–CM5, the
axioms SM6 and SM7). Simplicial model structures are discussed, for example, in [46, 49, 79].

Homological properties of nontrivial extensions of abelian categories by a functor are defined by the

author, and the coherence of such categories are studied in [26, 29]. In the special case, the results
obtained in this direction give new results for the category of modules over nontrivial extensions of
rings by bimodules.

This monograph consists of the Introduction and thirty two sections that constitute nine chapters.
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Chapter 1. In Sec. 1.1, we recall well-known definitions of an internal category, an internal functor,

a category of groups with operations (denoted by C), and a crossed module in C. We describe the
correspondence between internal functors and crossed module homomorphisms in C. In Sec. 1.2, we
describe morphisms between internal functors and relate these mappings to Whitehead’s notion of a
crossed homomorphism and an equivalence between the homomorphisms of homotopy systems. We

show that a morphism between internal functors implies the isomorphism of these functors (Proposi-
tion 1.2.1). In Sec. 1.3, we define an adjunction of internal functors, an internal category equivalence,
and an adjoint equivalence. We prove necessary and sufficient conditions for the internal adjunction of

functors in Cat(C) (internal categories in C) (Proposition 1.3.4), and show that an internal adjunction
implies an internal equivalence (Proposition 1.3.5). We obtain necessary and sufficient conditions for
an internal equivalence and and adjoint equivalence in Cat(C) (Propositions 1.3.6. and 1.3.7), which

imply that the existence of an adjoint pair of internal functors is equivalent to the adjoint equivalence
of the corresponding internal categories in C (Proposition 1.3.8). By Proposition 1.3.9, if the corre-
sponding crossed modules of internal categories are homotopy systems in the sense of Whitehead, then

the internal equivalence of these categories is a special case of the equivalence of the corresponding
homotopy systems in the sense of Whitehead [89]. We define full and faithful internal functors and give
necessary and sufficient conditions for these properties (Lemmas 1.3.11 and 1.3.12). We prove neces-

sary and sufficient conditions for an internal functor to be an internal equivalence (Theorem 1.3.13),
which is an analog of the well-known theorem for ordinary categories and functors (Theorem 1 in [72,
§ 4, IV]). At the end of the section, we give necessary and sufficient conditions for an internal category

to be equivalent to a discrete internal category (Proposition 1.3.14), which we apply in Chap. 3, in
the characterization of cohomologically trivial internal categories.

Chapter 2. In Sec. 2.1, we recall the definition of an internal diagram on C, C ∈ Cat(C) (see [43]),
and denote the corresponding category by CC. Then we consider abelian groups in CC, study the
action properties of C on A ∈ Ab(CC), and conclude that A can be considered as a Coker d-module in

the sense of [76], where d is the operator homomorphism of the crossed module corresponding to C. In
Sec. 2.2, we construct the complex for the definition of a cohomology of C ∈ Cat(C) with coefficients
in A ∈ Ab(CC) in analogy to the definition of the cohomology of ordinary categories. Applying the

equivalence of internal categories and crossed modules, we compute completely this complex, which
enables us to compute cohomologies (Theorem 2.2.1).

Chapter 3. In Sec. 3.1, we give the definition of a category of interest, which was introduced by
G. Orzech (see [76]). For each category of interest C, we define the corresponding general category
of interest CG and state the necessary and sufficient conditions for a set of actions to be the set of

split derived actions in CG in the sense of [76] (Proposition3.1.1). We recall the definitions of a (split)
B-structure and of a B-module for B ∈ C [76]. We present some preliminary results on the extensions
in categories of interest. We determine the necessary and sufficient conditions for the splitness of a

singular extension (Proposition 3.1.6), which is similar to the case of groups. In Sec. 3.2, we recall
the definition of a derivation in C (see [76]). We give the construction of the object I(C), C ∈ C. We
show that this is a universal object that turns derivations into homomorphisms between the struc-

tured objects (Proposition 3.2.2). In Sec. 3.3, we investigate under which conditions a short exact
sequence of modules over the internal category C (equivalently, Coker d-module) induces the long ex-
act sequence of cohomology groups (Proposition 3.3.1). We describe H0(C, A) and H1(C, A), which

we apply in Sec. 3.4. We define homologically and cohomologically equivalent internal categories and
prove that internal category equivalence implies homological and cohomological equivalences (Theo-
rem 3.3.4). We prove that in the case where C is a category of vector spaces over a field k, these

three conditions are equivalent (Proposition 3.3.6). At the end of the section, we state the result,
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which relates G. J. Ellis’s cohomology of crossed modules in the category of groups [42] to internal

category cohomology (Proposition 3.3.7). In Sec. 3.4, we give the characterization of cohomologically
trivial internal categories. The examples show (see Example 3, Sec. 3.4) that H0(C,−) = 0 does not
imply H1(C,−) = 0. Thus, the notion of a cohomological dimension has no sense in our case. We
describe separately internal categories C for which H0(C,−) = 0, and separately, those C for which

H1(C,−) = 0. We obtain
H0(C,−) = 0⇐⇒ I(Coker d) = 0;
H1(C,−) = 0⇐⇒ S(C) is equivalent to the discrete category (Coker d,Coker d, 1, 1, 1, 1), where S is

a singularization functor defined in this section (Theorems 3.4.1 and 3.4.3). In the case where C is the
category of groups, the first condition becomes simpler: H0(C,−) = 0 ⇐⇒ C is a connected internal
category (Corollary 3.4.2). In the case where C is the category of abelian groups, the second condition

is equivalent to the condition: the homomorphism d : Ker d0 → C0 (the crossed module corresponding
to C) is a split monomorphism (Corollary 3.4.4). At the end of the section we give examples of
computations of cohomologies for discrete, antidiscrete, and one-object internal categories.

Chapter 4. In this chapter, we consider the case C = Gr. In Sec. 4.1, we define Ext1 in Cat(Ab) as a
pullback of naturally defined diagram. We give the description of these groups in terms of equivalence

classes of extensions. In Sec. 4.2, we define an internal Kan extension. We show that in the case where
the domain internal categories in the definition of a Kan extension are connected, then the Kan exten-
sion is a unique up to an isomorphism extension of a given internal functor (Proposition 4.2.4); and

under “extension” we mean here up to an isomorphism extension. In Proposition 4.2.5, we give the nec-
essary and sufficient conditions for the functor to be a Kan extension. We describe HomCat(Gr)(M,A),

A ∈ Cat(Ab), as a pullback of certain naturally defined diagram, and H̃omCat(Gr)(M,A), the abelian

group of isomorphic classes of internal functors, as a cokernel of a certain defined morphism (Proposi-
tion 4.2.6 and Lemma 4.2.7). We prove that the short exact sequence in Cat(Ab) induces the Hom-Ext1

complex of abelian groups. For any short exact sequence in Cat(Ab) we deduce the commutative di-

agram (4.2.7) and prove Lemma 4.2.9 on the properties of H̃omCat(Gr)( , ) and ˜Ext1Cat(Ab)( , ). In
Sec. 4.3, applying the results obtained in the previous sections, under certain assumptions we prove

the theorems on the necessary and sufficient conditions for the existence of internal Kan extensions
in the case where the domain internal categories are connected. We prove the statements for two
cases, where the Kan extension is taken along the surjective and along the injective internal functors

(Theorems 4.3.2, 4.3.4, and 4.3.6). The case where the domain internal categories are nonconnected
is considered in Sec. 4.4 (Theorem 4.4.1). In the special case where the internal categories in the
diagram of the Kan extension are one-object categories, we show that the Kan extension reduces to
the unique extension of a homomorphism in Ab. From our conditions in this special case we obtain

the same conditions which we have for abelian groups.

Chapter 5. Let C be a category of interest with a set of operations Ω = Ω0 ∪ Ω1 ∪ Ω2 and a set of

identities E. In Sec. 5.1, we present the main definitions and results, which are used in what follows.
We introduce the notions of an actor and of a general actor object for the objects of C. In Sec. 5.2, for
any object A ∈ C we give a construction of the universal algebra B(A) with the operations from Ω.

We show that, in general, B(A) is an object of CG (the general category of interest corresponding to
C defined in Chap. 3). For any A ∈ C, we define an action of B(A) on A, which is a B(A)-structure
on A in CG (i.e., the split derived action appropriate to CG). In a well-known way, we define the

universal algebra B(A) � A which is an object of CG. We define the homomorphism A −→ B(A)
in CG, which turned out to be a crossed module in CG. We prove, that if an object A has an
actor in C, then B(A)=Actor(A) (Proposition 5.2.5). We show that the general actor object always

exists and B(A)=GActor(A) (Theorem 5.2.7). The main theorem states that an object A from C
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has an actor in C if and only if B(A) � A is an object in C and in this case A −→ B(A) is an

actor of A in C (Theorem 5.2.6). The cases of crossed modules and precrossed modules in groups are
considered. From the results of [11] (Theorem 6.3) and Theorem 5.2.6, applying Proposition 5.2.8,
we conclude that a category of interest C has representable object actions in the sense of [11] if and
only if B(A)�A ∈ C for any A ∈ C, and if it is the case, the corresponding representing objects are

B(A), A ∈ C. In Sec. 5.3 we consider separately the case Ω2 = {+, ∗, ∗◦}. In the case of the groups
(Ω2 = {+}), we obtain that B(A) ≈ Aut(A), A ∈ Gr. In the case of Lie algebras (Ω2 = {+, [ , ]})
for A ∈ Lie, we obtain B(A) ≈ Der(A). In the case of Leibniz algebras, we have B(A) ∈ Leibniz for

any A ∈ Leibniz; B(A) has a split derived set of actions on A if and only if for any B,C ∈ Leibniz
that has a derived action on A we have [c, [a, b]] = −[c, [b, a]], for any a ∈ A, b ∈ B, c ∈ C, (which we
call Condition 1, and it is equivalent to the existence of an Actor(A)). In this case, B(A) = Actor(A)

(Proposition 5.3.5). We give examples of such Leibniz algebras. In particular, Leibniz algebras A
with Ann(A) = (0), where Ann(A) denotes the annulator of A, and perfect Leibniz algebras (i.e.,
A = [A,A]) satisfy Condition 1. We have an analogous picture for associative algebras. In this case,

B(A) is always an associative algebra, but the action of B(A) on A defined by us is not a derived
action on A. Here we introduce Condition 2: for any B and C ∈ Ass, which has a derived action on
A, we have c ∗ (a ∗ b) = (c ∗ a) ∗ b for any a ∈ A, b ∈ B, c ∈ C, where ∗ denotes the action. The

action of B(A) on A is a derived action if and only if A satisfies Condition 2 and it is equivalent to
the existence of an Actor(A). In this case, B(A) = Actor(A) (Proposition 5.3.6). Associative algebras
with conditions Ann(A) = (0) or with A2 = A satisfy Condition 2. These kinds of algebras were

considered in [57, 70]. For the special types of objects in Ass and Leibniz noted above, we prove
that B(A) ≈ Bim(A) and B(A) ≈ Bider(A) respectively (see Propositions 5.3.7 and 5.3.8), where
Bim(A) denotes the associative algebra of bimultipliers defined by G. Hochschild and by S. MacLane

for rings (called bimultiplications in [70] and multiplications in [50], from where the notion comes) and
Bider(A) denotes the Leibniz algebra of biderivations of A defined in Sec. 5.2, which is isomorphic for
these special types of Leibniz algebras to the biderivation algebra defined by J.-L. Loday in [62]. The

cases of groups, modules over a ring, and commutative associative algebras are considered.

Chapter 6. Recall that a Poisson algebra is an associative commutative algebra A equipped with a
binary bracket operation [−,−] : A⊗A −→ A such that (A, [−,−]) is a Lie algebra and the following
condition holds:

[a · b, c] = a · [b, c] + [a, c] · b
for all a, b, c ∈ A.

Here we consider the case where algebras are not commutative and the bracket operation defines the
Leibniz algebra structure [65] (see Chap. 5 for the definition of Leibniz algebra). This kind of algebras

we call noncommutative Leibniz-Poisson algebras and denote the corresponding category by NLP. In
Sec. 6.1, we describe preliminary basic material and construct a free NLP-algebra over a set X. In
the case where X is a singleton, we give a description of the basis of the underlying abelian group

of the free NLP-algebra in terms of planar binary rooted trees. We define actions, representations,
and crossed modules in NLP, which are special cases of the corresponding notions for categories of
groups with operations (see [76]). In Sec. 6.2, we define a cohomology H∗

NLP(P,M) of an NLP-algebra

P (over a field k) with coefficients in a representation M over P as the cohomology of the cochain
complex obtained by taking

C0
NLP(P,M) = 0, C1

NLP(P,M) = Hom(P,M),

and in dimensions n ≥ 2 by means of taking the pushout of cochain injections

cone (α∗) C
∗−1
H (P,Me)�� �� cone (−β∗),
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where

α∗ : C∗
H(P,M) −→ C∗

H(P,Me)

(defined in [22]) and

β∗ : C∗
L(P,M) −→ C∗

H(P,Me)

(defined by means of differentials of Hochschild and Leibniz complexes) are cochain homomorphisms,
cone (α∗) and cone (−β∗) are the corresponding mapping cones, Me = Hom(P,M) has a natural P -

representation structure [22], and CH and CL mean Hochschild and Leibniz complexes, respectively.
The differentials are defined as follows:

∂0
NLP = 0, ∂1

NLP = (∂1
H , 0, ∂1

L), ∂n
NLP = ∂n, n ≥ 2.

We define the restricted 2-dimensional cohomology H
2
NLP(P,M) and prove that there are one-to-one

correspondences between H1
NLP(P,M) and the K-vector space DerNLP(P,M) of derivations from P

to M (Lemma 6.2.2), and between H
2
NLP(P,M) and the set ExtNLP(P,M) of the equivalence classes

of extensions of P by M (Theorem 6.2.3). We derive the long exact sequence relating NLP-algebra

cohomology with Hochschild and AWB (algebras with bracket, see [22]) cohomologies and in a certain
sense with Leibniz cohomologies (Proposition 6.2.1). We prove that if P is a free NLP-algebra,
then H

2
NLP(P,−) = 0 and Hn

NLP(P,−) = 0 for n > 2 (Corollary 6.2.4). Following [54], we define a

relative cohomology of NLP-algebras over a field and prove that there is a bijection between the set
CExtNLP(P,N ;L) of equivalence classes of 3-fold crossed extensions (with fixed N) and the second
restricted relative cohomology H

2
NLP(P,N ;L) (see Theorem 6.2.6). In Sec. 6.3, we consider algebras

over the dual operad of NLP-algebras. The corresponding category of this kind of algebras is denoted
by NLP!. We give the construction of free objects in NLP!. In the case where F is a free NLP!-
algebra over the one element set, we show that there is a one-to-one correspondence between the set

of certain type planar binary rooted trees and the basis of the underlying vector space of F .

Chapter 7. In Sec. 7.1, we define the category of groups with action on itself Gr•, the category of
abelian groups with action on itself Ab• and the category of groups with the bracket operation Gr[ ].
This kind of groups are Ω-groups in the sense of [55]. We construct adjoint pairs of functors relating

the categories Gr•, Ab•, Gr[ ], and Gr. In Sec. 7.2, we define ideals and commutators for the objects
of Gr• (similarly for Gr[ ]) and show that these notions are equivalent to the special case of the known
notions for Ω-groups (see [55]). In Sec. 7.3, we define central series of groups with action on itself

and a category of Lie–Leibniz algebras LL. We consider the category of groups with action on itself
Grc satisfying the certain condition (see Condition 1). We give an analogue of the Witt construction
(see [90]) and prove that it defines the functor LL : Grc −→ LL (Theorem 7.3.4); in particular, this

gives the functor Grc −→ Leibniz. In a similar way, one can construct the functor Abc −→ Leibniz,
which is actually the restriction of LL on Abc. The functorial relations with the classical situation
(Gr −→ Lie) is considered, namely by the restriction of LL on Gr we obtain the result of E. Witt [83,

90] (see diagram (7.3.3)).

Chapter 8. In Sec. 8.1, we introduce Conditions 2 and 3 for groups with action on itself and denote
the corresponding full subcategory of Grc by Gr. We prove that if A and B are ideals of G in Gr, then
the commutator [A,B] is also an ideal of G (Proposition 8.1.5). For ideals A, B, and C of G in Gr,

we prove that
[

A, [B,C]
] ⊂ [

[A,B], C
]

+
[

[A,C], B
]

(Proposition 8.1.6). These two statements are well-known for the case of groups that we do not have
generally in Grc. Applying these results we prove that for the objects Gn, n > 1, in the definition
of central series of groups with action from Gr we have Gn = [Gn−1, G] for n > 1 (Lemma 8.1.11).

From this fact we deduce that for the objects Gn = Gn/Gn+1, where G is a free object in Abc,
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we have only those identities that are inherited from the identities of G by identifying the elements

x y = x, where x ∈ Gn, y ∈ G, xy denotes an action, and x denotes the corresponding class in Gn,
which by definition of the category Abc gives the Leibniz identity or its consequences (Lemma 8.1.12
and Proposition 8.1.13). In Sec. 8.2, we construct free objects in the categories Gr• (respectively,
in Grc, Abc, Gr) and Leibniz. In Sec. 8.3, we discuss the questions concerning identities between

round and square brackets in Gr•. We consider the certain set of possible identities in Gr•; easy
computations show that none of them is valid in Gr• (even in Grc). Nevertheless, we cannot claim
that there are no more identities between round and square brackets in Gr• or in Gr. We denote the

possible set of identities in Gr by E and the corresponding set of identities in LL, inherited from E
due to the functor LL = LL

∣
∣
Gr

: Gr −→ LL, by E; thus, E is the set of identities that satisfy the

objects LL(G), where G is a free object in Gr. We define the full subcategory LL ⊂ LL of all those

Lie–Leibniz algebras over Z that satisfy identities from E. We prove that if G is a free object in Gr,
then LL(G) is a free object in LL (Theorem 8.3.2). Applying Proposition 8.1.13, we prove that the
functor L : Abc −→ Leibniz preserves the freeness of objects (Theorem 8.3.3). As a consequence,
we also obtain that the composites S2 LL,LA : Gr −→ Leibniz correspond to free objects in Gr free

Leibniz algebras over Z (Corollary 8.3.11). Of course, it would be simpler to prove the commutator
properties and Lemma 8.1.11 for Abc, then to show that the functor L preserves freeness, and since
the abelianization functor A : Grc −→ Abc has the same property, the composite LA : Grc −→ Leibniz

would also preserve freeness. Nevertheless, we think that the general Lie–Leibniz case is interesting
and that under Conditions 2 and 3 we can show that the properties of commutators in Gr prove
Lemma 8.1.11 and that the functor LL : Gr −→ LL takes free objects to free objects, from which we

easily deduce the corresponding result for Leibniz algebras.

Chapter 9. In Sec. 9.1, we recollect the results of [6] and draw some more or less immediate con-
clusions. Thus, the four equivalent characterizations of a cofibration are the subject of Lemma 9.1.2,

while for the dual properties for a fibration (Theorem 9.5.5) we need some information that is not
available before Sec. 9.5. In Sec. 9.2, we prove that for an inclusion (i.e., a regular injection; see
Sec. 9.1 for the definition),

AAA∗ �
� �� BBB∗

the pushout BBB∗ ∪ cone AAA∗ carries the structure of a chain functor (see Theorem 9.2.1). Section 9.3 is
devoted to the verification of the fact that every cofibration admits a cokernel in Ch (Theorem 9.3.1),
where we apply Theorem 9.2.1, and that a pushout diagram with cofibrations admits a pushout

in Ch (Theorem 9.3.2). In addition, Sec. 9.5 contains the results on fibrations, which are dual to
assertions that were presented in Secs. 9.2 and 9.3 for cofibrations. In Sec. 9.4, we present the dual
to Theorem 9.2.1 (see Theorem 9.4.2), which ensures the existence of a special pullback in Ch and

which is needed for the verification that every regular fibration has a kernel. In Sec. 9.6, we investigate
properties of exact sequences for cofibrations and fibrations. Since some proofs in Secs. 9.2, 9.3, and 9.4
consist of the verification of the defining properties of a chain functor CH1–CH7, we include in Sec. 9.7

some basic material about chain functors, together with a lemma on chain functors taken from [5],
which is needed to prove CH3) in Secs. 9.2 and 9.4.
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Chapter 1

INTERNAL CATEGORIES, ADJUNCTION, AND EQUIVALENCE

IN CATEGORIES OF GROUPS WITH OPERATIONS

In the beginning, we recall the well-known definitions of the category of groups with operations denoted
byC and of an internal category. Using the equivalence of categories Cat(C) � XMod(C) obtained by

T. Porter [78], where Cat(C) is the category of internal categories inC andXMod(C) is the category of
crossed modules of the appropriate type, we describe morphisms (= internal functors) and morphisms
between the morphisms in Cat(C), adjunction of internal functors, and internal equivalence. We show

that in this category any internal adjunction implies the internal equivalence and this is the special
case of the Whitehead homotopy equivalence of the corresponding crossed modules, which was defined
for certain types of complexes in the category of groups called homotopy systems (see [89]). For the

internal category equivalence we prove an analog of Theorem 1 from [72, Sec. 4, IV]. The necessary
and sufficient conditions for the equivalence of an internal category to the discrete internal category
is obtained.

However some of these results are true for more general internal categories, e.g., for internal

groupoids in more general categories, than for categories of groups with operations (see the remark
at the end of the proof of Proposition 1.2.1); we restrict ourself to this special case to point out our
interest in crossed modules and to show how this structure works in proofs. The results obtained

in this chapter give similar results for crossed modules and are applied for the characterization of
cohomologically trivial internal categories (Chap. 3) and in the study of the existence of internal Kan
extensions (Chap. 4).

In Chap. 3, we continue the study of categorical notions for internal situation; we give the definitions
of homological and cohomological equivalences and investigate their relations with internal category
equivalence (see Sec. 3.3).

1.1. Preliminary Definitions and Results

Let C be a category with finite limits. We recall the definition of an internal category [43].

An internal category C in C consists of:

(a) a pair of objects C0 and C1,

(b) four morphisms

C1
d0 �� C0 , C1

d1 �� C0 , C0
i �� C1 , and C1 ×C0 C1

m �� C1

such that

d0i = d1i = 1C0 , d0m = d0π2, d1m = d1π1,

m(1×m) = m(m× 1) : C1 ×C0 C1×C0 C1 −→ C1,

m(1× i) = m(i× 1) = 1C1 .

Here and below C1 ×C0 C1 denotes the pullback

C1 ×C0 C1
π2 ��

π1

��

C1

d1
��

C1
d0 �� C0 .
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Let C = (C0,C1, d0, d1, i,m, ) and C′ = (C′
0,C

′
1, d

′
0, d

′
1, i

′,m′) be internal categories and F = (F0, F1) :

C −→ C′ an internal functor; which means that F0 and F1 are morphisms of C and the diagrams

d0, d1 : C1
����

F1

��

C0

i

��

F0

��
d′0, d′1 : C′

1
���� C′

0

i′

��

C1×C0 C1
m ��

(F1,F1)
��

C1

F1

��
C′
1×C′

0
C′
1

m′
�� C′

1

are commutative.
The idea of the definition of categories of groups with operations comes from J. Higgins [48] and

G. Orzech [76], and the axioms below are from [76, 78].
From now on, C will denote a category of groups with a set of operations Ω and with a set E of

identities such that E includes the group laws, and the following conditions hold: If Ωi is the set of

i-ary operations in Ω, then

(a) Ω = Ω0 ∪ Ω1 ∪ Ω2;
(b) the group operations written additively: (0, −, +) are elements of Ω0, Ω1, and Ω2, respectively.

Let Ω′
2 = Ω2\{+}, Ω′

1 = Ω1\{−} and assume that if ∗ ∈ Ω′
2, then Ω′

2 contains ∗0 defined by
x ∗0 y = y ∗ x. Assume further that Ω0 = {0};

(c) for each ∗ ∈ Ω′
2, E includes the identify x ∗ (y + z) = x ∗ y + x ∗ z;

(d) for each ω ∈ Ω′
1 and ∗ ∈ Ω′

2, E includes the identities ω(x+y) = ω(x)+ω(y) and ω(x)∗y = ω(x∗y).
A category satisfying conditions (a)–(d) is called a category of groups with operations [76, 78]. The
categories of groups, rings, associative, associative commutative, Lie, Leibniz, and alternative algebras

are examples of categories of groups with operations.
Let C = (C0,C1, d0, d1, i,m) be an internal category in C. Consider the split exact sequence

0 �� Ker d0 �� C1

d0 �� C0
i

�� �� 0,

where d0i = 1. As usual, we have the maps

C1

θ �� C0 × Ker d0
θ−1
��

defined by

θ(x) = (d0(x), x − id0(x)), θ−1(r, c) = c+ i(r),

and we have the induced operations in C0×Ker d0:

(r′, c′) + (r, c) = (r′ + r, c′ + i(r′) + c− i(r′)),

(r′, c′) ∗ (r, c) = (r′ ∗ r, c′ ∗ c+ c′ ∗ (i(r)) + (i(r′)) ∗ c),
where ∗ ∈ Ω′

2. We shall use the following notation from [78]:

r · c = i(r) + c− i(r),

r ∗ c = (i(r)) ∗ c,
c ∗ r = c ∗ (i(r))

for each r ∈ C0, c ∈ Ker d0, and ∗ ∈ Ω′
2. The set C0×Ker d0 with the above structure is an object

of C; denote it by C0�Ker d0. Moreover, we have the internal category (C0,C0 �Ker d0, d0, d1, i,m),
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which is isomorphic to C and is obtained from C by θ. Direct computation gives

d0(r, c) = r, d1(r, c) = d(c) + r, d = d1
∣
∣
Ker d0

,

i(r) = (r, 0), m
(

(d(c) + r, c′), (r, c)
)

= (r, c′ + c).

We recall Lemma A and Proposition 4 of [78].

Lemma 1.1.1. For c ∈ Ker d0, c
′ ∈ Ker d1, and ∗ ∈ Ω′

2 we have

c+ c′ = c′ + c,

c ∗ c′ = c′ ∗ c = 0.

Lemma 1.1.2. Let C = (C0,C1, d0, d1, i,m) be an internal category in C; then d = d1
∣
∣
Ker d0

:

Ker d0 −→ C0 satisfies the following conditions:

(i) d(r · c) = r + d(c) − r;

(ii) d(c) · c′ = c+ c′ − c;
(iii) d(c) ∗ c′ = c ∗ c′;
(iv) d(c ∗ r) = d(c) ∗ r
for each r ∈ C0, c, c

′ ∈ Ker d0 and ∗ ∈ Ω′
2.

Let A,B ∈ C. As is well-known, a split derived action of B on A means that we have a set of
actions on A derived from the split exact sequence 0 −→ A −→ E −→ B −→ 0 (see [76]). For more
details concerning actions in C, see Sec. 3.1.

Recall that a crossed module in C is a pair of objects A,B ∈ C, where B has a split derived action
on A, together with a homomorphism d : A −→ B satisfying conditions (i)–(iv) of Lemma 1.1.2.

Denote by Cat(C) the category of internal categories and functors in C. By [78], we have an

equivalence of categories Cat(C) � XMod(C), where XMod(C) denotes the category of crossed
modules in C. According to this equivalence, to each internal category C = (C0,C1, d0, d1, i,m)
corresponds the crossed module

Ker d0
d �� C0 .

Here d = d1
∣
∣
Ker d0

is a homomorphism in C that satisfies conditions of Lemma 1.1.2.

Let F = (F0, F1) : C −→ C′ be an internal functor. From the isomorphisms

C ≈ (C0,C0 �Ker d0, d0, d1, i,m), C′ ≈ (C′
0,C

′
0�Ker d ′

0, d
′
0, d

′
0, i

′,m ′),

we obtain the commutative diagram

d0, d1 : C0 �Ker d0
����

F 1

��

C0

i

��

F0

��
d0

′, d1′ : C′
0 �Ker d′0

���� C′
0,

i ′

��

(1.1.1)

where F 1 is defined by F1. Denote by pr1 and pr2 the obvious projection maps

C0 C0�Ker d0
pr1�� pr2 �� Ker d0 .
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From (1.1.1) we have

(0, c) � d0 ��
�

��

0�

��

pr1F 1(0, c) = 0,		

F (0, c) �

d0′
�� pr1F 1(0, c)

(1.1.2)

(r, 0)
�

��

r�
i��

�

��

pr1F 1(r, 0) = F0(r)

pr2F 1(r, 0) = 0.
		

F 1(r, 0)
(F0(r), 0)

F0(r)
�

i ′
��

(1.1.3)

Introduce the notation

pr2F 1(0, c) = F̃1(c).

From (1.1.2) and (1.1.3) and the fact that F 1 is a morphism of C, we have

F 1(r, c) = F 1

(

(0, c) + (r, 0)
)

= F 1(0, c) + F 1(r, 0) = (0, F̃1(c)) + (F0(r), 0) =
(

F0(r), F̃1(c)
)

.

From the commutativity of diagram 1.1.1 we have

F0d1 = d1
′F 1.

This equality for each (r, c) ∈ C0 �Ker d0 gives

F0d(c) + F0(r) = d′F̃1(c) + F0(r);

so F0d(c) = d′F̃1(c), which means that the diagram

Ker d0
d ��

˜F1
��

C0

F0

��
Ker d′0 d′

�� C′
0

(1.1.4)

is commutative. Again, from the fact that F 1 ∈ MorC, we have

F 1

(

(r, c) + (r1, c1)
)

= F 1(r, c) + F 1(r1, c1)

=
(

F0(r), F̃1(c)
)

+
(

F0(r1), F̃1(c1)
)

=
(

F0(r) + F0(r1), F̃1(c) + F0(r) · F̃1(c1)
)

.

On the other hand,

F 1

(

(r, c) + (r1, c1)
)

= F 1(r + r1, c+ r · c1) =
=

(

F0(r + r1), F̃1(c+ r · c1)
)

=
(

F0(r) + F0(r1), F̃1(c+ r · c1)
)

.
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From the above equalities we obtain

F̃1(c) + F0(r) · F̃1(c1) = F̃1(c+ r · c1).
For c = 0 and r = 0 we have respectively

F̃1(r · c) = F0(r) · F̃1(c1),

F̃1(c+ c1) = F̃1(c) + F̃1(c1).

Similarly, for any binary operation ∗, except the addition in C, we have

F 1

(

(r, c) ∗ (r1, c1)
)

= F 1(r ∗ r1, c ∗ c1 + r ∗ c1 + c ∗ r1)
=

(

F0(r ∗ r1), F̃1(c ∗ c1 + r ∗ c1 + c ∗ r1)
)

=
(

F0(r) ∗ F0(r1), F̃1(c ∗ c1) + F̃1(r ∗ c1) + F̃1(c ∗ r1)
)

;

F 1

(

(r, c) ∗ (r1, c1)
)

= F 1(r, c) ∗ F 1(r1, c1) =
(

F0(r), F̃1(c)
) ∗ (F0(r1), F̃1(c1)

)

=
(

F0(r) ∗ F0(r1), F̃1(c) ∗ F̃1(c1) + F̃1(c) ∗ F0(r1) + F0(r) ∗ F̃1(c1)
)

.

From the above two equalities we obtain

F̃1(c ∗ c1) + F̃1(r ∗ c1) + F̃1(c ∗ r1) = F̃1(c) ∗ F̃1(c1) + F̃1(c) ∗ F0(r1) + F0(r) ∗ F̃1(c1),

which gives

F̃1(c ∗ c1) = F̃1(c) ∗ F̃1(c1),

F̃1(r ∗ c1) = F0(r) ∗ F̃1(c1),

F̃1(c ∗ r1) = F̃1(c) ∗ F0(r1),

for each r, r1 ∈ C0, c, c1 ∈ Ker d0.

Thus, we can consider the internal functor (F0, F1) : C −→ C′ as a pair (F0, F̃1), such that F0 :

C0 −→ C′
0 and F̃1 : Ker d0 −→ Ker d′0 are morphisms of C satisfying the conditions

F̃1(r · c) = F0(r) · F̃1(c),

F̃1(r ∗ c) = F0(r) ∗ F̃1(c),

F̃1(c ∗ r) = F̃1(c) ∗ F0(r),

d′F̃1(c) = F0d(c),

(1.1.5)

for each r ∈ C0, c ∈ Ker d0. In the case C = Grp for such a pair of morphisms (F0, F̃1), F̃1 is called
an operator homomorphism associated with F0 by J. H. C. Whitehead [89].

It is easy to show that every pair of morphisms (F0, F̃1) satisfying conditions (1.1.5) determines an
internal functor F : C −→ C′ and this correspondence is one-to-one. This correspondence is involved

in the proof given in [78], but we will need this detailed account in what follows.

1.2. Morphisms between Morphisms in Cat(C)

First, we discuss this question in a more general situation and then pass to the case of the category

of groups with operations and crossed modules.
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1.2.1. General Case. Let C and C′ be (ordinary) categories. Recall (see [72]) that given two

functors S, T : C −→ C′, a natural transformation ϑ : S −→ T is a function that assigns to each object
c ∈ C a morphism ϑ(c) : S(c) −→ T (c) of C′ in such a way that for each morphism γ : c −→ c1 the
diagram

S(c)
ϑ(c) ��

S(γ)
��

T (c)

T (γ)
��

S(c1)
ϑ(c1)

�� T (c1)

is commutative. Hence ϑ is a function |C| −→ MorC′, such that

domϑ(c) = S(c), codom ϑ(c) = T (c), T (γ)ϑ(c) = ϑ(c1)S(γ).

The composition of two natural transformations of functors

S
ϑ �� T

ξ �� K

for the diagram

C

S ��
T ��
K ��

C′

is defined by ξϑ(c) = ξ(c)ϑ(c) for each c ∈ |C|.
Let C be a category with finite limits and Cat(C) be the category of internal categories and functors

in C. Let C,C′ ∈ |Cat(C)|, C = (C0,C1, d0, d1, i m), C′ = (C′
0,C

′
1 d′0, d′1 i′ m′), and S, T : C −→ C′

be internal functors. This means that

S0, T0 : C0 −→ C′
0 ∈MorC , S1, T1 : C1 −→ C′

1 ∈ MorC ,

and the following diagrams are commutative:

C1

d0 ��

d1
��

S1

��

C0

i

��

S0

��
C′
1

d′0 ��

d′1
�� C′

0,

i′





C1

d0 ��

d1
��

T1

��

C0

i

��

T0

��
C′
1

d′0 ��

d′1
�� C′

0 .

i′





Thus we have
S1i = i′S0, T1i = i′T0,

d′0S1 = S0d0, d′0T1 = T0d0,

d′1S1 = S0d1, d′1T1 = T0d1.

(1.2.1)

What does the natural transformation ϑ : S −→ T mean? In this case, ϑ is a morphism C0 −→ C′
1

of C, such that the following diagrams are commutative:

C′
0

C0

S0

����������

ϑ
�� C′

1,

d′0

��
C′
0

C0

T0

����������

ϑ
�� C′

1,

d′1

��
C1

(T1,ϑd0) ��

(ϑd1,S1)

��

C′
1×(d′0,d

′
1)
C′
1

m′
��

C′
1×(d′0,d

′
1)
C′
1

m′
�� C′

1 .

(1.2.2)
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Here (T1, ϑd0) denotes a morphism induced by T1 and ϑd0, since from (1.2.1) and (1.2.2) d′0T1 = T0d0,

d′1ϑd0 = T0d0 and thus d′0T1 = d′1ϑd0. The picture is as follows:

C1

d0





(T1,ϑd0)

�����
����

����
����

��
T1

��
C′
1×(d′0,d

′
1)
C′
1

pr2

��

pr1
�� C′

1

d′0

��

C0

ϑ ��
C′
1

d′1
�� C′

0

.

Similarly, (ϑd1, S1) in (1.2.2) is induced by ϑd1 and S1, since from (1.2.1) and (1.2.2) d′1S1 = S0d1,

d′0ϑd1 = S0d1 and thus d′0ϑd1 = d′1S1. The picture is as follows:

C1

S1

��

(ϑd1,S1)

����
���

���
���

d1
	�
C0 ϑ

��
C′
1×(d′0,d

′
1)
C′
1

pr2

��

pr1 �� C′
1

d′0

��
C′
1

d′1
�� C′

0 .

The identity natural transformation T
1 �� T is the composite C0

T0 �� C′
0

i′ �� C′
1 (it satisfies

condition (1.2.2)). The composite of two natural transformations of internal functors

C
T↓ϑ
K↓ξ

��

S
��

��C

is defined as the composite

C0
(ξ,ϑ) �� C′

1×(d′0,d
′
1)
C′
1

m′
�� C′

1,

where (ξ, ϑ) is a morphism induced by ϑ and ξ:

C0

ϑ

��

(ξ,ϑ)

����
���

���
���

ξ

��
C′
1×(d′0,d

′
1)
C′
1

pr2

��

pr1
�� C′

1

d′0
��

C′
1

d′1
�� C′

0 .
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(ξ, ϑ) factors through C′
1×( )C

′
1. It follows from the equalities d′1ϑ = T0 = d′0ξ, which we obtain

from (1.2.2) for ϑ and ξ. We must check that the composite m′(ξ, ϑ) satisfies conditions (1.2.2). The
first diagram of (1.2.2) is commutative because it commutes for ϑ and the second is commutative
because it commutes for ξ. For the third diagram we must prove that the diagram

C1
(K1,m′(ξ,ϑ)d0) ��

(m′(ξ,ϑ)d1,S1)

��

C′
1×( )C

′
1

m′
��

C′
1×( )C

′
1

m′
�� C′

1

is commutative. For the elements we obtain

c � ��
�

��

(

K1(c),m
′(ξd0(c), ϑd0(c))

)

�

��

(

m′(ξd1(c), ϑd1(c)), S1(c)
) � ��

m′(K1(c),m
′(ξd0(c), ϑd0(c)

))

,

m′(m′(ξd1(c), ϑd1(c), S1(c)
))

.

Thus, it suffices to show that

m′(K1(c),m
′(ξd0(c), ϑd0(c)

))

= m′(m′(ξd1(c), ϑd1(c)
)

, S1(c)
)

for each c ∈ C1. From the associativity of composition in C′ and commutativity of the third diagram

of (1.2.2) for ϑ and ξ, we obtain

m′(m′(ξd1(c), ϑd1(c)), S1(c)
)

= m′(ξd1(c),m′(ϑd1(c), S1(c))
)

= m′(ξd1(c),m′(T1(c), ϑd0(c))
)

= m′(m′(ξd1(c), T1(c)), ϑd0(c)
)

= m′(m′(K1(c), ξd0(c)), ϑd0(c)
)

= m′(K1(c),m
′(ξd0(c), ϑd0(c))

)

,

which proves the commutativity of the above diagram.

1.2.2. The case of a category of groups with operations. Let C be the category of groups
with operations, C = (C0,C1, d0, d1, i,m) and C′ = (C′

0,C
′
1, d

′
0, d

′
1, i

′,m′) be internal categories in C,

and S, T : C ���� C′ be internal functors. Then as was shown in Sec. 1.1, this yields the commutative

diagram

Ker d0
d ��

T1

��
S1

��

C0

T0

��
S0

��
Ker d′0 d′

�� C′
0,

(1.2.3)

where S = (S0, S1) and T = (T0, T1) satisfy conditions (1.1.5) (F0, F̃1 are replaced by S0, S1 and T0,
T1, respectively). A morphism or a natural transformation ϑ : (S0, S1) −→ (T0, T1) is a morphism
ϑ : C0 −→ C′

0 �Ker d′0 of C such that the following diagrams are commutative:

C′
0

C0

S0

��������������

ϑ
�� C′

0�Ker d′0,

d0′
��

C′
0

C0

T0

��������������

ϑ
�� C′

0�Ker d′0,

d1′
��
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C0 �Ker d0
(T1,ϑd0) ��

(ϑd1′,S1)

��

(C′
0 �Ker d′0)×(d0′,d1′) (C

′
0�Ker d′0)

m′
��

(C′
0 �Ker d′0)×(d0′,d1′) (C

′
0�Ker d′0) m′

�� C′
0 �Ker d′0

From the above we have

ϑ(r) = (S0(r), α(r)), where α(r) = pr2ϑ(r) ∈ Ker d′0;

d′α(r) + S0(r) = T0(r),

(r, c) � ��
�

��

((T0(r), T1(c)), S0(r), α(r))�

��
(S0(r), T1(c) + α(r))

((S0(dc+ r), α(dc + r)), (S0(r), S1(c)))
� �� (S0(r), α(dc + r) + S1(C))

(1.2.4)

for each r ∈ C0 and c ∈ Ker d0.
From the fact that ϑ is a morphism of C for each r, r1 ∈ C0, we obtain:

1. For each unary operation ω in C except the negation,

ϑ(ω(r)) = ωϑ(r),

ϑ(ω(r)) =
(

S0ω(r), αω(r)
)

=
(

ωS0(r), αω(r)
)

,

ωϑ(r) = ω(S0(r), α(r)) =
(

ωS0(r), ωα(r)
)

,

αω(r) = ωα(r).

2. ϑ(r + r1) = ϑ(r) + ϑ(r1),
(

S0(r + r1), α(r + r1)
)

=
(

S0(r) + S0(r), α(r + r1)
)

, ϑ(r) + ϑ(r1) = (S0(r), α(r)) + (S0(r1), r1)

=
(

S0(r) + S0(r1), α(r) + S0(r) · α(r1)
)

,

α(r + r1) = α(r) + S0(r) · α(r1). (1.2.5)

3. For each binary operation ∗ in C except the addition,

ϑ(r ∗ r1) = ϑ(r) ∗ ϑ(r1),
ϑ(r ∗ r1) = (S0(r ∗ r1), α(r ∗ r1)) = (S0(r) ∗ S0(r1), α(r ∗ r1)),

ϑ(r) ∗ ϑ(r1) = (S0(r), α(r)) ∗ (S1(r1), α(r1))

=
(

S0(r) ∗
(

S0(r1), α(r) ∗ α(r1) + α(r) ∗ S0(r1) + S0(r) ∗ α(r1)
))

,

α(r ∗ r1) = α(r) ∗ α(r1) + α(r) ∗ S0(r1) + S0(r) ∗ α(r1).
From (1.2.4) and (1.2.5) we obtain

T1(c) + α(r) = α(dc + r) + S1(c),

T1(c) + α(r) = α(dc) + S0(dc) · α(r) + S1(c).

From (1.2.3) we have

T1(c) + α(r) = α(dc) + d′S1(c) · α(r) + S1(c).

Applying Lemma 1.1.2 we obtain

T1(c) + α(r) = αd(c) + S1(c) + α(r)− S1(c) + S1(c),
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which gives αd(c) = T1(c)−S1(c). Thus, a natural transformation ϑ : (S0, S1) −→ (T0, T1) determines

the map α : C0 −→ Ker d′0 satisfying the following conditions:

αω(r) = ωα(r),

α(r + r1) = α(r) + S0(r) · α(r1),
α(r ∗ r1) = α(r) ∗ α(r1) + α(r) ∗ S0(r1)+S0(r) ∗ α(r1);

(1.2.61)

d′α(r) = T0(r)− S0(r),

αd(c) = T1(c)− S1(c).
(1.2.62)

(1.2.6)

It is easy to show that such a map α : C0 −→ Ker d′0 determines the natural transformation

ϑ : C0 −→ C′
0�Ker d′0 between functors (S0, S1) −→ (T0, T1) defined by the correspondence r �−→

(S0(r), α(r)), and this correspondence α �−→ ϑ is one-to-one. In what follows under the natural
transformation of internal functors we shall mean a map satisfying conditions (1.2.6).

In the case C = Gr, a map α satisfying conditions (1.2.61) is called by Whitehead a crossed
homomorphism associated with S0 (see [89]). Consider the case where the complexes

C∗ : 0 �� Ker d0
d �� C0 and C′

∗ : 0 �� Ker d′0
d′ �� C′

0

are homotopy systems (for definition, see [89]). Then such type of a map α : C0 −→ Ker d′0 is
a deformation operator associated with a homomorphism S0 in the sense of Whitehead [89]. The

picture is as follows:

C∗ : · · · 0 ��

��

Ker d0
d ��

0

�����
���

���
�

T1

��
S1

��

C0

α

��			
		
		
		

T0

��
S0

��
C′
∗ : · · · 0 �� Ker d′0 d′

�� C′
0 .

In this case, the existence of a map α satisfying conditions (1.2.6) in Whitehead’s terminology

means that homomorphism S = (S0, S1, 0, . . .) is equivalent to a homomorphism T = (T0, T1, 0, . . .).
(In formula (4.3) of [89],

ω′gn − fn = d′n+1ξn+1 + ξndn, n ≥ 1,

we must take ω′ = 0, ω′ is an element of C′
0 in our case, g1 = T0, g2 = T1, and gi = 0 for i > 2,

f1 = S0, f2 = S1, and fi = 0 for i > 2, ξ1 = 0, ξ2 = α, and ξi = 0 for i > 2, d2 = d, di = 0, d′2 = d′,
and d′i = 0 for i �= 2, which gives (1.2.62) for n = 1 and n = 2, respectively).

Thus, in this case the existence of a morphism between internal functors is a special case of the
equivalence of these internal functors, considered as homomorphisms of homotopy systems in the sense
of Whitehead [89].

The identity natural transformation of internal functors (T0, T1)
1 �� (T0, T1) is the composite

C0
T0 �� C′

0
i′ �� C′

0�Ker d′0,

and the corresponding map α : C0 −→ Ker d′0 is zero. The composite of two natural transformations

of internal functors

(S0, S1)
ϑ �� (T0, T1)

ξ �� (K0,K1)

is the composite

C0
(ξ,ϑ) �� (C′

0 �Ker d′0)×(d′0,d
′
1)
(C′

0 �Ker d′0)
m′

�� (C′
0 �Ker d′0) .
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For the elements we have

r � ��
(

(T0(r), β(r)), (S0(r), α(r))
) � ��

(

S0(r), β(r) + α(r)
)

,

where α, β, β + α : C0 −→ Kerd′0 correspond to ϑ, ξ and ξ · ϑ, respectively. It is easy to show that
β + α satisfies conditions (1.2.6).

Proposition 1.2.1. Let C,C′ ∈ Cat (C) and α : (S0, S1) −→ (T0, T1) be a natural transformation
between internal functors S, T : C −→ C′. Then S and T are naturally isomorphic.

Proof. We show that there is a map α′ : C0 −→ Ker d′0 such that for each r, r1 ∈ C0, c ∈ Ker d0 the

following conditions are satisfied:

1. α+ α′ = 0;
2. α′ω(r) = ωα′(r), for each unary operation ω in C except the negation;

3. α′(r + r1) = α′(r) + T0(r) · α′(r1);
4. α′(r ∗ r1) = α′(r) ∗ α′(r1) + α′(r) ∗ T0(r1) + T0(r) ∗ α′(r1) for each binary operation ∗ in C except

the addition;

5. d′α′(r) = S0(r)− T0(r);
6. α′d(c) = S1(c)− T1(c).

Define α′(r) = −α(r). The first condition is satisfied by the definition of α′; ω is the homomorphism
for the addition, hence, ω(0) = 0 and ω(−r) = −ω(r). Thus, for the next conditions we have

2. α′(ω(r)) = −α(ω(r)) = −ω(α(r)) = ω(−α(r)) = ω(α′(r)).

3. Computing the left and right sides of Condition 3 we can see that they are equal:

α′(r + r1) = −α(r + r1) = −(α(r) + S0(r) · α(r1))
= −(S0(r) · α(r1))− α(r) = −((−d′α(r) + T0(r)) · α(r1))− α(r)

= −(d′(−α(r)) · (T0(r) · α(r1)))− α(r) = −(−α(r) + T0(r) · α(r1) + α(r))− α(r)

= −α(r)− T0(r) · α(r1) + α(r)− α(r) = −α(r)− T0(r) · α(r0),
α′(r) + T0(r) · α′(r1) = −α(r) + T0(r) · (−α(r1)) = −α(r)− T0(r) · α(r1).

4. α′(r ∗ r1) = −α(r ∗ r1) = −(α(r) ∗ α(r1) + α(r) ∗ S0(r1) + S0(r) ∗ α(r1))
= −S0(r) ∗ α(r1)− α(r) ∗ S0(r1)− α(r) ∗ α(r1)

= −((−d′α(r) + T0(r)) ∗ α(r1)
)− (

α(r) ∗ (−d′α(r) + T0(r1))
) − α(r) ∗ α(r1)

= −((−d′α(r)) ∗ α(r1) + T0(r) ∗ α(r1)
)− (

α(r) ∗ (−d′α(r1)) + α(r) ∗ T0(r1)
)− α(r) ∗ α(r1)

= −((−α(r)) ∗ α(r1) + T0(r) ∗ α(r1)
)− (

α(r) ∗ (−α(r1) + α(r) ∗ T0(r1))− α(r)α(r1)
)

= −T0(r) ∗ α(r1) + α(r) ∗ α(r1)− α(r) ∗ T0(r1) + α(r) ∗ α(r1)− α(r) ∗ α(r1),
α′(r) ∗ α′(r1) + α′(r) ∗ T0(r1) + T0(r) ∗ α′(r1) = α(r) ∗ α(r1)− α(r) ∗ T0(r1)− T0(r) ∗ α(r1).

Now it suffices to mention that for each object C of C and for elements a, b, c, d ∈ C we have

a∗d+b∗c = b∗c+a∗d, which implies the analogous identity for actions (see Chap. 3, Proposition 3.1.1,
condition 12). Conditions 5 and 6 are obviously satisfied by the definition of α′, which completes the
proof of Proposition 1.2.1.

Remark. A similar statement is valid for more general internal categories, if Im α̃ (α̃ : C0 −→ C′
1

is defined by α) is a subobject of “internally” invertible morphisms, and in particular, for internal
groupoids in more general categories than C. Thus, Proposition 1.2.1 can be obtained from this and
the fact that internal categories in C are internal groupoids. Proceeding from our interest in crossed

modules expressed in the title, we gave a detailed proof of this proposition, which somehow contains
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the proofs of both mentioned statements (Im α̃ is a subobject of “internally” invertible morphisms

and α is an isomorphism) in terms of crossed modules.

Let α : (F0, F1) −→ (G0, G1) be a natural transformation of internal functors F,G : C −→ C′,
and S : C −→ C be an internal functor. As in the case of ordinary categories we have the natural
transformation αS : (F0S0, F1S1) −→ (G0S0, G1S1), defined by αS0. We must show that αS0 satisfies

conditions (1.2.6); α is a natural transformation, so it satisfies conditions (1.2.61) (S0 replaced by F0);
S0 is a morphism of C. From the above, we conclude that αS0 satisfies conditions (1.2.61). Similarly,

d′α(r) = G0(r)− F0(r) for each r ∈ C0 .

Take r = S0(r); then we obtain

d′αS0(r) = G0S0(r)− F0S0(r) for each r ∈ C0.

For the second condition of (2.62) we have

αd(c) = G1(c)− F1(c) for each c ∈ Ker d0.

Take c = S1(c); then we have αdS1(c) = G1S1(c) − F1S1(c); but dS1 = S0d, which gives the desired
equality.

Let (T0, T1) : C
′ −→ C̃ be an internal functor; then we can also define

Tα : (T0F0, T1F1) −→ (T0G0, T1G1)

as T1α. We must show that T1α satisfies conditions (1.2.6); α satisfies these conditions and T1 is
a morphism of C; this proves the first equality of (1.2.61). For the second and third conditions,

we apply (1.1.5). For (1.2.62), we again apply commutativity T0d
′ = d̃T1 and the fact that T1 is a

morphism of C.

1.3. Adjunction of Internal Functors, Internal Category Equivalence,
and Whitehead Equivalence of Homotopy Systems

Let C be a category with finite limits, C and C′ be internal categories in C, and S and T be internal
functors

C
T ��

C′
S

�� .

We have the following well-known category theory notions for the case of internal categories.

Definition 1.3.1. We say that T is left adjoint to S if there are natural transformations of internal
functors Φ : TS −→ 1C′ , Ψ : 1C −→ ST such that the composites

S
ΨS �� STS

SΦ �� S , T
TΨ �� TST

ΦT �� T

are the identity natural transformations.

Definition 1.3.2. We say that an internal category C is equivalent to C′ if there is a pair of internal

functors C
T ��

C′
S

�� together with natural isomorphisms of internal functors

Φ : TS
≈ �� 1C , Ψ : 1C

≈ �� ST .

In this case, we say that T and S are equivalences of internal categories.
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Definition 1.3.3. We say that we have an adjoint equivalence of internal categories C and C′ if there

is a pair of adjoint internal functors C
T ��

C′
S

�� such that the corresponding natural transformations

Φ : TS −→ 1C′ and Ψ : 1C −→ ST are isomorphisms.

From the results of Sec. 2 we have the following assertion.

Proposition 1.3.4. Let C = (C0,C1, d0, d1, i,m) and C′ = (C′
0,C

′
1, d

′
0, d

′
1, i

′,m′) be internal categories
in C and T = (T0, T1) and S = (S0, S1) be internal functors

Ker d0
d ��

T1

��

C0

T0

��
Ker d′0

S1

��

d′
�� C′

0 .

S0

��

T is left adjoint to S if and only if there are maps ϕ : C′
0 −→ ker d′0 and ψ : C0 −→ Ker d0 satisfying

the following conditions:
⎧

⎪⎨

⎪⎩

ϕω(r′) = ωϕ(r′),

ϕ(r′ + r′1) = ϕ(r′) + T0S0(r
′) · ϕ(r′1),

ϕ(r′ ∗ r′1) = ϕ(r′) ∗ ϕ(r′1) + ϕ(r′) ∗ T0S0(r
′
1) + T0S0(r

′) ∗ ϕ(r′1),
(1.3.11)

{

d′ϕ(r′) = r′ − T0S0(r
′),

ϕd′(c′) = c′ − T1S1(c
′)

(1.3.12)

(1.3.1)

for each r′, r′1 ∈ C′
0 and c′ ∈ Ker d′0;

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ψω(r) = ωψ(r)

ψ(r + r1) = ψ(r) + r · ψ(r1),
ψ(r ∗ r1) = ψ(r) ∗ ψ(r1) + ψ(r) ∗ r1 + r ∗ ψ(r1),

dψ(r) = S0T0(r)− r,

ψd(c) = S1T1(c) − c

(1.3.2)

for each r, r1 ∈ C0 and c ∈ Ker d0;

S1ϕ+ ψS0 = 0, ϕT0 + T1ψ = 0. (1.3.3)

From Proposition 1.2.1 for the case of categories of groups with operations C we obtain

Proposition 1.3.5. In the category C internal adjunction implies equivalence of internal categories.

Proposition 1.3.6. Internal categories

C : Ker d0
d �� C0 and C′ : Ker d′0

d′ �� C′
0

in C are equivalent if and only if there are internal functors

C
(T0,T1)��

C′
(S0,S1)
��

and maps

ϕ : C′
0 −→ Ker d′0 and ψ : C0 −→ Ker d0

satisfying conditions (1.3.1) and (1.3.2).
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Proposition 1.3.7. Internal categories C and C′ in C are adjointly equivalent if and only if there

are internal functors

C
(T0,T1)��

C′
(S0,S1)
��

and maps

ϕ : C′
0 −→ Ker d′0, ψ : C0 −→ Ker d0

satisfying conditions (1.3.1), (1.3.2), and (1.3.3).

Thus by Proposition 1.2.1 Φ and Ψ are always isomorphisms and we do not require the existence
of the maps ϕ′ : C′

0 −→ Ker d′0 and ψ′ : C0 −→ Ker d0 satisfying conditions ϕ + ϕ′ = 0, ψ + ψ′ = 0,

and the following ones:

ϕ′ω(r′) = ωϕ′(r′),

ϕ′(r′ + r′1) = ϕ′(r′) + r′ · ϕ′(r′1),

ϕ′(r′ ∗ r′1) = ϕ′(r′) ∗ ϕ′(r′1) + ϕ′(r′) ∗ r′1 + ϕ′(r′1),

d′ϕ′(r′) = T0S0(r
′)− r′,

ϕ′d′(c′) = T1S1(c
′)− c′;

(1.3.1′)

ψ′ω(r) = ωψ′(r),

ψ′(r + r1) = ψ(r) + S0T0(r) · ψ′(r1),

ψ′(r ∗ r1) = ψ′(r) ∗ ψ′(r1) + ψ′(r) ∗ S0T0(r1) + S0T0(r) ∗ ψ′(r1),

dψ′(r) = r − S0T0(r),

ψ′d(c) = c− S1T1(c).

(1.3.2′)

Proposition 1.3.8. The following conditions are equivalent in C:

(i) We have an adjoint pair of internal functors C
T ��

C′;
S

��

(ii) We have an adjoint equivalence of internal categories C and C′.

The following proposition follows from the definition of equivalence of homotopy systems given
by Whitehead [89], Proposition 1.3.6, and the note concerning natural transformations of internal

functors and deformation operators given in Sec. 1.2.

Proposition 1.3.9. Let C and C′ be internal categories in the category of groups. If the corresponding
crossed modules

C∗ : Ker d0
d �� C0 and C′

∗ : Ker d0
d′ �� C′

0

are homotopy systems (see [89]), then the equivalence of internal categories C and C′ is a special case
of the equivalence of C∗ and C′

∗ in the sense of Whitehead (see [89]).

Recall that a functor S : A −→ A′ between (ordinary) categories is called faithful if for each pair of

objects (A1, A2) ∈ |A| × |A|; the map

S : HomA(A1, A2) −→ HomA′(S0(A1), S0(A2))

defined by f �−→ S(f) is injective; S is called full if the above map is surjective, and S is full and
faithful if this map is bijective.

For internal categories in categories of groups with operations we obtain the analogous definition.
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Definition 1.3.10. An internal functor S = (S0, S1) : C −→ C′ is called faithful if for each pair

(r, r1) ∈ C0×C0 the map C(r, r1) −→ C′(S0(r), S0(r1)) defined by (r, c) �−→ (S0(r), S1(c)) for each
(r, c) ∈ C0 �Ker d0 with d(c) + r = r1, is injective. (S0, S1) is called full if this map is surjective and
S is called full and faithful if this map is a bijection.

Lemma 1.3.11. Internal functor S = (S0, S1) : C −→ C′ is faithful if and only if

S1|Ker d : Ker d −→ Ker d′

is a monomorphism (here as above d = d1|Ker d0).

Proof. By the definition of faithful functor the equality (S0(r), S1(c)) = (S0(r), S1(c1)) implies (r, c) =
(r, c1) for each c, c1 ∈ Ker d0, and r ∈ C0 with d(c) = d(c1). This condition is equivalent to the
following one: S1(c) = S1(c1) implies c = c1 for each c, c1 ∈ Ker d, which means that S1|Ker d is a

monomorphism.

Lemma 1.3.12. Internal functor S = (S0, S1) : C −→ C′ is full if and only if for each c′ ∈ Ker d′0
with d′c′ = S0(r) for some r ∈ C0, there is an element c ∈ Ker d0 such that d(c) = r and S1(c) = c′.

Proof. By the definition of the full functor for an arbitrary element (S0(r), c
′) with d′(c′) + S0(r) =

S0(r1) there is an element c ∈ Ker d0 such that d(c) + r = r1 and S1(c) = c′, where r, r1 ∈ C1 and
c′ ∈ Ker d0. Taking r = 0, we obtain the desired condition.

Let (S0(r), c
′) ∈ C′(S0(r), S0(r1)). We have

d′(c′) = S0(r1)− S0(r) = S(r1 − r).

By the conditions of the lemma there is an element c ∈ Ker d0 with S1(c) = c′ and d(c) = r1 − r. So

d(c) + r = r1, (r, c) ∈ C(r, r1) and (S0(r), S1(c)) = (S0(r), c
′), which proves the lemma.

For internal categories we have the following analogue of Theorem 1 from [72], §4, IV.
Theorem 1.3.13. The following properties of an internal functor T : C −→ C′ in C are equivalent:

(i) T is an equivalence of internal categories.

(ii) T is a part of an adjoint equivalence C �� C′�� .

(iii) T is full and faithful; for each r′ ∈ C′
0 there is an element r ∈ C0 such that we have an

isomorphism

(T0(r), c
′) : T0(r)

≈ �� r′ .

The correspondence r′ �−→ r defines a homomorphism S0 : C′
0 −→ C0, and the isomorphisms

(T0(r), c
′) can be chosen in such a way that the map ϕ : r′ �−→ c′ satisfies conditions (1.3.11).

Proof. By the definitions, (ii) implies (i). To prove that (i) implies (iii), let c ∈ Ker d. From (1.3.2),
we have ψd(c) = S1T1(c) − c; dc = 0, so if T1(c) = 0, then c = 0 which by Lemma 1.3.11 means that
T is faithful. Similarly, from (1.3.1) we prove that S is faithful. To prove that T is full, let c′ ∈ Ker d′0
and d′c′ = T0(r) for some r ∈ C0. Take c = −ψ(r) + S1(c

′), c ∈ Ker d0. By Lemma 1.3.12 we must
show that dc = r and T1(c) = c′. We have

dc = d(−ψ(r + S1(c
′))) = −dψ(r) + dS1(c

′)

= −(S0T0(r)− r) + dS1(c
′) = r − S0T0(r) + S0d

′c′ + r − S0T0(r) + S0T0(r) = r.

Thus, by the definition c = −ψ(r) + S1(c
′); on the other hand, by (1.3.2) for each c ∈ Ker d0 we

have c = −ψ(r) + S1T1(c). From the above two equalities we obtain that S1T1(c) = S1(c
′). But S

is a faithful internal functor. This proves that T1(c) = c′. The other conditions of (iii) are trivially

satisfied.
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Now we shall prove that (iii) implies (ii). By (iii) we have a homomorphism S0 : C0 −→ C′
0 and a

map ϕ : C′
0 −→ Ker d′0 satisfying conditions (1.3.11). For an arbitrary morphism (0, c′) : 0 −→ r′ we

have an isomorphism 0 −→ T0S0(r
′) defined as the composite (T0S0(r

′), ϕ(r′))−1 · (0, c′). The latter
has the form (0, T1(c)) for some c : 0 −→ S0(r

′), because T is full and this c is unique because T is
faithful. We can define S1(c

′) = c. Thus we have S1(c
′) = T−1(−ϕ(d′c′) + c′). We must show that S1

is a morphism in C and S = (S0, S1) satisfies conditions (1.1.5) (F̃1 and F0 are replaced by S1 and
S0, respectively).

1. From the definition follows that S1(ω(c)) = ω(S1(c)).

2. S1(c
′
1 + c′2) = T−1

1 (−ϕ(d(c′1 + c′2)) + c′1 + c′2);

S1(c
′
1) + S1(c

′
2) = T−1

1 (−ϕdc′1 + c′1) + T−1
1 (−ϕdc′2 + c′2).

Thus it is sufficient to show that −ϕ(d(c′1 + c′2)) + c′1 + c′2 = −ϕdc′1 + c′1 − ϕdc′2 + c′2. We have

− ϕ(d(c′1 + c′2)) + c′1 + c′2 = −ϕ((dc′1) + (dc′2)) + c′1 + c′2)

= −(ϕdc′1) + T0S0(d
′c′1) · ϕ(dc′2) + c′1 + c′2 = −(T0S0(dc

′
1) · ϕ(dc′2))− ϕdc′1 + c′1 + c′2.

From (1.3.1) we have T0S0(d
′c′1) = −d′ϕ(d′c′1) + d′c′1 = d′(−ϕd′c′1 + c′1); thus we obtain

− ϕ(d(c′1 + c′2)) + c′1 + c′2 = −((−d′ϕ(d′c′1) + d′c′1) · ϕ(d′c′2))− ϕdc′1 + c′1 + c′2
= −((d′(−ϕ(d′c′1) + c′1)) · ϕ(d′c′2))− ϕd′c′1 + c′1 + c′2

= −ϕd′c′1 + c′1 − ϕd′c′2 − c′1 + ϕd′c′1 − ϕd′c′1 + c′1 + c′2 = −ϕd′c′1 + c′1 − ϕd′c′2 + c′2.

3. S1(c
′
1 ∗ c′2) = T−1

1 (−ϕ(d′(c′1 ∗ c′2)) + c′1 ∗ c′2;
S1(c

′
1) ∗ S1(c

′
2) = T−1

1 (−ϕd′(c′1) + c′1) ∗ T−1
1 (−ϕd′(c′2) + c′2)

= T−1
1 (ϕd′(c′1) ∗ ϕd′(c′2)− ϕd′(c′1) ∗ c′2 − c′1 ∗ ϕd′(c′2) + c′1 ∗ c′2);

−ϕ(d′(c′1 ∗ c′2)) + c′1 ∗ c′1 = −ϕ((d′c′1) ∗ d′(c′2)) + c′1 ∗ c′2
= −(ϕd′(c′1) ∗ ϕd′(c′2) + ϕd′(c′1) ∗ T0S0d

′(c′2) + T0S0d
′(c′1) ∗ ϕd′(c′2)) + c′1 ∗ c′2

= −T0S0d
′(c′1) ∗ ϕd′(c′2)− ϕd′(c′1) ∗ T0S0d

′(c′2)− ϕd′(c′1) ∗ ϕd′(c′2) + c′1 ∗ c′2
= (−d′c′1 + d′ϕd′(c′1)) ∗ ϕd′(c′2) + ϕd′(c′1) ∗ (−d′c′2 + d′ϕd′(c′2))− ϕd′(c′1) ∗ ϕd′(c′2) + c′1 ∗ c′2

= −d′(c′1) ∗ ϕd′(c′2) + ϕd′(c′1) ∗ ϕd′(c′2)− ϕd′(c′1) ∗ d′(c′2)
+ϕd′(c′1) ∗ ϕd′(c′2)− ϕd′(c′1) ∗ ϕd′(c′2) + c′1 + c′2

= −c′1 ∗ ϕd′(c′2) + ϕd′(c′1) ∗ ϕd′(c′2)− ϕd′(c′1) ∗ c′2 + c′1 ∗ c′2,
which gives the desired equality (here we again apply the equality a ∗ c+ b ∗ d = b ∗ d+ a ∗ c for
the elements of C and its consequence for the actions).

4. We must show S1(r
′ ∗ c′) = S0(r

′) ∗ S1(c
′). We have

S1(r
′ ∗ c′) = T−1

1 (−ϕ(d′(r′ ∗ c′)) + r′ ∗ c′);
S0(r

′) ∗ S1(c
′) = S0(r

′) ∗ T−1
1 (−ϕd′(c′) + c′) = T−1

1 (T0S0(r
′) ∗ (−ϕd′(c′) + c′),

−ϕ(d′(r′ ∗ c′)) + r′ ∗ c′ = −ϕ(r′ ∗ d′c′) + r′ ∗ c′
= −ϕ(r′) ∗ ϕd′(c′) + ϕ(r′) ∗ T0S0d

′(c′) + T0S0(r
′) ∗ ϕ(d′c′) + r′ ∗ c′

= −T0S0(r
′) ∗ ϕd′(c′)− ϕ(r′) ∗ T0S0d

′(c′)− ϕ(r′) ∗ ϕd′(c′) + r′ ∗ c′
= −T0S0(r

′) ∗ ϕd′(c′)− ϕ(r′) ∗ (d′ϕd′(c′) + TSd′(c′)) + r′ ∗ c′
= −T0S0(r

′) ∗ ϕd′(c′)− ϕ(r′) ∗ d′(c′) + r′ ∗ c′
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= −T0S0(r
′) ∗ ϕd′(c′) + (−d′ϕ(r′) + r′) ∗ c′

= −T0S0(r
′) ∗ ϕd′(c′) + T0S0(r

′) ∗ c′ = T0S0(r
′) ∗ (−ϕd′(c′) + c′).

5. We must show S1(r
′ · c′) = S0(r

′) · S1(c
′). We have

S1(r
′ · c′) = T−1

1 (−ϕd′(r′ · c′) + r′ · c′);
−ϕd′(r′ · c′) + r′ · c′ = −ϕ(r′ + d′c′ − r′) + r′ · c′ = −(ϕ(r′) + T0S0(r

′) · ϕ(d′c′ − r′))

= −ϕ(r′) + (−d′ϕ(r′) + r′) · (ϕ(d′c′) + T0S0(d
′c′) · ϕ(−r′)) + r′ · c′

= −(ϕ(r′) + (−d′ϕ(r′) + r′) · (ϕ(d′c′) + (−d′ϕ(d′c′) + d′c′) · ϕ(−r′))) + r′ · c′
= −(ϕ(r′) + (−d′ϕ(r′) + r′) · (ϕd′(c′) + d′(−ϕ(d′c′)) · (c′ + ϕ(−r)− c′) + r′c′

= −(ϕ(r′) + (−dϕ(r′) + r′) · (ϕd′(c′)− ϕd′(c′) + c′ + ϕ(−r′)− c′ + ϕd′(c′))) + r′ · c′
= −(ϕ(r′) + (−d′ϕ(r′)) · (r′ · c′ + r′ · ϕ(−r′) + r′(−c′) + r′ · ϕd′(c′)) + r′ · c′
= −(ϕ(r′)− ϕ(r′) + r′ · c′ + r′ · ϕ(−r′)− r′ · c′ + r′ · ϕd′(c′) + ϕ(r′)) + r′ · c′

= −ϕ(r′)− r′ · ϕd′(c′)− r′ · (−c′)− r′ · ϕ(−r′)− r′ · c+ r′ · c′
= −ϕ(r′)− r′ · ϕd′(c′) + r′ · c′ − r′ · ϕ(−r′).

From (1.3.1) we obtain

ϕ(0) = ϕ(−r′) + T0S0(−r′) · ϕ(r′), 0 = ϕ(−r′) + (−T0S0(r
′)) · ϕ(r′),

ϕ(−r′) = −(−T0S0(r
′)) · ϕ(r′) = −(−r′ + d′ϕ(r′)) · ϕ(r′)

= −((−r′) · (ϕ(r′) + ϕ(r′)− ϕ(r′))) = −(−r′) · ϕ(r′).
Thus,

r′ · ϕ(−r′) = r′ · (− (−r′) · ϕ(r′)) = r′ · ((−r′) · (−ϕ(r′))) = (r′ + (−r′)) · (−ϕ(r′)) = −ϕ(r′).
Applying this to the above equality, we conclude

S1(r
′ · c′) = T−1

1 (−ϕ(r′)− r′ · ϕd′(c′) + r′ · c′ + ϕ(r′)).

On the other hand, we have

S0(r
′) · S1(c

′) = S0(r
′) · T−1

1 (−ϕd′c′ + c′)

= T−1
1 (T0S0(r

′) · (−ϕd′(c′) + c′)) = T−1
1 ((d′ϕ(r′) + r′) · (−ϕd′(c′) + c′))

= T−1
1 (−ϕ(r′) + r′(−ϕd′(c′) + c′) + ϕ(r′)) = T−1

1 (−ϕ(r′)− r′ · ϕd′(c′) + r′ · c′ + ϕ(r′)),

which proves the equality.
We have also to show that S0d

′ = d′S1. For each c′ ∈ Ker d′0,

d′S1(c
′) = d′T−1

1 (−ϕd′(c′) + c′);

c′ is a morphism

0 −→ d′(c′),

−ϕd′(c′) + c′ is a morphism

0 −→ T0S0(d
′c′),

so T−1
1 (−ϕd′(c′) + c′) is a morphism

0 −→ S0d
′(c′)

and hence

d′T−1
1 (−ϕd′(c′) + c′) = S0d

′(c′)
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which gives the desired equality. Note that by the definition of S1 the last condition of (1.3.1) is also

satisfied.
To define ψ : C0 −→ Ker d0 note that

d′ϕT0(r) = T0(r − S0T0(r)).

Since T is full and faithful, there is an unique element c ∈ Ker d0 such that

d(c) = r − S0T0(r), T1(c) = ϕT0(r).

Define ψ by ψ(r) = T−1
1 (−ϕT0(r)). It is not difficult to show that ψ satisfies conditions (1.3.2) and

(1.3.3). We shall demonstrate the proof of the first equality of (1.3.3). For this we need to prove that

ϕT0S0 = T1S1ϕ. We have

ϕT0S0(r
′) = ϕ(−d′ϕ(r′) + r′) = ϕ(−d′ϕ(r′)) + T0S0(−d′ϕ(r′)) · ϕ(r′)
= ϕ(−d′ϕ(r′))− d′ϕ(−d′ϕ(r′) + (−d′ϕ(r′)) · ϕ(r′)

= ϕ(−d′ϕ(r′))− ϕ(−d′ϕ(r′))− ϕ(r′) + ϕ(r′) + ϕ(r′) + ϕ(−d′ϕ(r′))
= ϕ(r′)− ((T0S0d

′ϕ(r′)) · ϕ(d′ϕ(r′))) = ϕ(r′)− (

(−d′ϕ(r′) + d′ϕd′ϕ(r′)) · ϕ(d′ϕ(r′)))

= ϕ(r′)− (− ϕ(r′) + ϕd′ϕ(r′) + ϕd′ϕ(r′)− ϕd′ϕ(r′) + ϕ(r′)
)

.

We apply here the equality

ϕ(−r′) = −((−T0S0(r
′)) · ϕ(r′)),

which can be obtained from the second condition of (1.3.11). From (1.3.12) we have

T1S1ϕ(r
′) = −ϕd′ϕ(r′) + ϕ(r′),

which gives the desired equality. Applying this, we shall prove the first equality of (1.3.3). We have

S1ϕ(r
′) + ψS0(r

′) = T−1
1 (−ϕd′ϕ(r′) + ϕ(r′)) + T−1

1 (−ϕT0S0(r
′))

= T−1
1 (−(ϕ(r′)− T1S1ϕ(r

′)) + ϕ(r′)) + T−1
1 (−T1S1ϕ(r

′))

= T−1
1 (T1S1ϕ(r

′)− ϕ(r′) + ϕ(r′))− S1ϕ(r
′) = 0.

This completes the proof of Theorem 1.3.13.

Note that (ii) =⇒ (i) can be proved directly. For the given T , S, ϕ, ψ we must define ϕ by

ϕ = S−1
1 (−ψS0(r

′)); it is proved that ϕ satisfies conditions (1.3.1) and (1.3.3) and (T, S, ϕ, ψ) is an
adjoint equivalence of internal categories C and C′. Also note that by Lemmas 1.3.11 and 1.3.12, the
condition T is full and faithful, and for each r′ ∈ C′

0 there is an element r ∈ C0 such that T0(r) ≈ r′ is
equivalent to the following: T induces the isomorphisms Ker d ≈ Ker d′, Coker d ≈ Coker d′; this kind
of a morphism between crossed modules is usually called a weak equivalence (see, e.g., [42]).

Proposition 1.3.14. Let C = (C0,C1, d0, d1, i m) be an internal category in the category of groups
with operations C. C is equivalent to the discrete internal category, if and only if d = d1

∣
∣
Ker d0

is a

monomorphism and the natural epimorphism π : C0 −→ Coker d has a section.

Proof. Let the conditions of the Proposition hold. We shall prove that C is equivalent to the discrete
internal category C′ = (Coker d,Coker d, 1, 1, 1, 1). Let u : Coker d −→ C0 be a section of π, πu =
1Coker d. For the category C′ we have: C′

0 = Coker d, Ker d′0 = 0, d′ = 0. Define internal functors

(T0, T1) : C −→ C′, (S0, S1) : C
′ −→ C by T0 = π, T1 = 0, S0 = u, S1 = 0. It is easy to see that these
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maps satisfy conditions (1.1.5). The picture is the following

Ker d0
d ��

T1=0
��

C0

T0=π
��

0 = Ker d′0
d′=0��

S1=0

��

C′
0 = Coker d

S0=u

��
Ker d0

d
�� C0

.

For the split extension

0 �� Im d �� C0
π

�� Coker d
u�� �� 0 (1.3.4)

we have C0 ≈ Coker d� Im d; so each r ∈ C0 has a form r = (π(r), dc). Define ψ′ : C0 −→ Ker d0 by
ψ′(π(r), dc) = c; d is a monomorphism, from which it follows that ψ′ is defined correctly. We must

show that the maps ψ′ and ϕ = 0 satisfy conditions (1.3.2′) and (1.3.1) respectively. It is easy to see
that ϕ satisfies (1.3.1). For (1.3.2′) we have:

1. For each unary operation ω, except the negation

ψ′(ω(r)) = ψ′(ω(π(r), dc)) = ψ′(ωπ(r), ωd(c)) = ψ′(πω(r), d(ω(c))) = ω(c);

ωψ′(r) = ωψ′(π(r), dc) = ω(c).

2. ψ′(r1+ r2) = ψ′((π(r1), dc1)+ (π(r2), dc2)) = ψ′(π(r1)+π(r2), dc1+π(r1) ·dc2); here the action
π(r1) · dc2 is induced from the extension (1.3.4):

π(r1) · dc2 = (π(r1), 0) + (0, dc2)− (π(r1), 0).

Consider the action (π(r1), 0) · c2 induced from the extension

0 �� Ker d0 �� C1
d0 �� C0

�� 0; (1.3.5)

we have (π(r1), 0) ∈ C0, c2 ∈ Ker d0. From Lemma 1.1.2 we obtain

d((π(r1), 0) · c2) = (π(r1), 0) + (0, dc2)− (π(r1), 0).

From the above we conclude

ψ′(r1 + r2) = ψ′(π(r1) + π(r2), dc1 + d((π(r1, 0) · c2))
= (π(r1 + r2), d

(

c1 + (π(r1), 0) · c2
)

= c1 + (π(r1), 0) · c2 = ψ′(r1) + S0T0(r1) · ψ′(r2).

3. ψ′(r1∗r2) = ψ′((π(r1), dc1)∗(π(r2), dc2)) = ψ′(π(r1)∗π(r2), dc1∗dc2+(dc1)∗π(r2)+π(r1)∗dc2).
The action (dc1) ∗ π(r2) is induced from the extension (1.3.4). Thus,

(dc1) ∗ π(r2) = (0, dc1) ∗ (π(r2), 0).
Consider the action c1 ∗ (π(r2), 0) induced from (1.3.5). Here (π(r2), 0) ∈ C0, c1 ∈ Ker d0. Thus from

Lemma 1.1.2 we obtain

d(c1 ∗ (π(r2), 0)) = d((0, c1) ∗ (π(r2), 0) = (0, dc1) ∗ (π(r2), 0).
So

(dc1) ∗ π(r2) = d(c1 ∗ (π(r2), 0)).
Similarly,

π(r1) ∗ dc2 = d((π(r1), 0) ∗ c2).
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From the above arguments we have

ψ′(r1 ∗ r2) = ψ′(π(r1 ∗ r2), d(c1 ∗ c2) + d(c1 ∗ (π(r2), 0)) + d((π(r1), 0) ∗ c2)
= ψ′(π(r1 ∗ r2), d(c1 ∗ c2 + c1 ∗ (π(r2), 0) + (π(r1), 0) ∗ c2))

= c1 ∗ c2 + c1 ∗ (π(r2), 0) + (π(r1), 0) ∗ c2
= ψ′(π(r1), dc1) ∗ ψ′(π(r1), dc1) + ψ′((π(r1), dc1) ∗ (π(r2), 0) + (π(r1), 0) ∗ ψ′(π(r2), dc2)

= ψ′(r1) ∗ ψ′(r2) + ψ′(r1) ∗ S0T0(r2) + S0T0(r1) ∗ ψ′(r2).

4. dψ′(r) = dψ′(π(r), dc) = (0, dc), r − S0T0(r) = (π(r), dc) − (π(r), 0) = (0, dc).

5. ψ′dc = ψ′(0, dc) = c, c− S1T1(c) = c− 0 = c.

Thus ψ′ satisfies conditions (1.3.2′). Now we shall prove the converse statement. Let C be equivalent

to the discrete category C′ = (C0
′,C0

′, 1, 1, 1, 1). Denote by T and S internal functors C
T ��

C′
S

�� ,

which induce the equivalence of the given categories. By Proposition 3.3.4 of Chap. 3 (where we do
not use in the proof the statement of Proposition 1.3.14) C and C′ are homologically equivalent. Hence
we have the isomorphisms Ker d ≈ Ker d′ = 0 and Coker d ≈ Coker d′ = C0

′ induced by S and T and
the following commutative diagram:

0 �� Ker d ��

≈
��

Ker d0
d ��

T1=0

��

C0
π ��

T0

��

Coker d ��

α ≈
��

0

0 �� 0 ��

≈
��

0
d′=0 ��

S1=0

��

C′
0

= ��

S0

��

C′
0

��

β ≈
��

0

0 �� Ker d �� Ker d0
d �� C0

π �� Coker d �� 0

.

Thus d is a monomorphism. From the commutativity of the diagram we have πS0α = βα = 1Coker d,
which proves that S0α is a section of π.

Chapter 2

COHOMOLOGY OF INTERNAL CATEGORIES

IN CATEGORIES OF GROUPS WITH OPERATIONS

In this chapter we define and study the cohomology Hn(C,−) of an internal category C in the cat-
egory C of groups with operations [78], [76] (see Sec. 1.1 for the definition). As in Chap. 1, using

the equivalence of categories Cat(C)
∼ �� XMod(C) [78], we describe completely the cohomology

Hn(C,−) and the corresponding complex {Kn(C,−), ∂n, n ≥ 0}. In particular cases this gives the
description of the cohomology of internal categories in the category of groups, associative algebras, Lie

algebras, etc. Regarding the internal category cohomology as the cohomology of the corresponding
crossed module, we obtain the equivalent results for the crossed module cohomology.

2.1. Abelian Groups in the Category CC of Internal Diagrams

Let C be a category of groups with operations and C= (C0,C1, d0, d1, i,m) an internal category

in C. Recall that [43] an internal diagram F on C consists of an object F0
γ0 �� C0 of C/C0 and

a morphism e : C1 ×C0 F0 −→ F0 such that γ0e = d1π1, e(i × 1) = 1F0 , and e(1 × e) = e(m × 1) :
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C1 ×C0 C1 ×C0 F0 −→ F0. By an abelian group in the category CC of internal diagrams on C is

meant a quintuple A = (A0, π, e, η, μ), where A0
π �� C0 is an object of C/C, e : C1×C0A0 −→ A0

an action of C on A, η : C0 −→ A0 a group identity and μ : A0 ×C0 A0 −→ A0 an addition, which are
morphisms of C satisfying standard conditions. We can consider A as an internal category of the form

A = (C0, A0, π, π, η, μ) with the additional structure e, which is isomorphic to the internal category
(C0,C0�Kerπ, π′, π′, η′, μ′) with the additional structure e′ : (C0 �Ker d0) ×C0 (C0�Kerπ) −→
C0�Kerπ; here π′(r, a) = r, η′(r) = (r, 0), μ′((r, a′), (r, a)) = (r, a′ + a). Note that by Lemma 1.1.1

applied to A, Kerπ is an abelian group and a1 ∗ a2 = 0 for all a1, a2 ∈ Kerπ. By the definition of an
internal diagram, e′ is a morphism in C satisfying the conditions

π′e′((r, c), (r, a)) = d(c) + r,

e′((r, 0), (r, a)) = (r, a),

e′
(

(d(c) + r, c′), e′((r, c), (r, a))
)

= e′((r, c′ + c), (r, a));

moreover, e′ satisfies the distributivity condition (for the abelian group structure on A), from which
follows

e′((r, c), (r, 0)) = (d(c) + r, 0).

From the above and from the fact that e′ is a morphism in C we obtain

e′((r, c), (r, a)) = e′
(

((0, 0), (0, a)) + ((r, c), (r, 0))
)

= e′((0, 0), (0, a)) + e′((r, c), (r, 0)) =
= (0, a) + (d(c) + r, 0) = (d(c) + r, a);

on the other hand,

e′((r, c), (r, a)) = e′
(

((0, c), (0, 0)) + ((r, 0), (r, a))
)

= e′((0, c), (0, 0)) + e′((r, 0), (r, a)) =
= (d(c), 0) + (r, a) = (d(c) + r, d(c) · a).

Thus, for each r ∈ C0, c ∈ Ker d0 and a ∈ Kerπ

e′((r, c), (r, a)) = (d(c) + r, a),

d(c) · a = a.

Consider the following equality:

e′
(

((r, c), (r, a)) ∗ ((r′, c′), (r′, a′))) = e′((r, c), (r, a)) ∗ e′((r′, c′), (r′, a′)).
Direct computations give

e′
(

(r ∗ r′, c ∗ c′ + r ∗ c′ + c ∗ r′), (r ∗ r′, r ∗ a′ + a ∗ r′)) = (d(c) + r, a) ∗ (d(c′) + r′, a′),
(

d(c ∗ c′) + d(r ∗ c′) + d(c ∗ r′) + r, r ∗ a′ + a ∗ r′) =
=

(

d(c) ∗ d(c′) + r ∗ d(c′) + d(c) ∗ r′ + r ∗ r′, d(c) ∗ a′ + r ∗ a′ + a ∗ d(c′) + a ∗ r′).

For the case where a′ = 0, we obtain

d(c) ∗ a = 0,

for each a ∈ Kerπ, c ∈ Ker d0 and ∗ ∈ Ω′
2.

Thus we can conclude that Kerπ is a Coker d-module in the sense of [76] (see Definition 3.1.5 and

Sec. 3.3).
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2.2. The Standard Complex and the Cohomology

Let C= (C0,C1, d0, d1, i,m) be an internal category in C, and A = (A0, π, e, η, μ) an abelian group

in the category CC of internal diagrams on C. We construct the standard complex {K∗(C, A), ∂∗} in
analogy with the definition of the cohomology groups of ordinary categories [24, 25]:

K0(C, A) =
{

f ∈ C(C0, A0) | πf = 1C0

}

,

K1(C, A) =
{

ϕ ∈ C(C1, A0) | πϕ = d1
}

,

Kn(C, A) =
{

ϕ ∈ C(C1×C0
· · · ×

C0
C1

︸ ︷︷ ︸

n

, A0) | πϕ = d1π1

}

,

for n > 1; here π1 denotes the first projection (i.e., π1(xn, . . . , x1) = xn). For each f ∈ K0(C, A),

ϕ ∈ Kn(C, A), x ∈ C1, and (xn+1, . . . , x1) ∈ C1×C0
· · · ×C0

C1 (n > 0), the differentials are defined
by

∂0(f)(x) = e(x, fd0(x))− fd1(x),

∂n(ϕ)(xn+1, . . . , x1) = e
(

xn+1, ϕ(xn, . . . , x1)
)

+

n∑

i=1

(−1)iϕ(xn+1, . . . ,m(xi+1, xi), . . . , x1
)

+ (−1)n+1ϕ(xn+1, . . . , x2).

We set Hn(C, A) = Hn{K∗(C, A), ∂∗} for n ≥ 0.
Now we shall give another (semi-trivial extension) form to this complex, which will be isomorphic

to the previous one. By the diagrams

C0
f �� A0

≈

C0
f ′

����� C0 �Kerπ

,

C1×C0
· · · ×

C0
C1

︸ ︷︷ ︸

n

ϕ ��

≈
��

A0

≈

��
(C0�Ker d0)×C0

· · · ×
C0

(C0 �Ker d0)
︸ ︷︷ ︸

n

ϕ′
����� C0�Kerπ

we define

K0(C0 �Ker d0,C0 �Kerπ) =
{

f ′ ∈ C(C0,C0�Kerπ) | π′f ′ = 1C0

}

,

K1(C0 �Ker d0,C0 �Kerπ) =
{

ϕ′ ∈ C(C0 �Ker d0,C0 �Kerπ) | π′ϕ′ = d′1
}

,

Kn(C0�Ker d0,C0�Kerπ)

=
{

ϕ′ ∈ C
(

(C0�Ker d0)×C0
· · · ×

C0
(C0 �Ker d0

︸ ︷︷ ︸

n

),C0 �Kerπ′) | π′ϕ′ = d′1π1
}

for n > 1.

For the differentials we have the following equalities:

∂′ 0(f ′)(r, c) = e′((r, c), f ′d0(r, c)) − f ′(d′1(r, c)) = (d(c) + r, π2f
′(r))− f ′(d(c) + r)

= (d(c) + r, π2f
′(r))− (d(c) + r, π2f

′(d(c) + r))
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= (d(c) + r, π2f
′(r)− π2f

′d(c)− π2f
′(r)) = (d(c) + r,−π2f ′d(c)),

∂′ 1(ϕ′)((d(c1) + r, c2), (r, c1)) = e′((d(c1) + r, c2), ϕ
′(r, c1))

− ϕ′(m′((d(c1) + r, c2), (r, c1))) + ϕ′(d(c1) + r, c2)

= (d(c2) + d(c1) + r, π2ϕ
′(r, c1))− ϕ′(r, c2 + c1) + ϕ′(d(c1) + r, c2)

= (d(c2) + d(c1) + r, π2ϕ
′(r, c1))−

(

d(c2) + d(c1) + r, π2ϕ
′(r, c2 + c1)

)

+
(

d(c2) + d(c1) + r, π2ϕ
′(d(c1) + r, c2)

)

(2.2.1)

=
(

d(c2) + d(c1) + r, π2ϕ
′(r, c1)− π2ϕ

′(r, c2 + c1) + π2ϕ
′(d(c1) + r, c2)

)

;

∂′ n(ϕ′)
(

(d(cn) + · · ·+ d(c1) + r, cn+1), . . . , (d(c1) + r, c2), (r, c1)
)

=
(

d(cn+1) + · · · + d(c1) + r, π2ϕ
′((d(cn−1) + · · ·+ d(c1) + r, cn), . . . , (r, c1))

)

+

n∑

i=1

(−1)iπ2ϕ′((d(cn) + · · ·+ d(c1) + r, cn+1), . . .

. . . , (d(ci−1) + · · · + d(c1) + r, ci+1 + ci), . . . , (r, c1)
)

+ (−1)n+1π2ϕ
′((d(cn) + · · · + d(c1) + r, cn+1), . . . , (d(c1) + r, c2)

)

,

for n > 1. For f ′ ∈ K0(C0 �Ker d0,C0 �Kerπ) we can write f ′(r) = (r, π2f
′(r)). Since ϕ′ ∈

K1(C0 �Ker d0,C0 �Kerπ) is a morphism of C, we can write

ϕ′(r, c) = ϕ′((0, c) + (r, 0)) = ϕ′(0, c) + ϕ′(r, 0)

= (d(c), π2ϕ
′(0, c)) + (r, π2ϕ

′(r, 0)) = (d(c) + r, π2ϕ
′(0, c) + π2ϕ

′(r, 0)).

Further, since we have

(d(c1) + r, c2) = (0, c2) + (d(c1), 0) + (r, 0),

(r, c1) = (0, c1) + (r, 0),

for ϕ′ ∈ K2(C0 �Ker d0,C0 �Kerπ), we obtain

ϕ′((d(c1) + r, c2), (r, c1)) = ϕ′(((0, c2), (0, 0)) + ((d(c1), 0), (0, c1)) + ((r, 0), (r, 0)))

= ϕ′((0, c2), (0, 0)) + ϕ′((d(c1), 0), (0, c1)) + ϕ′((r, 0), (r, 0))

=
(

d(c2) + d(c1) + r, π2ϕ
′((0, c2), (0, 0))

)

+ π2ϕ
′((d(c1), (0, c1)) + π2ϕ

′((r, 0), (r, 0))
)

.

Similarly, since
(

(d(cn−1) + · · · + d(c1) + r, cn), . . . , (d(c1) + r, c2), (r, c1)
)

= ((0, cn), (0, 0), . . . , (0, 0)) + ((d(cn−1), 0), (0, cn−1), (0, 0), . . .

. . . , (0, 0)) + · · ·+ ((d(ck), 0), . . . , (d(ck), 0
︸ ︷︷ ︸

n−k

), (0, ck),

(0, 0), . . . , (0, 0)
︸ ︷︷ ︸

k−1

) + · · ·+ ((d(c1), 0), . . . , (d(c1), 0), (0, c1)) + ((r, 0), . . . , (r, 0)),

for n > 1 and ϕ′ ∈ Kn(C0 �Ker d0,C0 �Kerπ), we obtain

ϕ′((d(cn−1) + · · ·+ d(c1) + r, cn), . . . , (d(c1) + r, c2), (r, c1))

=
(

d(cn) + d(cn−1) + · · ·+ d(c1) + r, π2ϕ
′((0, cn), (0, 0), . . . , (0, 0))

)

+ π2ϕ
′((d(cn−1), 0), (0, cn−1), (0, 0), . . . , (0, 0)

)

+ . . .
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+ π2ϕ
′( (d(ck), 0), . . . , (d(ck), 0
︸ ︷︷ ︸

n−k

), (0, ck), (0, 0), . . . , (0, 0)
︸ ︷︷ ︸

k−1

)

+ . . .

+ π2ϕ
′((d(c1), 0), . . . , (d(c1), 0), (0, c1)

)

+ π2ϕ
′((r, 0), . . . , (r, 0)).

Denote for n > 0 and ϕ′ ∈ Kn(C0�Ker d0,C0�Kerπ)

ϕ0(r) = π2ϕ
′( (r, 0), . . . , (r, 0)
︸ ︷︷ ︸

n

)

for each r ∈ C0;

ϕ1(c) = π2ϕ
′((d(c), 0), . . . , (d(c), 0), (0, c)

)

for each c ∈ Ker d0;

ϕk(c) = π2ϕ
′( (d(c), 0), . . . , (d(c), 0)
︸ ︷︷ ︸

n−k

)

, (0, c), (0, 0), . . . , (0, 0)
︸ ︷︷ ︸

k−1

)

for each 1 ≤ k ≤ n, c ∈ Ker d0.

(2.2.2)

So we have

ϕ′(r, c) = (d(c) + r, ϕ1(c) + ϕ0(r)) for ϕ′ ∈ K1(C0�Ker d0,C0 �Kerπ);

ϕ′((d(c1) + r, c2), (r, c1)) = (d(c2) + d(c1) + r, ϕ2(c2) + ϕ1(c1) + ϕ0(r))

for ϕ′ ∈ K2(C0 �Ker d0,C0 �Kerπ);

ϕ′((d(cn−1) + · · ·+ d(c1) + r, cn), . . . , (d(c1) + r, c2), (r, c1)) =

= (d(cn) + · · ·+ d(c1) + r, ϕn(cn) + · · · + ϕ1(c1) + ϕ0(r))

for n > 1, ϕ′ ∈ Kn(C0 �Ker d0,C0 �Kerπ).

(2.2.3)

The functions ϕ0, ϕ1, . . . , ϕn are completely determined by ϕ′ ∈ Kn(C0�Ker d0,C0�Kerπ).
Again, from the fact that ϕ′ is a morphism in C, we obtain the following identities for ϕ0, ϕ1, . . . , ϕn,

for each r, r′ ∈ C0, c, c
′ ∈ Ker d0:

ϕ0(ω(r)) = ω(ϕ0(r)) for each ω ∈ Ω′
1,

ϕ0(r + r′) = ϕ0(r) + r · ϕ0(r
′), (2.2.4)

ϕ0(r ∗ r′) = r ∗ ϕ0(r
′) + ϕ0(r) ∗ r′ for each ∗ ∈ Ω′

2;

for 1 ≤ k ≤ n;

ϕk(ω(c)) = ω(ϕk(c)) for each ω ∈ Ω1,

ϕk(c+ c′) = ϕk(c) + ϕk(c
′),

ϕk(r ∗ c) = r ∗ ϕk(c) for each ∗ ∈ Ω′
2,

ϕk(c ∗ c′) = 0 for each ∗ ∈ Ω′
2,

ϕk(r · c) = r · ϕk(c).

Maps satisfying conditions (2.2.4) are called derivations [76] (see Sec. 3.2), and the case of groups

is a special case of a crossed homomorphism defined by S. MacLane [69] and J. H. C. Whitehead [89].
It is easy to see that pr2f

′∣∣
C0

: C0 −→ Kerπ for f ′ ∈ K0(C0 �Ker d0,C0 �Kerπ) also satisfies

conditions (2.2.4). Denote

K0 = K0(Ker d0,Kerπ) =
{

ϕ0 | ϕ0 : C0 −→ Kerπ satisfies conditions (2.2.4)
}

= Der(C0,Kerπ),

K1 =
{

ϕ1 ∈ C(Ker d0,Kerπ) | ϕ1(r · c) = r · ϕ1(c),

ϕ1(r ∗ c) = r ∗ ϕ1(c) for each r ∈ C0, c ∈ Ker d0, ∗ ∈ Ω′
2

}

,
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Kk = K1 × · · · ×K1
︸ ︷︷ ︸

k

for k > 0,

Kn(Ker d0,Kerπ) =
{

(ϕ0, . . . , ϕn) | ϕ0 ∈ K0, (ϕ1, . . . , ϕn) ∈ Kn
}

for n > 0.

The correspondence

ϕ �−→ f ′ : r �−→ (r, ϕ0(r)),

(ϕ0, ϕ1) �−→ ϕ′ : (r, c) �−→ (

d(c) + r, ϕ1(c) + ϕ0(r)
)

,

(ϕ0, . . . , ϕn) �−→ ϕ′ defined by (2.2.3) for n > 1,

gives an isomorphism of Abelian groups

Kn(C0 �Ker d0,C0 �Kerπ) ≈ Kn(Ker d0,Kerπ) for n ≥ 0.

Differentials for the complex K∗(Ker d0,Ker π) are obtained from the diagrams

Kn(C0�Ker d0,C0�Kerπ)
∂n

��

≈
��

Kn+1(C0 �Ker d0,C0�Kerπ

≈
��

Kn(Ker d0,Kerπ)
∂

n

���������� Kn+1(Ker d0,Kerπ)

for all n ≥ 0. For the case n = 0 we have the following situation: Let ϕ0 ∈ K0(Ker d0,Ker π); the

vertical isomorphism carries ϕ0 to the homomorphism f ′ : C0 −→ C0�Kerπ defined by f ′(r) =
(r, ϕ0(r)) and also ∂0(f ′)(r, c) = (d(c) + r,−π2f ′d(c)); so from (2.2.1) and (2.2.2) we obtain

∂
0
(ϕ0) = (ϕ0, ϕ1), where

ϕ0(r) = π2(∂
0(f ′))(r, 0) = π2(r, 0) = 0 for each r ∈ C0;

ϕ1(c) = π2(∂
0(f ′))(0, c) = π2(d(c),−π2f ′d(c)) = −π2(d(c), ϕ0d(c)) = −ϕ0d(c) for each c ∈ Ker d0;

∂
1
(ϕ0, ϕ1) = (ϕ0, ϕ1, ϕ2), where

ϕ0(r) = π2(∂
′ 1(ϕ′))((r, 0), (r, 0)) =

= π2ϕ
′(r, 0) − π2ϕ

′(r, 0) + π2ϕ
′(r, 0) = π2ϕ

′(r, 0) = ϕ0(r) for each r ∈ C0;

ϕ1(c) = π2(∂
′ 1(ϕ′)((d(c), 0)(0, c)) =

= π2ϕ
′(0, c) − π2ϕ

′(0, c) + π2ϕ
′(d(c), 0) = ϕ0d(c) for each c ∈ Ker d0;

ϕ2(c) = π2(∂
′ 1(ϕ′))((0, c), (0, 0)) = −π2ϕ′(0, c) + π2ϕ

′(0, c) = 0,

for each c ∈ Ker d0, where ϕ′ denotes the element of K1(C0�Ker d0,C0�Kerπ) corresponding to
(ϕ0, ϕ1) ∈ K1(Ker d0,Ker π). So we have

∂
0
(ϕ0) = (0,−ϕ0d),

∂
1
(ϕ0, ϕ1) = (ϕ0, ϕ0d, 0).

Similarly, we obtain

∂
2
(ϕ0, ϕ1, ϕ2) = (0, ϕ1 − ϕ0d, 0,−ϕ2),

∂
3
(ϕ0, ϕ1, ϕ2, ϕ3) = (ϕ0, ϕ0d, ϕ2, ϕ2, 0),

∂
4
(ϕ0, ϕ1, ϕ2, ϕ3, ϕ4) = (0, ϕ1 − ϕ0d, 0, ϕ3 − ϕ2, 0,−ϕ4),

∂
5
(ϕ0, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) = (ϕ0, ϕ0d, ϕ2, ϕ2, ϕ4, ϕ4, 0),
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and generally for n ≥ 2

∂
2n
(ϕ0, . . . , ϕ2n) = (0, ϕ1 − ϕ0d, 0, ϕ3 − ϕ2, . . . , 0, ϕ2n−1 − ϕ2n−2, 0,−ϕ2n),

∂
2n+1

(ϕ0, . . . , ϕ2n+1) = (ϕ0, ϕ0d, ϕ2, ϕ2, . . . , ϕ2n, ϕ2n, 0).

Note that the complex {K∗(Ker d0,Kerπ), ∂
∗} depends only on K0,K1 and d.

So we have Hn(C,A) ≈ Hn{K∗(Ker d0,Kerπ), ∂
∗} for n ≥ 0. Direct computations give for the

kernels and images of ∂ the following equalities:

Ker ∂
0
=

{

f ∈ K0 | fd = 0
}

,

Ker ∂
1
=

{

(0, ϕ1) | ϕ1 ∈ K1
} ≈ K1,

Ker ∂
2
=

{

(ϕ0, ϕ0d, 0) | ϕ0 ∈ K0
} ≈ K0,

Ker ∂
3
=

{

0, ϕ1, 0, ϕ2) | (ϕ1, ϕ3) ∈ K2
} ≈ K2,

for n ≥ 2

Ker ∂
2n

=
{

(ϕ0, ϕ0d, ϕ2, ϕ2, . . . , ϕ2n−2, ϕ2n−2, 0) | ϕ0∈K0, (ϕ2, . . . , ϕ2n−2)∈Kn−1
}

≈K0×Kn−1,

Ker ∂
2n+1

=
{

(0, ϕ1, 0, ϕ3, . . . , 0, ϕ2n−1, 0, ϕ2n+1) | (ϕ1, ϕ3, . . . , ϕ2n+1) ∈ Kn+1
}

≈ Kn+1;

Im ∂
0
=
{

(0, fd) | f ∈ K0
}

,

Im ∂
1
=
{

(ϕ0, ϕ0d, 0) | ϕ0 ∈ K0
} ≈ K0,

Im ∂
2
=
{

(0, ϕ1 − ϕ0d, 0, ϕ2) | ϕ0 ∈ K0(ϕ1, ϕ2) ∈ K2
}

≈ K2,

Im ∂
4
=
{

(0, ϕ1 − ϕ0d, 0, ϕ3 − ϕ2, 0, ϕ4) | ϕ0 ∈ K0, (ϕ1, ϕ2, ϕ3, ϕ4) ∈ K4
}

≈ K3,

for n ≥ 2

Im∂
2n

=
{

(0, ϕ1 − ϕ0d, 0, ϕ3 − ϕ2, . . . , 0, ϕ2n−1 − ϕ2n−2, 0, ϕ2n) |

ϕ0 ∈ K0, (ϕ1, . . . , ϕ2n) ∈ K2n
}

≈ Kn+1,

Im∂
2n+1

=
{

(ϕ0, ϕ0d, ϕ2, ϕ2, ϕ4, ϕ4, . . . , ϕ2n, ϕ2n, 0) |

ϕ0 ∈ K0, (ϕ2, ϕ4, . . . , ϕ2n) ∈ Kn
}

≈ K0 ×Kn.

This proves the following theorem:

Theorem 2.2.1. Let C be an internal category in C. For each abelian group A in CC we have:

(i) H0(C, A) ≈ {

f ∈ K0 | fd = 0
}

;

H1(C, A) ≈ K1/
{

fd | f ∈ K0
}

;

Hn(C, A) = 0 for n ≥ 2;

(ii) for n ≥ 2 the exact sequence

0 �� Ker ∂n �� Kn(C, A)
∂n

�� Ker ∂n+1 �� 0

is split; Ker ∂2n+1 ≈ Kn+1 for n ≥ 0, Ker ∂2 ≈ K0 and Ker ∂2n ≈ K0 ×Kn−1 for n > 1.

We will see in Chap. 3 that H0(C, A) ≈ Der(Coker d, ker π).
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Chapter 3

SOME PROPERTIES OF INTERNAL CATEGORY COHOMOLOGY

AND COHOMOLOGICALLY TRIVIAL INTERNAL CATEGORIES

In this chapter we study the functorial properties of internal category cohomology and the relations
between homological, internal category, and cohomological equivalences. We relate internal category

cohomology with the cohomology of crossed modules in groups defined by G. J. Ellis [42]. A natural
next step would be to study the cohomological dimension of internal categories in C. However, on one
hand Hn(C,−) = 0, for all n ≥ 2, and on the other hand H0(C,−) = 0 does not imply H1(C,−) = 0

(see Example 3, Sec. 3.4). So the subject of investigation is to characterize those internal categories
C for which H0(C,−) = 0, and separately, those C for which H1(C,−) = 0. Our characterizations
become very simple in the case where C is the category of groups: in that case H0(C,−) = 0 if and

only if C is a connected category, and H1(C,−) = 0 if and only if the certain abelianization of C is
internally equivalent to a discrete category.

3.1. Extensions in Categories of Groups with Operations

This section contains preliminary results on the extensions in categories of groups with operations
that are essentially known [1, 2, 40, 80, 84]. Our purpose is to present them in the form convenient
for us.

Let C be a category of groups with operations with a set of operations Ω and with a set of identities
E (see Sec. 1.1 for the definition).

We formulate two more axioms on C (Axiom (7) and Axiom (8) of [76]).

If C is an object of C and x1, x2, x3 ∈ C:

Axiom 1. x1 + (x2 ∗ x3) = (x2 ∗ x3) + x1 for each ∗ ∈ Ω′
2.

Axiom 2. For each ordered pair (∗, ∗) ∈ Ω′
2 × Ω′

2 there is a word W such that

(x1 ∗ x2)∗x3 = W
(

x1(x2x3), x1(x3x2), (x2x3)x1, (x3x2)x1, x2(x1x3), x2(x3x1), (x1x3)x2, (x3x1)x2
)

,

where each juxtaposition represents an operation in Ω′
2.

A category of groups with operations satisfying Axiom 1 and Axiom 2 is called a category of interest
by Orzech [76] (see also [78]). All examples of a category of groups with operations, given in Sec. 1.1,
can be interpreted as categories of interest.

As we have noted in Chap. 1, in categories of groups with operations, from the equalities

(x+ y) ∗ (z + t) = x ∗ z + x ∗ t+ y ∗ z + y ∗ t = x ∗ z + y ∗ z + x ∗ t+ y ∗ t
it follows that x ∗ t+ y ∗ z = y ∗ z + x ∗ t for ∗ ∈ Ω′

2, x, y, z, t ∈ C, C ∈ C.
Denote by EG a subset of identities of E which includes the group laws and the identities (c) and

(d) from the definition of a category of groups with operations. We denote by CG the corresponding

category of groups with operations. Thus we have EG
� � �� E , C = (Ω,E), CG = (Ω,EG) and

there is a full inclusion functor E : C � � �� CG . Let Q be the left adjoint to the E. Thus Q(C) is

the greatest quotient of C from CG such that Q(C) ∈ C.

We shall denote by C a category of groups with operations and it will be mentioned when it is a
category of interest.

Let E : 0 �� A
i �� E

p �� B �� 0 be an extension of B by A in C. This means that p is

surjective and i is the kernel of p. An object A is called singular if it is an abelian group and a1∗a2 = 0
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for all a1, a2 ∈ A, ∗ ∈ Ω′
2. An extension 0 �� A

i �� E
p �� B �� 0 is called singular [76] if A

is singular, and it is called split if there is a morphism s : B −→ E such that ps = 1B .
Let E be a split extension. We shall identify a ∈ A with its image i(a).
We have induced operations in B ×A:

ω(b, a) = (ω(b), ω(a)) for each ω ∈ Ω′
1,

(b′, a′) + (b, a) = (b′ + b, a′ + s(b′) + a− s(b′)),

(b′, a′) ∗ (b, a) = (

b′ ∗ b, a′ ∗ a+ a′ ∗ s(b) + s(b′) ∗ a) for each ∗ ∈ Ω′
2.

The set B×A with the above structure is an object ofC; denote it by B�A; we have an isomorphism
E ≈ B �A. We shall use the following notations as in [76] and the previous chapters:

b · a = s(b) + a− s(b),

b ∗ a = s(b) ∗ a,
for each a ∈ A, b ∈ B and ∗ ∈ Ω′

2. Thus, a split extension induces actions of B on A corresponding to
each operation in C. These actions are called derived actions of B on A [76]. We shall call them split

derived actions.

Proposition 3.1.1. A set of actions in CG is a set of split derived actions if and only if it satisfies
the following conditions:

1. 0 · a = a, 7. (b1 ∗ b2) · (a ∗ b) = a ∗ b,
2. b · (a1 + a2) = b · a1 + b · a2, 8. a1 ∗ (b · a2) = a1 ∗ a2,
3. (b1 + b2) · a = b1 · (b2 · a), 9. b ∗ (b1 · a) = b ∗ a,
4. b ∗ (a1 + a2) = b ∗ a1 + b ∗ a2, 10. ω(b · a) = ω(b) · ω(a),
5. (b1 + b2) ∗ a = b1 ∗ a+ b2 ∗ a, 11. ω(a ∗ b) = ω(a) ∗ b = a ∗ ω(b),
6. (b1 ∗ b2) · (a1 ∗ a2) = a1 ∗ a2, 12. x ∗ y + z ∗ t = z ∗ t+ x ∗ y,

for each ω ∈ Ω′
1, ∗ ∈ Ω′

2, b, b1, b2 ∈ B, a, a1, a2 ∈ A and for x, y, z, t ∈ A∪B whenever each side of 12
has a sense.

The proof is based on the construction of the object B � A ∈ CG and the corresponding split

extension 0 −→ A −→ B � A −→ B −→ 0 which induces the given set of actions as split derived
actions. It is similar to the cases of groups [71] and is left to the reader.

Note that in the formulation of Proposition 1.1 in [32] we mean that the set of identities of the

category of groups with operations contains only identities from EG, but it is not mentioned there. The
same concerns some other statements of [32], which we formulate and prove here with corresponding
corrections. In C the conditions 1-12 of Proposition 3.1.1 are the necessary conditions for the split

derived actions. Of course according to the identities included in E we can add the corresponding
conditions to 1–12 and obtain the necessary and sufficient conditions of split derived actions in C.

We have analogous results for categories of interest. In this case the set of split derived actions

satisfies conditions 1–5, 8–11; conditions 6 and 7 are replaced by

b · (a1 ∗ a2) = a1 ∗ a2,
b · (a ∗ b1) = a ∗ b1,
(b1 ∗ b2) · a = a;

condition 12 is replaced by

x+ y ∗ z = y ∗ z + x for each x, y ∈ A, z ∈ B;
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we also have an additional condition: for each ordered pair (∗ , ∗̄) ∈ Ω′
2 × Ω′

2 there is a word (from

Axiom 2) with (x1 ∗ x2)∗̄x3 = W ( ) for each x1, x2, x3 ∈ A ∪B.

Let 0 �� A
i �� E

p �� B �� 0 be an extension of B by A. For each element b ∈ B choose
a representative u(b), with pu(b) = b and u(0) = 0. It induces a set of actions

b · a = u(b) + a− u(b),

b ∗ a = u(b) ∗ a,
which we shall call derived actions. As for the case of groups or rings [71], [70], we have a family of
factor systems {f, (g∗)∗∈Ω′

2
| f, g∗ : B ×B −→ A} corresponding to each operation in Ω2:

u(b) + u(b′) = f(b, b′) + u(b+ b′),

u(b) ∗ u(b′) = g∗(b, b′) + u(b ∗ b′), ∗ ∈ Ω′
2.

(3.1.1)

The associative law for the addition and the distributive law give

f(b1, b2) + f(b1 + b2, b3) = b1 · f(b2, b3) + f(b1, b2 + b3), (3.1.2)

f(b1 · b2) ∗ b3 + g∗(b1 + b2, b3) = g∗(b1, b3) + (b1 ∗ b3) · g∗(b2, b3) + f(b1 ∗ b3, b2 ∗ b3); (3.1.3)

also

f(b, 0) = f(0, b) = 0,

g∗(b, 0) = g∗(0, b) = 0,

for each b, b1, b2, b3 ∈ B and ∗ ∈ Ω′
2.

From (3.1.1) we obtain that the set of derived actions of B on A obtained from nonsplit extensions
satisfies conditions 1–12 with

3′. b1 · (b2 · a) = f(b1, b2) + (b1 + b2) · a− f(b1, b2),

5′. b1 ∗ a+ b2 ∗ a = f(b1, b2) ∗ a+ (b1 + b2) ∗ a
instead of conditions 3 and 5. Note that if A is singular, then conditions 3′ and 5′ coincide with
conditions 3 and 5, respectively.

Remark. According to other identities included in E we will obtain the corresponding identities for
derived actions inC. IfC is a category of interest, then the factor systems satisfy additional conditions

W (b1, b2, b3, f, g∗, g∗̄) = 0, (3.1.4)

b1 · g∗(b2, b3) + f(b1, b2 ∗ b3) = g∗(b2, b3) + f(b2 ∗ b3, b1), (3.1.5)

where condition (3.1.4) follows from Axiom 2, W is a word for each ordered pair (∗, ∗̄) ∈ Ω′
2 × Ω′

2,
corresponding to W , and (3.1.5) follows from Axiom 1. For example, if in Axiom 2 W has the form

(b1 ∗ b2)∗̄b3 = b1 ∗ (b2∗̄b3) + (b1∗̄b3) ∗ b2,
then (3.1.4) is of the following form:

b1 ∗ g∗̄(b2, b3) + g∗̄(b1, b3) ∗ b2 + g∗(b1, b2∗̄b3)+
+ (b1 ∗ (b2∗̄b3)) · g∗(b1∗̄b3, b2) + f(b1 ∗ (b2∗̄b3), (b1∗̄b3) ∗ b2) = g∗(b1, b2)∗̄b3 + g∗̄(b1 + b2, b3).

The following two lemmas are well known for the case of groups C = Gr [71].

Lemma 3.1.2. Let A and B be groups with operations, and let B act on A such that a set of actions
satisfies conditions 1, 2, 3′, 4, 5′, 6–12, where {f, (g∗)∗∈Ω′

2
} is a family of functions from B × B to
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A satisfying conditions (3.1.2), (3.1.3) for each ∗ ∈ Ω′
2. Then the set B �{f,(g∗)} A of all pairs (b, a),

b ∈ B, a ∈ A, with operations

ω(b, a) = (ω(b), ω(a)) for each ω ∈ Ω′
1,

(b, a) + (b′, a′) =
(

b+ b′, a+ b · a′ + f(b, b′)
)

,

(b, a) ∗ (b′, a′) = (

b ∗ b′, a ∗ a′ + a ∗ b′ + b ∗ a′ + g∗(b, b′)
)

is an object of CG. The homomorphisms a �−→ (a, 0), (a, b) �−→ b define the extension

0 �� A
i1 �� B �{f,(g∗)} A

p1 �� B �� 0

of B by A.

Proof. Straightforward verification.

From Lemma 3.1.2 and the observations before, we have the following assertion.

Lemma 3.1.3. For each extension

0 �� A
i �� E

p �� B �� 0

in CG there is an object B �{f,(g∗)} A such that E ≈ B �{f,(g∗)} A, and we have the commutative
diagram

0 �� A
i �� E

p ��

≈
��

B �� 0

0 �� A
i1

�� B �{f,(g∗)} A p1
�� B �� 0

.

Note that Lemma 3.1.3 holds also for categories of interest.

Corollary 3.1.4. A set of actions in CG is a set of derived actions if and only if it satisfies conditions

1, 2, 3′, 4, 5′, 6–12, where {f, (g∗)∗∈Ω1} is a family of functions satisfying conditions (3.1.2) and (3.1.3).

According to the above remark concerning the set of identities for the set of actions in C, we can

prove statements analogous to 3.1.2, 3.1.3 and 3.1.4 for the category C.

Definition 3.1.5. Let C be a category of groups with operations or a category of interest and A and

B ∈ C. We say that A has a B-structure if there is an extension 0 −→ A −→ E −→ B −→ 0. We
say that A has a split B-structure if the above extension is split; we say that A is a B-module if A is
singular and has a split B-structure.

Let 0 −→ A −→ E −→ B −→ 0 be a singular extension; then the action of B on A does not depend
on the choice of representatives of the elements of B in E. Let {f, (g∗)∗∈Ω′

2
} and {f ′, (g′∗)∗∈Ω′

2
} be two

different families of factor systems corresponding to two different choices of representatives of elements
of B in E, u and u′ respectively. Then we have

u(b) + u(b′) = f(b, b′) + u(b+ b′),

u′(b) + u′(b′) = f ′(b, b′) + u′(b+ b′),

u(b) + u(b′)− u′(b′)− u′(b) = f(b, b′) + u(b+ b′)− u′(b+ b′)− f ′(b, b′),

b · (u(b′)− u′(b′)) + u(b)− u′(b) = u(b+ b′)− u′(b+ b′) + f(b, b′)− f ′(b, b′).

Define ψ(b) = u(b)− u′(b), for each b ∈ B; then we obtain

f(b, b′)− f ′(b, b′) = b · ψ(b′)− ψ(b+ b′) + ψ(b). (3.1.6)
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Similarly, for each ∗ ∈ Ω′
2 we have

b ∗ ψ(b′) + ψ(b) ∗ b′ − ψ(b ∗ b′) = g∗(b, b′)− g′∗(b, b
′). (3.1.7)

We state without proof the following proposition since it is similar to the case of groups and it will
be cited in the following section.

Proposition 3.1.6. A singular extension

0 �� A
i �� E

p �� B �� 0

is split if and only if there is a function ψ : B −→ A such that the family of factor systems {f, (g∗)∗∈Ω′
2
}

of the given extension satisfies the conditions

f(b, b′) = b · ψ(b′)− ψ(b+ b′) + ψ(b),

g∗(b, b′) = b ∗ ψ(b′)− ψ(b ∗ b′) + ψ(b) ∗ b′,
for each ∗ ∈ Ω′

2 and (b, b′) ∈ B ×B.

Let A be an object of C. Denote by S(A) the greatest singular quotient of A. Then S is an
abelianization functor from C to the category of abelian groups Ab.

Lemma 3.1.7. Let C be a category of interest and A,B ∈ C. If A has a split B-structure, then S(A)

is a B-module and the natural homomorphism A
τA �� S(A) is a homomorphism of split B-structures.

Proof. S(A) has an induced B-structure defined by b · cl a = cl(b · a) and b ∗ cl a = cl(b ∗ a) for each

∗ ∈ Ω′
2. From Axiom 1 and Axiom 2 it follows that these actions are defined correctly and τA is a

homomorphism of B-structures. It is also easy to check that S(A) satisfies conditions analogous to
1–12 for categories of interest and thus has a split B-structure; it is also abelian by definition, which

proves that S(A) is a B-module.

3.2. Derivations

Let C be a category of groups with operations and B ∈ C. Consider categories B-mod(CG)
and B-mod(C), B-modules in CG and in C respectively. We have the full inclusion functor E : B-

mod(C) −→ B-mod(CG). For any C ∈ B-mod(CG) by definition we have the split exact sequence in
CG

0 �� C �� B � C
τ �� B ���� 0 ;

Denote S(C) = KerQ(τ); we will have a surjection C −→ S(C). Actually it defines a functor B-
mod(CG) −→ B-mod(C). It is easy to check that S is a left adjoint to E ; thus for any A ∈ B-mod(C)
and C ∈ B-mod(CG) we have the natural isomorphism

B-mod(CG)(C, E(A)) ≈ B-mod(C)(S(C), A).

Definition 3.2.1 ([76]). Let A be a B-module. A map δ : B −→ A is called a derivation if

δ(ω(b)) = ω(δ(b)),

δ(b+ b′) = δ(b) + b · δ(b′),
δ(b ∗ b′) = δ(b) ∗ b′ + b ∗ δ(b′),

for each ω ∈ Ω′
1, ∗ ∈ Ω′

2 and b, b′ ∈ B.
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As in Chap. 2 derivations from B to A will be denoted by Der(B,A). Let

D =
{

0102 . . . 0n∂b | 0i ∈ Ω′
1 ∪

{

b′ ∗ − | b′ ∈ B, ∗ ∈ Ω′
2

} ∪

∪ {− ∗b′ | b′ ∈ B, ∗ ∈ Ω′
2

} ∪ {

b′ · − | b′ ∈ B
}

, i = 1, . . . , n, b ∈ B
}

.

So D is the set of all words of the form w = 0102 . . . 0n∂b. Let I(B) be the free abelian group generated
by D modulo:

1. ω(w+w′) = ωw+ωw′, 10. b ∗ (b′ · w) = b ∗ w,
2. ∂0 = 0, 11. ω(b · w) = ω(b) · (ωw),

3. 0 · w = w, 12. ω(w ∗b) = (ωw) ∗ b = w ∗ω(b),
4. b · (w+w′) = b · w+b · w′, 13. x ∗ y + z ∗ t = z ∗ t+ x ∗ y,
5. (b+ b′) · w = b · (b′ · w), x, y, z, t ∈ B ∪D,

6. b ∗ (w+w′) = b ∗ w+b ∗w′, whenever each side has a sense,

7. (b+ b′) ∗ w = b ∗ w+b′ ∗ w, 14. ∂(b+ b′) = ∂b+ b · ∂b′,
8. b ∗ w = w ∗◦b, 15. ∂(b ∗ b′) = b ∗ ∂b′ + (∂b) ∗ b′,
9. (b ∗ b′) · (w ∗b) = w ∗b, 16. ∂(ωb) = ω ∂b,

for each b, b′ ∈ B, w,w′ ∈ D, ω ∈ Ω′
1, ∗ ∈ Ω′

2.
Denote I(B) = SI(B).
Note that with some modifications of the above construction, I(B) can be constructed in the

categories of interest.
It is easy to check that the map ∂G : B −→ I(B) defined by ∂G(b) = ∂b is a derivation, which

defines the derivation ∂ : B −→ I(B).

Proposition 3.2.2. Let B ∈ C and A be a B-module in C. For any derivation δ : B −→ A there is

a unique homomorphism of B-modules δ : I(B) −→ A such that the diagram

B
δ ��

∂
��

A

I(B)
δ

��









is commutative.

Proof. Let w = 0102 . . . 0n∂b be an element in I(B); define δG(cl w) = 0102 . . . 0nδb. It is easy to show
that δG is defined correctly and it is a homomorphism of B-modules in CG. By adjunction of E and S,
δG defines a unique homomorphism δ of B-modules in C which makes the diagram commutative.

Proposition 3.2.3. Let 0 �� A
i �� E

p �� B �� 0 be an extension of B by A, A′ be a B-
module, and τ : A −→ A′ be a homomorphism of B-structures. Let u(b) be a representative for each
b ∈ B in E, which induces a B-structure on A; consider E-structures on A and A′ due to p. Then

there exists a derivation δ : E −→ A′ with δi = τ if and only if the extension of B by A′ obtained from
the given extension by τ is split.

Proof. Let {f, (g∗)∗∈Ω′
2
} be a family of factor systems of the given extension, corresponding to the

map u. Then the extension of B by A′ corresponds to the given B-structures on A′, and the family
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of factor systems {τf, (τg∗)∗∈Ω′
2
} is the extension obtained from the given one by τ . Suppose there is

a derivation δ : E −→ A′ such that the diagram

A
i ��

τ
��

E

δ����
��
��
��

A′

is commutative. By Lemma 3.1.3 we have E ≈ B �{f,(g∗)} A. We shall identify E with B �{f,(g∗)} A.
So we obtain

δ(b, a) = δ((0, a) + (b, 0)) = δ(0, a) + (0, a) · δ(b, 0) = δ(0, a) + δ(b, 0) = τ(a) + ψ(b),

where ψ denotes the function B −→ A′ defined by ψ(b) = δ(b, 0). From the fact that δ is a derivation,

we obtain that the factor systems {τf, (τg∗)∗∈Ω′
2
} satisfy the conditions of Proposition 3.1.6 and the

corresponding extension is split.
Suppose that the extension

0 �� A′ i′ �� B �{τf,(τg∗)} A
′ p′ �� B �� 0

is split. Then there is a function ψ : B −→ A′ satisfying the conditions of Proposition 3.1.6. Define a

function δ : B �{f,(g∗)} A −→ A′ by δ(b, a) = τ(a) + ψ(b). δ satisfies the condition δi = τ , and it is
easy to check that δ is a derivation, which proves the proposition.

For the complete solution of an analogous question in the case of groups, see [69].

3.3. Functorial Properties of the Cohomology, Internal Category Equivalence,

and Homological and Cohomological Equivalences,
Relation with Ellis’s Cohomology of Crossed Modules

Let C = (C0,C1, d0, d1, i,m) be an internal category in C and A = (A0, π, e, η, μ) be an abelian

group in the category CC of internal diagrams on C. Recall from Sec. 2.1 that by Lemma 1.1.1 applied
to A, Kerπ is an abelian group and a ∗ a′ = 0 for each a, a′ ∈ Kerπ; So Kerπ is a C0-module in the
sense of [76] (see Sec. 3.1, Definition 3.1.5). Moreover, we proved in Sec. 2.1 that Im d acts trivially on

Kerπ, where d = d1|Ker d0 ; Im d is an ideal of C0 in the sense of [76] (see Chap. 5, Definition 5.1.1), thus
Coker d ∈ C. As we have noted in Sec. 2.1 we can consider Kerπ as a Coker d-module. Conversely, for
each Coker d-module L we can construct an abelian group in CC, and these two processes are converse

to each other. Thus for any Coker d-module L we can speak of cohomologies Hi(C, L), i ≥ 0, and
Hi(C,−) is a functor Coker d-mod −→ Ab. The properties obtained for internal category cohomology
give the corresponding properties of the crossed module cohomology.

Proposition 3.3.1. Let C ∈ Cat(C), and

0 �� L′ �� L �� L′′ �� 0 (3.3.1)

be an exact sequence of Coker d-modules.

(a) Then we have the exact sequences of cohomology groups

0 �� H0(C, L′) �� H0(C, L) �� H0(C, L′′),

H1(C, L′) �� H1(C, L) �� H1(C, L′′).
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(b) If exact sequence (3.3.1) is split, then it induces the exact sequence of cohomology groups

0 �� H0(C, L′) �� H0(C, L) �� H0(C, L′′) ��

�� H1(C, L′) �� H1(C, L) �� H1(C, L′′) �� 0.

Proof. Both statements follow from Theorem 2.2.1 and the commutative diagram

0 �� HomC0 −str(Ker d0, L
′) �� HomC0 −str(Ker d0, L) �� HomC0 −str(Ker d0, L

′′)

0 �� Der(C0, L
′) ��

��

Der(C0, L) τ
��

��

Der(C0, L
′′)

��

with exact rows, where the vertical homomorphisms are induced by d. Note that τ is surjective if

(3.3.1) is split.

Let C be a category of groups with operations, and C = (C0,C1, d0, d1, i,m) be an internal category
in C. We have the split exact sequence

0 �� Ker d0 �� C1

d0 ��
C0

i
�� �� 0, (3.3.2)

where d0i = 1. Consider the group with operations C0�Ker d0. Recall that (see Sec. 1.1)

(r′, c′) + (r, c) = (r′ + r, c′ + r′ · c),
(r′, c′) ∗ (r, c) = (r′ ∗ r, c′ ∗ c+ c′ ∗ r + r′ ∗ c),

where r · c = i(r) + c− i(r), r ∗ c = i(r) ∗ c, ∗ ∈ Ω′
2 and C1 ≈ C0 �Ker d0;

We can define a derivation δ : C0 −→ L, for L ∈ Coker d-mod, as a map satisfying the conditions
of Definition 3.2.1 (L has a C0-module structure due to the natural homomorphism C0 −→ Coker d).

As we have mentioned above, the split extension (3.3.2) induces a split C0-structure on Ker d0, which

by Lemma 3.1.7 induces a C0-module structure on S(Ker d0). Also Im d acts trivially on S(Ker d0),
and we can define Coker d-module structure on S(Ker d0) by

cl r · cl c = cl(i(r) + c− i(r)) and cl r ∗ cl c = cl(r ∗ c),
for each r ∈ C0, c ∈ Ker d0 and ∗ ∈ Ω′

2.
We have a split C0-structure on Im d: r · dc = r + dc − r, r ∗ dc = r ∗ dc, which also induces a

Coker d-module structure on S(Im d):

cl r · cl dc = cl(r + dc− r),

cl r ∗ cl dc = cl(r ∗ dc),
for each r ∈ C0, c ∈ Ker d0 and ∗ ∈ Ω′

2. By Lemma 3.1.7 the natural homomorphisms τ0 : Ker d0 −→
S(Ker d0) and τ : Im d −→ S(Im d) are C0-structure homomorphisms. The homomorphism d is a split

C0-structure homomorphism:

d(r · c) = r + dc− r = r · dc,
d(r ∗ c) = r ∗ dc.

It induces a Coker d-module homomorphism S(Ker d)
S(d) �� S(Im d) where d is defined from the

decomposition of

d : Ker d0
d �� Im d

i1 �� C0 .
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Consider the extension

0 �� Im d
i1 �� C0

p1 �� Coker d �� 0

for the internal category C in C. Let {f, (g∗)∗∈Ω′
2
} be one of the families of its factor systems. We have

C0 ≈ Coker d�{f,(g∗)} Im d. As we have seen in the proof of Proposition 3.2.3, for an abelian group (in

CC) A = (A0, π, e, η, μ), a derivation δ : C0 −→ Kerπ, and each element (cl, dc) ∈ Coker d�{f,(g∗)}Im d,

we have

δ(cl r, dc) = δ(0, dc) + δ(cl r, 0) = δi1(dc) + δ(cl r, 0).

Denote δi1(dc) = τ(dc), δ(cl r, 0) = ψ(cl r). It is easy to check that τ : Im d −→ Kerπ is a Coker d-
structure homomorphism (Im d has a Coker d-structure from the above extension and C0-structure is

due to p1), and ψ : Coker d −→ Kerπ is a function satisfying the conditions

τf(cl r, cl r′) = cl r · ψ(cl r′)− ψ(cl r + cl r′) + ψ(cl r), (3.3.3)

τg∗(cl r, cl r′) = cl r ∗ ψ(cl r′)− ψ(cl r ∗ cl r′) + ψ(cl r) ∗ cl r′. (3.3.4)

From this and from the proof of Proposition 3.2.3 we conclude that there is a one-to-one correspon-
dence: {δ | δ ∈ Der(C0Kerπ)} ←→ {(τ, ψ) | τ : Im d −→ Kerπ is a C0-structure homomorphism

and ψ : Coker d −→ Kerπ is a function satisfying conditions (3.3.3), (3.3.4)}.
Note that since Im d has C0-structure due to p1,

HomC0 -str(Im d,Ker π) ≈ HomCoker d -str(Im d,Kerπ).

From the condition δi1 = 0 we have that τ = 0 and ψ is a derivation. The picture is the following:

Ker d0
d ��

d ����
���

���
� C0

p1 ��

δ

��

Coker d

ψ

��


























Im d
i1

�����������

τ ����
��

��
��

�

Kerπ

.

Thus from Theorem 2.2.1 (i) we obtain

H0(C, A) = Der(Coker d,Kerπ)

≈ HomCoker d -mod(I(Coker d),Ker π). (3.3.5)

Note that actually we proved the exactness of the sequence

0 �� Der(Coker d,Ker π) �� Der(C0,Ker π) �� Der(Im d,Ker π)

for any L ∈ C0-mod, such that Im d acts trivially on L; this could be done directly, but we will use
the argument in extensions terminology below for H1 too.

By Proposition 3.2.3 and Proposition 3.1.6 we have

{δd | δ∈Der(C0,Kerπ)} ≈ {τ ∈ HomCoker d -str(Im d,Kerπ) |
an extension of Coker d by Kerπ corresponding to the factor systems {τf, (τg∗)∗∈Ω′

2
} is split}.

If d is a surjective homomorphism, then internal category C is connected (i.e., for each two objects

r and r′ there is a morphism r −→ r′). In this case Coker d = 0, and we have f = g∗ = 0 for each
∗ ∈ Ω′

2. Thus we obtain
{

δd | δ ∈ Der(C0,Kerπ)
} ≈ HomC0 -str(C0,Ker π).
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From Theorem 2.2.1 (i) for a connected internal category C in the category of interest C, we have

the following isomorphisms:

H1(C, A) ≈ HomC0 -str(Ker d0,Kerπ)/HomC0 -str(C0,Kerπ)

≈ Coker HomC0 -str(d,Ker π)

≈ Coker HomC0 -mod(S(d),Ker π). (3.3.6)

Let C and C′ be internal categories in C;

C∗ : 0 �� Ker d0
d �� C0

�� 0 and C′
∗ : 0 �� Ker d0

d′ �� C′
0

�� 0

be the corresponding crossed modules considered as complexes. Denote by Hi(C∗) and Hi(C, A),

i = 0, 1, respectively the homology of the complex C∗ and the cohomology of the internal category C
with the coefficient in A, A ∈ Ab(CC). Note that in the case C = Ab, Hi(C, A) = Hi(C∗, A), where
the right side denotes the cohomology Hi(Hom(C∗, A)) of the complex C∗ with coefficient in A.

Definition 3.3.2. We shall say that internal categories C and C′ in C are homologically equivalent

if there are internal functors C
T ��

C′
S

�� that induce the isomorphisms Hi(C∗) ≈ Hi(C
′
∗), i = 0, 1.

Definition 3.3.3. We shall say that internal categories C and C′ in C are cohomologically equivalent

if there are internal functors C
T ��

C′
S

�� that induce isomorphisms Hi(C, A) ≈ Hi(C′, A), Hi(C, A′) ≈

Hi(C′, A′), i = 0, 1 for each A ∈ Ab(CC) and A′ ∈ Ab(CC′
), where A has C′-module structure due to

S and A′ has C-module structure due to T .

Theorem 3.3.4. If internal categories C and C′ in C are equivalent, then they are homologically and

cohomologically equivalent.

Proof. By Proposition 1.3.6 the equivalence of internal categories

C : Ker d0
d �� C and C′ : Ker d′0

d′ �� C′

means that there are internal functors (T0, T1) : C −→ C′, (S0, S1) : C
′ −→ C and maps ϕ : C′

0 −→
Ker d′0, ψ : C0 −→ Ker d0 satisfying conditions (1.3.1) and (1.3.2). To prove that C and C′ are
homologically equivalent, we must show that (T0, T1) induces the isomorphisms Ker d ≈ Ker d′ and
Coker d ≈ Coker d′. From (1.3.1) and (1.3.2) we have

ϕd′(c′) = c′ − T1S1(c
′),

ψd(c) = S1T1(c)− c,

for each c ∈ Ker d0 and c′ ∈ Ker d′0. Then for each c ∈ Ker d and c′ ∈ Ker d′ we obtain

S1T1(c) = c, T1S1(c
′) = c′.

Thus T1

∣
∣
Ker d

· S1

∣
∣
Ker d′ = 1Ker d, and S1

∣
∣
Ker d

· T1

∣
∣
Ker d

= 1Ker d.
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We have the following diagram:

0 �� Ker d ��

T1|Ker d

��

Ker d0
d ��

T1

��

C0
τ ��

T0

��

Coker d ��

˜T0
��

0

0 �� Ker d′ ��

S1|Ker d′
��

Ker d′0
d′ ��

S1

��

C′
0

τ ′ ��

S0

��

Coker′ d′ ��

˜S0

��

0

0 �� Ker d �� Ker d0
d

�� C0 τ
�� Coker d �� 0

, (3.3.7)

where τ and τ ′ denote the natural morphisms, and T̃0, S̃0 are induced by T0 and S0, respectively.
We shall now show that Coker d ≈ Coker d′. Again from (1.3.1) we have d′ϕ(r′) = r′−T0S0(r

′), from
which we obtain τ ′d′ϕ(r′) = τ(r′)−τT0S0(r

′). Since τ ′d′ϕ(r′) = 0, we conclude that τ ′T0S0(r
′) = τ ′(r′)

and T̃0S̃0 = 1Coker d′ . Similarly, from dψ(r) = S0T0(r)− r we obtain that S̃0T̃0 = 1Coker d.

To prove that the internal category equivalence implies cohomological equivalence, consider C-

module A, i.e., A ∈ Coker d-mod. A can be considered as a Coker d′-module due to S̃0, because S̃0 is

a homomorphism in C.
From (3.3.5) we have (Kerπ is denoted by A):

H0(C, A) =
{

δ ∈ Der(C0, A) | δd = 0
}

= Der(Coker d,A),

H0(C′, A) =
{

δ′ ∈ Der(C′
0, A) | δ′d′ = 0

}

= Der(Coker d′, A).

As we have proved above, Coker d ≈ Coker d′; analogously, as will be shown below, for T0, S0, we have

δ′T̃0 ∈ Der(Coker d,A) and δS̃0 ∈ Der(Coker d′, A), from which it follows that H0(C, A) ≈ H0(C′, A).
To prove that H1(C, A) ≈ H1(C′, A), first we shall show that if (T0, T1) : C −→ C′ is an equivalence

of internal categories, then T induces a homomorphism of abelian groups Der(T0, A) : Der(C′
0, A) −→

Der(C0, A) defined by δ′ �−→ δ′T0. We must show that δ′T0 ∈ Der(C0, A). For this we shall prove that
δ′T0 satisfies conditions of Definition 3.2.1.

1. δ′T0(ω(r)) = ω(δ′T0(r));

2. To prove the second condition, recall that r′ · a = S0(r
′) · a for each r′ ∈ C′

0 and a ∈ A. We have

δ′T0(r1 + r2) = δ′(T0(r1) + T0(r2)) = δ′T0(r1) + T0(r1) · δ′T0(r2) = δ′T0(r1) + S0T0(r1) · δ′T0(r2).

By (1.3.2) S0T0(r) = dψ(r) + r and from Sec. 2.2 we know that d(c) · a = a for each c ∈ Ker d0 and
a ∈ A. Thus δ′T0(r1 + r2) = δ′T0(r1) + r1 · δ′T0(r2).

3. Since d(c) ∗ a = 0 (see Sec. 2.2) and hence S0T0(r) ∗ a = (dψ(r) + r) ∗ a, for each r ∈ C0, a ∈ A

we have

δ′T0(r1 ∗ r2) = δ′
(

T0(r1) ∗ T0(r2)
)

= (δ′T0(r1)) ∗ T0(r2) + T0(r1) ∗ δ′T0(r2) = (δ′T0)(r1)) ∗ S0T0(r2) + T0(r1) ∗ δ′T0(r2)

= δ′T0(r1) ∗ S0T0(r2) + S0T0(r1) ∗ δ′T0(r2) = δ′T0(r1) ∗ r2 + r1 ∗ δ′T0(r2).

Similarly, S0 induces the homomorphism Der(C0, A) −→ Der(C′
0, A). Now we shall show that T

induces the homomorphism of abelian groups

Hom(T1, A) : HomC′
0 −str(Ker d′, A) −→ HomC0 −str(Ker d,A)

defined by

α′ −→ α′T1.
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Here

HomC0 −str(Ker d0, A) =
{

α ∈ C(Ker d0, A)
∣
∣
∣ α(r · c) = r · α(c), α(r ∗ c) = r ∗ α(c) for each

binary operation ∗ in C except the addition, for each r ∈ C0, c ∈ Ker d0

}

.

The following equalities show that α′T1 is a C0-structure homomorphism:

α′T1(r · c) = α′(T0(r) · T1(c)) = T0(r) · α′T1(c) = S0T0(r) · α′T1(c)

= (dψ(r) + r) · α′T1(c) = dψ(r) · (r · α′T1(c)) = r · α′T1(c);

α′T1(r ∗ c) = α′(T0(r) ∗ T1(c)) = T0(r) ∗ α′T1(c) = S0T0(r) ∗ α′T1(c)

= (dψ(r) + r) ∗ α′T1(c) = r ∗ α′T1(c).

Similarly, S1 induces the homomorphism

Hom(S1, A) : HomC0 −str(Ker d0, A) −→ HomC′
0 −str(Ker d′0, A).

By the definition of the cohomologies of internal categories, we have the commutative diagram

Der(C′
0, A)

˜d′ ��

Der(T0,A)

��

HomC′
0 −str(Ker d′0, A) �� ��

Hom(T1,A)

��

H1(C′, A)

H1(T,A)
��

Der(C0, A)
˜d ��

Der(S0,A)

��

HomC0 −str(Ker d0, A) �� ��

Hom(S1,A)

��

H1(C, A)

H1(S,A)
��

Der(C′
0, A)

˜d′ �� HomC′
0 −str(Ker d′0, A) �� �� H1(C′, A)

. (3.3.8)

Here the homomorphisms H1(T,A) and H1(S,A) are induced by Hom(T1, A) and Hom(S1, A), respec-

tively, and d̃ denotes the homomorphism defined by d̃(δ) = δd. From the commutativity of (3.3.8) for
each clα′ ∈ H1(C′, A), α′ ∈ HomC′

0 −str(Ker d′0, A) we obtain

H1(TS,A)(cl α′) = cl(α′T1S1).

From (1.3.12), we have α′T1S1 = α′(−ϕd′ + 1) = −α′ϕd′ + α′. But α′ϕd′ ∈ Der(C′
0, A) :

α′ϕ(ω(r′)) = ω(α′ϕ(r′));

α′ϕ(r′1 + r′2) = α′(ϕ(r′1) + T0S0(r
′
1) · ϕ(r′2)) = α′ϕ(r′1) + T0S0(r

′
1) · α′ϕ(r′2)

= α′ϕ(r′1) + (−d′ϕ(r′1) + r′1) · α′ϕ(r′2) = α′ϕ(r′1) + r′1 · α′ϕ(r′2).

The corresponding condition for the binary operation ∗ of C is proved analogously. Thus, α′ϕd′ is a
derivation for each α′ and cl(α′T1S1) = clα′. In the same way we prove that H1(ST,A) = 1 and so
H1(C, A) ≈ H1(C′, A) for each A ∈ Ab(CC). Similarly, we can prove that H1(C, A′) ≈ H1(C′, A′) for
each A′ ∈ Ab(CC′

). This completes the proof.

Consider the following conditions on internal categories C and C′:

(i) C and C′ are homologically equivalent;

(ii) C and C′ are equivalent;

(iii) C and C′ are cohomologically equivalent.

Proposition 3.3.5. Let C and C′ be internal categories in the category of abelian groups. Then we

have the following implications (i)⇐= (ii) =⇒ (iii) =⇒ (i).
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Proof. By Theorem 3.3.4 it suffices to show that (iii) =⇒ (i). From (3.3.5) we know that

H0(C, A) = Der(Coker d,A) ≈ HomCoker d -mod(I(Coker d), A),

H0(C′, A′) = HomCoker d′ -mod(I(Coker d
′), A′),

for each A ∈ Ab(CC) and A′ ∈ Ab(CC′
). In the case of abelian groups (C = Ab) we have

H0(C, A) = Hom(Coker d,A),

H0(C′, A) = Hom(Coker d′, A),

for each abelian group A. Here and below Hom denotes HomAb. By (iii) we have Hom(Coker d,A) ≈
Hom(Coker d′, A) for any A, which implies an isomorphism Coker d ≈ Coker d′.

To show the isomorphism Ker d ≈ Ker d′, apply the functor Hom(−, A) to the diagram (3.3.7); we

obtain the following commutative diagram:

0 �� Hom(Coker d,A) �� Hom(C0, A)
Hom(d,A) �� Hom(Ker d0, A) �� H1(C, A) �� 0

0 �� Hom(Coker d′, A) ��

≈
��

Hom(C′
0, A)

Hom(d′,A) ��

Hom(d′,A)

��

Hom(Ker d′0, A) ��

Hom(T1,A)

��

H1(C′, A) ��

H1(T,A)

��

0

0 �� Hom(Coker d,A) ��

≈
��

Hom(C0, A)
Hom(d,A) ��

Hom(d,A)

��

Hom(Ker d0, A) ��

Hom(S1,A)

��

H1(C, A) ��

H1(S,A)

��

0

.

(3.3.9)

Take A = Ker d0; from the right-hand side of the diagram (3.3.9) for elements, we have

S1T1
� �� cl(S1T1)

1Ker d0

�

��

� �� cl 1Ker d0

�

��

By (iii), H1(ST,Ker d0)(cl 1Ker d0) = cl 1Ker d0 ; thus cl(S1T1) = cl 1Ker d0 . From this it follows that

there is an element α ∈ Hom(C0,Ker d0) such that αd = S1T1 − 1Ker d0 . Thus, if c ∈ Ker d, then
c − S1T1(c) = 0 and c = S1T1(c). In the same way we show that c′ = T1S1(c

′), for each c′ ∈ Ker d′,
which proves that Ker d ≈ Ker d′.

Proposition 3.3.6. If C and C′ are internal categories in the category of vector spaces Vectk over a
field k, then (i)⇐⇒ (ii)⇐⇒ (iii).

Proof. It suffices to show that (i) =⇒ (ii). Consider the exact sequence

0 �� Im d �� C0
�� Coker d �� 0,

which is split as we are in the category of vector spaces. Thus C0 ≈ Coker d× Im d, and each element

r ∈ C0 can be viewed as a pair r = (clr, dc) for some c ∈ Ker d0. Define the map ψ : C0 −→ Ker d0 by

ψ(cl r, dc) = S1T1(c) − c.

We must show that ψ is defined correctly and that it does not depend on the choice of c. Let dc = dc1,

then c1 − c ∈ Ker d. We have

S1T1(c) − c− (S1T1(c1)− c1) = S1T1(c)− S1T1(c1)− c+ c1

= S1T1(c− c1)− c+ c1 = c− c1 − c+ c1 = 0,

as S1T1

∣
∣
Ker d

is an identity morphism by (i).
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Now we shall prove that ψ is a homomorphism of vector spaces, dψ(r) = S0T0(r)− r and ψd(c) =

S1T1(c)− c.

ψ(kr) = ψ(k cl r, kdc) = ψ(cl kr, dkc) = S1T1(kc) = kS1T1(c) = kψ(c) for each k ∈ K,

ψ(r + r1) = ψ((cl r, dc) + (cl r1, dc1)) = ψ(cl(r + r1), d(c + c1))

= S1T1(c+ c1)− c− c1 = S1T1(c) + S1T1(c1)− c− c1;

ψ(r) + ψ(r1) = ψ(cl r, dc) + ψ(cl r1, dc1) = S1T1(c) − c+ S1T1(c1)− c1

= S1T1(c) + S1T1(c1)− c− c1.

From the definition of ψ we obtain

dψ(cl r, dc) = d(0, S1T1(c)− c) = (0, dS1T1(c) − dc) = (0, S0T0d(c)− d(c)). (3.3.10)

On the other hand, as S̃T̃ = 1Coker d by (i), we have (see diagram (3.3.7)):

S0T0(cl r, dc) − (cl r, dc) =
(

S̃0T̃0(cl r), S0T0d(c)
) − (cl r, dc)

= (cl r, S0T0d(c)) − (cl r, dc) = (0, S0T0d(c) − dc). (3.3.11)

(3.3.10) and (3.3.11) prove that dψ(r) = S0T0(r)− r,

Again by definition we have
ψd(c) = ψ(0, dc) = S1T1(c)− c

which completes the proof of Proposition 3.3.6.

In [42] G. J. Ellis, following [9], regards the (co)homology of the classifying space B(M → G) of a
crossed module ∂ : M −→ G in groups as the (co)homology of the crossed module ∂ : M → G.

Let ∂ : M −→ G be a crossed module in Gr and A be a Coker ∂-module. Suppose ∂′ : B −→ F
is a crossed module with F a free group, and crossed modules ∂ and ∂′ are weakly equivalent in the
sense of [42], which means that there is a morphism between these crossed modules, which induces
isomorphisms Ker ∂ ≈ Ker ∂′, Coker ∂ ≈ Coker ∂′. Denote by H2(∂ : M −→ G,A) the cohomology

defined in [42]. Theorem 6 of [42] states that there is an isomorphism

H2(∂ : M −→ G,A) ≈ Coker
(

Der(F,A)
∂∗

�� HomF−str(B, A)
)

.

Applying this result, from Theorem 2.2.1 we obtain the following assertion.

Proposition 3.3.7. There is an isomorphism

H2(∂ : M −→ G,A) ≈ H1(C, Ā),

where C denotes the internal category in Gr associated to ∂′ : B −→ F , and Ā is an object of Ab(GrC)

associated with Coker ∂-mod A.

3.4. Relations H0(C,−) = 0, H1(C,−) = 0

Theorem 3.4.1. Let C be a category of groups with operations, and C = (C0,C1, d0, d1, i,m) be an

internal category in C. H0(C, A) = 0 for each A ∈ Ab(CC) if and only if I(Coker d) = 0.

Proof. From (3.3.5) we obtain

H0(C,−) = 0⇐⇒ HomCoker d -mod(I(Coker d),−) = 0⇐⇒ I(Coker d) = 0.

Corollary 3.4.2. Let C be an internal category in the category of groups; then H0(C,−) = 0 if and
only if C is a connected category.

Proof. In the category of groups I(Coker d) = 0⇐⇒ Coker d = 0⇐⇒ d is a surjective homomorphism

⇐⇒ C is a connected internal category.
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Consider the case H1(C,−) = 0. If an internal category C in the category of interest C is connected,

then d is surjective and from (3.3.6) we obtain

H1(C,−) = 0⇐⇒ Coker HomC0 −mod(S(d),−) = 0⇐⇒ HomC0 −mod(S(d),−)
is an epimorphism ⇐⇒ S(d) is a split monomorphism ⇐⇒ S(d) is an isomorphism.

Let C be a category of interest and C = (C0,C1, d0, d1, i,m) be an internal category in C. Denote
by S(C) an internal category represented as a crossed module in the following form:

S(Ker d0)
S(d) �� Coker d�{τf,(τg∗)} S(Im d),

where d = d1
∣
∣
Ker d0

, {f, (g∗)∗∈Ω′
2
} is one of the families of factor systems of the extension

0 �� Im d
i1 �� C0

p1 �� Coker d �� 0,

d : Ker d0 −→ Im d is defined by d (d = i1d), and τ : Im d −→ S(Im d) is a natural homomorphism.
For ordinary internal categories we have the following theorem.

Theorem 3.4.3. Let C be a category of interest and C = (C0,C1, d0, d1, i,m) be an internal category

in C, d = d1
∣
∣
Ker d0

, S : C −→ Ab be an abelianization functor, and τ : Im d −→ S(Im d) be a natural

homomorpshism of Coker d-structures. The following conditions are equivalent:

(i) H1(C, A) = 0 for each A ∈ Ab(CC);

(ii) d induces an isomorphism of Coker d-modules S(d) : S(Ker d0)
≈ �� S(Im d) (d is defined by

d) and the extension of Coker d by S(Im d) obtained from

0 �� Im d
i1 �� C0

p1 �� Coker d �� 0

by τ is split ;

(iii) S(C) is equivalent to the discrete category (Coker d,Coker d, 1, 1, 1, 1).

Proof. (i) =⇒ (ii). Let τ0 : Ker d0 −→ S(Ker d0) be a natural split C0-structure homomorpshism;

then

τd = S(d)τ0. (3.4.1)

As we know from Sec. 3.3, S(Ker d0) is a Coker d-module. So if H1(C,−) = 0, then in particular
H1(C,C0�S(Ker d0)) = 0 and from Theorem 2.12.1 (i) we conclude that for the homomorphism τ0
there is a derivation δ0 : C0 −→ S(Ker d0) with δ0d = τ0; since d = i1d, we have

δ0i1d = τ0. (3.4.2)

The composite i1δ0 is a C0-structure homomorphism, so there is a unique Coker d-module homomor-
phism α : S(Im d) −→ S(Ker d0), such that

ατ = δ0i1. (3.4.3)

The picture is as follows:

Ker d0
d ��

τ0
��

Im d
i1 ��

τ

��

C0

δ0

������
����

����
����

����

S(Ker d0)
S(d)

�� S(Im d)
α��

.
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From (3.4.1), (3.4.2) and (3.4.3) we obtain

αS(d0)τ0 = ατd = δ0i1d = τ0,

from which it follows that αS(d) = 1; so S(d) is a monomorphism. But it is also an epimorphism.

Thus we obtain that S(d) is an isomorphism.
Again, since H1(C,C0�S(Im d)) = 0, for C0-structure homomorphism dτ there is a derivation

δ : C0 −→ S(Im d) with δd = τd. Since d = i1d and d is an epimorphism, we obtain that δi1 = τ . By

Proposition 3.2.3 we conclude that an extension of Coker d by S(Im d) obtained from the extension

0 �� Im d
i1 �� C0

p1 �� Coker d �� 0 by τ is split.

(ii) =⇒ (i). Now let U ∈ Coker d-mod, and φ : Ker d0 −→ U be an arbitrary C0-structure
homomorphism. We shall show that there is a derivation δ1 : C0 −→ U such that the diagram

Ker d0
d ��

φ
��

C0

δ1��		
		
		
		
	

U

is commutative. By Proposition 3.2.3 there is a derivation δ : C0 −→ S(Im d) with δi1 = τ . δ0 =

S(d)−1δ is also a derivation. We have

δ0i1d = S(d)−1δi1d = S(d)−1τd = S(d)−1S(d)τ0 = τ0. (3.4.4)

φ induces a Coker d-module homomorpshism φ : S(Ker d0) −→ U such that φτ0 = φ. Take δ1 = φδ0.
Applying (3.4.4) we obtain

δ1d = φδ0d = φδ0i1d = φτ0 = φ.

(ii)⇐⇒ (iii) is obvious by the definition of S(C) and Proposition 1.3.14.

Corollary 3.4.4. Let C = (C0,C1, d0, d1, i,m) be an internal category in the category of abelian
groups, d = d1

∣
∣
Ker d0

. The following conditions are equivalent:

(i) H1(C,−) = 0;

(ii) d is a split monomorphism;

(iii) C is equivalent to the discrete category (Coker d,Coker d, 1, 1, 1, 1).

Examples.

1. C is a discrete internal category in C. We have C = (C0,C0, 1C0 , 1C0 , 1C0 , 1C0), d = 0 and

Coker d = C0. From (3.3.5) we obtain

H0(C, A) = HomC0 -mod(I(C0),Kerπ).

Thus

H0(C,−) = 0⇐⇒ I(C0) = 0.

Since Ker d0 = 0, we have

H1(C,−) = 0.

In the case where C is the category of groups,

H0(C,−) = 0⇐⇒ C0 = 0.

2. C is an antidiscrete category; as a crossed module it has the form C0

1C0 �� C0 . Since Coker d = 0

we have

H0(C,−) = Der(Coker d,−) = 0.
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From Theorem 3.4.3 it follows that

H1(C,−) = 0.

Note that this can be obtained easily by direct computation.

3. An internal category as a crossed module is of the form C1
0 �� 0 . So we have C0 = 0,

Ker d0 = C1, d = 0, from which we obtain that C1 is a singular object and

H0(C,−) = 0,

H1(C,−) = HomAb(C1,−).
Thus H1(C,−) = 0⇐⇒ C1 = 0.

Chapter 4

KAN EXTENSIONS OF INTERNAL FUNCTORS

We consider the notion of the Kan extension for internal functors in the category of groups Gr.
According to the equivalence of categories Cat(Gr) ∼= XMod(Gr) [78], the internal nature of categories
enables us to consider them as crossed modules and to think of the problem of necessary and sufficient
conditions for the existence of internal Kan extensions, which is not known for the case of ordinary

categories. Thus we follow the algebraic approach to this problem, use homological algebra methods,
and under certain assumptions establish the necessary and sufficient conditions for the existence of
internal Kan extensions. Questions related to this problem are also discussed.

Due to MacLane–Whitehead’s well-known classification of connected cell complexes according to
their 3-type [73], we can also consider the topological approach to this question; it will be the subject
of the forthcoming paper (see [34]).

Since every internal category in Gr is a groupoid, this kind of questions can be treated by means
of category theory (groupoid) methods. Note that in our case the groupoid approach did not give
desirable result.

4.1. Extensions in the Category Cat(Ab)

Let Cat(Ab) denote the category of internal categories in the category of abelian groups Ab. By the

equivalence of categories Cat(Ab) ∼= XMod(Ab), where XMod(Ab) is a category of crossed modules
in Ab, we can consider an internal category in Ab as a pair of abelian groups (A0, A1) together with
a homomorphism between them:

A : A1
dA �� A0 , A0, A1 ∈ Ob(Ab), dA ∈ Mor(Ab).

In what follows, an internal category A ∈ Cat(Ab) will be denoted by A = (A0, A1); this means

that there is also a homomorphism dA : A1 −→ A0.

Definition 4.1.1. Let A : A1
dA �� A0 , C : C1

dC �� C0 ∈ Cat(Ab). Define Ext1Cat(Ab)(C,A) as the

pullback of the diagram

Ext1Cat(Ab)(C,A)
��

��

Ext1
Ab(C1, A1)

Ext1(C1,dA)
��

Ext1
Ab(C0, A0)

Ext1(dC ,A0)

�� Ext1
Ab(C1, A0)

.
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Definition 4.1.2. An extension of C = (C0, C1) by A = (A0, A1) is a commutative diagram of the

type

E :

E1 : 0 ��

Γ
��

A1
κ1 ��

dA

��

B1
σ1 ��

dB

��

C1
��

dC

��

0

E0 : 0 �� A0 κ0

�� B0 σ0

�� C0
�� 0

with exact rows; thus Ei ∈ Ext1
Ab(Ci, Ai), i = 0, 1.

Denote by ExtCat(Ab)(C,A) the set of all extensions of C by A. By a homomorphism θ : E −→ E′

we mean a pair θ = (θ0, θ1) of triples θ0 = (α0, β0, γ0), θ1 = (α1, β1, γ1) such that the diagram

E
θ

����
��
��
�

E′
:

0 �� A1
κ1 ��

α1

����
��
��
��

dA

��

B1
σ1 ��

β1

����
��
��
��

dB

��

C1
��

γ1

����
��
��
��

dC

��

0

0 �� A′
1

κ′
1 ��

dA
′

��

B′
1

σ′
1 ��

dB
′

��

C ′
1

��

dC
′

��

0

0 �� A0
κ0 ��

α0

����
��
��
��

B0
σ0 ��

β0

����
��
��
��

C0
��

γ0

����
��
��
��

0

0 �� A′
0

κ′
0 �� B′

0

σ′
0 �� C ′

0
�� 0

is commutative. It can be written in short from as follows:

E1
θ1 ��

Γ

��

E′
1

Γ′
��

E1
θ0

�� E′
1

.

Let A = A′ and C = C ′. We shall say that two extensions E and E′ of C by A are congruent E ≡ E′

if there is a morphism θ = (θ0, θ1) : E −→ E′, where θ0 = (1A0 , β0, 1C0) and θ1 = (1A1 , β1, 1C1). As is
well known, in this case β0 and β1 are isomorphisms, and so β = (β0, β1) : B −→ B′ is an isomorphism
of internal categories in Ab.

If E′ : E′
1

Γ′
�� E′

0 and E′′ : E′′
1

Γ′′
�� E′′

0 are two extensions and E′
0 = E′′

1 , we can define the

composition of these extensions E : E′
1

Γ �� E′′
0 , where Γ = Γ′′ ◦ Γ′.

Thus E is of the form

E :

E′
1 :

��

Γ
��

A1
��

dA
′′◦dA′

��

B′
1

��

dB
′′◦dB′

��

C ′
1

��

dC
′′◦dC′

��

0

E′′
0 : 0 �� A′′

0
�� B′′

0
�� C ′′

0
�� 0

.

Now we can define a larger congruence relation in Ext(C,A). If E = En ◦ En−1 ◦ · · · ◦ E1, then
E ≡ E′ if and only if E′ is obtained from E by replacing Ei by its congruent extension Ei′ ≡ Ei, for
any i, i = 1, . . . , n. Let R be the equivalence relation generated by this congruence relation. It is easy

to see that

Ext1Cat(Ab)(C,A)/R ≈ Ext1Cat(Ab)(C,A).
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It is straightforward to verify that Cat(Ab) admits limits and colimits. Thus in a natural way we

can define homomorphisms Ext1Cat(Ab)(ϕ,A) and Ext1Cat(Ab)(C,ψ), where ϕ and ψ are morphisms in

Cat(Ab), Also they can be defined directly by Definition 4.1.1. Thus ExtCat( )( · , · ) is a bifunctor.
Let Abd denote the category whose objects are the diagrams of the form

d :

M

���
��

��
��

�

K

N

����������

in Ab, and morphisms d −→ d′ are the morphisms of diagrams, i.e., the triples

(μ, ν,κ) :

M

���
��

��
��

�
μ �� M ′

���
��

��
��

�

K
κ �� K ′

N

����������
ν �� N ′

��









such that the above diagram commutes. The exactness in Abd means the exactness of each row in the
corresponding diagram. Let

d Ext1 : Cat(Ab)0 × Cat(Ab) �� Abd

denote the functor defined by

d Ext1(A,B) :

Ext1
Ab(A1, B1)

Ext1
Ab(A1,dB)

����
���

���
���

�

Ext1
Ab(A1, B0)

Ext1
Ab(A0, B0)

Ext1
Ab(d

A,B1)

��������������

on objects, and by the commutative diagram

d Ext1(A, β) :

Ext1
Ab(A1, B1)

����
���

���
���

�

Ext1(A1,β1) �� Ext1
Ab(A1, B

′
1)

����
���

���
���

�

Ext1
Ab(A1, B0)

Ext1(A1,β0) �� Ext1
Ab(A1, B

′
0)

Ext1
Ab(A0, B0)

��������������
Ext1(A0,β0) �� Ext1

Ab(A0, B
′
0)

��������������

for the morphism β = (β0, β1) : B −→ B′ in Cat(Ab).
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Similarly, for α = (α0, α1) : A −→ A′ in Cat(Ab)0, d Ext1(α,B) is defined by the commutative

diagram

d Ext1(α,B) :

Ext1
Ab(A1, B1)

����
���

���
���

�

Ext1(α1,B1) �� Ext1
Ab(A

′
1, B1)

����
���

���
���

�

Ext1
Ab(A1, B0)

Ext1(α1,B0) �� Ext1
Ab(A

′
1, B0)

Ext1
Ab(A0, B0)

��������������
Ext1(α0,B0) �� Ext1

Ab(A
′
0, B0)

��������������

For the morphism (α, β) : (A,B) −→ (A′, B′) ∈ Cat(Ab)0×Cat(Ab), d Ext1(α, β) is defined by the
composition

d Ext1(A′, β) ◦ d Ext1(α,B) = d Ext1(α,B′) ◦ d Ext1(A, β).

For any object A ∈ Cat(Ab) we have a functor (A, · ) : Cat(Ab) −→ Cat(Ab)0 × Cat(Ab) defined

by B �−→ (A,B) and β �−→ (1A, β). The functor ( · , B) is defined similarly. Also, there is a pullback

functor lim←− : Abd −→ Ab, which to each diagram

M↘
K

↗
N

assigns the pullback object P of this diagram

M

���
��

��
��

�

P

����������

���
��

��
��

� K

N

����������

.

It is easy to see that

Ext1Cat(Ab)(A,B) = lim←−◦d Ext1 ◦(A, · )(B) = lim←−◦d Ext1 ◦( · , B)(A).

4.2. Kan Extensions of Internal Functors in Cat(Gr)

(a) The Notion of an Internal Kan Extension.
For the definition of the Kan extension of a functor for ordinary categories, see [72].

Let A,C,M ∈ Cat(Gr) be internal categories in the category of groups Gr. Proceeding from the
definition of the Kan extension and our aim, to give its internal analogy, according to the equivalence
of categories Cat(Gr) ∼= XMod(Gr) (here XMod(Gr) denotes the category of crossed modules in

Gr), we consider internal categories as crossed modules and denote them as follows: A : A1
dA �� A0 ,

M : M1
dM �� M0 , C : C1

dC �� C0 . Let T : M −→ A and K : M −→ C be internal functors.

From Sec. 1.1 we have T = (T0, T1), K = (K0,K1), where T0 : M0 −→ A0 and K0 : M0 −→ C0 are
homomorphisms of groups, T1 : M1 −→ A1 and K1 : M1 −→ C1 are structural maps, i.e., they are
homomorphisms of groups and satisfy the conditions

K1(r ·m) = K0(r) ·K1(m),

T1(r ·m) = T0(r) · T1(m)
(4.2.1)
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for r ∈M0, m ∈M1, and the following diagrams are commutative:

M1
dM ��

T1

��

M0

T0

��
A1

dA
�� A0

,

M1
dM ��

K1

��

M0

K0

��
C1

dA
�� C0

.

We write T1 ∈ Homoph(M1, A1), K1 ∈ Homoph(M1, C1).
Since internal categories in Gr are groupoids, every morphism between internal functors is an

isomorphism (see also Proposition 1.2.1).

Let S = (S0, S1), R = (R0, R1) : C −→ A be internal functors and σ : S −→ R and ε : RK −→ T
morphisms of internal functors. Recall (see Sec. 1.2) that we can consider these morphisms as maps
σ : C0 −→ A1, ε : M0 −→ A1, which satisfy the conditions

dAσ = R0 − S0, σdC = R1 − S1, (4.2.2)

σ(r + r′) = σ(r) + S0(r) · σ(r′), r, r′ ∈ C0;

dAε = T0 −R0K0, εdM = T1 −R1K1, (4.2.3)

ε(m+m′) = ε(m) +R0K0(m) · ε(m′), m,m′ ∈M0.

Note that if A ∈ Cat(Ab), then the action of A0 on A1 is trivial, so that σ and ε are group
homomorphisms satisfying conditions (4.2.2) and (4.2.3). In that case,

Hom(SK,T ) =

{

β ∈ HomGr(M0, A1)

∣
∣
∣
∣

dAβ = T0 − S0K0

βdC = T1 − S1K1

}

.

From Chap. 2, if α and α′ are morphisms of internal functors

F
α �� F ′ α′

�� F ′′ , F, F ′, F ′′ : C �� C ′ ∈ Cat(Gr),

then the composite α′α can be considered as a map

α′ + α : C0−→C1,

satisfying the corresponding conditions.
As for the case of abelian groups, an internal category A ∈ Cat(Gr) will be denoted for simplicity

as a pair (A0, A1); this means that there is a group homomorphism dA : A1 −→ A0 satisfying the

usual conditions (see [78], [31]).

Definition 4.2.1. Let A = (A0, A1), C = (C0, C1), M = (M0,M1) be internal categories in the
category Gr, and suppose K = (K0,K1) : M −→ C and T = (T0, T1) : M −→ A are internal functors.

An internal right Kan extension of T along K is a pair (R = (R0, R1), ε), where R is an internal
functor C −→ A and ε : RK −→ T a morphism of internal functors such that for each internal functor
S = (S0, S1) : C −→ A and a morphism α : SK −→ T there is a unique morphism of internal functors

σ : S −→ R with α = ε+ σK.

Here σK means the morphism SK
σK �� RK , i.e., the composite of the maps

M0
K0 �� C0

σ �� A1,

satisfying the conditions

dA · σK = R0K0 − S0K0,

σK · dM = R1K1 − S1K1,
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σK0(m+m′) = σK0(m) + S0K0(m) · σK0(m
′), m,m′ ∈M0.

Also, by the observation given before Definition 4.2.1, ε is a map M0 −→ A1 satisfying conditions
(4.2.3); α is a map M0 −→ A1 satisfying the conditions

dAα = T0 − S0K0,

αdM = T1 − S1K1;

σ is a map C0
σ �� A1 satisfying conditions (4.2.2).

The diagram is

C
R

���
��

��
��

�

M

K

��

T �� A

,

RK
ε �� T

SK

σK

��

α

��








. (4.2.4)

Note that, as in the case of groupoids, the notions of internal right and left Kan extensions are
equivalent. Thus in what follows we can omit the word “right.”

Recall that an internal category C is called connected if for its two objects r, r′ there exists a mor-
phism r −→ r′, which in the language of crossed modules means that dC is a surjective homomorphism

for C1
dC �� C0.

Lemma 4.2.2. Let C,C ′ ∈ Cat(Gr) and C be a connected internal category. Then for any internal

functor F = (F0, F1) : C −→ C ′ there is only one endomorphism F −→ F , which is the identity
morphism.

Proof. Let α : F −→ F be an endomorphism; thus α : C0 −→ C ′
1 is a map satisfying the conditions

αdC = 0, dC
′
α = 0, and α(r + r′) = α(r) + F0(r) · α(r′), r, r′ ∈ C0. The diagram is

C1
dC ��

F1

��

F1

��

C0

F0

��

F0

��

α

� ��
��
��
��
��
��
��
��

C ′
1

dC
′

�� C ′
0

.

Since C is connected, dC is surjective; so it follows that α = 0, which means that α : F −→ F is
the identity morphism (see Chap. 1).

Corollary 4.2.3. Let C,C ′ ∈ Cat(Gr), C be a connected internal category, and F,G : C −→ C ′ be
internal functors. If σ : F −→ G is a morphism of internal functors, then it is a unique isomorphism.

Proof. Since C and C ′ are groupoids, σ is an isomorphism (see Chap. 1). Thus we have a bijection

Hom(F,F )
Hom(F,σ) ��

Hom(F,σ−1)
�� Hom(F,G)

which by Lemma 4.2.2 implies that σ is a unique isomorphism.

Remark. Corollary 4.2.3 can be proved directly, and the statement of Lemma 4.2.2 can obviously be
obtained as its special case. Both statements are true also in the case where C is an arbitrary internal
category and dC

′
is a monomorphism. When C ′ ∈ Cat(Ab), we obtain a more general condition

Hom(Coker dC ,Ker dC
′
) = 0 (see Lemma 4.2.7).
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Proposition 4.2.4. Let C and M be connected internal categories in Cat(Gr), and A ∈ Cat(Gr);

(R, ε) is an internal Kan extension of an internal functor T : M −→ A along K : M −→ C if and
only if R is a unique (up to isomorphism) internal functor R : C −→ A with the property that there
is an isomorphism ε : RK ≈ T .

Proof. Let (R, ε) be an internal Kan extension of T along K. Then from Definition 4.2.1 it follows
that (R, ε) satisfies the conditions of the proposition. Conversely, let (R, ε) be a pair satisfying the

conditions of the proposition. We shall show that (R, ε) is an internal Kan extension. Let S : C −→ A
be an internal functor and α : SK −→ T a morphism of internal functors. Then α is an isomorphism;
by the condition, R is a unique (up to isomorphism) functor with this property. Thus there is an

isomorphism σ : S ∼= R. This isomorphism is unique by Corollary 4.2.3 and ε · σK = α, since by the
same Corollary 4.2.3, Hom(SK,T ) consists of only one element, which proves the proposition.

Note that if A ∈ Cat(Ab), then Proposition 4.2.4 is true under the more general condition:
Hom(Coker dC ,Ker dA) = 0 and Hom(Coker dM ,Ker dA) = 0.

Proposition 4.2.5. Let A,C,M ∈ Cat(Gr), K : M −→ C, T : M −→ A, R : C −→ A be internal

functors, and ε : RK
≈ �� T be an isomorphism. (R, ε) is an internal Kan extension of T along

K if and only if for each internal functor S : C −→ A the assignment σ �−→ σK0 (K = (K0,K1))
determines a bijection

Hom(S,R)−→Hom(SK,RK).

Proof. It follows from the composite

Hom(S,R) �� Hom(SK,RK)
Hom(SK,ε) �� Hom(SK,T ),

where Hom(SK, ε) is a bijection.

(b) On H̃omCat(Gr)(M,A), M ∈ Cat(Gr), A ∈ Cat(Ab).
Let M ∈ Cat(Gr) and A ∈ Cat(Ab) be internal categories and T : M −→ A an internal functor. So

T0 ∈ HomGr(M0, A0), T1 ∈ Homoph(M1, A1) and T0d
M = dAT1. We can express HomCat(Gr)(M,A) as

a pullback of the diagram in Ab

HomCat(Gr)(M,A) ��

��

Homoph(M1, A1)

Hom(M1,dA)

��
HomGr(M0, A0)

Hom(dM ,A0) �� Homoph(M1, A0)

. (4.2.5)

Thus HomCat(Gr)(M,A) is an abelian group. Denote by H̃omCat(Gr)(M,A) the set of all isomorphic
classes of internal functors from M to A. Obviously, this set has an abelian group structure; note that

the action of A0 on A1 is trivial, since A ∈ Cat(Ab). So if α : T −→ T ′ is a morphism of internal

functors, T = (T0, T1), T
′ = (T ′

0, T
′
1) : M −→ A, then α is a group homomorphism M0

α �� A1

satisfying the conditions

dAα = T ′
0 − T0,

αdM = T ′
1 − T1.

For each α ∈ HomGr(M0, A1) we have dAα ∈ HomGr(M0, A0), αd
M ∈ HomStr(M1, A1). The first is

obvious, and the second is obtained from the following equalities for each m0 ∈M0, m ∈M :

αdM (m0 ·m) = α(m0 + dM (m)−m0) = α(m0) + αdM (m)− α(m0) = αdM (m)
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(here we apply the fact that dA : M1 −→M0 is a crossed module);

dAα(m0) · αdM (m) = αdM (m)

since A ∈ Cat(Ab), and A0 acts trivially on A1.

Thus αdM (m0 ·m) = dAα(m0) · αdM (m).
For each α ∈ HomGr(M0, A1) we have

Hom(M1, d
A) ·Hom(dM , A0)(α) = Hom(dM , A0) ·Hom(M0, d

A)(α).

Since HomCat(Gr)(M,A) is a pullback of diagram (4.2.5), this means that Hom(dM , A1) and

Hom(M0, d
A) induce homomorphism of abelian groups ϕM defined by ϕM (α) = (dAα,αdM ), for

α ∈ HomGr(M0, A1); the diagram looks as follows:

HomGr(M0, A1)

ϕM �����
���

���
���

��

Hom(dM ,A1)

��

HomGr(M0,dA)

 !

Homoph(M1, A1)
Hom(M1,dA)

�����
���

����
����

HomCat(Gr)(M,A)

 !��������������

�����
����

����
���

Homoph(M1, A0)

HomGr(M0, A0)

Hom(dM ,A0)

 !��������������

Note that since for α ∈ HomGr(M0, A1), (dAα,αdM ) is an internal functor M −→ A, any α ∈
HomGr(M0, A1) can be considered as a morphism of internal functors (dAα,αdM )

α �� (0, 0), and

the diagram is

M1
dM ��

αdM

��
0
��

M0

dAα
��

0
��

A1
dA

�� A0

.

Thus HomGr(M0, A1) is an abelian group of all morphisms between the internal functors M −→ A.
Now one can easily prove the following

Proposition 4.2.6. For M ∈ Cat(Gr), A ∈ Cat(Ab) we have

H̃omCat(Gr)(M,A) = CokerϕM .

Lemma 4.2.7. KerϕM = Hom(Coker dM ,Ker dA).

Proof. We have KerϕM = KerHom(dM , A1) ∩KerHom(M0, d
A). From the exact sequence

0

Im dA

!"�
��

��
��

��

�����������

0 �� Ker dA � � �� A1

"#���������
�� A0
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we obtain the exact sequence

Hom(M0, Im dA)
��

��
0 �� HomGr(M0,Ker dA) �� HomGr(M0, A1)

Hom(M0,dA) ��

#$������������������
HomGr(M0, A0)

which implies

KerHom(M0, d
A) = HomGr(M0,Ker dA).

Similarly, we have a sequence

M1
��

dM

��
Im dM � � �� M0

�� Coker dM �� 0

from which we obtain the sequence

Hom(M1, A1)

0 �� Hom(Coker dM , A1) �� Hom(M0, A1) ��

Hom(dM ,A1)
���������������

Hom(Im dM , A1)
��

��

0

��

and KerHom(dM , A1) = Hom(Coker dM , A1). Now it is easy to see that KerϕM is a pullback of the
diagram

KerϕM
��

��

HomGr(M0,Ker dA)

��
HomGr(Coker d

M , A1)
� � �� HomGr(M0, A1)

.

From the diagram

0

��
Ker dA��

��
M0

�� �� Coker dM ��

$%����������
A1

we see that KerϕM = HomGr(Coker d
M ,Ker dA).

Using the notation of Sec. 4.1, we can define the functor

d Hom : Cat(Ab)0 × Cat(Ab) �� Abd
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by

d Hom(A,B) :

HomAb(A1, B1)
Hom(A1,dB)

����
���

���
���

��

HomAb(A1, B0)

HomAb(A0, B0)
HomAb(d

A,B0)

 !�������������

.

The functor on homomorphisms is defined obviously. It is easy to see that

HomCat(Ab)(A,B) = lim←−◦d Hom(A, · )(B) = lim←−◦d Hom( · , B)(A).

Note that analogous equalities are true for the case A ∈ Cat(Gr), B ∈ Cat(Ab). The functors

(A, · ), ( · , B), dHom, lim←− are left exact, so the functors HomCat(Ab)(A, · ), HomCat(Ab)( · , B) are also

left exact; the same is true for HomCat(Gr)(A, · ) : Cat(Ab) −→ Ab. This can also be proved directly.

Lemma 4.2.8. For the exact sequence

0 �� B′ β′
�� B

β′′
�� B′′ �� 0

in Cat(Ab) and an internal category A ∈ Cat(Ab) we have a complex of abelian groups

0 �� HomCat(Ab)(A,B
′)

Hom(A,β′) �� HomCat(Ab)(A,B)
Hom(A,β′′) �� HomCat(Ab)(A,B

′′) ��

�� Ext1Cat(Ab)(A,B
′)

Ext1(A,β′) �� Ext1Cat(Ab)(A,B)
Ext1(A,β′′) �� ExtCat(Ab)(A,B

′′) ,

where Hom(A, β′) is a monomorphism, and we have the exactness in HomCat(Ab)(A,B); thus
HomCat(Ab)(A, · ) is a left exact functor.

Proof. The given exact sequence induces an exact sequence in Abd:

0 �� HomAb(A1, B
′
1)

��

Hom(A1,dB
′
) ����

���
���

���
��

HomAb(A1, B1) ��

Hom(A1,dB)

����
���

���
���

��

0 �� HomAb(A1, B
′
0)

�� HomAb(A1, B0) ��

0 �� HomAb(A0, B
′
0)

��

HomAb(d
A,B′

0)
 !�������������

HomAb(A0, B0) ��
HomAb(d

A,B0)

 !�������������

�� HomAb(A1, B
′′
1 )

��

Hom(A1,dB
′′
) �����
���

���
���

��
Ext1

Ab(A1, B
′
1)

��

����
���

���
���

��

�� HomAb(A1, B
′′
0 )

�� Ext1
Ab(A1, B

′
0)

��

�� HomAb(A0, B
′′
0 )

��

HomAb(d
A,B′′

0 )
����������������

Ext2
Ab(A0, B

′
0)

��

���������������
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�� Ext1
Ab(A1, B1) ��

����
���

���
���

��
Ext1

Ab(A1, B
′′
1 )

����
���

���
���

��

�� Ext1
Ab(A1, B0) �� Ext1

Ab(A1, B
′′
0 )

�� Ext2
Ab(A0, B0) ��

���������������
Ext2

Ab(A0, B
′′
0 )

���������������

. (4.2.6)

Applying the functor lim←− : Abd −→ Ab to (4.2.6), we obtain the desirable complex.

Note that an analogous statement is true for the first argument.

Let B
J �� C

T ��

S
�� D be the diagram in Cat(Gr), where J is a surjective internal functor (i.e.,

for J = (J0, J1), J0 and J1 are surjective homomorphisms). It is obvious that if T ≈ S, then TJ ≈ SJ .

But as we shall see below (Lemmas 4.2.9 and 4.2.10), the converse statement is not always true.
Consider an exact sequence of internal categories in Ab:

0 �� A � � I �� B
J �� �� C �� 0 .

For any D = (D0,D1) ∈ Cat(Ab) it induces the commutative diagram

0 �� HomAb(C0,D1) ��

ϕC

��

HomAb(B0,D1) ��

ϕB

��
0 �� HomCat(Ab)(C,D)

Hom(J,D) �� HomCat(Ab)(B,D)
Hom(I,D) ��

�� HomAb(A0,D1)
d ��

ϕA

��

Ext1
Ab(C0,D1)

ζ

��
�� HomCat(Ab)(A,D)

δ �� Ext1Cat(Ab)(C,D)

, (4.2.7)

where ϕA, ϕB , ϕC are the morphisms defined above, and ζ is induced by the pair
(Ext1

Ab(C0, d
B),Ext1

Ab(d
C ,D)). By Lemma 4.2.8 the second row in (4.2.7) is a complex, where

Hom(J,D) is a monomorphism, and we have the exactness in HomCat(Ab)(B,D).

Denote Ẽxt
1

Cat(Ab)(C,D) = Coker ζ; then δ induces the homomorphism

δ̃ : H̃omCat(Ab)(A,D) −→ Ẽxt
1

Cat(Ab)(C,D).

From (4.2.7) we obtain the sequence

Ker d ∩KerϕA
κ �� H̃omCat(Ab)(C,D)

H̃om(J,D) �� H̃omCat(Ab)(B,D)
H̃om(I,D) ��

�� H̃omCat(Ab)(A,D)
˜δ �� Ẽxt

1

Cat(Ab)(C,D) . (4.2.8)

Lemma 4.2.9. In (4.2.8) we have:

(i) (4.2.8) is a complex;

(ii) if ϕB is a monomorphism, then so is κ;

(iii) (4.2.8) is exact in H̃omCat( )(C,D);
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(iv) if ζ is a monomorphism, then (4.2.8) is exact in H̃omCat( )(B,D);

(v) if ϕA is a monomorphism, then so is H̃omCat( )(J,D).

The proof is easy by diagram (4.2.7) and is left to the reader.
Note that if A is a connected internal category, or D has no parallel morphisms, then ϕA is a

monomorphism, and by (v) H̃om(J,D) is also a monomorphism; thus, in this case, TJ ≈ SJ implies
the isomorphism T ≈ S for the surjective internal functor J ∈ HomCat(Ab)(B,C), and any T, S ∈
HomCat(Ab)(C,D).

Lemma 4.2.10. Let B, C, D be internal categories in Ab, and J = (J0, J1) : B −→ C be a surjective

internal functor. For internal functors T, S : C ���� D the isomorphism TJ ≈ SJ implies the

isomorphism T ≈ S if and only if there is an isomorphism TJ
≈ �� SJ given by the homomorphism

α : B0 −→ D1, with Ker J0 ↪→ Kerα.

Proof. It follows from diagrams (4.2.7) and (4.2.8); the picture is

Kerα��

��
B1

dB ��

J1 ����

B0

J0����

α

� ��
��
��
��
��
��
��
��
��
�

C1

T1

��
S1

��

dC �� C0

T0

��
S0

��

β

%&� � � � � � �

D1
dD �� D0

,

and β : T −→ S is defined by α : βJ0 = α.

Note that when all categories are internal in the category of vector spaces over a field, J0 and J1
have sections; if these sections give the section of internal functor J (i.e., the corresponding diagram
for the sections commutes), then we can construct β without any additional conditions on α and

consequently in that case TJ ≈ SJ implies T ≈ S.

4.3. The Existence of Internal Kan Extensions

Let K : M −→ C be an internal functor in Ab. Define the internal categories ImK and KerK in

a natural way. If K has the form

M1
dM ��

K1

��

M0

K0

��
C1

dC
�� C0

,

then these internal categories as crossed modules have the form

ImK1

dC
∣
∣
ImK1 �� ImK0 ,

KerK1

dM
∣
∣
KerK1 �� KerK0 .
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Let K ′ : M −→ ImK be an internal functor defined by K. Then K has a decomposition

M
K ′

�� �� ImK � � I �� C .

Here for simplicity we consider the case of abelian groups.

Proposition 4.3.1. Let A,C,M ∈ Cat(Ab); K : M −→ C and T : M −→ A be internal functors.

Suppose that C and M are connected. If R′ is an internal Kan extension of T along K ′, and R is
an internal Kan extension of R′ along I, where K ′ and I are defined by the decomposition K = IK ′,
then R is an internal Kan extension of T along K.

Proof. The picture is

C

R

&'

ImK
��

I

��

R′

'(
M

K

��

K ′
����

T �� A

. (4.3.1)

Since M is connected, ImK is also a connected internal category.
By Proposition 4.2.4, R′K ′ ≈ T , R′ is a unique functor up to isomorphism with this property, RI ≈

R′, and R is also unique up to isomorphism. Hence we have RK = R(IK ′) ≈ (RI)K ′ ≈ R′K ′ ≈ T.

We shall show that R is unique up to isomorphism with this property. Let R : C −→ A be an
internal functor with RK ≈ T . We have R′K ′ ≈ T ≈ RK ≈ R(IK ′) = (RI)K ′.

By the uniqueness of R′ it follows that R′ ≈ RI; but R′ ≈ RI, and again by the uniqueness of R

we obtain R ≈ R.

Is the statement converse to Proposition 4.3.1 true? The answer is negative in general. Let R be

an internal Kan extension of T along K. Then in (4.3.1) R is a Kan extension of RI along I, but, in
general, RI is not a Kan extension of T along K ′. Indeed, we have

RK ≈ T,

and R is unique up to isomorphism with this property. Suppose that there is an internal functor
R : C −→ A with RI ≈ RI. Then

RIK ′ ≈ RIK ′ =⇒ RK ≈ RK ≈ T =⇒ R ≈ R.

Now we shall show that in the above situation RI is not an internal Kan extension of T along K ′.
Let R′ : ImK −→ A be an internal functor with R′K ′ ≈ T ; by RK ≈ T we have RIK ′ ≈ R′K ′, but
this does not always imply the isomorphism RI ≈ R′ (see Lemma 4.2.10).

We shall investigate the necessary and sufficient conditions for the existence of internal Kan ex-
tensions for the case where K is a surjective and K is an injective internal functor (i.e., K0 and K1

are injective homomorphisms). For the above observation, these results, in general, do not provide
an answer for arbitrary K (in this way we obtain only sufficient conditions for arbitrary K, but not
necessary).

Theorem 4.3.2. Let C,M ∈ Cat(Gr) and A ∈ Cat(Ab). Suppose that M is a connected internal

category. Let K = (K0,K1) : M −→ C be a surjective internal functor such that KerK0
� � �� M0

has a retraction. There exists a Kan extension of T = (T0, T1) : M −→ A along K if and only if
T
∣
∣
KerK

≈ 0 and HomGr(Coker d
KerK ,Ker dA) = 0.
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Proof. From the conditions it follows that C is also connected. For the exact sequence of internal

categories

0 �� KerK � � �� M
K �� C �� 0

we have the commutative diagram shown in Fig. 1.

By Lemma 4.2.7, KerϕKerK = HomGr(Coker d
KerK ,Ker dA) and, since C and M are connected,

Coker dC = Coker dM = 0 so that KerϕC = KerϕM = 0. The second row is exact, since

KerK0
� � �� M0 has a retraction. The third row is also exact, since Hom(K1, A0) is a monomor-

phism. Applying the Snake lemma to the diagram from Fig. (1), we obtain the exact sequence of
abelian groups

0 �� HomGr(Coker d
KerK ,Ker dA)

η �� H̃omCat(Gr)(C,A) ��

�� H̃omCat(Gr)(M,A) �� H̃omCat(Gr)(KerK,A) . (4.3.2)

We have clT ∈ H̃om(M,A). By the exactness of (4.3.2), there exists clR ∈ H̃omCat(Gr)(C,A) such

that cl(RT ) = clT if and only if clT
∣
∣
KerK

= 0, i.e., T
∣
∣
KerK

≈ 0, and it is unique if and only if

HomGr(Coker d
KerK ,Ker dA) = 0, which proves the theorem.

Corollary 4.3.3. Let A, C, M be internal categories in the category of vector spaces over some field

k. Suppose that M is connected. If K : M −→ C is a surjective internal functor, then a Kan extension
of T : M −→ A along K exists if and only if T

∣
∣
KerK

≈ 0, and either A has no parallel morphisms, or
KerK is a connected internal category.

Proof. The result follows from the fact that in the category of vector spaces K0 has a section and
therefore KerK0 ↪→M0 is always split. The condition Hom(Coker dKerK ,Ker dA) = 0 is equivalent to
the condition: either Coker dKerK = 0 or Ker dA = 0. Coker dKerK = 0 means that KerK is connected

and it is easy to verify that Ker dA = 0 means that A has no parallel morphisms.

Remark. The statement of Theorem 4.3.2 and therefore of Corollary 4.3.3 holds also for arbitrary

M under the same condition that KerK0
� � �� M0 has a retraction; for the proof we have to apply

the general Definition 4.2.1 of internal Kan extension (see Sec. 4.4).

Consider now the case of abelian groups.

Theorem 4.3.4. Let A = (A0, A1), C = (C0, C1), M = (M0,M1) ∈ Cat(Ab); suppose that M is
connected and K : M −→ C is a surjective internal functor. If one of the following conditions holds:

(i) A1 is injective in Ab;

(ii) C0 is projective in Ab;

(iii) dC is a split epimorphism;

(iv) dA is a split monomorphism,

then a Kan extension of T along K exists if and only if

T
∣
∣
KerK

≈ 0 and HomAb(Coker d
KerK ,Ker dA) = 0.
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Proof. It follows from the conditions that C is also connected. From the results of Sec. 4.2 we have

the commutative diagram

0 �� HomAb(C0, A1) ��

ϕC

��

HomAb(M0, A1) ��

ϕM

��

HomAb(KerK0, A1)
d ��

ϕKer K

��

Ext1Ab(C0, A1)

ζ

��
0 �� HomCat(Ab)(C,A)

Hom(K,A) �� HomCat(Ab)(M,A) �� HomCat(Ab)(KerK,A)
δ �� Ext1Cat(Ab)(C,A)

(4.3.3)

from which we obtain the complex of abelian groups

Ker d ∩KerϕKerK
κ �� H̃omCat(Ab)(C,A)

H̃om(K,A) �� H̃omCat(Ab)(M,A) ��

�� H̃omCat(Ab)(KerK,A). (4.3.4)

Since M is connected, ϕM is a monomorphism, and from Lemma 4.2.9 it follows that κ is a

monomorphism. Recall that ζ is induced by the homomorphisms Ext1
Ab(d

C , A1) and Ext1
Ab(C0, d

A);
thus under the conditions of the theorem it follows that ζ is either zero or a monomorphism in
(4.3.3). Again by Lemma 4.2.9, (4.3.4) is an exact sequence. We have clT ∈ Hom(M,A); from

the exactness of (4.3.4) there exists R : C −→ A with RK ≈ T if and only if T
∣
∣
KerK

≈ 0, and

R is unique up to isomorphism with this property if and only if H̃om(K,A) is a monomorphism,
which is equivalent to the condition Ker d ∩ KerϕKerK = 0. Since ζ is a monomorphism, we have

KerϕKerK
� � �� Ker d , and so we obtain the condition KerϕKerK = 0, which is equivalent to the

condition HomAb(Coker d
KerK ,Ker dA) = 0.

Note that if condition (iv) holds, then the condition HomGr(Coker d
KerK ,Ker dA) = 0 is automati-

cally satisfied. See also the remark at the end of the proof of Proposition 4.3.6.

Now we shall consider the case where K is an injective homomorphism. This is more complicated,
and we have to establish the necessary and sufficient conditions under stronger restrictions than for
the case of an epimorphism.

Definition 4.3.5. Let F : A −→ B be an internal functor. We shall say that F is a contractible
functor if F ≈ 0.

Theorem 4.3.6. Let A,C,M be internal categories in Ab and K : M −→ C an injective internal
functor. Suppose that C and M are connected and the following conditions hold:

(i) dC has a section;

(ii) dC/M has a section;

(iii) we have an inclusion Ker dC � � �� M1 .

There exists a Kan extension of T : M −→ A along K if and only if δ̃(T ) = 0 (δ̃ : H̃om(M,A) −→
Ẽxt

1
(C/M,A)), and every internal functor C/M −→ A is contractible.

Proof. Consider the commutative diagram

0 �� M1
K1 ��

dM
����

C1
τ1 ��

dC
����

C1/M1
��

dC/M

����

0

0 �� M0
K0

�� C0 τ0
�� C0/M0

�� 0

(4.3.5)
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with exact rows. We see that if C is connected, then the quotient category C/M is also a connected

category. (4.3.5) induces the commutative diagram shown in Fig. 2.
Here the first row is exact; by Lemma 4.2.8 the second row is a complex and we have exactness in

HomCat(Ab)(C/M,A) and HomCat(Ab)(C,A) in general.
We shall show that under the conditions of the theorem, the second row is also exact in

HomCat(Ab)(M,A). Let F ∈ HomCat(Ab)(M,A) and δ(F ) = 0. Then there exist F1 ∈ HomAb(M1, A1)

and F0 ∈ Hom(M0, A0) such that ∂1(F1) = 0 and ∂0(F0) = 0 and Hom(M1, d
A)(F1) =

Hom(dM , A0)(F0). From the exactness in Hom(M1, A1) and Hom(M0, A0), there exist α ∈
Hom(C1, A1) and ε ∈ Hom(C0, A0) such that α �−→ F1 and ε �−→ F0; but Hom(C1, d

A)(α) �=
Hom(dC , A0)(ε) in general. Taking the difference ψ = dAα− εdC , we have Hom(K1, A0)(ψ) = 0, and
by the exactness of the corresponding row there exists θ ∈ Hom(C1/M1, A0) with Hom(τ1, A0)(θ) = ψ,
where τ1 is the natural epimorphism from (4.3.5). The diagram is

0 �� Ker dM � � ��
��

��

Ker dC �� ��
��

��

Ker dC/M ��
��

��

0

A1

dA

��

0 �� M1
� � K1 ��

dM
����

F1
() C1

τ1 �� ��

dC
����

ψ

)*

α

*+ C1/M1
��

dC/M

����

θ
+,

0

0 �� M0
� � K0 ��

F0

��

C0
τ0 �� ��

ε,- ϕ
,-

C0/M0
�� 0

A0

(4.3.6)

We have θτ1 = dAα− εdC and θτ1
∣
∣
M1

= 0.

Since, from condition (iii) of the theorem, Ker dC ↪→ M1, we obtain θτ1
∣
∣
KerdC

= 0, and in the

diagram

Ker dC � � i �� C1
dC ��

θτ1
��

C0

ϕ���
�
�
�

A0

(4.3.7)

there exists ϕ : C0 −→ A0 with ϕdC = θτ1 = ψ. Taking ϕ+ ε : C0 −→ A0, we have

(ϕ+ ε)dC = ϕdC + εdC = ψ + εdC = dAα− εdC + εdC = dAα.

Now it remains to show that (ϕ+ ε)K0 = F0. Since εK0 = F0, it is sufficient to show that ϕK0 = 0.
Consider the composite ϕK0d

M , where dM is an epimorphism; by (4.3.6) and (4.3.7) we have

ϕK0d
M = ϕdCK1 = (θτ1)K1 = 0,

since τ1K1 = 0. Thus ϕK0=0. This completes the proof of the exactness in HomCat(Ab)(M,A).
In (4.3.7), by definition,

H̃omCat( )(∗, A) = Cokerϕ∗, ẼxtCat( )(∗, A) = Coker ζ∗.

By Lemma 4.2.9 (v), since ϕM is a monomorphism, H̃omCat(Ab)(τ,A) is also a monomorphism.
From the conditions of the theorem it follows that ζC/M is a monomorphism. It is easy to check that

we have the exactness in H̃omCat(Ab)(C,A).
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We shall show that under the conditions of the theorem we have the exactness in

H̃omCat(Ab)(M,A). It is obvious from diagram (4.3.7) that

δ̃ ·HomCat(Ab)(K,A) = 0.

Let clF ∈ H̃omCat( )(M,A) and δ̃(clF ) = 0. Then for F ∈ HomCat(Ab)(M,A) there exists y ∈
Ext1

Ab(C0/M0, A1) such that δ(F ) = ζC/M (y). Now we have

ζC Ext1Ab(τ0, A1)(y) = Ext1Ab(τ,A)ζC/M (y) = Ext1Ab(τ,A)δ(F ) = 0.

From the conditions of the theorem it follows that ζC is a monomorphism and therefore
Ext1

Ab(τ0, A1)(ψ) = 0. By the exactness of the first row, there exists an element z ∈ HomAb(M0, A1)

such that ∂(z) = y and δϕM (z) = ζC/M (y) = δ(F ). Thus δ(F − ϕM (z)) = 0. By the exactness
of the second row in HomCat(Ab)(M,A) it follows that there is an element L ∈ HomCat(Ab)(C,A)
such that HomCat(K,A)(L) = F − ϕM (z), and from the commutativity of diagram (4.3.7) we obtain

H̃om(K,A)(clL) = clF , which proves the exactness in H̃omCat(Ab)(M,A) and completes the proof of
the theorem.

Remark. From the proof of Theorem 4.3.6 it is not difficult to see that conditions (i) and (ii) in the

theorem can be replaced by the condition: dA is a split monomorphism, which is equivalent to the
condition that A is (internally) equivalent to the discrete internal category (Serction 1.3., Propositi-
on 1.3.14). Also, condition (iii) can be replaced by: dA is a split epimorphism. It can be proved that

this condition means that A is equivalent to the one-object internal category Ker dA −→ 0, i.e., to the
abelian group Ker dA considered as an internal category. This remark concerns also conditions (iii)
and (iv) of Theorem 4.3.4.

Remark. Suppose that all categories A, C, M are connected internal categories with only one object
in the category of groups; i.e., dA = dC = dM = 0 and A0 = C0 = M0 = 0. These conditions imply

that A1, C1, and M1 are abelian groups, internal functors are abelian group homomorphisms, and
an isomorphism between internal functors is an equality. In this case the notion of an internal Kan
extension (Definition 4.2.1) reduces to the notion of a unique extension of a homomorphism in the

category Ab

C
R

���
��

��
��

�

M

K

��

T �� A

.

For the case where K is surjective, we find that there exists a unique homomorphism R : C −→ A
with RK = T if and only if T

∣
∣
KerK

= 0. We obtain the same condition from Theorem 4.3.4, where

in our case condition (iii) (dC is a split epimorphism) is automatically satisfied. Note that we have
Coker dKerK = 0, since dKerK = 0 and consequently HomAb(Coker d

KerK ,Ker dA) = 0 always.

Now suppose that K is an injective homomorphism. For the case of abelian groups we find that
there exists a unique homomorphism R : C −→ A satisfying the condition RK = T if and only
if δ(T ) = 0 (δ : HomAb(M,A) −→ Ext1

Ab(CokerK,A)) and HomAb(CokerK,A) = 0. As we have

mentioned (see Remark above), condition (iii) in Theorem 4.3.6 can be replaced by the condition:
dA is a split epimorphism. Thus in our case all the conditions of Theorem 4.3.6 are satisfied, and
we obtain the same necessary and sufficient conditions which we have for the unique extension of a

homomorphism between abelian groups.
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4.4. Nonconnected Case

In this section, under the same assumptions as for the connected case, we give the necessary and

sufficient conditions for the existence of internal Kan extensions in the case where M is any internal
category in Gr and K in the diagram (4.2.4) is a surjective internal functor.

Let K = (K0,K1) be an internal functor M −→ C. As in Sec. 4.2. we denote by KerK the internal

category dKerK : KerK1 −→ KerK0, where dKerK = dM
∣
∣
KerK1

.

Theorem 4.4.1. Let C = (C0, C1), M = (M0,M1) ∈ Cat(Gr), A = (A0, A1) ∈ Cat(Ab), K =
(K0,K1) : M −→ C be a surjective internal functor such that the injection KerK0 −→ M0 has a
retraction. There exists a Kan extension of T = (T0, T1) : M −→ A along K : M −→ C if and only if

T
∣
∣
KerK

≈ 0 and

HomGr(Coker d
KerK ,Ker dA) = 0.

Proof. Similarly to the proof of Theorem 4.3.2, we obtain in Ab the commutative diagram shown in
Fig. 3.

Since I0 : KerK0 �−→ M0 has a retraction, Hom(I0, A1) is an epimorphism. Each row and column

in diagram shown in Fig. 3 is exact. Applying the Snake lemma to this diagram and Proposition 4.2.6,
we obtain the exact sequence of abelian groups

HomGr(Coker d
M ,Ker dA)

ϕ �� HomGr(Coker d
KerK ,Ker dA)

ψ �� H̃omCat(C,A)

H̃om(K,A) �� H̃omCat(M,A)
H̃om(I,A) �� H̃omCat(KerK,A) . (4.4.1)

Suppose that the conditions of the theorem hold. We shall show that there exists a Kan extension
of T along K.

Since T
∣
∣
KerK

≈ 0, this means that H̃om(I,A)(cl T ) = 0. By the exactness of (4.4.1), there ex-

ists an internal functor R ∈ HomCat(C,A) such that H̃om(K,A)(clR) = clT , which is equivalent to

the condition that there exists an isomorphism ε : RK
≈ �� T . Suppose that there is an internal

functor S : C −→ A with α : SK
≈ �� T . This gives an equality clSK = clRK = clT . Since

HomGr(Coker d
KerK ,Ker dA) = 0, H̃om(K,A) in (4.4.1) is a monomorphism. Thus we have an iso-

morphism S ≈ R. We have to show that there exists a unique isomorphism σ : S −→ R, with
σK0 = −ε+ α. From the diagram shown in Fig. 3, we have the following commutative diagram:

−ε+ α�

��

� Hom(I0,A1) �� κ�

ϕKerK

��
R− S � Hom(K,A) �� RK − SK � Hom(I,A) �� 0

. (4.4.2)

Since HomGr(Coker d
KerK ,Ker dA) = 0, ϕKerK is a monomorphism. So in (4.4.2) κ = 0. From the

exactness of the corresponding row of the diagram shown in Fig. 3, we conclude that there exists a

unique σ ∈ HomGr(C0, A1) such that σ � K0 �� −ε+ α .

Since the diagram

HomGr(C0, A)
Hom(K0,A1) ��

ϕC

��

HomGr(M0, A1)

ϕM

��
HomCat(C,A)

Hom(K,A)
�� HomCat(M,A)
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is commutative and Hom(K,A) is a monomorphism, we obtain ϕC(σ) = R − S, which means that σ

is a morphism of internal functors σ : S −→ R; this proves that (R, ε) is a Kan extension.
Now suppose that there exists a Kan extension (R, ε) of T alongK. Then from the diagram shown in

Fig. 3 we have Hom(I,A)(T ) ≈ 0, which means that TKerK ≈ 0. Since R is unique up to isomorphism

with the property RK
≈ �� T , from the exact sequence (4.4.1) we obtain that H̃om(K,A) is a

monomorphism so that ψ = 0 in (4.4.1). Next we shall show that ϕ = 0 in (4.4.1), from which it
follows that HomGr(Coker d

KerK ,Ker dA) = 0. Let β ∈ HomGr(M0, A1) and ϕM (β) = 0; therefore we
can consider β as a morphism of internal functors β : RK −→ RK. By Proposition 4.2.5 we have the

bijection Hom(R,R) −→ Hom(RK,RK). Thus there is a morphism γ : R −→ R with γK0 = β. In
the diagram shown in Fig. 3, we have

γ ∈ HomGr(C0, A1), Hom(K0, A1)(γ) = β.

From this it follows that ϕ = 0, which completes the proof of the theorem.

In the case, where A,C,M ∈ Cat(Ab), the condition “the injection I0 : KerK0 �−→ M0 has a
retraction” can be replaced by one of the conditions (i)–(iv) of Theorem 4.3.4. We do not give here
the proof of this theorem, since it is based on arguments analogous to those given for the connected

case in Sec. 4.3 (Theorem 4.3.4).

Chapter 5

ACTORS IN CATEGORIES OF INTEREST

This chapter is dedicated to questions of the definition, the existence, and the construction of an actor
for the objects in categories of interest. For an object A of a category of interest C we construct the

group with operations B(A) and the semidirect product B(A) � A and prove that there exists an
actor of A in C if and only if B(A) � A ∈ C. The examples of groups, associative, Lie, Leibniz and
alternative algebras, modules over some ring, crossed modules and precrossed modules in the category
of groups are discussed.

5.1. Preliminary Definitions and Results

This section contains well-known definitions and results that will be used in what follows.
Let C be a category of interest with a set of operations Ω and with a set of identities E (see Sec. 3.1

for the definition).

We will write the right side of Axiom 2 in the definition of a category of interest as W (x1, x2;x3; ∗, ∗).
As in Sec. 3.1 we denote by EG the subset of identities of E, which includes the group laws and

the identities (c) and (d) from the definition of a category of groups with operations (see Sec. 1.1).

We denote by CG the corresponding category of groups with operations. Thus we have EG
� � �� E ,

C = (Ω,E), CG = (Ω,EG), and there is a full inclusion functor C � � �� CG.

In the case of associative algebras with multiplication represented by ∗, we have Ω′
2 = {∗ , ∗◦}. For

Lie algebras take Ω′
2 = ([ , ], [ , ]◦) (where [a, b]◦ = [b, a] = −[a, b]). For Leibniz algebras (see the

definition below), take Ω′
2 = ([ , ], [ , ]◦) (here [a, b]◦ = [b, a]). It is easy to see that all these algebras

are categories of interest. In the example of groups, Ω′
2 = ∅.

We recall the following definitions and the results from [76].

Definition 5.1.1 ([76]). Let C ∈ C. A subobject of C is called an ideal if it is the kernel of some

morphism.
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Theorem 5.1.2 ([76]). Let A be a subobject of B in C. Then A is an ideal of B if and only if the

following conditions hold;

(i) A is a normal subgroup of B;

(ii) For any a ∈ A, b ∈ B and ∗ ∈ Ω′
2, we have a ∗ b ∈ A.

For the definition of a split extension and B-structure on A, A,B ∈ C we refer the reader to Sec. 3.1.
As in [76] and Chap. 3, for A,B ∈ C we will say we have “a set of actions of B on A”, whenever

there is a set of maps f∗ : B ×A −→ A, for each ∗ ∈ Ω2.
A B-structure induces a set of actions of B on A corresponding to the operations in C. If

0 �� A
i �� E

p �� B �� 0 (5.1.1)

is a split extension in C, with the section s : B −→ E, ps = 1B , then for b ∈ B, a ∈ A, and ∗ ∈ Ω2
′

we have

b · a = s(b) + a− s(b), (5.1.2)

b ∗ a = s(b) ∗ a. (5.1.3)

(5.1.2) and (5.1.3) are called derived actions of B on A in [76] and split derived actions in Chap. 3,

since we considered there the actions derived from nonsplit extensions too when A is a singular object.
Given a set of actions of B on A (one for each operation in Ω2), let B � A be a universal algebra

whose underlying set is B ×A and whose operations are

(b′, a′) + (b, a) = (b′ + b, a′ + b′ · a),
(b′, a′) ∗ (b, a) = (b′ ∗ b, a′ ∗ a+ a′ ∗ b+ b′ ∗ a).

Theorem 5.1.3 ([76]). A set of actions of B on A is a set of derived actions if and only if B �A is

an object of C.

Together with the condition on the set of derived actions given in the theorem above, we will need

Proposition 3.1.1 of Chap. 3, where the identities are given which satisfy the set of derived actions in
the case A,B ∈ CG and which guarantee that the set of actions is a set of derived actions in CG.

As we remarked in Sec. 3.1, if we are in the category C with the set of identities E, conditions

1–12 of the Proposition are necessary conditions. In every concrete case it is possible, according to
other identities included in E, to write the corresponding conditions for derived actions that will be
necessary and sufficient for the set of actions to be a set of derived actions (i.e. for B � A ∈ C).

Denote all these identities of derived actions by ẼG and Ẽ respectively. If the addition is commutative

in C, then Ẽ (resp. ẼG) consists of the same kind of identities that we have in E (resp. in EG),

written down for the elements from the set A∪B, whenever each identity has a sense. We will denote

by ˜Axiom 2 the identities for the action in C, which correspond to Axiom 2 (see Chap. 3). In the

category of groups, Lie, associative, and Leibniz algebras derived actions are called simply actions.
We will use this terminology in these special cases; we will also say “an action in C” if it is a derived
action, and we will say a set of actions is not an action in C if this set is not a set of derived actions.

Recall that a left action of a group B on A is a map ε : B×A −→ A, which we denote by ε(b, a) = b ·a,
with the conditions

(b1 + b2) · a = b1 · (b2 · a),
0 · a = a,

b · (a1 + a2) = b · a1 + b · a2.
The right action is defined in an analogous way.
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All algebras below are considered over a commutative ring k with unit.

In the case of associative algebras, an action of B on A is a pair of bilinear maps

B ×A −→ A, A×B −→ A, (5.1.4)

which we denote respectively by (b, a) �−→ b ∗ a, (a, b) �−→ a ∗ b, with conditions

(b1 ∗ b2) ∗ a = b1 ∗ (b2 ∗ a),
a ∗ (b1 ∗ b2) = (a ∗ b1) ∗ b2,
(b1 ∗ a) ∗ b2 = b1 ∗ (a ∗ b2),
b ∗ (a1 ∗ a2) = (b ∗ a1) ∗ a2,
(a1 ∗ a2) ∗ b = a1 ∗ (a2 ∗ b),
a1 ∗ (b ∗ a2) = (a1 ∗ b) ∗ a2.

Here the associative algebra operation is denoted by ∗ (resp. a1 ∗ a2), and the corresponding action

by the same sign ∗ (respectively, b ∗ a).
Recall that a Lie algebra (A, ( , )) over k is given by a k-module A and a k-module homomorphism

( , ) : A⊗k A −→ A, called a round bracket, such that the equation

(x, x) = 0

and Jacobi identity

((x, y), z) + ((y, z), x) + ((z, x), y) = 0 (5.1.5)

hold for x, y, z ∈ A.

For Lie algebras an action of B on A is a bilinear map B ×A −→ A, where the result of action is
denoted by (b, a), which satisfies the conditions

((b1, b2), a) = (b1, (b2, a))− (b2, (b1, a)),

((b, (a1, a2)) = (a1, (b, a2)) + ((b, a1), a2).

Note that we actually have above again two bilinear maps (5.1.4): b, a �−→ (b, a), a, b �−→ (a, b) with
the conditions

(b, a) = −(a, b),
((b1, b2), a) + ((b2, a), b1) + ((a, b1), b2) = 0,

((b, a2), a1) + ((a2, a1), b) + ((a1, b), a2) = 0.

Recall from [62] that a Leibniz algebra L over a commutative ring k with unit is a k-module equipped

with a bilinear map [−,−] : L×L→ L which satisfies the following identity, called the Leibniz identity:

[x, [y, z]] = [[x, y], z] − [[x, z], y]

for all x, y, z ∈ L.
Obviously, when [x, x] = 0 for all x ∈ L, the Leibniz bracket is skew-symmetric; therefore the

Leibniz identity comes down to the Jacobi identity, and a Leibniz algebra is then just a Lie algebra.

For Leibniz algebras, an action of B on A is a pair of bilinear maps (5.1.4), which we denote by
b, a �−→ [b, a], a, b �−→ [a, b] with the conditions

[a1, [a2, b]] = [[a1, a2], b] − [[a1, b], a2],

[a1, [b, a2]] = [[a1, b], a2]− [[a1, a2], b],

[b, [a1, a2]] = [[b, a1], a2]− [[b, a2], a1],

[a, [b1, b2]] = [[a, b1], b2]− [[a, b2], b1],

458



[b1, [a, b2]] = [[b1, a], b2]− [[b1, b2], a],

[b1, [b2, a]] = [[b1, b2], a]− [[b1, a], b2].

Recall [83] that a derivation for an algebra A over a ring k is a k-linear map D : A −→ A with

D(a1, a2) = (D(a1), a2) + (a1,D(a2)).

The set of all derivations Der(A) of A with the operation defined by

(D,D′) = DD′ −D′D

is a Lie algebra.
We recall the construction of the k-algebra Bim(A) of bimultipliers of an associative k-algebra A

(called multiplications in [50] and bimultiplications in [70]). An element of Bim(A) is a pair f =
(f∗, ∗f) of k-linear maps from A to A with

f ∗ (a ∗ a′) = (f ∗ a) ∗ a′,
(a ∗ a′) ∗ f = a ∗ (a′ ∗ f),
a ∗ (f ∗ a′) = (a ∗ f) ∗ a′.

We prefer to use the notation ∗f instead of f∗◦. We denote by f ∗ a (resp. a ∗ f) the value f ∗ (a)
(resp. ∗f(a)). Bim(A) is a k-module in an obvious way. The operation in Bim(A) is defined by

f ∗ f ′ = (f ∗ f ′∗, ∗f ∗ f ′),

and Bim(A) becomes a k-algebra. Note that here we use notations different from those in [57, 70].
Here, as above, ∗ denotes an operation in associative algebra, and f ∗f ′∗, ∗f ∗f ′ denote the composites
of maps. Thus

(f ∗ f ′∗)(a) = f ∗ (f ′ ∗ a),
(∗f ∗ f ′)(a) = (a ∗ f) ∗ f ′.

For the addition we have

f + f ′ = ((f∗) + f ′∗, ∗f + (∗f ′)),
where

((f∗) + f ′∗)(a) = f ∗ a+ f ′ ∗ a,
(∗f + (∗f ′))(a) = a ∗ f + a ∗ f ′.

For a Leibniz k-algebra A we define the k-algebra Bider(A) of biderivations in the following way. An

element of Bider(A) is a pair ϕ = ([ , ϕ], [ϕ, ]) of k-linear maps A −→ A with
[

[a1, a2], ϕ
]

=
[

a1, [a2, ϕ]
]

+
[

[a1, ϕ], a2
]

,
[

ϕ, [a1, a2]
]

=
[

[ϕ, a1], a2
]− [

[ϕ, a2], a1
]

,
[

a1, [a2, ϕ]
]

= −[a1, [ϕ, a2]
]

.

We used above the notation [ϕ, ](a) = [ϕ, a], [ , ϕ](a) = [a, ϕ]. Biderivations were defined by Loday in

[62], where another notation is used; biderivation is a pair (d,D), where, according to our definition,
[ϕ, ] = D, [ , ϕ] = −d, and instead of the third condition we have in [62] [a1, d(a2)] = [a1,D(a2)].

The operation in Bider(A) is defined by

[ϕ,ϕ′] =
(

[ , [ϕ,ϕ′]], [[ϕ,ϕ′], ]
)

,

where
[

a, [ϕ,ϕ′]
]

=
[

[a, ϕ], ϕ′]− [

[a, ϕ′], ϕ
]

, (5.1.61)
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[

[ϕ,ϕ′], a
]

=
[

ϕ, [ϕ′, a]
]

+
[

[ϕ, a], ϕ′]. (5.1.62)

Note that we can define [[ϕ,ϕ′], ] by
[

[ϕ,ϕ′], a
]

= −[ϕ, [a, ϕ′]
]

+
[

[ϕ, a], ϕ′]. (5.1.6′2)

To avoid confusion, we disregard ∗◦ in special cases, e.g., for the [ , ] operation. Both above given

operations define a Leibniz algebra structure on Bider(A). It is easy to see that the second definition
(5.1.61), (5.1.6′2) gives the algebra which is isomorphic to the biderivation algebra defined in [62];
according to this definition [(d,D), (d′,D′)] = (dd′ − d′d,Dd′ − d′D).

We have a set of actions of Der(A), Bim(A) and Bider(A) on A. These actions are defined by

[D, a] = D(a),

f ∗ a = f ∗ (a),
a ∗ f = ∗f(a),
[ϕ, a] = [ϕ, ](a), [a, ϕ] = [ , ϕ](a),

where a ∈ A, D ∈ Der(A), f = (f∗, ∗f) ∈ Bim(A), ϕ = ([ , ϕ], [ϕ, ]) ∈ Bider(A) and A is a Lie
algebra, an associative algebra, and a Leibniz algebra respectively.

In the case of Lie algebras the action of Der(A) on A is a set of derived actions; thus this action

satisfies the corresponding conditions of an action in Lie, but for the case of associative and Leibniz
algebras these actions do not satisfy all the conditions given above respectively for the action in Ass
and Leibniz. Note that for the case of Leibniz algebras if [ϕ, [ϕ′, a]] = −[ϕ, [a, ϕ′]] for any a ∈ A and

ϕ,ϕ′ ∈ Bider(A), then the above two ways of defining operations in Bider(A) are equal, and the action
of Bider(A) becomes a derived action (see below Proposition 5.3.8).

We have an analogous situation for associative algebras. The action of Bim(A) on A is not a derived

action because the condition

(f ∗ a) ∗ f ′ = f ∗ (a ∗ f ′) (5.1.7)

fails. So if we have the condition for associative algebra A that for any two bimultipliers is fulfilled
(5.1.7), then the action of Bim(A) on A defined above is a set of derived actions on A (see below

Proposition 5.3.7).
An alternative algebra A over a field F is an algebra that satisfies the identities

x2y = x(xy)

and

yx2 = (yx)x

for all x, y ∈ A. These identities are known respectively as the left and right alternative laws. We
denote the corresponding category of alternative algebras by Alt. Clearly any associative algebra is

alternative. The class of 8-dimensional Cayley algebras is an important class of alternative algebras
that are not associative [81].

The axioms above for alternative algebras are equivalent to the following:

x(yz) = (xy)z + (yx)z − y(xz)

and

(xy)z = x(yz)− (xz)y + x(zy)

We consider these conditions as Axiom 2, and consequently alternative algebras can be interpreted as

a category of interest.
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For alternative algebras over a field F , an action of B on A is a pair of bilinear maps (5.1.4), which

we denote again by (b, a) �−→ ba, (a, b) �−→ ab with the conditions

b(a1a2) = (ba1)a2 + (a1b)a2 − a1(ba2),

(a1a2)b = a1(a2b)− (a1b)a2 + a1(ba2),

(ba1)a2 = b(a1a2)− (ba2)a1 + b(a2a1),

a1(a2b) = (a1a2)b+ (a2a1)b− a2(a1b),

(b1b2)a = b1(b2a)− (b1a)b2 + b1(ab2),

a(b1b2) = (ab1)b2 + (b1a)b2 − b1(ab2),

(ab1)b2 = a(b1b2)− (ab2)b1 + a(b2b1),

b1(b2a) = (b1b2)a+ (b2b1)a− b2(b1a).

For the definition of a crossed module in the categories of interest, we refer the reader to Sec. 1.1,

i.e., the definition is analogous to that of for categories of groups with operations.

Definition 5.1.4. For any object A in C, an actor of A is a crossed module ∂ : A −→ Actor(A), such

that for any object C of C and an action of C on A there is a unique morphism ϕ : C −→ Actor(A)
with c · a = ϕ(c) · a, c ∗ a = ϕ(c) ∗ a for any ∗ ∈ Ω2

′, a ∈ A, and c ∈ C.

See the equivalent Definition 5.2.9 in Sec. 5.2.
From this definition it follows that an actor Actor(A), for the object A ∈ C, with these properties

is a unique object up to an isomorphism in C.
Note that according to the universal property of an actor object, for any two elements x, y in

Actor(A) from x
·∗ a = y

·∗ a (here we mean equalities for the dot action and the action ∗, for any
∗ ∈ Ω2

′ and any a ∈ A) and (w1 · · ·wnx) · a = (w1 · · ·wny) · a,w1 · · ·wn ∈ Ω′
1, it follows that x = y.

It is well known that for the case of groups Actor(G) = Aut(G); the corresponding crossed module

is ∂ : G −→ Aut(G), where ∂ sends any g ∈ G to the inner automorphism of G defined by g (i.e.
∂(g)(g′) = g + g′ − g, g′ ∈ G). For the case of Lie algebras, Actor(A) = Der(A), A ∈ Lie, and the
operator homomorphism ∂ : A −→ Der(A) is defined by ∂(a) = [a, ], so ∂(a)(a′) = [a, a′].

As we have seen above, in general, in Ass and Leibniz the objects Bim(A) and Bider(A) do not have
derived actions on A in the corresponding categories. So the obvious homomorphisms A −→ Bim(A),
A −→ Bider(A) do not define crossed modules in Ass and Leibniz for any A from Ass and Leibniz,

respectively.
It is well known [75] that for the case of groups if N is a normal subgroup of G and τ : N −→ Inn(N)

is the homomorphism sending any element n to the corresponding inner automorphism (τ(n)(n′) =
n+ n′− n), since G acts on N by conjugation, we have a unique homomorphism θ : G −→ Actor(N),
with θ(g) · n = g · n. Inn(N) is a normal subgroup of Actor(N), θ extends τ , and we have the
commutative diagram

0 �� N ��

τ

��

G ��

θ

��

G/N ��

���
�
�

0

0 �� Inn(N) �� Actor(N) �� Out(N) �� 0.

(5.1.8)

According to the work of R. Lavendhomme and Th. Lucas [57] in the categories Gr, Lie the actor
crossed modules A −→ Actor(A) are terminal objects in the categories of crossed modules under
A. If Ann(A) = (0) or A2 = A, then Bim(A) acts on A, and the corresponding crossed module

A −→ Bim(A) is a terminal object in the category of crossed modules under A. It is easy to see that
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in this case

Bim(A) = Actor(A).

Definition 5.1.5. A general actor object GActor(A) for A, A ∈ C, is an object from CG, which has
a set of actions on A, which is a set of split derived actions in CG, i.e. satisfies the conditions of

Proposition 3.1.1; there is a morphism d : A −→ GActor (A) in CG that defines a crossed module
in CG, and for any object C ∈ C and a split derived action of C on A, there exists in CG a unique

morphism ϕ : C −→ GActor (A) such that c
·∗ a = ϕ(c)

·∗ a for any c ∈ C, a ∈ A, ∗ ∈ Ω2
′.

It is easy to see that Bim(A) and Bider(A) are general actor objects for A ∈ Ass, A ∈ Leibniz

respectively. These constructions satisfy the existence of a commutative diagram like (5.1.8).

5.2. The Main Construction

In this section C is a category of interest. Let A ∈ C; consider all split extensions of A in C

Ej : 0 �� A
ij �� Cj

pj �� Bj
�� 0, j ∈ J.

Note that it may happen that Bj = Bk = B, for j �= k; then these extensions will correspondent to

different actions of B on A. Let {bj ·, bj∗ | bj ∈ Bj , ∗ ∈ Ω′
2} be the corresponding set of derived actions

for j ∈ J. For any element bj ∈ Bj , denote bj = {bj ·, bj∗, ∗ ∈ Ω′
2}. Let B = {bj | bj ∈ Bj, j ∈ J}.

Thus each element bj ∈ B, j ∈ J is a special type of function bj : Ω2 −→ Maps(A −→ A),

bj(∗) = bj ∗ − : A −→ A.
According to Axiom 2, from the definition of a category of interest, we define the ∗ operation,

bi ∗ bk, ∗ ∈ Ω′
2, for the elements of B by the equalities

(bi ∗ bk)∗ (a) = W (bi, bk; a; ∗, ∗),
(bi ∗ bk) · (a) = a.

We define the operation of addition by

(bi + bk) · (a) = bi · (bk · a),
(bi + bk) ∗ (a) = bi ∗ a+ bk ∗ a.

For a unary operation ω ∈ Ω′
1 we define

ω(bk) · (a) = ω(bk) · (a),
ω(bk) ∗ (a) = ω(bk) ∗ (a),

ω(b ∗ b′) = ω(b) ∗ b′ and we will have ω(b) ∗ b′ = b ∗ ω(b′),
ω(b1 + · · ·+ bn) = ω(b1) + · · ·+ ω(bn),

(−bk) · (a) = (−bk) · a,
(−b) · (a) = a,

(−bk) ∗ (a) = −(bk ∗ a),
(−b) ∗ (a) = −(b ∗ (a)),

−(b1 + · · ·+ bn) = −bn − · · · − b1,

where b, b′, b1, . . . , bn are certain combinations of star operations on the elements of B, i.e. the elements

of the type bi1 ∗1 · · · ∗n−1 bin , n > 1.
We do not know if the new functions defined by us are again in B. Denote by B(A) the set of

functions (Ω2 −→ Maps(A −→ A)) obtained by performing all kinds of the above-defined operations

on elements of B and new obtained elements as the result of operations. Note that b = b′ in B(A)
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means that b
·∗ a = b′

·∗ a, w1 . . . wnb · a = w1 . . . wnb
′ · a for any a ∈ A, ∗ ∈ Ω′

2, w1 . . . wn ∈ Ω′
1 and for

any n. It is an equivalence relation and by B(A) we mean the corresponding quotient object.

Proposition 5.2.1. B(A) is an object of CG.

Proof. Direct easy checking of the identities.

As above, we will write for simplicity b · (a) and b ∗ (a) instead of (b(+))(a) and (b(∗))(a) for
b ∈ B(A) and a ∈ A. Define the set of actions of B(A) on A in a natural way. For b ∈ B(A) we define
b · a = b · (a), b ∗ a = b ∗ (a), ∗ ∈ Ω′

2. Thus if b = bi1 ∗1 · · · ∗n−1 bin , where we mean certain brackets,

we have

b ∗ a = (bi1 ∗1 · · · ∗n−1 bin) ∗ (a),
b · a = a.

The right side of the equality is defined inductively according to Axiom 2. For bk ∈ Bk, k ∈ J, we

have

bk ∗ a = bk ∗ (a) = bk ∗ a,
bk · a = bk · (a) = bk · a.

Also

(b1 + b2 + · · ·+ bn) ∗ a = b1 ∗ (a) + · · · + bn ∗ (a), for bi ∈ B(A), i = 1, · · · , n
(b1 + b2 + · · ·+ bn) · a = b1 · (b2 · · · (bn · (a)) · · · ), bi ∈ B(A), i = 1, · · · , n
ω(b) · a = a if b = b1 ∗ · · · ∗ bn, bi ∈ B(A), i = 1, · · · , n
ω(bk) · a = ω(bk) · a, k ∈ J, bk ∈ Bk.

Proposition 5.2.2. The set of actions of B(A) on A is a set of derived actions in CG.

Proof. The checking shows that the set of actions of B(A) on A satisfies the conditions of Proposition
3.1.1, which proves that it is a set of derived actions in CG.

Define the map d : A −→ B(A) by d(a) = a, where a = {a·, a∗, ∗ ∈ Ω′
2}. Thus we have by definition

d(a) · a′ = a+ a′ − a,

d(a) ∗ a′ = a ∗ a′, ∀a, a′ ∈ A, ∗ ∈ Ω′
2.

Lemma 5.2.3. d is a homomorphism in CG.

Proof. We have to show that d(ωa) = ωd(a) for any ω ∈ Ω′
1. For this we need to show that

d(ωa) · (a′) = (ωd(a)) · (a′)
ω′(d(ωa)) · a′ = ω′(ωd(a)) · a′ for any ω′ ∈ Ω′

1

d(ωa) ∗ (a′) = (ωd(a)) ∗ (a′) for any ∗ ∈ Ω′
2.

We have

d(ωa) · a′ = ωa+ a′ − ωa,

ωd(a) · a′ = ω(a) · a′ = ωa+ a′ − ωa,

The second equality follows form the first one. For the third equality we have

d(ωa) ∗ a′ = (ωa) ∗ a′,
(ωd(a)) ∗ a′ = ω(a) ∗ a′ = ω(a) ∗ a′
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for ω = − we have to show that d(−a) ·(a′) = (−(da)) ·a′ and (d(−a))∗a′ = (−d(a))∗a′. The checking
of these equalities is an easy exercise.

Now we will show that d(a1 + a2) = d(a1)+ d(a2). Direct computation of both sides for each a ∈ A
gives

d(a1 + a2) · (a) = a1 + a2 + a− a2 − a1,
(

d(a1) + d(a2)
) · (a) = d(a1) ·

(

d(a2) · a
)

,

which shows that the desired equality holds for the dot action. The proof of ω(d(a1 + a2)) · a =
ω(d(a1) + d(a2)) · a is based on the first equality, the property of unary operations with respect to the
addition, and the fact that d commutes with unary operations.

For any ∗ ∈ Ω′
2 we shall show that

d(a1 + a2) ∗ (a) =
(

d(a1) + d(a2)
) ∗ (a).

We have

d(a1 + a2) ∗ (a) = (a1 + a2) ∗ a = a1 ∗ a+ a2 ∗ a,
(

d(a1) + d(a2)
) ∗ (a) = d(a1) ∗ a+ d(a2) ∗ a = a1 ∗ a+ a2 ∗ a

which proves the equality.
The next equality we have to prove is d(a1 ∗ a2) = d(a1) ∗ d(a2). For this we need to show that

d(a1 ∗ a2) · (a) = (d(a1) ∗ d(a2)) · (a), ω(d(a1 ∗ a2)) · a = ω(d(a1) ∗ d(a2)) · a, and d(a1 ∗ a2)∗(a) =

(d(a1) ∗ d(a2))∗(a) for any ∗ ∈ Ω′
2.

We have d(a1 ∗ a2) · a = a1 ∗ a2 + a− a1 ∗ a2 = a, since A ∈ C and therefore it satisfies Axiom 1.
(d(a1) ∗ d(a2)) · a = a, by the definition of the action of B(A) on A. The next equality is proved in

a similar way by applying the fact that d commutes with ω and ω(a1 ∗ a2) = ω(a1) ∗ a2.
For the next above given identity we have the following computations:

d(a1 ∗ a2)∗(a) = (a1 ∗ a2)∗a = W (a1, a2; a; ∗, ∗),
(

d(a1) ∗ d(a2)
)∗(a) = W

(

d(a1), d(a2); a; ∗, ∗
)

.

These two expressions on the right sides of above equalities are equal, by the type of the word W
in Axiom 2 and the definition of d.

Proposition 5.2.4. d : A −→ B(A) is a crossed module in CG.

Proof. We have to check conditions (i)–(iv) from the definition of a crossed module given in Sec. 1.1.

Condition (i) states that d(b · a) = b + d(a) − b for a ∈ A, b ∈ B(A); so we have to show that

d(b · a) ·∗ a′ = (b+ da− b)
·∗ a′ and ω1 . . . ωn(d(b · a)) · a′ = ω1 . . . ωn(b+ da− b) · a′. Below we compute

each side for the dot action of the first equality:

d(b · a) · a′ = b · a+ a′ − b · a,
(b+ d(a) − b) · a′ = b · (d(a) · (−b · a′)) = b · (a− b · a′ − a) = b · a+ a′ − b · a.

The second equality is proved in a similar way. Now we compute each side of the first equality for the
∗ action. d(b ·a)∗a′ = (b ·a)∗a′ = a∗a′ by Proposition 3.1.1; (b+da−b)∗a′ = b∗a′+d(a)∗a′−b∗a′ =
b∗a′+a∗a′− b∗a′ = a∗a′; here we apply Axiom 1, that a+a∗a′ = a∗a′+a, for any element a of A.

We have to show: (ii) d(a1) · a2 = a1 + a2 − a1, (iii) d(a1) ∗ a2 = a1 ∗ a2; both (ii) and (iii) are true
by the definition of d. Note that a1 ∗ (d(a2)) = d(a2) ∗◦ a1 = a2 ∗◦ a1 = a1 ∗ a2.

The first condition of (iv) states that

d(b ∗ a) = b ∗ d(a) for any b ∈ B(A), a ∈ A, ∗ ∈ Ω′
2.
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Thus we have to show

d(b ∗ a)
·
∗ a′ = (b ∗ d(a))

·
∗ a′, ω(db ∗ a) · a′ = ω(b ∗ da) · a′ for ω ∈ Ω′

1, ∗ ∈ Ω′
2. (5.2.1)

First we show (5.2.1) for the dot operation. The second equality for the dot operation is proved
similarly by applying the properties of unary operations. The right side of (5.2.1) in this case is equal

to a′. For the left side we obtain

d(b ∗ a) · a′ = b ∗ a+ a′ − b ∗ a.
If b = bi, then b ∗ a = bi ∗ a and since Bi ∈ C and Bi acts on A (action is in C), by Axiom 1 for the
action of Bj on A we shall have b ∗ a+ a′ = a′ + b ∗ a, and so d(b ∗ a) · a′ = a′.

If b = bi1 ∗1 · · · ∗n−1 bin then, by the definition of the ∗ operation in B(A), b ∗ a is the sum of

the elements of the type bit ∗ at for certain it, and the element at ∈ A; this kind of element again
commutes with any element of A. So, d(b ∗ a) · a′ = a′. We will have the same result if b is the sum of
the elements of the type bi1 ∗1 · · · ∗n−1 bin .

Now we shall show (5.2.1) for the ∗ operation. By the definition of d we have

d(b ∗ a)∗ a′ = (b ∗ a)∗ a′.
In the case b = bi, i ∈ J, b ∗ a = bi ∗ a = bi ∗ a, so we obtain

d(b ∗ a)∗ a′ = (bi ∗ a)∗ a = W (bi, a; a
′; ∗, ∗).

We have the last equality according to the properties of an action in C, which correspond to Axiom

2. For the right side of (5.2.1) in the case b = bi we have

(b ∗ d(a))∗ a′ = (bi ∗ a)∗ a′ = W (bi, a; a
′; ∗, ∗).

Suppose b = bi1 ∗1 · · · ∗n−1 bin ; then in the same way as in the previous proof, we have that b ∗ a
is the sum of the elements of the type bit ∗ at, and (b ∗ a)∗ a′ is the sum of the elements of the type
(bit ∗at)∗ a′. The element from the right side of (5.2.1) will be the same type as the sum of the elements

(bit ∗ at) ∗ a′. Applying ˜Axiom 2 to the element (bit ∗ at)∗ a′, by the definition of the operation for the
elements of B(A) (for the element (bit ∗at)∗a′) and from the facts that bit ∗a = bit ∗a, at ∗a = at ∗a,
we will have the desired equality (5.2.1). In an analogous way we will prove (5.2.1) for the ∗ operation
in the case where b is a sum of the elements of the form bi1 ∗1 · · · ∗n−1 bin . The second condition of
(iv) can be proved in a similar way.

Proposition 5.2.5. If A has an actor in C, then B(A) = Actor(A).

Proof. From the existence of Actor(A) it follows that Actor(A) is one of the objects Bi, which acts

on A. We have a natural homomorphism e : Actor(A) −→ B(A) in CG sending bi to bi, bi ∈ Bi.
According to the note made in Sec. 5.1, if bi �= b′i in Actor(A), then bi �= b′

i; thus e is an injective

homomorphism. Let ϕj : Bj −→ Actor(A) be a unique morphism with ϕ(bj)
·∗a = bj

·∗a, bj ∈ Bj, j ∈ J,
a ∈ A; e is a surjective homomorphism, since for any element bi1 ∗1 · · ·∗n−1bin of B(A) there exists the
element ϕi1(bi1)∗1 · · · ∗n−1ϕin(bin) in Actor(A) with e(ϕi1(bi1)∗1 · · · ∗n−1ϕin(bin)) = bi1 ∗1 · · · ∗n−1bn,

which ends the proof.

Theorem 5.2.6. Let C be a category of interest and A ∈ C; A has an actor if and only if B(A)�A ∈
C. If it is the case, then Actor(A) = B(A).

Proof. From Proposition 5.2.5 it follows that if A has an actor, then B(A) ∈ C and B(A) has a
derived action on A. By the theorem of Orzech [76] (see Sec. 5.1, Theorem 5.1.3) we will have
B(A)�A ∈ C. The converse is also easy to prove. Since B(A)�A ∈ C, from the split exact sequence

0 �� A
i �� B(A)�A �� B(A) �� 0 in CG, B(A) = Coker i, and thus it is an object of C;
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again by Theorem 5.1.3, B(A) has a derived action on A in C (it is the action we have defined). By

Proposition 5.2.4, d : A −→ B(A) is a crossed module in CG; since B(A) ∈ C and the action of B(A)
on A is a derived action in C, it follows that d : A −→ B(A) is a crossed module in C. Now we have
to show the universal property of this crossed module. For any action of Bk on A, k ∈ J, we define

ϕk : Bk −→ B(A) by ϕk(bk) = bk, for any bk ∈ Bk, where bk ∈ B. By the definition of B, bk
·∗a = bk

·∗a,
∗ ∈ Ω′

2, and we obtain ϕk(bk)
·∗ a = bk

·∗ a; ϕk is a homomorphism in C. For another homomorphism

ϕ′
k we would have ϕ′

k(bk)
·∗a = bk

·∗a = ϕk(bk)
·∗a, ω(ϕ′

k(bk)) ·a = ϕ′
k(ωbk) ·a = (ωbk) ·a = ω(ϕ(bk)) ·a,

for any bk ∈ Bk, a ∈ A, ω ∈ Ω′
1, and ∗ ∈ Ω′

2, which means that ϕk(bk) = ϕ′
k(bk), for any bk ∈ Bk; this

gives the equality ϕk = ϕ′
k, which proves the theorem.

Theorem 5.2.7. Let C be a category of interest. For any A ∈ C, B(A) = GActor(A).

Proof. By Propositions 5.2.2 and 5.2.4 and Lemma 5.2.3 we have the crossed module d : A −→ B(A)
in CG. For any object C ∈ C which has a derived action on A we construct the homomorphism

ϕ : C −→ B(A) in CG with the property c
·∗a = ϕ(c)

·∗a and show that ϕ is unique with this property
in the same way as we have done for ϕk in the proof of Theorem 5.2.6.

Suppose I is an ideal of C in C and Actor(I) exists. Thus we have the crossed module d : I −→
Actor(I). Denote Im d = Inn(I). Thus we have

Inn(I) = {a ∈ Actor(I) | a ∈ I}.
Recall that by definition of d, d(a) = a, and a is defined by

a · (a′) = a+ a′ − a,

a ∗ (a′) = a ∗ a′.
It is easy to see that Inn(I) is an ideal of Actor(I). this follows from the fact that d : I −→ Actor(I)
is a crossed module, and it can also be checked directly. Since I is an ideal of C, we have an action of

C on I, defined by c · a = c+ a − c, c ∗ a = c ∗ a, ∗ ∈ Ω′
2. It is a derived action. Thus there exists a

unique homomorphism θ : C −→ Actor(I), such that

θ(c)
·∗ a = c

·∗ a, a ∈ I, c ∈ C, ∗ ∈ Ω′
2.

Let τ : I −→ Inn(I) be a homomorphism defined by d; then θ induces the commutative diagram

0 �� I ��

τ

��

C ��

θ

��

C/I ��

���
�
�

0

0 �� Inn(I) �� Actor(I) �� Out(I) �� 0,

which is well known for the case of groups [75] (see Sec. 5.1).
For any object C ∈ C there is an action of A on itself defined by a ·a′ = a+a′−a; a∗a′ = a∗a′, for

any a, a′ ∈ A, ∗ ∈ Ω′
2, where ∗ on the left side denotes the action and on the right side the operation

in A. We call this action the conjugation.

Let EA : 0 �� A �� A�A �� A ���� 0 be the split extension which corresponds to the

action of A on itself by conjugation. Consider the category of all split extensions with fixed A;

thus the objects are 0 �� A �� C �� C ′ ���� 0 , and the arrows are triples (1A, γ, γ
′) between

extensions which commute with section homomorphism too.

Proposition 5.2.8. If Et : 0 �� A �� C �� B ���� 0 is a terminal object in the category of
split extensions with fixed A, then the unique arrow (1, γ, β) : EA −→ Et defines a crossed module

β : A −→ B, which is an actor of A.
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Proof. The proof is similar to that of Proposition 5.2.4. It is obvious that B has the universal property

of an actor. We have to prove that β : A −→ B is a crossed module; thus we shall show the following
identities:

β(a) · a′ = a+ a′ − a,

β(b · a) = b+ β(a)− b,

β(a) ∗ a′ = a ∗ a′
β(b ∗ a) = b ∗ β(a).

for any a ∈ A, b ∈ B, ∗ ∈ Ω′
2. We have the commutative diagram

EA : 0 �� A �� A�A ��

γ

��

A ��

β
��

�� 0

Et : 0 �� A �� C �� B ���� 0

from which we obtain β(a) · a′ = a + a′ − a and β(a) ∗ a′ = a ∗ a′ for any a, a′ ∈ A, ∗ ∈ Ω′
2, which

proves the first and third equalities. Since Et is a terminal extension, it has the following property:

if for b, b′ ∈ B we have b
·∗ a = b′

·∗ a, ω1 · · ·ωn(b)
·∗ a = ω1 · · ·ωn

·
(b′)

·∗ a for any a ∈ A and any unary
operations ω1, · · · , ωn ∈ Ω′

1, n ∈ N, then b = b′.
For the second equality we have

(β(b · a)) · a′ = b · a+ a′ − b · a,
(b+ β(a) − b) · a′ = b · (β(a) · (−b · a′)) = b · (a− b · a′ − a) = b · a+ a′ − b · a,

(β(b · a)) ∗ a′ = (b · a) ∗ a′ = a ∗ a′

by condition 8 of Proposition 3.1.1.

For the fourth equality we have

β(b ∗ a) · a′ = (b ∗ a) · a′ = a′;

it follows from the property of the derived action in the categories of interest as a result of Axiom 1
(Proposition 3.1.1). The same property gives

(b ∗ β(a)) · a′ = a′.

For a star operation we have

β(b ∗ a) ∗ a′ = (b ∗ a) ∗ a′,
(b ∗ β(a)) ∗ a′ = (b ∗ a) ∗ a′,

here we apply Ãxiom2 for the set (A ∪ B) and the fact β(a) ∗ a′ = a ∗ a′. For any unary operation
ω ∈ Ω′

1,

ω(β(b · a)) = β(ω(b · a)) = β(ω(b) · ω(a));
here we apply condition 10 of Proposition 3.1.1:

ω(b+ β(a)− b) = ω(b) + β(ω(a)) − ω(b).

As we have proved above, these elements are equal.
Below we apply condition 11 of Proposition 3.1.1 and obtain

ω(β(b ∗ a)) = β(ω(b ∗ a)) = β(ω(b) ∗ a),
ω(b ∗ β(a)) = ω(b) ∗ ω(a).
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As we have shown above, these elements are equal. For ω1, . . . , ωn the corresponding equalities are

obtained similarly.

By Proposition 5.2.8, Definition 5.1.4 is equivalent to the following one.

Definition 5.2.9. For any object A in C an actor of A is an object Actor(A) with (split derived)
action on A, such that for any object C of C and an action of C on A there is a unique morphism
ϕ : C −→ Actor(A) with c · a = ϕ(c) · a, c ∗ a = ϕ(c) ∗ a for any ∗ ∈ Ω2

′, a ∈ A and c ∈ C.

It is a well-known fact that the category of crossed modules in the category of groups XMod(Gr)
is equivalent to the category G with objects groups with the additional two unary operations ω0, ω1 :
G −→ G, G ∈ Gr, which are group homomorphisms satisfying the conditions

(1) ω0ω1 = ω1, ω1ω0 = ω0,

(2) ω1(x) + y − ω1(x) = x+ y − x, x, y ∈ Kerω0.

This category is a category of interest. The computations and properties of actions in this category
and the direct checking of identities (1), (2) show that B(A) is an actor of A ∈ G. Thus the same is
true for the category of crossed modules XMod(Gr). From the results of Norrie [75] it follows that

the object A(T,G, ∂) constructed by her, for any crossed module (T,G, ∂), is an actor in the sense of
Definition 5.1.4. Thus it follows that in the category of interest G there exists an actor for any A ∈ G.
By Proposition 5.2.5 it follows that B(A) is an actor for any A ∈ G. This is another way of proving

that B(A) = Actor(A) in G.
The category of precrossed modules is equivalent to the category of interest Ḡ, whose objects

are groups with additional two unary operations ω0, ω1, which are group homomorphisms satisfying
identity (1). By Theorem 5.2.7, B(A) = GActor(A), for any A ∈ Ḡ. It is easy to check that B(A)

satisfies identity (1) and thus B(A) ∈ Ḡ; therefore B(A) = Actor(A). From this we conclude that in
the category of precrossed modules always exists an actor.

Internal object actions were studied recently by F. Borceux, G. Janelidze, and G. M. Kelly [11],

where the authors introduce a new notion of representable action. From Theorem 6.3 of [11], applying
Proposition 5.2.8 it follows that in the case of the category of interest C the existence of representable
object actions is equivalent to the existence of an Actor(A) for any A ∈ C in the sense of the

Definition 5.1.4. Thus by Theorem 5.2.6, C has representable object actions if and only if B(A)�A ∈
C, for any A ∈ C, and if it is the case, the corresponding representing objects are B(A), A ∈ C. For
the categorical approach to the question of an actor, see also [12, 17].

5.3. The Case Ω2 = {+, ∗, ∗◦}
It is interesting to know in which kind of categories of interest C there exists Actor(A) for any

object A ∈ C; or what the sufficient conditions for the existence of Actor(A) for a certain A ∈ C are.

In the case of groups (Ω2 = {+}), a direct check shows that B(A) ∈ Gr, and the action of B(A) on
A is a derived action. This follows also from Propositions 5.2.1 and 5.2.2; thus B(A) is an actor of A
by the Theorem 5.2.6. This fact is also a consequence of Proposition 5.2.5 since it is well known that

Aut(A) is an actor of A in Gr; thus B(A) ≈ Aut(A). In the case of Lie algebras (Ω2 = {+, [ , ]}), the
object B(A) ∈ Lie and the action of B(A) on A is a derived action, so B(A) is an actor again in Lie
and therefore B(A) ≈ Der(A).

Consider the case of Leibniz algebras. In this case we can define the bracket operation for the
elements of B in two ways (see Sec. 5.1 for the definition of the set B).

Definition 5.3.1.
[

a, [bi,bj ]
]

=
[

[a, bi], bj
]− [

[a, bj ], bi
]

,
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[

[bi,bj ], a
]

=
[

bi, [bj , a]
]

+
[

[bi, a], bj
]

.

Definition 5.3.2.
[

a, [bi,bj ]
]

=
[

[a, bi], bj
]− [

[a, bj ], bi
]

,
[

[bi,bj ], a
]

= −[ bi, [a, bj ]
]

+
[

[bi, a], bj
]

.

The bracket operation [b, b′] for any b, b′, which are the results of bracket operations itself, is defined

according to the above formulas.
The addition is defined by

[bi + bj , a] = [bi, a] + [bj , a],

[a,bi + bj] = [a, bi] + [a, bj ].

For any b, b′ ∈ B(A), b+ b′ is defined by the same formulas.

The action of B(A) on A is defined according to Definition 5.3.1 or 5.3.2. So we have two different
ways of definition of an action. It is easy to check that none of them is the derived action in Leibniz.

The algebras B(A) defined by Definitions 5.3.1 and 5.3.2 are not isomorphic.

Condition 1. For A ∈ Leibniz, and any two objects B,C ∈ Leibniz, which act on A, we have
[

c, [a, b]
]

= −[ c, [b, a] ],
a ∈ A, b ∈ B, c ∈ C.

Note that, in this condition, by action we mean the derived action.

Example. If Ann(A) = (0) or [A,A] = A, then A satisfies Condition 1.

Proposition 5.3.3. For any object A ∈ Leibniz, the Definitions 5.3.1 and 5.3.2 give the same algebras
if A satisfies Condition 1.

The proof follows directly from the definitions of operations in B(A) and Condition 1.
Below we mean that B(A) is defined in one of the ways.

Proposition 5.3.4. For any A ∈ Leibniz, B(A) is a Leibniz algebra. The set of actions of B(A) on
A is a set of derived actions if and only if A satisfies Condition 1.

Proof. The computation shows that if Condition 1 holds, then the same kind of condition is fulfilled
for b, c ∈ B(A), from which follows the result.

Proposition 5.3.5. For a Leibniz algebra A there exists an actor if and only if A satisfies Condition

1. If it is the case, then B(A) = Actor(A).

Proof. By Proposition 5.3.3, B(A) is always a Leibniz algebra, and by Theorem 5.2.7, B(A) =
GActor(A). If A satisfies Condition 1, by Proposition 5.3.4, B(A) has a derived action on A and

thus B(A) = Actor(A). Conversely, if A has an actor, then B(A) = Actor(A) by Proposition 5.2.5,
and so the action of B(A) on A is a derived action; thus we have, for any a ∈ A, bi ∈ Bi, bj ∈ Bj ,
i, j ∈ J, the following equalities:

[

bi, [a, bj ]
]

=
[

[bi, a], bj
]− [

[bi, bj ], a
]

,
[

bi, [bj , a]
]

=
[

[bi, bj ], a
]− [

[bi, a], bj
]

,

from which follows Condition 1, which proves the theorem.
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We have an analogous picture for associative algebras. The operations for the elements of B (see

Sec. 5.1 for the notation) in this category are given by

(bi ∗ bj) ∗ (a) = bi ∗ (bj ∗ a),
∗(bi ∗ bj)(a) = (a ∗ bi) ∗ bj ,

(bi + bj) ∗ (a) = bi ∗ a+ bj ∗ a,
∗(bi + bj)(a) = a ∗ bi + a ∗ bj.

(5.3.1)

The set of actions of B(A) on A is defined according to (5.3.1).

Condition 2. For A ∈ Ass and any two objects B and C from Ass which have derived actions on A,

we have
c ∗ (a ∗ b) = (c ∗ a) ∗ b,

for any a ∈ A, b ∈ B, c ∈ C.

Example. If Ann(A) = (0) or A2 = A, then A satisfies Condition 2. For this kind of associative
algebras it is proved in [57] that A −→ Bim(A) is a terminal object in the category of crossed modules

under A.

Proposition 5.3.6. For A ∈ Ass, the algebra B(A) is an associative algebra and the set of actions

of B(A) on A defined according to (5.3.1) is the set of derived actions in Ass if and only if A satisfies
Condition 2. If it is the case, B(A) = Actor(A).

The proof contains analogous arguments as for the case of Leibniz algebras and is left to the reader.
It is easy to see that in Ass and Leibniz generally we have the injections

B(A) −→ Bim(A) and B(A) −→ Bider(A)

which are homomorphisms in Ass and Leibniz respectively.

Proposition 5.3.7. Let A be an associative algebra with the condition Ann(A) = 0 or A2 = A. Then
B(A) ≈ Bim(A) = Actor(A).

Proof. It is well known that Bim(A) is an associative algebra [70]. The action of Bim(A) on A (see
Sec. 5.1) is not a derived action in general, and the condition

f ∗ (a ∗ f ′) = (f ∗ a) ∗ f ′ (5.3.2)

fails for any f = (f∗, ∗f) and f ′ = (f ′∗, ∗f ′) from Bim(A). A direct check shows that in the case

Ann(A) = (0) or A2 = A, identity (5.3.2) holds for the action [57]. For any action of the object B on
A, B ∈ Ass, we define ϕ : B −→ Bim(A) by ϕ(b) = (b∗, ∗b), which is a unique homomorphism with
the property that ϕ(b) ∗ a = b ∗ a, ∗ ∈ Ω′

2, since in Bim(A) for any two elements f, f ′ ∈ Bim(A) from

f = f ′ it follows that f∗ = f ′∗, ∗f = ∗f ′. Thus Bim(A) is an actor of A in Ass, and the isomorphism
B(A) ≈ Bim(A) follows from Proposition 5.2.5.

We have the analogous result for Leibniz algebras.

Proposition 5.3.8. Let A ∈ Leibniz and Ann(A) = (0) or [A,A] = A. Then B(A) ≈ Bider(A) =
Actor(A).

Proof. We will follow the first definition of the bracket operation in Bider(A) (see Sec. 5.1, (5.1.61),
(5.1.62)). A direct check shows that Bider(A) is a Leibniz algebra (see Remark below and cf. [62]).

The action of Bider(A) on A is not a derived action, and the following condition fails:
[

ϕ, [a, ϕ′]
]

=
[

[ϕ, a], ϕ′ ]− [

[ϕ,ϕ′], a
]

, (5.3.3)

where ϕ = [[ , ϕ], [ϕ, ]] and ϕ′ = [[ , ϕ′], [ϕ′, ]] ∈ Bider(A).
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From (5.1.62) we have
[

ϕ, [ϕ′, a]
]

=
[

[ϕ,ϕ′], a
]− [

[ϕ, a], ϕ′ ]. (5.3.4)

We shall show that if Ann(A) = (0), then [ϕ, [ϕ′, a]] = −[ϕ, [a, ϕ′]], and from (5.3.4) will follow (5.3.3).

For any a′ ∈ A we have the following equalities:
[

a′, [ϕ, [ϕ′, a]]
]

= −[ a′, [[ϕ′, a], ϕ]
]

= −[ [a′, [ϕ′, a]], ϕ
]

+
[

[a′, ϕ], [ϕ′, a]
]

,
[

a′, [ϕ, [a, ϕ′]]
]

= −[ [a′, [a, ϕ′]], ϕ
]

+
[

[a′, ϕ], [a, ϕ′]
]

=
[

[a′, [ϕ′, a]], ϕ
] − [

[a′, ϕ], [ϕ′, a]
]

.

Thus we obtain that for a′ ∈ A
[

a′, [ϕ, [ϕ′, a]] + [ϕ, [a, ϕ′]]
]

= 0.

In analogous way we show that
[

[ϕ, [ϕ′, a]] + [ϕ, [a, ϕ′]], a′
]

= 0.

From which we conclude that
[

ϕ, [ϕ′, a]
]

+
[

ϕ, [a, ϕ′]
]

= 0.

The case [A,A] = A can be proved analogously. Thus we have a derived action of Bider(A) on A and

the crossed module A −→ Bider(A) (a �−→ ([ , a], [a, ]) has the universal property of the actor object.
By Proposition 5.2.5 B(A) ≈ Bider(A), which ends the proof.

Remark. As we have also mentioned in Sec. 5.1, if [ϕ, [ϕ′, a]] = −[ϕ, [a, ϕ′]] for any ϕ = ([ , ϕ], [ϕ, ])
and ϕ′ = ([ , ϕ′], [ϕ′, ]) from Bider(A), then the two definitions of Bider(A) according to (5.1.61),
(5.1.62) and (5.1.61), (5.1.6

′
2) coincide, and this algebra is isomorphic to the Leibniz algebra of bideriva-

tions defined by Loday [62].

In the category of R-modules over a ring R, it is obvious that Actor(A) = 0 for any A since

every action is trivial in this category. The same result gives our construction, B(A) = 0, for any
R-module A.

As in the case of associative algebras, in the category of commutative associative algebras the con-
dition for the action (b1a)b2 = b1(ab2) fails; also in this category we must have ba = ab, for b ∈ B(A),

and b1b2 = b2b1 for b1, b2 ∈ B(A). All these conditions are satisfied and we have B(A) =Actor(A) in
commutative associative algebras if and only if A satisfies Condition 2. If Ann(A) = (0) or A2 = A,
then A satisfies Condition 2. For this kind of commutative algebras, Actor(A) = Bim(A) = M(A),

where M(A) is the set of multiplications (or multipliers) of A [59],[57], i.e., k-linear maps f : A −→ A
with f(aa′) = f(a)a′.

In the category of alternative algebras, Actor(A) does not exist for any A. The existence of an actor

in Alt will be studied in the future.

Chapter 6

NONCOMMUTATIVE LEIBNIZ–POISSON ALGEBRAS

In this chapter we study one of the generalizations of the classical Poisson algebras. This kind of
studies was begun in [22]. Recall that a Poisson algebra is an associative commutative algebra A

equipped with a binary bracket operation [−,−] : A⊗ A −→ A such that (A, [−,−]) is a Lie algebra
and the following condition holds:

[a · b, c] = a · [b, c] + [a, c] · b
for all a, b, c ∈ A.
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Here we consider the case where algebras are not commutative and the bracket operation defines the

Leibniz algebra structure (see below Definition 6.1.1). This kind of algebras we call noncommutative
Leibniz–Poisson algebras and denote the corresponding category by NLP. We give a construction of
free NLP-algebras and define actions, representations, and crossed modules, which are special cases of
the corresponding notions for the category of groups with operations [76] (see Secs. 1.1 and 3.1). We

define the cohomology of a NLP-algebras P (over a field k) with coefficients in a representation M
over P and study its properties, in particular, the relation with extensions of NLP-algebras and with
Hochshild and AWB (algebras with bracket [22]) cohomologies. Algebras over the dual operad (in

the sense of [63]) of NLP-algebras are considrered. The construction of free objects in this category
and their relation with certain types of planar binary rooted trees are studied.

6.1. Noncommutative Leibniz–Poisson Algebras

6.1.1. Preliminaries. Let k be a commutative ring with unit. All modules are taken over k. In
what follows Hom and ⊗ mean Homk and ⊗k respectively. Associative algebras considered in this

work are in general without unit.
For the definition of a Leibniz algebra, we refer the reader to Sec. 5.1.

Definition 6.1.1. A noncommutative Leibniz–Poisson algebra (for short, NLP-algebra) is an asso-

ciative algebra P equipped with a k-module homomorphism [−,−] : P⊗P −→ P , such that (P, [−,−])
is a Leibniz algebra and the following identity holds:

[a · b, c] = a · [b, c] + [a, c] · b (6.1.1)

for all a, b, c ∈ P . In other words, a NLP-algebra is an AWB [22] P such that the bracket satisfies the

Leibniz identity.

A morphism between NLP-algebras is a homomorphism of associative algebras which respects the
bracket operation. We shall denote the category of NLP-algebras by NLP.

Examples 6.1.2.

1. Poisson algebras.

2. Any Leibniz algebra is a NLP-algebra with trivial associative product (a · b = 0). On the other
hand, any associative algebra is a NLP-algebra with the usual bracket [a, b] = ab− ba.

3. Any associative dialgebra [63] is a NLP-algebra with respect to the operations ab = a � b;
[a, b] = a � b− b � a.

4. If P1 and P2 are NLP-algebras, then the k-module P1 ⊗ P2 endowed with the operations

(a1 ⊗ a2) · (b1 ⊗ b2) = (a1b1)⊗ (a2b2),

[a1 ⊗ a2, b1 ⊗ b2] =
[

a1, [b1, b2]
]⊗ a2 + a1 ⊗

[

a2, [b1, b2]
]

is a NLP-algebra.

5. For the example of a graded version of NLP-algebra coming from physics, the reader is referred

to [53].

Lemma 6.1.3. In any NLP-algebra the following identity holds:

[a, b[c, d]] + [a, [b, d]c] = [[a, bc], d] − [[a, d], bc]. (6.1.2)

Proof. One easily sees that both sides of the identity equal [a, [bc, d]].

Remark. Any other two different decompositions according to Leibniz identity and (6.1.1) do not

give a new identity.

472



Definition 6.1.4. Let P ∈ NLP. A subalgebra of P is an associative and Leibniz subalgebra of P.

A subalgebra R of P is called a two-sided ideal if a · r, r · a, [a, r], [r, a] ∈ R, for all a ∈ P, r ∈ R.

The inclusion functor inc : Poiss −→ NLP from the category of Poisson algebras to the category of

noncommutative Leibniz–Poisson algebras has a left adjoint (−)Poiss : NLP −→ Poiss, which assigns
to a NLP-algebra P the Poisson algebra obtained by the quotient of P with the smallest two-sided ideal
spanned by the elements [x, x] and xy− yx, for all x, y ∈ P . On the other hand, the Liezation functor

[65] assigns to any NLP-algebra P the noncommutative Poisson algebra PLie = P/〈{[x, x] | x ∈ P}〉.

6.1.2. Free NLP-algebras. For any set X we shall build an associative k-algebra with the addi-
tional binary bracket operation satisfying the Leibniz identity and condition (6.1.1).

We consider those formal combinations (words) of two operations (·, [−,−]) with elements from X
which have a sense and do not contain elements of the form [a, [b, c]], [a · b, c], [[a, b], c · d] in their
combination, where a, b, c are from X or are combinations of elements in X and dot and bracket

operations. Denote by W (X) the set that contains X and all above described type of words. Let
Wn(X) be the subset of those words of W (X) that contain n elements of X, i.e. the number of both
operations together is n − 1; we say that this word is of length n. Obviously, W (X) =

⋃

n≥1 Wn(X).

We define the following maps:

αn,m, βn,m : Wn(X) ×Wm(X) −→Wn+m(X)

αn,m is defined for any pair (a, b) ∈Wn(X)×Wm(X) by αn,m(a, b) = a ·b, where the right side denotes
the word fromWn+m(X), which is defined uniquely; βn,m is defined only on those pairs (a, b), for which

the word [a, b] ∈ Wn+m(X), and by definition βn,m(a, b) = [a, b]. In the case [a, b] /∈ Wn+m(X), βn,m
is not defined.

Let F (W (X)) be the free k-module generated by the set W (X). The dot operation on F (W (X))

is defined as a linear extension of αn,m on the whole F (W (X)). The bracket operation is also a linear
extension on F (W (X)) of βn,m for those words on which βn,m is defined. If [a, b] �∈ Wn+m(X), for
a ∈ Wn(X), b ∈ Wm(X), we decompose [a, b] according to the Leibniz identity and the identities

(6.1.1), (6.1.2), until we obtain the sum of bracket operations on such pairs of words on which β is
defined. Acting on every step in such a way we will obtain the sum c1+· · ·+cn with ci ∈ Fn+m(W (X))
and, by definition, [a, b] = c1 + · · ·+ cn. According to Remark 6.1.1, any two different decompositions

give the same elements of F (W (X)), and [a, b] is uniquely defined.
By construction, F (W (X)) has a structure of an NLP-algebra. Let i : X −→ FW (X) be the

natural inclusion of sets.

Proposition 6.1.5. For any NLP-algebra B and a map ϕ : X −→ B, there exists a unique NLP-

algebra homomorphism ϕ : F (W (X)) −→ B such that the following diagram commutes:

X
i ��

ϕ

��

F (W (X))

ϕ-.���
���

���
�

B

Proof. For any element wF (x1, . . . , xn) ∈ F (W (X)) we define

ϕ(wF (x1, . . . , xn)) = wB(ϕ(x1), . . . , ϕ(xn)),

where wB(−, . . . ,−) denotes the corresponding element of B. It is obvious that ϕ is an NLP-algebra

homomorphism, ϕi = ϕ, and it is a unique homomorphism with this property.

473



Actually our construction defines the functor F from Set to NLP, F (X) = F (W (X)), which is a

left adjoint to the underlying functor

Set
F ��

NLP
U

�� .

If X is a one element set, X = {e}, the free NLP-algebra construction on {e} has an interesting

interpretation in terms of planar binary rooted trees.
By a tree we mean in this paper a planar binary rooted tree. We let T be the set of trees. It is a

graded set

T =
∐

n≥1

Tn,

where Tn is the set of trees with n leaves. So T1 has one element �� denoted by e, and T2 has two

elements

�
�

�
��

�
�

�
� �

,

while T3 has five elements. The number of elements of Tn is known as Catalan numbers, and they are

cn = (2n)!
n!(n+1)! [63].

Let us also recall that on trees there exists an operation is called grafting. The grafting defines a
map

gr : Tn1 × · · · × Tnk
−→ Tn, n = n1 + · · ·+ nk.

The grafting of a tree t and a tree s is obtained by joining the roots of t and s and creating a new
root from that vertex.

We shall define two operations on trees, dot and bracket operations; the second is a partial operation,

i.e., defined not for every type of trees. These operations will enable us to “read” trees. By “reading”
we mean: to correspond to each tree a unique word, which is a formal combination of the element e
and operations · and [−,−], whenever they have a sense. We shall define operations on trees in such

a way that all words obtained by “reading” trees according to our laws will belong to W ({e}) and it
will be a one-to-one correspondence between the set T of all planar binary rooted trees and W ({e}).

The left side of a tree is “generally” for the dot operation, and the right side is for the bracket

operation if it is not a special case explained below. We denote by sr and sl the right and the left side
trees respectively of a tree s.

The associative dot operation is defined for a pair of any type of trees t and s by the following

formulas in terms of the grafting operation according to [77]. As above we shall denote the tree ��

by e:

t · s = gr(t, sr) for s = e,

t · s = gr(t · sl, sr) for any t and s.

Thus

�� ��. = �
�

�
��

and for any tree t, t · e is the tree obtained by “adding” on the left from the vertex of e the tree t. For
instance,

��. =�
�

�
��

�
�

�
���
�
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We shall define two preliminary bracket operations on every type of trees (the second operation is

defined by means of the first one). The general bracket operation [−,−] is a partial operation; it is
defined only for special type of trees by means of the two preliminary bracket operations depending
on the case.

The first preliminary bracket operation we denote by [−,−]p; it is analogous to the dot operation,

but the “reading” law for [−,−]p is not associative. In terms of the grafting operation, we have the
following formula:

[t, s]p = gr
(

tl, [tr, s]p
)

having in mind that

�� ��, =
[ ]

p �
�

�
� �

and for any tree t, [e, t]p is the tree obtained by adding on the right from the vertex of e the tree t.
For instance,

�� �
�

�
� �, =

[ ]

p
�
�

�
� ���

and the tree

�
��

�
�� �
� ��

is [[e, e · e]p, e]p.
We will apply this operation as a final result of the bracket operation only for a special kind of

trees. The list will be given below.

The second bracket operation SR[−,−]p we will use for another type of trees. As indicated in the
notation for this operation, it is defined by means of [−,−]p. For a pair of trees (t, s) we first apply
[−,−]p; thus, we take [t, s]p, then we perform the 90◦ rotation procedure of s to the left and then take

a symmetric picture of s to give a normal look to the tree.
Thus, for instance,

�
��

�
�� �
� ��

�

is SR[e, e · [e, e]]p.
We have the following rules for performing the partial bracket operation for certain types of trees.

1. [t, e] = [t, e]p for any type of tree, but not a dot product (i.e., t �= a · b).
2. [e, s] = [e, s]p, when s is any dot product s = a1 · · · · · an−1 · an, n ≥ 1, with an = e.

3. [e, s] = SR[e, s]p, when s is a dot product s = b1·· · ··bn−1·bn, n > 1, where bn �= d1·· · ··dk·e, k ≥ 0.

We shall “read” the tree

�
�

�
�� �

as e · [e, e]. All other “reading” rules for trees follow from the definition of a dot product and 1–3 for

the bracket operation. One can see that we are considering two classes of trees. Any tree belongs to
one of the class of trees, and each tree from each class can be read only in a unique way and gives a
word from W ({e}). Conversely, to every word we can correspond a unique tree according to the same

rules, and this correspondence is one to one.
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Let VA : NLP→ Ass and VL : NLP→ Leibniz be the forgetful functors.

Proposition 6.1.6. If P is a free NLP-algebra, then VA(P ) and VL(P ) are free associative and free
Leibniz algebras, respectively.

Proof. Let P be the free NLP-algebra on the set X. Denote by X ′ the set of all kinds of those words
of the type [· · · , · · · ], which does not contain words of the form

[a · b, c], [a, [b, c]], [[a, b], c · d], a, b, c, d ∈ P. (6.1.3)

LetX ′′ be the set of all kind of words of the types a1 · · · an and a1 · · · an·[. . . , . . . ], where a1, . . . , an ∈ X,
n ≥ 1 and the bracket [· · · , · · · ] does not contain words of the form (6.1.3). Let X1 = X ∪X ′ and
X2 = X ∪X ′′. It is easy to show that VA(P ) is the free associative algebra on the set X1 and VL(P )

is the free Leibniz algebra on the set X2.

6.1.3. Representations of NLP-algebras. Let P ∈ NLP. In particular, P is an associative
algebra and a Leibniz algebra, so we can speak of P -P -bimodules and Leibniz representations over P
(see [65]).

Definition 6.1.7. A representation over P is a P -P -bimodule M together with two k-module homo-
morphisms

[−,−] : P ⊗M −→M, [−,−] : M ⊗ P −→ P

such that the following identities hold:
[

p1, [p2,m]
]

=
[

[p1, p2],m
]− [

[p1,m], p2
]

,
[

p1, [m, p2]
]

=
[

[p1,m], p2
]− [

[p1, p2],m
]

,
[

m, [p1, p2]
]

=
[

[m, p1], p2
]− [

[m, p2], p1
]

,

[p1m, p2] = p1[m, p2] + [p1, p2]m,

[mp1, p2] = m[p1, p2] + [m, p2]p1,

[p1p2,m] = p1[p2,m] + [p1,m]p2

for all m ∈M , p1, p2 ∈ P .

Let us observe that the first three axioms mean that M is a representation over P as Leibniz
algebras. In the case of Poisson algebras, this definition gives the well-known definition of a Poisson

representation in [44]. Note that a representation over P is a P -module in the sense of Definition 3.1.5,
for the case C = NLP.

Examples 6.1.8.

1. Let R be a two-sided ideal of a NLP-algebra P ; then R is a representation over P operating on
R. In particular, if R = P , then P is a P -representation.

2. Let ϕ : P −→ Q be a homomorphism of NLP-algebras; then Q is a representation over P with

the operations pq = ϕ(p)q; qp = qϕ(p); [p, q] = [ϕ(p), q]; [q, p] = [q, ϕ(p)], p ∈ P , q ∈ Q.

Definition 6.1.9. A homomorphism of representations over P is a linear map f : M −→M ′ satisfying

f(pm) = pf(m), f(mp) = f(m)p, f [p,m] = [p, f(m)], f [m, p] = [f(m), p],

p ∈ P , m ∈M .

Definition 6.1.10. Let M be a representation over P . We define the semidirect product M � P as

the NLP-algebra with underlying k-module M ⊕ P and operations defined by

(m1, p1) · (m2, p2) = (p1m2 +m1p2, p1p2),
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[

(m1, p1), (m2, p2)
]

=
(

[p1,m2] + [m1, p2], [p1, p2]
)

.

Note that here we follow the usual notation of semidirect products in algebras with bracket and
denote the operating algebra from the right side.

The following definition is a special case of the definition given in [76] (see Definition 3.2.1).

Definition 6.1.11. Let P ∈ NLP, and M be a representation over P . A derivation from P to M is

a linear map d : P −→M satisfying

d(p1p2) = d(p1)p2 + p1d(p2),

d[p1, p2] = [d(p1), p2] + [p1, d(p2)].

We denote by DerNLP(P,M) the k-module of such derivations.

Lemma 6.1.12. Let P ∈ NLP, and M be a representation over P . Then there is a one-to-one

correspondence between the derivations from P to M and the sections of the projection pr : M �

P −→ P .

Definition 6.1.13. Let P,M ∈NLP. An abelian extension of P by M is a short exact sequence

E : 0 �� M
i �� Q

j �� P �� 0,

where Q ∈ NLP and M is abelian (i.e., mm′ = [m,m′] = 0, m,m′ ∈M).

Any abelian extension defines a unique representation on M over P in such a way that

i(j(q)m) = qi(m), i(mj(q)) = i(m)q,

i[j(q),m] = [q, i(m)], i([m, j(q)]) = [i(m), q]

for any m ∈M , q ∈ Q.

Two abelian extensions E and E′ are called equivalent if there exists a homomorphism of NLP-
algebras f : Q −→ Q′ inducing the identity morphisms on M and P . Note that in this case f is an
isomorphism. Let M be any representation over P . Denote by ExtNLP(P,M) the set of all equivalence

classes of those abelian extensions of P by M that induce the given representation on M over P .

6.1.4. Actions and Crossed Modules in NLP. Since NLP is a category of groups with opera-
tions, according to the general definition of an action (called split derived actions in Chap. 3) of one
object on another in this category, we obtain the corresponding definition for NLP-algebras.

First recall that an action of P on M for associative algebras is given by two k-module homomor-
phisms · : P ⊗M −→M , · : M ⊗ P −→M with the conditions

p(m1m2) = (pm1)m2, m1(pm2) = (m1p)m2,

(m1m2)p = m1(m2p), p1(p2m) = (p1p2)m,

p1(mp2) = (p1m)p2, m(p1p2) = (mp1)p2.

An action of P on M for Leibniz algebras is given by two k-module homomorphisms [−,−] :
P ⊗M −→M , [−,−] : M ⊗ P −→M with the conditions

[

p, [m1,m2]
]

=
[

[p,m1],m2

]− [

[p,m2],m1

]

,
[

m1, [p,m2]
]

=
[

[m1, p],m2

]− [

[m1,m2], p
]

,
[

m1, [m2, p]
]

=
[

[m1,m2], p
]− [

[m1, p],m2

]

,
[

p1, [p2,m]
]

=
[

[p1, p2],m
]− [

[p1,m], p2
]

,
[

p1, [m, p2]
]

=
[

[p1,m], p2
]− [

[p1, p2],m
]

,
[

m, [p1, p2]
]

=
[

[m, p1], p2
]− [

[m, p2], p1
]

.
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Definition 6.1.14. Let M,P ∈ NLP. We say that P acts on M if we have an action of P on M as

associative and Leibniz algebras given, respectively, by the k-module homomorphisms

· , [−,−] : P ⊗M −→M, · , [−,−] : M ⊗ P −→M

and the following conditions hold:

[p1p2,m] = p1[p2,m] + [p1,m]p2, [p1m, p2] = p1[m, p2] + [p1, p2]m,

[mp1, p2] = m[p1, p2] + [m, p2]p1, [m1m2, p] = m1[m2, p] + [m1, p]m2,

[m1p,m2] = m1[p,m2] + [m1,m2]p, [pm1,m2] = p[m1,m2] + [p,m2]m1

for all m,m1,m2 ∈M , p, p1, p2 ∈ P .

It is easy to verify that having a P -action on M , we can construct the semi-direct product M � P

with the usual operations; we will have M � P ∈ NLP, and the corresponding natural extension
0 −→M −→M �P −→ P −→ 0 will split. And, conversely, every split extension of M by P in NLP
induces a set of actions, i.e., bilinear maps satisfying conditions of Definition 6.1.14. For the general

case of groups with operations see [76] (see Sec. 3.1).
Let us observe that when M is an abelian NLP-algebra, that is, M ·M = 0 = [M,M ], then the

last definition gives the axioms of representation from Definition 6.1.7. It is easy to verify that in this

case the semidirect product agrees with Definition 6.1.10.

Definition 6.1.15. Let M,P ∈ NLP with an action of P on M . A crossed module is a morphism
μ : M −→ P in NLP satisfying the following axioms:

μ(pm) = pμ(m), μ(mp) = μ(m)p,

μ[p,m] = [p, μ(m)], μ[m, p] = [μ(m), p],

μ(m)m′ = mm′ = mμ(m′),

[μ(m),m′] = [m,m′] = [m,μ(m′)].

A homomorphism of crossed modules is a pair (α, β) : (M,P, μ) −→ (M ′, P ′, μ′), where α, β are
morphisms in NLP such that

βμ = μ′α and α(pm) = β(p)α(m);

α(mp) = α(m)β(p);

α[p,m] = [β(p), α(m)];

α[m, p] = [α(m), β(p)] for all p ∈ P, m ∈M.

Thus the crossed module notion in NLP is a special case of the corresponding notion in categories
of groups with operations [78] (see Sec. 1.1).

Examples 6.1.16.

1. Let f : P −→ P ′ be a homomorphism in NLP; then i : Ker f ↪→ P is a crossed module.

2. Let R be a two-sided ideal of P ; then i : R −→ P is a crossed module. In particular, (P,P, Id)
is a crossed module.

3. Let M be a representation over P , then the homomorphism 0 : M −→ P is a crossed module.

Note that example 1 follows from example 2 since Ker f is an ideal.
Let Cat(NLP) be the category of internal categories inNLP, and let XMod(NLP) be the category

of crossed modules in NLP. As a special case of the result of [78] we obtain

Proposition 6.1.17. There is an equivalence of categories

Cat(NLP) � XMod(NLP).
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6.2. Cohomology of NLP-Algebras

Through this section we consider NLP-algebras over a field k. Let P be a NLP-algebra over k, and

M a representation over P . In particular, P is an associative algebra and M is a P -P -bimodule and,
on the other hand, P is a Leibniz algebra and M is a representation over P . Let C∗

H(P,M) be the
Hochschild complex, and C∗

L(P,M) the Leibniz complex. We recall that for n ≥ 0

Cn
H(P,M) = Cn

L(P,M) = Hom(P⊗n,M)

and coboundary maps ∂n
H and ∂n

L are given by

∂n
H(f)(p1, . . . , pn+1) = (−1)n+1

{

p1f(p2, . . . , pn+1)+

+

n∑

i=1

(−1)if(p1, . . . , pipi+1, . . . , pn+1) + (−1)n+1f(p1, . . . , pn)pn+1

}

,

∂n
L(f)(p1, . . . , pn+1) =

[

p1, f(p2, . . . , pn+1)
]

+

n+1∑

i=2

(−1)i[f(p1, . . . , p̂i, . . . , pn+1), pi
]

+

+
∑

1≤i<j≤n+1

(−1)j+1f
(

p1, . . . , pi−1, [pi, pj], pi+1, . . . , p̂j, . . . , pn+1

)

.

Thus Cn
H(P,M) and Cn

L(P,M) are k-vector spaces complexes.
We will need below the P -P -bimodule M e, defined by M e = Hom(P,M) as a k-vector space, and

a bimodule structure is given by (p1f)(p2) = p1f(p2); (fp1)(p2) = f(p2)p1. On the other hand, M e

has the structure of a P -representation by means of [p1, f ](p2) = [p1, f(p2)]; [f, p1](p2) = [f(p2), p1].
We have an isomorphism of k-vector spaces θn : Cn+1

H (P,M) −→ Cn
H(P,M e), n ≥ 1. We denote the

coboundary maps of the complex C∗
H(P,M e) by ∂e,∗

H . Thus we can define the homomorphism

βn : Cn
L(P,M) −→ Cn

H(P,M e), n ≥ 1

by

β2k+1 = θ2k+1∂
2k+1
L , k ≥ 0,

β2k = ∂e,2k−1
H θ2k−1, k ≥ 1.

It is easy to see that β∗ is a homomorphism between the cochain complexes C
∗
L(P,M) =

(Cn
L(P,M), ∂n

L, n ≥ 1) and C
∗
H(P,M e) = (Cn

H(P,M e), ∂e,n
H , n ≥ 1). There is also a homomorphism of

cochain complexes

α∗ : C ∗
H(P,M) =

(

Cn
H(P,M), ∂n

H , n ≥ 1
) −→ C

∗
H(P,M e)

defined in [22] by

α1(f)(p1)(p2) = [p1, f(p2)] + [f(p1), p2]− f([p1, p2])

and for n > 1 by

αn(f)(p1, . . . , pn)(pn+1) =
[

f(p1, . . . , pn), pn+1

]−
−f([p1, pn+1], p2, . . . , pn

)− f
(

p1, [p2, pn+1], . . . , pn
)− · · · − f

(

p1, . . . , pn−1, [pn, pn+1]
)

.

Note that α1 = β1.
Take C

n
H(P,M) = 0, C

n
H(P,M e) = 0, C

n
L (P,M) = 0, αn = βn = 0, for n ≤ 0 and consider the

mapping cones: cone (α∗) and cone (−β∗). By definition we have the complexes
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cone (α∗): 0

��
C1
H(P,M)

−∂1
H

��

α1

�����
���

���
����

�

C2
H(P,M)

−∂2
H

��

α2

�����
����

����
����

⊕ C1
H(P,M e)

∂e,1
H

��
C3
H(P,M)

−∂3
H ��

α3

����
���

���
���

���
���

�
⊕ C2

H(P,M e)

∂e,2
H��

...
...

...

cone (−β∗): 0

��
C1
L(P,M)

−β1

./����
���

���
����

−∂1
L

��
C1
H(P,M e)

∂e,1
H

��

⊕ C2
L(P,M)

−β2

./����
����

����
���

−∂2
L

��
C2
H(P,M e)

∂e,2
H ��

⊕ C3
L(P,M)

−β3

/0���
���

���
���

���
���

−∂3
L��

...
...

...

Let i1 and i2 be the following injections of complexes

cone (α∗) C
∗−1
H (P,M e)

i1�� i2 �� cone (−β∗).

Consider the pushout C∗(P,M) = cone(α∗)
⊔

(i1,i2)

cone(−β∗). Thus we have the complex

(C∗(P,M), ∂∗): 0

/0���
���

���
���

���

����
���

���
���

���
�

C1
H(P,M)

−∂1
H

��

α1

��  
   

   
   

  
⊕ C1

L(P,M)

−β1

/0!!!
!!!

!!!
!!!

!
−∂1

L
��

C2
H(P,M)

−∂2
H

��

α2

��  
   

   
   

  
⊕ C1

H(P,M e)

∂e,1
H

��

⊕ C2
L(P,M)

−β2

/0!!!
!!!

!!!
!!!

!
−∂2

L
��

C3
H(P,M)

−∂3
H ��

α3

01  
   

   
   

   
  

⊕ C2
H(P,M e)

∂e,2
H��

⊕ C3
L(P,M)

−β3

%&!!!
!!!

!!!
!!!

!!!
!

−∂3
L��

...
...

...
...

...

Take i = (i1,−i2); then the following sequence is exact:

0 �� C
∗−1
H (P,M e)

i �� cone(α∗) � cone(−β∗) �� C∗(P,M) �� 0 . (6.2.1)

From (6.2.1) we obtain the long exact sequence of cohomologies

0 �� H1(cone(α∗) � cone(−β∗)) ε �� H1C∗(P,M) ��

�� H1C
∗
H(P,M e)

η �� H2(cone(α∗) � cone(−β∗)) �� H2C∗(P,M) ��

�� H2C
∗
H(P,M e) �� H3(cone(α∗) � cone(−β∗)) �� H3C∗(P,M) �� · · · . (6.2.2)

Note that ε is an isomorphism in (6.2.2), which implies that η is a monomorphism.
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Define

C0
NLP(P,M) = 0, C1

NLP(P,M) = Hom(P,M),

C n
NLP(P,M) = Cn(P,M), n ≥ 2;

∂0
NLP = 0, ∂1

NLP = (∂1
H , 0, ∂1

L),

∂n
NLP = ∂n, n ≥ 2.

We have ∂n+1
NLP ∂n

NLP = 0, n ≥ 0, so {Cn
NLP(P,M), ∂n

NLP, n ≥ 0} is a complex that has the form

0

��
Hom(P,M)

−∂1
H

/0!!!
!!!

!!!
!!!

!

0
��

−∂1
L

��  
   

   
   

  

C2
H(P,M)

−∂2
H

��

α2

����
���

���
���

���
�

⊕ C1
H(P,M e)

∂e,1
H

��

⊕ C2
L(P,M)

−β2

./���
���

���
���

���

−∂2
L

��

C3
H(P,M)

−∂3
H ��

α3

01  
   

   
   

   
  

⊕ C2
H(P,M e)

∂e,2
H��

⊕ C3
L(P,M)

−β3

%&!!!
!!!

!!!
!!!

!!!
!

−∂3
L��

...
...

...
...

...

The cohomology groups Hn
NLP(P,M), n ≥ 0, of an NLP-algebra P with coefficients in the repre-

sentation M over P are defined by

Hn
NLP(P,M) = Hn(C∗

NLP(P,M), ∂n
NLP), n ≥ 0.

We have Hk
NLP(P,M) = Hk(C∗(P,M), ∂∗) for k > 2. According to the definition of AWB coho-

mology given in [23], we have Hn(cone(α∗)) = Hn−1
AWB(P,M), where P is considered as an algebra

with bracket and exact sequence (6.2.2) gives the corresponding exact sequence for cohomologies of
an NLP-algebra P in the dimensions >2.

Proposition 6.2.1. The following sequence is exact :

H2
H(P,M

e) �� H2
AWB(P,M) ⊕H3(cone(−β∗)) �� H3

NLP(P,M) ��

�� H3
H(P,M

e) �� H3
AWB(P,M)⊕H4(cone(−β∗)) �� H4

NLP(P,M) �� · · · .
As is well known from the general results on mapping cones, the short exact sequence

0 �� C
∗−1
H (P,M e)

i2 �� cone(−β∗) �� (C
∗
L(P,M),−∂∗

L)
�� 0

yields the long exact sequence

0 �� H1(cone(−β∗)) �� DerL(P,M)
δ1 �� DerH(P,M e) ��

�� H2(cone(−β∗)) �� H2
L(P,M)

δ2 �� H2
H(P,M e) �� · · ·

relating H∗(cone(−β∗)) with the Hochschild and Leibniz cohomologies, where the connecting homo-

morphism δj is induced by βj , j ≥ 1.

481



We have the natural injection C2
H(P,M)⊕C2

L(P,M) −→ C2
NLP(P,M), which image we denote again

by the sum C2
H(P,M)⊕ C2

L(P,M). Consider the restriction

d2NLP = ∂2
NLP

∣
∣
∣
C2

H ()⊕C2
L()

.

We define the 2-dimensional restricted cohomology of NLP-algebra P with coefficients in M by

H
2
NLP(P,M) = Ker d2NLP/ Im ∂1

NLP.

We have an obvious injection

κ : Ker d2NLP −→ Ker ∂2
NLP

which induces the injection of the corresponding cohomologies

χ : H2
NLP(P,M) −→ H2

NLP(P,M).

From the definition of C∗
NLP(P,M) we have

Lemma 6.2.2.

H0
NLP(P,M) = 0,

H1
NLP(P,M) = DerNLP(P,M).

Proof. The proof follows directly from the fact that C0
NLP(P,M) = 0 and from the definition of ∂1

NLP

and the Definition 6.1.11.

Theorem 6.2.3. H
2
NLP(P,M) ∼= ExtNLP(P,M).

Proof. Let (f·, 0, f[]) be a restricted 2-cocycle in C2
NLP(P,M). Thus we have

−p1f·(p2, p3) + f·(p1p2, p3)− f·(p1, p2p3) + f·(p1, p2)p3 = 0,
[

p1, f[](p2, p3)
]

+
[

f[](p1, p3), p2
]− [

f[](p1, p2), p3
]−

−f[]([p1, p2], p3) + f[](p1, [p2, p3]) + f[]([p1, p3], p2) = 0,
[

f·(p1, p2), p3
]− f·([p1, p3], p2)− f·(p1, [p2, p3]) = p1f[](p2, p3)− f[](p1p2, p3) + f[](p1, p3)p2,

p1, p2, p3 ∈ P . Let Q = M ⊕ P be a k-vector space. We define the operations on Q in the following
usual way:

(m1, p1) · (m2, p2) =
(

p1m2 +m1p2 + f·(p1, p2), p1p2
)

,
[

(m1, p1), (m2, p2)
]

=
(

[p1,m2] + [m1, p2] + f[](p1, p2), [p1, p2]
)

.

A straightforward verification shows that Q is a NLP-algebra and we have the abelian exten-

sion E : 0 �� M
i �� Q

j �� P �� 0 with i(m) = (m, 0), j(m, p) = p, and the induced P -

representation structure on M is the given one. It is easy to show that if (f ′· , 0, f ′
[]) is a 2-cocycle from

the same class of 2-cohomology, then the extension E′ defined by the pair (f ′· , f ′
[]) is isomorphic to E.

Given any class of extensions E : 0 �� M
i �� Q

j �� P �� 0 from ExtNLP(P,M), we

choose a k-linear section u of j, uj = 1, defining a 2-cocycle (f·, 0, f[]) and show that the class of

(f·, 0, f[]) in H
2
NLP(P,M) does not depend on the choice of a section of j, which ends the proof.

Note that, in the above proved bijection, to a split extension corresponds the 2-cocycle (f·, 0, f[])
for which there exists a k-linear map g : P −→M such that

f·(p, p′) = pg(p′) + g(p)p′ − g(pp′),

f[](p, p
′) = [p, g(p′)] + [g(p), p′]− g[p, p′]
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for all p, p′ ∈ P .

Corollary 6.2.4. If P is a free NLP-algebra, then

H
2
NLP(P,−) = 0

and

Hn
NLP(P,−) = 0

for n > 2.

Proof. Since every extension 0 �� M
i �� Q

j �� P �� 0 splits for a free algebra P , for n = 2

the fact follows from Theorem 6.2.3. Let n > 2. From Proposition 6.1.6 it follows that VA(P ) is
a free associative algebra and VL(P ) is a free Leibniz algebra. It is well known that cohomologies
of free associative algebras and free Leibniz algebras vanish in the dimensions ≥ 2 [65]. Thus we

have Hn
H(P,−) = 0 and Hn

L(P,−) = 0 for n ≥ 2. Applying this and the fact that α and β are
homomorphisms of cochain complexes, one easily shows that C∗

NLP(P,M) is exact in dimensions > 2
for a free NLP-algebra P, which ends the proof.

Corollary 6.2.5. If P is a free NLP-algebra, then for any representation M over P we have

H2
NLP(P,M) ≈ Ker∂2

NLP/Kerd2NLP.

Proof. It follows from Corollary 6.2.4 and the facts that we have the injection

χ : H2
NLP(P,M) −→ H2

NLP(P,M)

defined above and the isomorphism
Cokerχ ≈ Cokerκ

for any NLP-algebra P .

6.2.1. Relative cohomology of NLP-algebras and 3-fold crossed sequences. As for the case

of Lie algebras (see [54]), we consider the relative cohomology of NLP-algebras and its relation with
3-fold crossed sequences of the special type.

Consider an exact sequence

E : 0 �� L
λ �� M

μ �� N
ν �� P �� 0 (6.2.3)

in NLP, where N acts on M and μ : M −→ N is a crossed module in NLP.
From this it follows that λ(L) is in the center of M. The sequence (6.2.3) uniquely determines an

action of P on L by

p · l = λ−1(n · λ(l)), l · p = λ−1(λ(l) · n),
[p, l] = λ−1[n, λ(l)], [l, p] = λ−1[λ(l), n],

where p ∈ P , l ∈ L, n ∈ N , ν(n) = p; here we use the fact that μ : M −→ N is a crossed module and
μ(n · λ(l)) = n · μλ(l) = 0, μ(λ(l) · n) = μ([n, λ(l)]) = μ([λ(l), n]) = 0. This action does not depend
on the choice of the element n, with ν(n) = p, since λ(l) is in the center of M . In particular, L is an

abelian object and we have a P -representation structure on it.
Let L be a representation over P . Now we fix N and a surjective homomorphism ν : N −→ P

and consider all kinds of the above defined crossed extensions, which induce the given representation

structure on L. A morphism between two such crossed extensions E −→ E′ is a morphism of ex-
tensions (1L, ϕ, 1N , 1P ), which respects the action. It is easy to see that if there exists a morphism
(1L, ϕ, 1N , 1P ), then it is an isomorphism of crossed modules

(M,N,μ)
(ϕ,1) �� (M ′, N, μ′) .
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We shall say that two such crossed extensions are equivalent E ∼ E′ if there exists a morphism

(1L, ϕ, 1N , 1P ) : E −→ E′.
Let CExtNLP(P,N ;L) denote the set of all equivalence classes of such crossed extensions.
Let P,N ∈ NLP, ν : N −→ P be a fixed surjective homomorphism, and L be a representation

over P ; ν induces a N representation structure on L, and the homomorphism of cochain complexes

ν∗ : C∗
NLP(P,L) −→ C∗

NLP(N,L). We define C∗
NLP(P,N ;L) as the cokernel of ν∗. Thus we have the

exact sequence of complexes

0 �� C∗
NLP(P,L)

ν∗ �� C∗
NLP(N,L)

σ∗
�� C∗

NLP(P,N ;L) �� 0 .

Denote Hn
NLP(P,N ;L) = Hn(C∗

NLP(P,N ;L)) for n ≥ 0, and H
2
NLP(P,N ;L) = H

2(C∗
NLP(P,N ;L)),

where H2(C∗
NLP(P,N ;L)) has the obvious meaning; i.e., we consider the second restricted coboundary

homomorphisms in C∗
NLP(P,L) and in C∗

NLP(N,L), which give the corresponding restricted coboundary
homomorphism in C∗

NLP(P,N ;L) and define the second relative restricted cohomology.

Theorem 6.2.6. There is a bijection

CExtNLP(P,N ;L)
∼ �� H2

NLP(P,N ;L) .

Proof. Let E be an extension (6.2.3). Denote R = Ker ν; let τ : M � R and κ : R ↪→ N be the
canonical surjective homomorphism and the inclusion respectively. Let u be a linear section of τ .
Thus M is isomorphic to L⊕R as a vector space and the isomorphism is given by

m �−→ (λ−1(m− uτ(m)), τ(m)),

(l, r) �−→ λ(l) + u(r).

The action of N on M defines an action of N on L⊕R given by

n · (λ−1(m− uτ(m)), τ(m)
)

=
(

ν(n) · λ−1(m− uτ(m)) + f·(n, τ(m)), n · τ(m)
)

.

Thus the left dot action defines a k-linear map f· : N ⊗ R −→ L. In the same way, for the right dot
action and actions by bracket, we will have k-linear maps f ′· , f ′

[] : R⊗N −→ L and f[] : N ⊗R −→ L.

Moreover, f· |R⊗R= f ′· |R⊗R, f[] |R⊗R= f ′
[] |R⊗R.

Let f = (f·, 0, f[]) be an element from C2
NLP(N,L) such that

f·(n1 ⊗ n2) = f·(n1 ⊗ n2), f[](n1 ⊗ n2) = f[](n1 ⊗ n2), if n2 ∈ R,

f·(n1 ⊗ n2) = f ′
· (n1 ⊗ n2), f[](n1 ⊗ n2) = f ′

[](n1 ⊗ n2), if n1 ∈ R.
(6.2.4)

Such a pair exists, we can take, e.g., f·(p1 ⊗ p2) = f[](p1 ⊗ p2) = 0, p1, p2 ∈ P , and define by (6.2.4)

other types of elements of N ⊗N . Here we have in mind that as a vector space N ≈ R⊕P . From the
properties of the action we obtain d2(f)(n1 ⊗ n2⊗n3) = 0 if at least one of the ni belongs to R; from
the fact that μ : M −→ N is a crossed module, we obtain that (f·, f[]) |R⊗R is a factor system of the

extension 0 �� L
λ �� M

τ �� R �� 0 . From this it follows that there exists k3 ∈ C3
NLP(P,L)

such that ν3(k3) = d2(f); then we have σ3d2(f) = 0, which gives that σ2(f) is a 2-dimensional cocycle

in C2
NLP(P,N ;L). It is easy to see that σ2(f) does not depend on the choice of f in C2

NLP(N,L).
For another linear section u′ of τ , we will have functions ϕ·, ϕ′·, ϕ[], ϕ

′
[], which will give

ν(n) · λ−1(m− uτ(m)) + f·(n, τ(m)) + u(n · τ(m))

= ν(n) · λ−1(m− u′τ(m)) + ϕ·(n, τ(m)) + u′(n · τ(m)). (6.2.5)
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Analogous equalities exist for pairs (f ′· , ϕ′·), (f[], ϕ[]), (f ′
[], ϕ

′
[]). u − u′ defines a function R −→ L

which can be extended up to N −→ L (taking e.g. 0 : P −→ L), denote one of such extensions by
f1 : N −→ L. From (6.2.5) we obtain

f·(n, τ(m))− ϕ·(n, τ(m)) = ν(n) · f1(κτ(m)) − f1(n · κτ(m)) = ∂1
H(f1)(n, κτ(m));

here we use the fact that f1(n) · (νκτ(m)) = 0 and that N acts on L due to ν. Analogous formulas
exist for (f[], ϕ[]), (f·, ϕ·), (f ′

[], ϕ
′
[]).

From this we conclude that σ2(ϕ·, ϕ[]) ∈ C2
NLP(P,N ;L) defined by (ϕ·, ϕ′·, ϕ[], ϕ

′
[]) is in the same

cohomology class in H
2
NLP(P,N ;L) as σ2(f ·, f []) and one can easily check that this procedure does

not depend on the choice of the extension map f1.

Thus we showed that each extension (6.2.3) uniquely defines a determined cohomology class and
actually at the same time we proved that to isomorphic extensions corresponds the same class in the
relative cohomology.

The second part of the proof is analogous to the one given in [54] for Lie algebras. Let clf =

cl(f·, 0, f[]) ∈ C2
NLP(P,N ;L) be a 2-cocycle. Choose any cochain f = (f·, 0, f[]) ∈ C2

NLP(N,L) as a

representative of this class. Since clf is a cocycle, there exists k ∈ C3
NLP(P,L) with d2(f) = ν3(k).

The diagram is

0 �� C2
NLP(P,L)

��

d2

��

C2
NLP(N,L) ��

d2

��

C2
NLP(P,N ;L) ��

d2rel
��

0

0 �� C3
NLP(P,L)

�� C3
NLP(N,L) �� C3

NLP(P,N ;L) �� 0

.

From this it follows that the restriction of f on R ⊗ R is a cocycle R ⊗ R −→ L, and moreover
d2f(n1⊗n2⊗n3) = 0 if at least one of the ni belongs to R, i = 1, 2, 3. Note that by the restriction of

f we mean the corresponding restrictions of f· and f[], and similarly for d2f(n1 ⊗ n2 ⊗ n3). We take
M = L⊕R as a vector space and define operations on M by

(l, r) · (l′, r′) = (f·(r, r′), r · r′),
[

(l, r), (l′, r′)
]

=
(

f[](r, r
′), [r, r′]

)

.

The actions of N on M are defined according to the following formulas:

n · (l, r) = (

ν(n) · l + f·(n, r), n · r
)

,

[n, (l, r)] =
(

[ν(n), l] + f[](n, r), [n, r]
)

,

(l, r) · n =
(

l · ν(n) + f·(r, n), r · n
)

,

[(l, r), n] =
(

[l, ν(n)] + f[](r, n), [r, n]
)

.

A straightforward verification shows that M is an NLP-algebra and the structure defined on M does
not depend on the choice of representatives for clf in C2

NLP(N,L); λ and ν are defined in the obvious
way: λ(l) = (l, 0), μ(l, r) = r and μ : M −→ N is a crossed module in NLP. It is easy to show that to

the cocycles of the same cohomology class correspond isomorphic extensions, and we have a one-to-one
correspondence between isomorphic classes of extensions and cohomology H

2
NLP(P,N ;L), which ends

the proof.

6.3. NLP!-Algebras

Let k be a field. The operad theory gives rise to a duality for quadratic operads [45]. The following
description of NLP!-algebras is due to T. Pirashvili and J. M. Casas [23]; it follows from Proposition B3

of the Appendix B to [63].
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An NLP!-algebra is an associative algebra A equipped with a bilinear binary operation � : A⊗A −→
A such that the following identities hold:

(1) (a · b) � c = a · (b � c);
(2) (a · b) � c+ (a � c) · b = 0;

(3) (a � b) � c = a � (b � c) + a � (c � b);

(4) a � (b · c) = 0.

From (1) and (2) it follows that

2′. (a � c) · b = −a · (b � c).
For any set X, consider the set

W (X) =
{

x1 . . . xk
(

xk+1 � (xk+2 � (· · · � (xn−1 � xn) . . . ))
)

, 0 ≤ k ≤ n, n ≥ 1, xi ∈ X, i = 1, . . . , n
}

.

Thus the elements of W (X) are certain type of symbolic words from the elements of X, dot, and �
operations. Note that if n− k = 1, then the word has the form x1 · · · xk · xk+1; it is clear that W (X)

contains X.
Let F (W (X)) be the k-vector space with basis W (X). We can define operations ·, � : W (X) ×

W (X) −→ W (X) by gluing the words due to dot and � symbols when such a word exists in W (X).

For instance,
(

(a · b), (c � d)) � · �� a · b · (c � d) ,

(a, b � c) � � �� a � (b � c) .

If such a word does not exist in W (X), then we perform · and � operations

W (X)×W (X) � · ,� �� F (W (X))

according to the identities (1), (2′), (3) and (4). We extend bilinearly this operations on F (W (X)),
and it is easy to see that F (W (X)) has the structure of an NLP!-algebra.

Proposition 6.3.1. For any set X, F (W (X)) is a free NLP!-algebra generated by X and we have
the pair of adjoint functors

NLP! Set��
U

F
Proof. A straightforward verification.

Consider the case where X = {e}. As for the case of NLP-algebras, we have the description of
W ({e}) in terms of certain types of trees. Consider trees of the following simple type:

�
�
�

�
�

�
�

��
��
��

(6.3.1)

We denote the set of this kind of trees with n leaves by Tn. The left side of the tree we shall use
for the dot operation, and the right side for the � operation. The tree

�
�
�

�
�

�
�

��

we shall “read” as e · e · e · e, and we denote it by t·. The tree
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�
�
�

�
�

�
��
��

we shall “read” as e � (e � (e � (e � e))), and we denote it by t�.

The tree (6.3.1) we “read” as e · e · e · (e � (e � (e � (e � e)))).
Let T =

⋃

n≥1
Tn. Thus, for certain types of trees of T we have defined the dot and � operations.

These operations can be expressed in terms of grafting in the following way:

�� ��· = �
�

�
��

Denote �� by e. We have defined

e · t· = gr(e · tl, tr)
and if s· = e n. . . e, n > 1, then s· · t· = e · ((e n−1. . . e) · t·).

For the � operation we have the following rules:

�� ��� = �
�

�
� �

and for any t� we have

e � t� = gr(el, t�).

Thus

�� �
�

�
� ���

� =
e e�

�
�

� �����

We have defined

e · t� = gr(e, tr). (6.3.2)

Thus

�� �
�

�
� ���· =

e
e

�
�

�
�� ���

For any t ∈ T , such that tl �=|, we have defined

e · t = gr(e · tl, tr);
here we can have in mind that e· |= e in the case tl =|, and in this case (6.3.2) follows from this
formula. In general, for s· and any t we will have

s· · t = gr(s· · tl, tr).
Note that products of the kind

���
�

�
��

� , ��
�

�
���
�

�
�

�
� �
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are not defined in T .

According to the above rules, each tree from T corresponds to a word of one of the following
types: a1 . . . an, a1 � · · · � an or a1 · · · ak · (ak+1 � (ak+2 � · · · � (an−1 � an) . . . )), where n ≥ 1, ai = e,
i = 1, . . . , n, 0 ≤ k ≤ n, and this correspondence is one to one. Thus, for X = {e} we have a bijection
W ({e}) ←→ T . It is easy to see that, for each n, the number of trees in Tn (and respectively the

number of words of the length n) is equal to n.

Chapter 7

CENTRAL SERIES FOR GROUPS WITH ACTION AND LEIBNIZ

ALGEBRAS

The well-known construction of E. Witt defines the functor from the category of groups to the category
of Lie algebras [90], [83]. The aim of this chapter is to define a category and to give an analogue of
Witt’s construction for its objects, which will lead us to the category of Leibniz algebras. This problem

was stated by J.-L. Loday [62]; later an analogous question for the possibly defined partial Leibniz
algebras was proposed to me, which was inspired by the work of Baues and Conduché [10]. Since the
main interest was in the absolute case, the author decided to begin with this one. The results obtained

in this chapter give the solution to the first problem of J.-L. Loday formulated in the Introduction
(see [62, 64]).

7.1. Groups with Action on Itself

Let G be a group that acts on itself from the right side; i.e., we have a map ε : G×G −→ G with

ε(g, g′ + g′′) = ε(ε(g, g′), g′′),
ε(g, 0) = g,

ε(g′ + g′′, g) = ε(g′, g) + ε(g′′, g),
(7.1.1)

for g, g′, g′′ ∈ G. Denote ε(g, h) = gh, for g, h ∈ G. We denote the group operation additively;
nevertheless the group is not commutative in general. If (G′, ε′) is another group with action, then a
homomorphism (G, ε) −→ (G′, ε′) is a group homomorphism ϕ : G −→ G′ for which the diagram

G×G
ε ��

(ϕ,ϕ)
��

G

ϕ
��

G′ ×G′
ε′

�� G′

commutes. In other words, we have

ϕ(gh) = ϕ(g)ϕ(h), g, h ∈ G.

488



If we consider an action as a group homomorphism G
ν �� AutG , then a homomorphism between

two groups with action means the commutativity of the diagram

G
ν ��

ϕ

��

AutG ⊂ Hom(G,G)

Hom(G,ϕ)
��

Hom(G,G′)

G′ ν′ �� AutG′ ⊂ Hom(G′, G′)

Hom(ϕ,G′)

��

so that ϕ · (ν(h)) = ν ′(ϕ(h)) · ϕ, h ∈ G. Note that the action defined above is a split derived action

within the category of groups Gr• in the sense of Chap. 3.
Recall [55] that an Ω-group is a group with a system of n-ary algebraic operations Ω (n ≥ 1) that

satisfies the condition

00 · · · 0ω = 0, (7.1.2)

where 0 is the identity element of G, and 0 on the left side occurs n times if ω is an n-ary operation.
In special cases Ω-groups give groups, rings, and groups with action on itself. In the latter case Ω
consists of one binary operation, an action, and the condition (7.1.2) is satisfied. We shall denote the

category of groups with action on itself by Gr•. Let Ab• denote the category of abelian groups with
action on itself; here we mean the action within Gr. We have the functors

Ab•
E ��

Gr•
A

��

Q1 ��

Q2 �� Gr
T��

C��

where Q1(G), for G ∈ Gr•, is the greatest quotient group of G that makes the action trivial; Q2(G)
is a quotient of G by the equivalence relation generated by the relation gh ∼ −h+ g + h, g, h ∈ G; A
is the abelianization functor; thus A(G) = G/(G,G), where (G,G) is the ideal of G generated by the

commutator normal subgroup of G (for the definition of an ideal see Sec. 2). A(G) has the induced
operation of action on itself. Each group can be considered as a group with the trivial action or with
the action by conjugation; they give functors T and C, respectively. Every object of Ab• can be

considered as an object of Gr•; this functor is denoted by E. It is easy to see that the functors Q1, Q2,
and A are left adjoints to the functors T , C and E, respectively. Let G ∈ Gr•. Define the operation
of square brackets [ , ] : G×G −→ G on G by

[g, h] = −g + gh, g, h ∈ G.

Proposition 7.1.1. For the operation [ , ] we have the following identities:

(i) [g, h1 + h2] = [g, h1] + [g + [g, h1], h2];

(ii) [g + g′, h] = −g′ + [g, h] + g′ + [g′, h];

(iii) [g, 0] = [0, g] = 0.

Proof. These identities follow directly from (7.1.1).

Corollary 7.1.2. For g, h ∈ G

[gh,−h] = −[g, h]; [−g, h] = g − [g, h] − g.

Denote by Gr[ ] the category of groups with an additional bracket operation [ , ] satisfying conditions

(i)–(iii) of Proposition 7.1.1; morphisms of Gr[ ] are group homomorphisms preserving the bracket

operation. We shall denote the objects of Gr[ ] by G[ ].
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Conversely, if G[ ] ∈ Gr[ ], we can define an action of G[ ] on itself due to the bracket operation by

gh = g + [g, h], g, h ∈ G[ ].

It is easy to prove that these two procedures are converse to each other and actually we have an
isomorphism of categories

Gr• ≈ Gr[ ] .

7.2. Ideals and Commutators in Gr•

Let G ∈ Gr•.

Definition 7.2.1. A nonempty subset A of G is called an ideal of G if it satisfies the following

conditions:

1. A is a normal subgroup of G as a group;

2. ag ∈ A, for a ∈ A, g ∈ G;

3. −g + ga ∈ A, for a ∈ A and g ∈ G.

Definition 7.2.2 (Kurosh [55]). A nonempty subset A of an Ω-group G is called an ideal if

(a) A is an additive normal subgroup of G;

(b) For any n-any operation ω from Ω, any element a ∈ A, and elements x1, x2, . . . , xn ∈ G,

−(x1 · · · xnω) + x1 · · · xi−1(a+ xi)xi+1 · · · xnω ∈ A

for i = 1, 2, . . . , n.

This definition in the case of groups is the definition of a normal subgroup of a group, and in the

case of rings is the definition of a two-sided ideal of a ring.

Proposition 7.2.3. For a group G ∈ Gr• considered as an Ω-group, where Ω consists of one binary
operation of action, Definitions 2.1 and 2.2 are equivalent.

Proof. Condition (b) of Definition 2.2 has the form

−xx2
1 + (a+ x1)

x2 ∈ A for i = 1; (7.2.1)

−xx2
1 + xa+x2

1 ∈ A for i = 2. (7.2.2)

Taking x1 = 0 in (7.2.1), we obtain ax2 ∈ A, which is condition 2 of Definition 2.1. Taking x2 = 0 in

(7.2.2), we have −x1 + xa1 ∈ A, which is condition 3 of Definition 2.1.
Conversely, we shall show that conditions 2 and 3 of Definition 2.1 imply conditions (7.2.1) and

(7.2.2). From condition 2 we have ax2 ∈ A; also

−xx2
1 + (a+ x1)

x2 = −xx2
1 + ax2 + ax2

1 ,

and it is an element of A since A is a normal subgroup of G. By condition 3 of Definition 2.1,
−x1 + xa1 ∈ A. We have −xx2

1 + xa+x2
1 = (−x1 + xa1)

x2 , and this is an element of A due to condition
2, which ends the proof.

Thus an ideal of G is a subobject of G in Gr•. It is clear that G itself and the trivial subobject of
G are ideals of G. An intersection of any system of ideals of G is an ideal, and therefore we conclude
that there exists the ideal generated by a system of elements of G.

Proposition 7.2.4. Let A be an ideal of G. For a1, a2 ∈ A, g1, g2 ∈ G we have

(a1 + g1)
a2+g2 ∈ gg21 +A.
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Proof. Since A is an ideal of G, there exist a′1, a
′
2 ∈ A, such that a1 + g1 = g1 + a′1, a2 + g2 = g2 + a′2.

Therefore

(a1 + g1)
a2+g2 = (g1 + a′1)

g2+a′2 = (gg21 )a
′
2 + a′1

g2+a′2 =

= gg21 − gg21 + (gg21 )a
′
2 + a′1

g2+a′2 ∈ gg21 +A;

here we apply −gg21 + (gg21 )a
′
2 ∈ A.

Let A and B be subobjects of G. Denote by {A,B} the subobject of G generated by A and B, and
let A+B denote the subset of G

A+B = {a+ b | a ∈ A, b ∈ B}.
Proposition 7.2.5. If A is an ideal of G and B is a subobject of G, then

{A,B} = A+B.

Proof. It is obvious that A+B ⊂ {A,B}. Since A is an ideal, it follows that A+B is a subgroup of

G. By Proposition 7.2.4, (a1 + b1)
a2+b2 ∈ bb21 +A. Since B is a subobject, bb21 ∈ B, and since A is an

ideal, bb21 +A = A+ bb21 ∈ A+B, which ends the proof.

For Ω-groups see Propositions 7.2.4 and 7.2.5 in [55].

Proposition 7.2.6. If A and B are ideals of G, then A+B is also an ideal.

Proof. For g ∈ G, a ∈ A and b ∈ B we have

g + (a+ b) = (a′ + g) + b = a′ + b′ + g ∈ A+B + g,

for certain a′ ∈ A and b′ ∈ B. Thus g + (A + B) ⊂ (A + B) + g. In the same way we show that

(A+B) + g ⊂ g + (A+B) and thus g + (A+B) = (A+B) + g. It is obvious that (a+ b)g ∈ A+B.
Now we have to show that −g + ga+b ∈ A+B. We have

−g + ga+b = −g + ga − ga + (ga)b ∈ A+B

since −g + ga ∈ A, −ga + (ga)b ∈ B.

It is easy to verify that the ideal generated by a system of ideals of G coincides with the additive
subgroup of G generated by these ideals. For Ω-groups see [55].

Definition 7.2.1′. Let G[ ] ∈ Gr[ ] and A be a nonempty subset of G[ ]. A is called an ideal of G[ ]

if

1′. A is a normal subgroup of G[ ] as of an additive group;

2′. [a, g] ∈ A, for a ∈ A, g ∈ G[ ];

3′. [g, a] ∈ A, for a ∈ A, g ∈ G[ ].

It is easy to see that the isomorphism of categories Gr• ≈ Gr[ ] carries ideals to ideals.

Proposition 7.2.7. If A is an ideal of G, then the quotient group G/A with the induced action on
itself is an object of Gr•.

Proof. Straightforward verification.

In what follows, for G ∈ Gr• and g, g′ ∈ G, [g, g′] will indicate the element −g+ gg
′
of G and (g, g′)

the commutator −g − g′ + g + g′. Let A and B be subobjects of G.
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Definition 7.2.8. A commutator [A,B] of G generated by A and B is the ideal of {A,B} generated

by the elements
{

[a, b], [b, a], (a, b) | a ∈ A, b ∈ B
}

.

Definition 7.2.9 ([55]). Let G be an Ω-group, A,B be Ω-subgroups of G, and {A,B}Ω be the Ω-
subgroup of G generated by A and B. The commutator [A,B]Ω is the ideal of {A,B}Ω generated by
elements of the form

(a, b) = −a− b+ a+ b, a ∈ A, b ∈ B,

and

[a1, . . . , an; b1, . . . , bn;ω] = −a1a2 · · · anω − b1b2 · · · bnω + (a1 + b1)(a2 + b2) · · · (an + bn)ω, (7.2.3)

where ω is an n-any operation from Ω, a1, . . . , an ∈ A and b1, . . . , bn ∈ B.

If G is a group with the trivial action on itself or with the action by conjugation, then [A,B] in
Definition 2.8 is the normal subgroup of G generated in {A,B} by commutators (a, b), a ∈ A, b ∈ B,
i.e., the usual commutator for the case of groups. The same is true for Definition 2.9; if an Ω-group

is a group without multioperations, then the commutator [A,B]Ω is the usual commutator (A,B) of
a group [55].

Proposition 7.2.10. In the case of groups with action on itself, Definitions 2.8 and 2.9 are equivalent.

Proof. For groups with action, (7.2.3) has the form

−aa2 − bb21 + (a1 + b1)
a2+b2 . (7.2.4)

Take a1 = a, a2 = b1 = 0, b2 = b; then −a+ ab ∈ [A,B]Ω. Take in (7.2.4) a1 = b2 = 0, a2 = a, b1 = b;

then we obtain

−b+ ba ∈ [A,B]Ω.

Thus we have shown that [A,B] ⊂ [A,B]Ω. Conversely, for x = −aa21 − bb21 + (a1 + b1)
a2+b2 ∈ [A,B]Ω

we have x = −aa21 − bb21 + (aa21 )b2 + (ba21 )b2 ∈ {A,B}. Let {A,B} = {A,B}/[A,B] and let g be the

class of the element g ∈ {A,B} in {A,B}. We have ab = a, ba = b in {A,B}. Thus

x = −aa21 − bb21 + (aa21 )b2 + (ba21 )b2 = aa21 − bb21 + aa21 + ba21
b2

=

= −aa21 − bb21 + aa21 + bb21 = −aa21 − bb21 + aa21 + bb21 = 0,

which means that x ∈ [A,B].

Below we formulate without proofs two statements for Ω-groups from [55], which in the case of
groups with action give the corresponding results.

Proposition 7.2.11. For any Ω-subgroups A and B in G we have

[A,B]Ω = [B,A]Ω.

Proposition 7.2.12. An Ω-subgroup A is an ideal of G if and only if

[A,G]Ω ⊆ A.

Corollary 7.2.13. Any Ω-subgroup A of an Ω-group G that contains the commutator [G,G]Ω is an

ideal of G.

Proof. It follows from the inclusions [A,G]Ω ⊂ [G,G]Ω ⊂ A.
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7.3. Central Series in Gr• and the Main Result

Let G ∈ Gr•.

Definition 7.3.1. The (lower) central series

G = G1 ⊃ G2 ⊃ · · · ⊃ Gn ⊃ Gn+1 ⊃ · · ·
of the object G is defined inductively by

Gn = [G1, Gn−1] + [G2, Gn−2] + · · ·+ [Gn−1, G1].

By definition, we have [Gn, Gm] ⊂ Gn+m.

Proposition 7.3.2. For each n ≥ 1, Gn+1 is an ideal of Gn.

Proof. We have G2 = [G1, G1], which is an ideal of G1, by definition. G3 = [G1, G2] + [G2, G1]. By

Proposition 7.2.11, [G1, G2] = [G2, G1]. We have

[G1, G2] ⊂ [G1, G1] = G2 ⊂ {G1, G2}
and [G1, G2] is an ideal of {G1, G2}; from this it follows that [G1, G2] is an ideal of G2 and therefore,
by Proposition 7.2.6, G3 is an ideal of G2. We have

Gn+1 = [G1, Gn] + [G2, Gn−1] + . . . [Gn−1, G2] + [Gn, G1].

For 1 ≤ k ≤ n, [Gk, Gn−k+1] is an ideal of {Gk, Gn−k+1}; Gn ⊆ Gk, from which it follows that
Gn ⊆ {Gk, Gn−k+1}. At the same time

[Gk, Gn−k+1] ⊂ [Gk, Gn−k] ⊂ Gn.

Therefore [Gk, Gn−k+1] is an ideal of Gn for each 1 ≤ k ≤ n. Thus each summand of Gn+1 is an ideal
of Gn. By Propositions 7.2.6 and 7.2.11 we conclude that Gn+1 is an ideal of Gn.

Since (Gi, Gi) ⊂ G2i ⊂ Gi+1, each Gi/Gi+1 has an abelian group structure. Let

LLG = G1/G2 ⊕G2/G3 ⊕ · · · ⊕Gn/Gn+1 ⊕ · · · , (7.3.1)

where ⊕ denotes the direct sum of abelian groups.

Let k be a commutative ring with the unit, and A a k-module. For the definitions of Lie and Leibniz
algebras we refer the reader to Sec. 5.1. Let k be a commutative ring with the unit and let Lie be the
category of Lie algebras over k. Morphisms in Lie are k-module homomorphisms ϕ with

ϕ(x, y) = (ϕ(x), ϕ(y)).

Leibniz algebras considered in Chap. 5 are in fact right Leibniz algebras over a k. The dual notion

of a left Leibniz algebra is made out of the dual relation

[x, [y, z]] = [[x, y], z] + [y, [x, z]],

for x, y, z ∈ A.

A morphism of Leibniz algebras is a k-module homomorphism ϕ : A −→ A′ with ϕ[x, y] =
[ϕ(x), ϕ(y)].

In this paper we deal with right Leibniz algebras. Denote this category by Leibniz.

Definition 7.3.3. A Lie–Leibniz algebra is a k-module A together with two k-module homomor-
phisms

( , ), [ , ] : A⊗k A −→ A

called round and square brackets, respectively, such that (x, x) = 0 for x ∈ A and both Jacobi and

Leibniz identities hold.

493



A morphism of Lie–Leibniz algebras is a k-module homomorphism ϕ : A −→ A′ with

ϕ(x, y) = (ϕ(x), ϕ(y)),

ϕ[x, y] = [ϕ(x), ϕ(y)].

We denote the corresponding category by LL.

Condition 1. For each x, y, z ∈ G, G ∈ Gr•

x− x(z
x) + xy+zx − x+ xz − xz+yz = 0.

It is straightforward to verify that if G satisfies Condition 1; then the group G[ ], which corresponds
to G (i.e., [ , ] is defined by [g, h] = −g + gh, g, h ∈ G), satisfies the following condition.

Condition 1′.
[xy, [y, z]] = [[x, y], zx] + [−[x, z], yz ], x, y, z ∈ G[ ].

LetG be a group. ConsiderG as a group with the (right) action by conjugation, i.e. gg
′
= −g′+g+g′.

Then G satisfies Condition 1, and in this case Condition 1′ is equivalent to the Witt–Hall identity for

groups. Each group with the trivial action on itself (i.e., gg
′
= g, g, g′ ∈ G) also satisfies Condition 1.

For an arbitrary set X, let FX be a free group with action on itself generated by X (see Sec. 8.2 for
the construction). The quotient FX/∼ of FX by the equivalence relation generated by the relation

corresponding to Condition 1 is obviously a group that satisfies Condition 1. See also an example at
the end of the proof of Theorem 7.3.4.

Denote by Grc a category of groups with action on itself satisfying Condition 1. In an analogous
way we define the category Abc. It is easy to see that the functors E,A, T,C,Q1, Q2, defined in Sec. 1,
give the functors between categories Abc, Grc, and Gr. We shall denote below these functors by the

same letters. FX/∼ is a free object in Grc and consequently the action in it is neither the trivial one
nor the conjugation.

Let G ∈ Grc. Denote Gm = Gm/Gm+1, then LLG =
∑

m≥1
Gm.

Consider the maps ( , )mn, [ , ]mn : Gm×Gn −→ Gm+n defined by round and square brackets in G,
respectively:

x, y � �� (x, y),

x, y � �� [x, y].

By the definition of Gi, it is clear that if x ∈ Gm, y ∈ Gn, then (x, y), [x, y] ∈ Gm+n. For x ∈ Gm,

denote by x the corresponding class in Gm.

Theorem 7.3.4. Let G be a group with action on itself satisfying Condition 1. Then we have:

(a) xy = x, −y + x+ y = x, for each x ∈ Gm, y ∈ Gn;

(b) The maps ( , )mn and [ , ]mn : Gm×Gn −→ Gm+n induce bilinear maps αmn, βmn : Gm×Gn −→
Gm+n;

(c) The maps αmn, βmn, m,n ≥ 1 define bilinear maps ( , ), [ , ] : LLG×LLG −→ LLG, which give

a Lie–Leibniz structure on LLG.

Proof. (a) Let x ∈ Gm, y ∈ Gn, m,n ≥ 1. Then [x, y] = −x + xy ∈ Gm+n ⊂ Gm, and since x ∈ Gm

we obtain that xy ∈ Gm. In Gm we have [x, y] = −x+ xy, but since [x, y] ⊂ Gm+n ⊂ Gm+1, we have

[x, y] = 0 in Gm, and thus in Gm we have x = xy. In the same way we show for the action with

conjugation that −y + x+ y = x (see also [83]).
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(b) We shall check this condition for a square bracket; for a round bracket the proof is similar [83].

First we shall show that the map βmn : Gm×Gn −→ Gm+n is defined correctly. Let x ∈ Gm, y ∈ Gn,

where x ∈ Gm, y ∈ Gn. By definition, βmn(x, y) = [x, y] = [x, y], where [x, y] ∈ Gn+m. Let x = x′ for
x′ ∈ Gm, thus x − x′ ∈ Gm+1. For simplicity, suppose that x − x′ ∈ [Gi+1, Gm−i] ⊂ Gm+1 (a more
general case is treated similarly). Then x = [a, b] + x′, where a ∈ Gi+1, b ∈ Gm−i. From this we have

in Gm+n:

[x, y] = [[a, b] + x′, y] = −x′ + [[a, b], y] + x′ + [x′, y] = −x′ + [[a, b], y] + x′ + [x′, y]. (7.3.2)

[[a, b], y] ∈ Gm+n+1 ⊂ Gm+n. Applying condition (a), we obtain

−x′ + [[a, b], y] + x′ = [[a, b], y] = 0 in Gm+n.

Thus from (7.3.2) we have [x, y] = [x′, y]. If x− x′ = (a, b) ∈ [Gi+1, Gm−i] ⊂ Gm+1, then by the same
argument we have

[x, y] = [x′ + (a, b), y] = −x′ + [(a, b), y] + x′ + [x′, y] = [(a, b), y] + [x′, y] = [x′, y],

since [(a, b), y] = 0 in Gm+n. The correctness of βmn for the second argument is proved in an analogous

way.
Now we shall show that the maps βmn are bilinear. Let x1, x2 ∈ Gm and y ∈ Gn. We have in Gm+n

[x1 + x2, y] = [x1 + x2, y] = −x2 + [x1, y] + x2 + [x2, y] = [x1, y] + [x2, y];

here we again apply condition (a). Let x ∈ Gm and y1, y2 ∈ Gn. We have in Gm+n

[x, y1 + y2] = [x, y1 + y2] = [x, y1] + [xy1 , y2] =

= [x, y1] + [xy1 , y2] = [x, y1] + [xy1 , y2] = [x, y1] + [x, y2],

since, by condition (a) xy1 = x. This proves that maps βmn are bilinear.
(c) The maps αmn, βmn can be continued linearly in a natural way up to the bilinear maps ( , ), [ , ] :

LLG × LLG −→ LLG. The proof of the fact that ( , ) satisfies condition (5.1.5) and (l, l) = 0 for
any l ∈ LLG is similar to the proof of the corresponding statement in Witt’s theorem (see [83,
Proposition 2.3], [90]). It remains to show that the square bracket operation [ , ] satisfies the Leibniz

identity.
The object G satisfies Condition 1; therefore we have Condition 1′ for the square bracket in G.

Since the square bracket operation in LLG is linear for both arguments, we can limit ourself to the

case where x ∈ Gm, y ∈ Gn, z ∈ Gt. Applying conditions (a) and (b) of the theorem, we have

[x, [y, z]] = [xy, [y, z]] = [xy, [y, z]];

[[x, y], z] = [[x, y], zx] = [[x, y], zx];

−[[x, z], y] = [−[x, z], yz] = [−[x, z], yz ].
By Condition 1′ we obtain

[x, [y, z]] = [[x, y], z]− [[x, z], y] in Gm+n+t,

which completes the proof of the theorem.

The following example is due to the referee.

Example. Let G be the abelian group of integers Z
•, which acts on itself in the following way:

xy = (−1)yx. We have [x, y] = 0 for y even, [x, y] = −2x for y odd, and Gn = 2n−1
Z
•. It is easy to

see that Z• ∈ Grc and LLZ• is a free Leibniz algebra generated by a single element over a two element

field (see also [65]).
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It is easy to see that by Theorem 7.3.4 we have actually constructed the functor LL : Grc −→ LL.

In an analogous way one can construct the functor L : Abc −→ Leibniz. For A ∈ LL let S1(A) denote
the greatest quotient algebra of A that makes the square bracket in A trivial. Then S1(A) ∈ Lie and
we have the functor S1 : LL −→ Lie. Similarly, we construct the functor S2 : LL −→ Leibniz. Let
S1

′(A) denote the greatest quotient algebra of A that makes the square bracket in A equal to the round

bracket; thus S1
′(A) ∈ Lie, and S1

′ is a functor. S1, S1
′, and S2 are left adjoints to the embedding

functors E1, E1
′, and E2 respectively, where E1 considers a Lie algebra as a Lie–Leibniz algebra with

a trivial bracket operation, E1
′ considers a Lie algebra as a Lie–Leibniz algebra with square bracket

equal to round bracket, and E2 considers a Leibniz algebra as a Lie–Leibniz algebra with trivial round
bracket operation. Denote by W : Gr −→ Lie the functor defined by Witt’s theorem [90], [83]. Thus
we have the following functors between the well defined categories:

Abc
E ��

L

��

Grc

LL

��

A
��

Q1 ��

Q2 �� GrGr
T��

C��

W

��
Leibniz

E2 ��
LL

S2

��

S1 ��

S′
1 �� Lie

E1��

E′
1��

where LLT = E1 W , E2 L = LLE, LLC = E1
′W . A more detailed account of this diagram will be

given in the next chapter, where free objects in Gr• and free Leibniz algebras are studied.

Chapter 8

WITT’S THEOREM FOR GROUPS WITH ACTION AND FREE LEIBNIZ

ALGEBRAS

In this chapter we give the solution to the second problem of J.-L. Loday formulated in the Introduction
(see [62], [64]). We introduce two more conditions (Condition 2 and Condition 3) between round and

square brackets for the objects of Grc defined in Chap. 7, and according to these conditions define the
full subcategories Gr and LL of Grc and LL, respectively. We prove that the functor LL defined in
Chap. 7 takes free objects from Gr to free objects in LL. The composite S2 LL

∣
∣
Gr

: Gr −→ Leibniz is

the functor we were looking for, which takes free self-acting groups from Gr to free Leibniz algebras,

where S2 is the functor which makes the round bracket operation trivial in Lie–Leibniz algebras.
This result is an analogue of E. Witt’s theorem [90], [83] for groups with action on itself and Leibniz
algebras. The properties of a commutator in Gr and the construction of free objects in this category

and in Leibniz and other related questions are considered.

8.1. Some Properties of Commutators for Groups with Action

For the definitions of the categories Gr•, Grc we refer the reader to Chap. 7. Recall that we have

defined square bracket operation in Gr• by [g, h] = −g + gh, for g, h ∈ G, G ∈ Gr•.
We have (see Proposition 7.1.1)

[g, h1 + h2] = [g, h1] + [gh1 , h2] = [g, h2] + [g, h1]
h2 ;

[g + g′, h] = [g, h]
g′
+ [g′, h]; [g, 0] = [0, g] = 0,

(8.1.1)
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where x
g
= −g + x+ g, x, g ∈ G.

From (8.1.1) it follows that

[g,−h] = −[g−h, h] = −[g, h]−h; [−g, h] = −[g, h]−g

. (8.1.2)

For the round bracket we have (g, h) = −(h, g) and the identities analogous to (8.1.1) and (8.1.2):

(g, h1 + h2) = (g, h1) + (g
h1
, h2) = (g, h2) + (g, h1)

h2
;

(g + g′, h) = (g, h)
g′
+ (g′, h);

(g, 0) = (0, g) = 0,

(8.1.3)

(g,−h) = −(g, h)−h ⇐⇒ (−g, h) = −(g, h)
−g

. (8.1.4)

These identities are well known for groups (see, e.g., [83]) and are special cases of (8.1.1) and (8.1.2).
For the case of groups, it is proved that if A and B are normal subgroups of G, then the commutator

(A,B) is also a normal subgroup of G. Below we will show that the analogous statement is true for a

certain type of groups with action on itself.

Consider the following conditions:

Condition 2.
[

xy, (y, z)
]

=
[

(x, y), zx
]

+
[− (x, z), yz

]

.

Condition 3.
(

xy, [y, z]
)

=
(

[x, y], zx
)

+
(− [x, z], yz

)

.

In Sec. 8.3 we will see that the objects of Grc do not generally satisfy these conditions. Note that

for groups with trivial action on itself, or with the action by conjugation, Conditions 1′, 2, and 3 are
always satisfied (see Sec. 7.3 for Condition 1′). The same is true for the example Z• from Chap. 7. For
any set X, consider a free object FX on the set X in the category Gr• (see Sec. 8.2 for the construction

of free objects in this category). Let FX/ ∼ be the quotient object, where ∼ is the minimal congruence
relation generated by the relations expressed in Conditions 1′, 2 and 3. Then FX/ ∼ is an object of
Grc that satisfies the above two conditions.

Denote by Gr the full subcategory of Gr• of those objects that satisfy Conditions 1′, 2, and 3. Thus
Gr is the full subcategory of Grc.

Since groups with action are Ω-groups, [A,B] is an ideal of G if and only if [[A,B], G] ⊆ [A,B] [55]
(see Proposition 7.2.12).

Now we are going to prove statements concerning some properties of elements of [A,B], {A,B} and
G, where A and B are ideals of G. These statements will readily imply that [A,B] is an ideal of G if
A and B are ideals of G and G ∈ Gr. Note that in this case {A,B} = A+B, and this object is also
an ideal of G (Proposition 7.2.5).

Below for g, h ∈ G, g
h
= −h+ g + h.

Lemma 8.1.1. Let a, b, g ∈ Gr•. Then we have

(i)
(

a
g)b

=
(

ab
)(g

b)

;

(ii)
(

ab
)g

=
(

a
g(−b) )b

.

The proof is an easy computation of both sides.

Lemma 8.1.2. Let A and B be ideals of G ∈ Gr. Then for any a ∈ A, b ∈ B, g ∈ G the elements

[a, b]
g

, [b, a]
g

, (a, b)
g

, [a, b]g , [b, a]g,

(a, b)g,
[

g, [a, b]
]

,
[

g, [b, a]
]

,
[

g, (a, b)
]
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belong to [A,B].

Proof. We have

[a, b]
g

=− g + [a, b] + g = −g − a+ ab + g = −g − a+ g + (ab)
g

=− g − a+ g +
(

a
g(−b) )b

= −g − a+ g + a
g(−b)

− a
g(−b)

+
(

a
g(−b) )b

= −g − a+ g − g(−b) + a+ g(−b) +
[

a
g(−b)

, b
]

=− g − a+ g − g(−b) + a+ g(−b) − g + g +
[

a
g(−b)

, b
]

=(a, b′)
g

+
[

a
g(−b)

, b
]

,

where b′ = g − g(−b) ∈ B, since B is an ideal, which proves that [a, b]
g ∈ [A,B].

We have [b, a]
g ∈ [A,B], since [b, a]

g ∈ [B,A] by the above-given proof and the equality [B,A] =
[A,B] (see Chap. 7). For the round bracket we have

(a, b)
g ∈ [A,B], since (a, b)

g

= (a
g

, b
g

).

For the next element we have

[a, b]g = −ag + ab+g = −ag + ag+b′ = [ag, b′] ∈ [A,B],

where b′ = −g + b+ g ∈ B; here we apply the fact that B is an ideal of G.
From the previous result and from [B,A] = [A,B] it follows that [b, a]g ∈ [A,B].
It is easy to see that

(a, b)g = (ag, bg) ∈ [A,B].

For the element [g, [a, b]] we apply Condition 1′:
[

g, [a, b]
]

=
[

(g−a)a, [a, b]
]

=
[

[g−a, a], b(g
−a)

]

+
[− [g−a, b], ab

]

.

This element is from [A,B], since A and B are ideals of G and [A,B] = [B,A].

From the previous result it follows that [g, [b, a]] ∈ [A,B]. In the same way applying Condition 2,
we prove that [g, [a, b]] ∈ [A,B].

Remark. We do not need to check that elements of the type (g, t) belong to [A,B], where t is a
generator of [A,B], since

(g, t) ∈ [A,B]⇔ (t, g) ∈ [A,B]⇔ t
g ∈ [A,B].

The latter inclusion has been considered in Lemma 8.1.2.

Lemma 8.1.3. Let A, B be ideals of G, G ∈ Grc. For g ∈ G, t, ti ∈ [A,B], i = 1, 2

(a) If [g, ti] ∈ [A,B], i = 1, 2, then [g, t1 + t2] ∈ [A,B].

(b) If [ti, g] ∈ [A,B], i = 1, 2, then [t1 + t2, g] ∈ [A,B].

(c) If [g, t] ∈ [A,B], then [g,−t] ∈ [A,B].

The proof follows from (8.1.1) and (8.1.2).

Lemma 8.1.4. Let A and B be ideals of G, G ∈ Gr. If for t ∈ [A,B] and any g ∈ G we have

tg, t
g
, [g, t] ∈ [A,B], then for any g1 ∈ {A,B} the elements

(tg1)g, (t
g1
)g, [g1, t]

g,

(tg1)
g

, (t
g1
)
g

, [g1, t]
g

,

[g, tg1 ], [g, t
g1
],

[

g, [g1, t]
]
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belong to [A,B].

Proof. It is obvious that (tg1)g, (t
g1
)
g ∈ [A,B]. By Lemma 8.1.1, for the elements (tg1)

g
, (t

g1
)g we

have (tg1)
g
= (t

g(−g1)

)g1 ∈ [A,B]. Since {A,B} = A + B is an ideal, (t
g1
)g = (tg)

(g
g
1 ) ∈ [A,B], and

therefore gg1 ∈ {A,B}.
For the element [g1, t]

g we have

[g1, t]
g = −gg1 + gt+g

1 = −gg1 + gg+t′
1 = [gg1 , t

′] ∈ [A,B],

where t′ = −g + t+ g ∈ [A,B] and gg1 ∈ {A,B}.
For the element [g1, t]

g
we will show that ([g1, t], g) ∈ [A,B], from which it follows that [g1, t]

g ∈
[A,B]. Applying Condition 3, we obtain

(

[g1, t], (g
−g1)g1

)

=
(

gt1, [t, g
−g1 ]

)− (− [g1, g
−g1 ], tg

(−g1)
) ∈ [A,B].

For the element [g, tg1 ] we show that [g, [t, g1]] ∈ [A,B], from which, by (8.1.1), it follows that

[g, tg1 ] + [g,−t]g1 ∈ [A,B]. Since [g, t] ∈ [A,B], we have [g,−t] ∈ [A,B] ⇒ [g,−t]tg1 ∈ [A,B], which
implies that [g, tg1 ] ∈ [A,B].

By Condition 1′ we have
[

g, [t, g1]
]

=
[

[g−t, t], g
(g−t)
1

]

+
[− [g−t, g1], t

g1
]

∈ [

[A,B, {A,B}] + [{A,B}, [A,B]
] ⊂ [A,B].

For [g, t
g1
] ∈ [A,B] we show that [g, (t, g1)] ∈ [A,B], which can be done analogously to the previous

proof by applying Condition 2.
For the element [g, [g1, t]] we have

[

g, [g1, t]
]

=
[

(g−g1)g1 , [g1, t]
]

=
[

[g−g1 , g1], t
(g−g1 )

]

+
[− [g−g1 , t], g1

]

∈ [{A,B}, [A,B]
]

+
[

[A,B], {A,B}] ⊂ [A,B].

Proposition 8.1.5. Let A and B be ideals of G ∈ Gr. Then the commutator [A,B] is also an ideal
of G.

Proof. By Lemmas 8.1.1–8.1.4 we have proved that the generators of [A,B] (as an ideal of {A,B})
satisfy the conditions tg, t

g
, [g, t] ∈ [A,B] for any g ∈ G, where t is any generator of [A,B] (Lemma

8.1.2), and from Lemmas 8.1.3, 8.1.4 it follows that if the generators satisfy these conditions, then any
element of [A,B] satisfies the same conditions, which is a necessary and sufficient condition for [A,B]

to be an ideal of G, which proves the proposition.

Remark. From the above proved lemmas we obtain [[A,B], C] ⊂ [A,B], which is a necessary and
sufficient condition for [A,B] to be an ideal of G [55] (see Chap. 7), and this is another similar way
to prove Proposition 8.1.5 by applying the same lemmas.

If A,B,C are normal subgroups of a group G, we have
(

A, (B,C)
) ⊂ (

B, (C,A)
)

+
(

C, (A,B)
)

, (8.1.5)

where (A,B) denotes the commutator subgroup of G (see, e.g., [83]).
For groups with action on itself, the analogous inclusion for square brackets does not hold in general

for the ideals A,B,C of G, when G ∈ Gr•, nor in the case when G satisfies the Condition 1′ (i.e.,
G ∈ Grc).

Proposition 8.1.6. Let A,B,C be ideals of G, G ∈ Gr. Then we have
[

A, [B,C]
] ⊂ [

[A,B], C
]

+
[

[A,C], B
]

.

499



For the case of groups, this result gives (8.1.5). We have formulated the right side of the inclusion in

this form, since it is more convenient for the proof using Conditions 1′, 2, 3. We need several lemmas.
For simplicity, denote

DA,B,C =
[

[A,B], C
]

+
[

[A,C], B
]

.

By Proposition 8.1.5, [A, [B,C]] and D are ideals of G; therefore it is sufficient to prove that the

generators of [A, [B,C]] (as an ideal of {A, [B,C]}) belong to D. By the definition of a commutator,
[A, [B,C]] is an ideal of {A, [B,C]} generated by the elements

{

[a, t], [t, a], (a, t) | a ∈ A, t ∈ [B,C]
}

.

The commutator [B,C] itself is an ideal of {B,C} generated by the elements
{

[b, c], [c, b], (b, c) | b ∈ B, c ∈ C
}

,

and we have {B,C} = B +C, since B and C are ideals of G.

Lemma 8.1.7. Let A, B and C be ideals of G, G ∈ Gr. For a ∈ A, b ∈ B, c ∈ C the elements
[

a, [b, c]
]

,
[

a, [c, b]
]

,
[

a, (b, c)
]

,
[

[b, c], a
]

,
[

[c, b], a
]

,
[

(b, c), a
]

,
(

a, [b, c]
)

,
(

a, [c, b]
)

,
(

a, (b, c)
)

belong to DABC .

Proof. For the first element we apply Condition 1′. We have
[

a, [b, c]
]

=
[

(a−b)b, [b, c]
]

=
[

(a−b, b), ca
(−b)]

+
[− [(a, c), bc

] ∈ DABC .

For the next element we apply the first result and we have [a, [c, b]] ∈ DACB = DABC .
In the same way, applying Conditions 2, 3 and also the corresponding Witt–Hall identity for com-

mutators in groups, we prove that all elements given in the lemma belong to D.

Lemma 8.1.8. Let A, B, and C be ideals of G, G ∈ Gr, and ti ∈ [B,C], i = 1, 2.

If (a, ti) ∈ DABC , i = 1, 2 for any a ∈ A, then

(a, t1 + t2) ∈ DABC .

If [a, ti] ∈ DABC , i = 1, 2 for any a ∈ A, then

[a, t1 + t2] ∈ DABC .

If [ti, a] ∈ DABC , i = 1, 2 for any a ∈ A, then

[t1 + t2, a] ∈ DABC .

The proof follows from (8.1.1) and (8.1.3) and the fact that D is an ideal of G.

Lemma 8.1.9. For any ideal I of G, G ∈ Gr• and elements g, h ∈ G,

If [g, h] ∈ I, then [−g, h], [g,−h] ∈ I.

If (g, h) ∈ I, then (−g, h), (g,−h) ∈ I.

The proof follows from (8.1.2) and (8.1.4) and the fact that I is an ideal of G.

Lemma 8.1.10. Let A, B, and C be ideals of G, G ∈ Gr. For any t ∈ [B,C], any a ∈ A, and any
x ∈ {B,C} we have:

(a) [a, t] ∈ DABC , then [a, tx] ∈ DABC .

(b) [a, t] ∈ DABC , then [a, t
x
] ∈ DABC .
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(c) [a, [x, t]] ∈ DABC .

(a′) If (a, t) ∈ DABC , then (a, tx) ∈ DABC .

(b′) If (a, t) ∈ DABC , then (a, t
x
) ∈ DABC .

(c′) (a, [x, t]) ∈ DABC .

(a′′) If [t, a] ∈ DABC , then [tx, a] ∈ DABC .

(b′′) If [t, a] ∈ DABC , then [t
x
, a] ∈ DABC .

(c′′) [[x, t], a] ∈ DABC .

Proof. We will show that [a, [t, x]] ∈ DABC , from which it follows that [a, tx] ∈ DABC . Since B and C
are ideals of G, {B,C} = B + C, any element x ∈ {B,C} has the form x = b+ c, b ∈ B, c ∈ C. We

have
[

a, [t, b + c]
]

=
[

a, [t, b] + [tb, c]
]

=
[

a, [t, b]
]

+
[

a[t,b], [tb, c]
]

.

By Proposition 8.1.5, [B,C] is an ideal of G. By Lemma 8.1.7 applied to A, [B,C], B and A, [B,C],

C we obtain
[

a, [t, b+ c]
] ⊂ DA,[B,C],B +DA,[B,C],C ⊂ DA,C,B +DA,B,C = DA,B,C ,

since [B,C] ⊂ C, [B,C] ⊂ B (since B and C are ideals of G) and DACB = DABC . We have
[

a, [t, x]
]

= [a,−t+ tx] = [a, tx] + [a,−t](tx).
Since [a, t] ∈ D, by Lemma 8.1.9 [a,−t] ∈ D, and since D is an ideal of G, [a,−t](tx) ∈ G. This

proves that [a, tx] ∈ DABC .
(b) is proved in an analogous way; we prove first that [a, (t, x)] ∈ DABC for any a ∈ A, t ∈ [B,C],

x ∈ {B,C}, from which it follows that [a, t
x
] ∈ DABC .

(c) Since x = b+ c, for b ∈ B, c ∈ C, we have
[

a, [x, t]
]

=
[

a, [b+ c, t]
]

=
[

a, [b, t]
c
+ [c, t]

]

=
[

a, [b, t]
c]

+
[

a[b,t]
c

, [c, t]
]

.

In the same way as in (a), applying Lemma 8.1.7 we can prove that [a, [b, t]] ∈ DAB[B,C] ⊂ DABC

and [a[b,t]
c
, [c, t]] ⊂ DAC[B,C] ⊂ DACB ⊂ DABC . By (b) we have [a, [b, t]

c
] ⊂ DABC , since [b, t] ∈

[B, [B,C]] ⊂ [B,C] and c ∈ {B,C}.
(a′), (b′), (c′) are proved in a similar way.

For (a′′) we first show that [[t, x], a] ∈ DABC . We have

[

[t, x], a
]

=
[

[t, b+ c], a
]

=
[

[t, b] + [tb, c], a
]

=
[

[t, b], a
][t

b,c]

+
[

[tb, c], a
]

.

Applying Lemma 8.1.7, we show that [[t, b], a] ∈ DAB[B,C] ⊂ DABC and since DABC is an ideal of

G, we have [[t, b], a]
[tb,c] ∈ DABC .

Next, we show by Lemma 8.1.7 applied to tb ∈ [B,C], c ∈ C, a ∈ A, that the element [[tb, c], a] from
[A, [[B,C], C]] is included in DA[B,C]C and hence in DABC , since B is an ideal of G and [B,C] ⊂ B.

Applying Lemma 8.1.9, from [[t, x], a] ∈ DABC it follows that [tx, a] ∈ DABC .

(b′′) We begin by proving that [(t, x), a] ∈ DABC . We have

[

(t, b+ c), a
]

=
[

(t, c) + (t, b)
c
, a
]

=
[

(t, c), a
](t,b)

c

+
[

(t, b)
c
, a
]

.

Again by Lemma 8.1.7 [(t, c), a] ∈ DA[B,C]C ⊂ DABC , from which [(t, c), a]
(t,b)c ∈ DABC .

For the second summand we have
[

(t, b)
c
, a
]

=
[

(tc, bc), a
] ∈ DA[B,C]B ⊂ DACB = DABC ;

hence [(t, x), a] ∈ DABC .
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We have
[

(t, x), a
]

=
[− t+ t

x
, a
]

=
[− t, a

]tx
+
[

t
x
, a
]

.

By Lemma 8.1.9, [−t, a] ∈ DABC , and therefore [−t, a]tx ∈ DABC , from which [t
x
, a] ∈ DABC .

(c′′) We have
[

[x, t], a
]

=
[

[c+ b, t], a
]

=
[

[c, t]
b
+ [b, t], a

]

=
[

[c, t]
b
, a
][b,t]

+
[

[b, t], a
]

.

By Lemma 8.1.7,
[

[b, t], a
] ⊂ DA[B,C]B ⊂ DABC .

For the first summand we have [c, t] ∈ [

B, [B,C]
] ⊂ [B,C];

[

[c, t], a
] ∈ DA[B,C]C ⊂ DABC by

Lemma 8.1.7. Thus for t′ = [c, t] we have [t′, a] ∈ DABC . From (b′′) we obtain
[

(t′)
b
, a
] ∈ DABC since b ∈ {B,C},

and therefore
[

[c, t]
b
, a
][b,t] ∈ DABC ,

since DABC is an ideal of G. This ends the proof of the lemma.

The proof of Proposition 8.1.6 follows from Lemmas 8.1.7–8.1.10.

Lemma 8.1.11. If G ∈ Gr, then for

Gn = [G1, Gn−1] + [G2, Gn−2] + · · ·+Gn−1, G1]

we have

Gn = [Gn−1, G], (8.1.6)

for n > 1, where G1 = G.

Proof. For n = 2, 3 (8.1.6) is trivial. For n = 4 we have

G4 = [G1, G3] + [G2, G2] + [G3, G1].

Thus [G3, G1] ⊂ G4, and for G4 ⊂ [G3, G1] we will show that [G2, G2] ⊂ [G3, G1]. We have

[G2, G2] =
[

[G1, G1], G2

] ⊂ [

G1, [G1, G2]
]

+
[

G1, [G1, G2]
] ⊂ [G3, G1],

since [G1, G2] ⊂ G3.
Assume that (8.1.6) is true for any Gl, where l < n. For l = n we have [Gn−1, G1] ⊆ Gn. We have

to show that

[Gk, Gn−k] ⊆ [Gn−1, G] for 1 ≤ k < n. (8.1.7)

For k = 1, [G1, Gn−1] = [Gn−1, G].
For k = 2, by Proposition 8.1.6,

[G2, Gn−2] =
[

[G1, G1], Gn−2

] ⊂ [

G1, [G1, Gn−2]
]

+
[

G1, [G1, Gn−2]
]

= [Gn−1, G],

since [G1, Gn−2] = Gn−1 by our assumption.

Suppose that (8.1.7) is true for 1 ≤ k ≤ t− 1, where t < n. We will show (8.1.7) for k = t.
By our assumption, Gt = [Gt−1, G]; therefore

[Gt, Gn−t] =
[

[G,Gt−1], Gn−t

] ⊂ [

G, [Gt−1, Gn−t

]

+
[

Gt−1, [G,Gn−t

]

⊂ [G,Gn−1] + [Gt−1, Gn−t+1] ⊂ [G,Gn−1] + [Gn−1, G] = [Gn−1, G];

here we have used the fact that [Gt−1, Gn−t] ⊂ Gn−1, [G,Gn−t] ⊂ Gn−t+1 and that, by our assumption,

[Gt−1, Gn−t+1] ⊂ [Gn−1, G], which proves the lemma.
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From this lemma the construction of the functor Grc −→ LL becomes simpler for the objects of Gr.

Namely, if G ∈ Gr, then

LL(G) =

∞∑

n=1

Gn

/

[Gn, G]. (8.1.8)

Let G be a free object in Gr (see Sec. 8.2 for the construction) and Gn = [Gn−1, G], n > 1. Let E
be the set of all defining identities between the brackets (both round and square) in Gn, n ≥ 1, and
E the set of all defining identities that satisfy the elements of the groups Gn = Gn/[Gn, G], n ≥ 1.

Under “defining identities” we mean that any identity in G follows from the identities from E.

Remark. We could define Gn from the beginning by (8.1.6), but we would need Propositions 8.1.5
and 8.1.6 for proving [Gn, Gm] ⊂ Gn+m, which we have applied in proving Theorem 7.3.6 of Chap. 7.

If G is a free object in Gr, then we have Conditions 1′, 2, 3 for the elements of G, but there can be
more identities between the round and round and square brackets. In the case of Abc we have another

picture, the only identity we have in Abc is Condition 1′ (and of course its consequences).
Let G be a free object of Abc and g1, . . . , gk ∈ G. Let P (g1, . . . , gk) be any expression of the elements

gi, i = 1, . . . , k and bracket operations in G.

We say that P is a pure n-bracket if after decomposing each gi in terms of brackets it contains
only n-brackets. Here we have in mind that Ab• ∼= Ab[] and the corresponding isomorphism for Abc.
For example, for the basis elements x1, x2, x3 of G, [x1, [x2, x3]] is a pure 3-bracket. If g is a pure

m-bracket and h is a pure k-bracket, then [g, h] is a pure m+ k-bracket.
It may happen that according to Condition 1′, a linear combination of pure n-brackets is an element

of Gn+1.

Lemma 8.1.12. Let G be a free object in Abc. If P (g1, . . . , gt) ∈ Gn is a linear combination of pure

n-brackets in G and P (g1, . . . , gt) ∈ Gn+1, then P (g1, . . . , gt) = 0 in Gn = Gn/Gn+1 is either the
Leibniz identity or its consequence.

Proof. There exists an expression Q() ∈ Gn+1 with n+1 brackets such that P ()−Q() = 0. Since G is
free, P ()−Q() = 0 is either equivalent to Condition 1′ or to its consequence. Now the proof is a direct

computation. Take x, y, z as pure k, l,m-brackets, respectively, in Condition 1′, with k + l +m = n.
Then from (8.1.1), (8.1.3) and the fact that gh = g + [g, h], for any g, h ∈ G we obtain that the pure
n-bracket combination part of Condition 1′ has the form [x, [y, z]]− [[x, y], z] + [[x, z], y]. Note that in

Abc we have [−g, h] = −[g, h]. The same result we have in the case P () −Q() = 0 is equivalent to a
consequence of Condition 1′, which ends the proof.

Proposition 8.1.13. Let G be a free object in Abc. Then the elements of the object L(G) (L : Abc −→
Leibniz) satisfy only the Leibniz algebra identities for square brackets i.e., the square bracket operation

is bilinear and in Gn = Gn/Gn+1, n ≥ 1we have the Leibniz identity
[

x, [y, z]
]

=
[

[x, y], z
]− [

[x, z], y
]

,

where x, y, z ∈ G and x ∈ Gm, y ∈ Gl, z ∈ Gt denote the corresponding elements with m+ l + t = n.

Proof. Suppose G is free in Abc and we have in Gn the identity or relation P (xji) =
l∑

j=1
Pj(xj1, . . . , xjt) = 0, where each Pj denotes a bracket element in P , and Σ denotes the sum of these

elements in Gn, xij ∈ Gkji, kj1 + · · ·+ kjt = n,j = 1, . . . , l. We suppose that each xji �= 0 and P con-

tains at most n brackets. For each inverse image x′ji in Gkji, j = 1, . . . , l, i = 1, . . . , t (i.e., x′ji �→ xji,

by the natural homomorphism Gkji −→ Gkji) we have P (x′ji) =
l∑

j=1
PJ (x

′
j1, . . . , x

′
jt) ∈ Gn+1. Since
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each xji �= 0, we have xji /∈ Gkji+1; thus each xji contains kji brackets as a summand. Hence

each xji has an inverse image x̃ji ∈ Gkji, x̃ji �→ xji, and x̃ji is a pure kji-bracket. We have

P (x̃ji) =
l∑

j=1
Pj(x̃j1, . . . , x̃jt) ∈ Gn+1, and each Pj(x̃j1, . . . , x̃jt) is a pure n-bracket. P (x̃ji) = P (xji)

and, by Lemma 8.1.12, P (xji) = 0 is either the Leibniz identity or its consequence.

Remark. In Ab•, Condition 1 has the form

−x(zx) + xy+zx + xz − xz+yz = 0,

which is, of course, equivalent to Condition 1′.

Direct computations show that in Abc we have the identities

[−g, h] = −[g, h],
[g,−h] = [−g, h]−h,

[g, h]x = [gx, h], x, g, h ∈ G ∈ Abc .

The first two identities can be obtained from the identities in Grc

[−g, h]g = −[g, h],
[g,−h]−g

= [−g, h]−h, g, h ∈ G′ ∈ Grc,

applying the functor A : Grc −→ Abc. It is easy to see that these identities follow from (8.1.2), and
all the above identities do not give new identities for LL(G′), or L(G).

8.2. Free Objects in Gr•, Gr, Abc and Leibniz

In this section we recall the definition of free objects in algebraic categories. We give the construction

of free objects in the categories of groups with action and in Leibniz algebras.
Let A be any algebraic category.

Definition 8.2.1. Let A be an object in A. A is a free object on the set X if there is an injection

X −→ A and for any object B ∈ A and a map α : X −→ B, there exists a unique homomorphism
α : A −→ B in A such that the diagram

A
α �� B

X

��
α

$%"""""""""""""

is commutative.

We will deal with free objects in the following algebraic categories: Ab, Abc, Gr, Gr•, Grc, Gr,
Leibniz, Lie, LL and LL; the last noted category will be defined in Sec. 8.3.

Let X be a set, and MX be the free magma generated by X. Recall (see, e.g., [10] or [83]) that a
magma is a set M with a (generally nonassociative) binary operation

M × M �� M.

504



We write the elements of MX in the “vertical way”; so the elements of MX have the form

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

xt−1,it−1

·
·
·

⎛

⎝

xt−1,3
(

xt−1,2

xt−1,1

)

⎞

⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

·
·
·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1i1·
·
·

⎛

⎝

x13
(

x12

x11

)

⎞

⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

x

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xtit

···
⎛

⎝

xt3
(

xt2

xt1

)

⎞

⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8.2.1)

where x, xjs ∈ X, j = 1, 2, . . . , t, s = 1, 2, . . . ij .
We denote this kind of elements by x� to indicate that the element (8.2.1) is represented by the

element x ∈ X.
Let F(MX) be a free group generated by MX . The operation in F(MX) is denoted by “+,” so the

elements of F(MX ) have the form

±x�1 ± x�2 ± · · · ± x�n ,

where x�i is an element of type (8.2.1) for each i = 1, . . . , n. The empty word (neutral element) of
F(MX) is denoted by 0.

Define in F(MX ) the action of elements by

(x�1 + · · ·+ x�n )
y�1 +···+y�m =

⎛

⎜
⎝

(y�m−1)
···(

(y�1 )
(x�1 )

)

⎞

⎟
⎠

(y�m)

+ · · ·+

⎛

⎜
⎝

(y�m−1)
···(

(y�1 )
(x�n )

)

⎞

⎟
⎠

(y�m)

,

(x�1 + · · ·+ x�n )
0 = x�1 + · · · + x�n , 0(x

�
1 +···+x�

n ) = 0.

Now it is easy to see that the following statement holds.

Proposition 8.2.2. The object F(MX) is a group with action on itself and it is a free object in Gr•

on the set X.

Actually we have defined the functor F : Set→ Gr•, which is left adjoint to the forgetful functor U .
Let ∼ be a minimal congruence relation on F(MX) generated by the relation defined by Condition

1. Then we obtain

Proposition 8.2.3. The object F(MX )/ ∼ is a free object in Grc on the set X.

In the same way we construct free objects in Gr.
On the other hand, in diagram 7.3.3 of Sec. 7.3 the functor A is left adjoint to the full embedding

functor E, and therefore we obtain
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Proposition 8.2.4. A(F(MX )/ ∼) is a free object in Abc on the set X.

Here we give the construction of free Leibniz algebras. Let k be a commutative ring with the unit and

X be any set. Denote by W (X) the set that contains X and all those formal combinations of square
brackets and elements of X that do not contain words of the form [a, [b, c]], where a, b, c are elements
of X or combinations of elements of X and brackets. Let F (W (X)) be the free k-module generated

by the set W (X). Consider the map η : W (X)×W (X) −→ F (W (X)) defined by η(w1, w2) = [w1, w2]
if [w1, w2] ∈ W (X); for [w1, w2] /∈ W (X) we decompose the word [w1, w2] according to the Leibniz
identity and express it as a sum of the words from W (X) in F (W (X)). We define η(w1, w2) as this

final sum. Note that any two different decompositions give the same element of F (W (X)). We define
the bracket operation on F (W (X)) as the k-linear extension of the map η to F (W (X)). It is easy to
see that the obtained object is a free Leibniz algebra on the set X (cf. [65]).

Remark. Since the functors Q1, Q2, S1, S1
′, A, and S2 in the diagram (7.3.3) of Sec. 7.3 are left

adjoints to the embedding functors, these functors take free objects to free objects. These new obtained
objects are free on the same sets as original taken objects. Moreover, we have Q1(G) ≈ Q2(G) and

S1(L) ≈ S1
′(L), where G and L are free in Grc and LL respectively. Here, e.g., for the case of

the functor Qi we have in mind that Q1F and Q2F are left adjoints to one and the same functor
UT = UC = UG; thus Q1F ≈ Q2F ≈ FG, where UG : Gr → Set is an underlying functor and

FG is its left adjoint, which corresponds to any set ofthe free group generated by this set. Thus
Q1(G) ≈ Q2(G) for free object G. We apply the analogous argument for the other functors above.

8.3. Identities in Grc and the Main Results

In this section all algebras (Lie, Leibniz, Lie–Leibniz) are considered over the ring of integers Z. We

investigate the question of the existence of identities between round and square brackets in Gr•. If E
is the set of the identities for the category Gr, we define the full subcategory LL of LL (Lie–Leibniz
algebras) of those objects satisfying identities E, where E denotes the set of all identities inherited in

LL from E. We prove that if G is the free object in Gr generated by the set X, then every element of
Gn = Gn/Gn+1 is represented as a combination of elements of the form

[(

· · · [([(yk, · · · [(y3, [([(x, y1)], y2)]
)] · · · )], ym

)] · · · , yn−1

)]

,

where two brackets mean that we have either a round or a square bracket for x, y1, . . . , yn−1 ∈ X, and
this representation is unique up to identities from E. By this result we easily prove that the functor
LL takes free objects from Gr to free objects in LL, and L(G) (resp. LA(G′)) is a free Leibniz algebra

if G (resp. G′) is a free object in Abc (resp. in Gr).
The category Gr is defined in Sec. 8.1 as the full subcategory of those objects of Gr• that satisfy

Conditions 1′, 2, 3. We look for possible identities in Gr between the round and square brackets.

We have well-known Witt–Hall identities for round brackets in Gr. By Witt’s theorem [83], [90] the
functor W : Gr −→ Lie in diagram (7.3.3) takes free objects to free objects. Taking into account
the same kind of argument as we have at the end of Sec. 8.1 for the case of groups with action and

Lie–Leibniz algebras, we conclude that in Gr we do not have such identities for the round brackets that
“inherit” new identities for Lie algebras. Thus if new identities exist in Gr, they give the same Jacobi
identity, the identity (x, x) = 0 and the bilinear property for the operation ( , ) in the corresponding

Lie algebra. Below we consider in Gr those “variations” of the well-known identities in Gr which by
applying the usual functors (see diagram (7.3.3) of Chap. 7)

Abc Grc
A�� Q2 �� Gr
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give the known identities in Abc and Gr. As above, for x, y ∈ G, G ∈ Gr• we denote x
y
= −y+ x+ y.

Consider the following expressions:

a1 =
[

xy, (y, z)
]

; b1 =
[

(x, y), zx
]

; c1 =
[− (x, z), yz

]

;

a2 =
(

xy, [y, z]
)

; b2 =
(

[x, y], zx
)

; c2 =
(− [x, z], yz

)

;

a3 = −
[

(y, z), xy
]

; b3 = −
[

zx, (x, y)
]

; c3 = −
[

yz,−(x, z)];
a4 =

(

xy,−[z, y]); b4 =
(− [y, x], zx

)

; c4 =
(

[z, x], yz
)

;

a5 =
[

x
y

, (y, z)
]

; b5 =
[

(x, y), z
x]

; c5 =
[− (x, z), y

z ]

;

a6 =
(

x
y

, [y, z]
)

; b6 =
(

[x, y], z
x)

; c6 =
(− [x, z], y

z)

;

a7 = −
[

(y, z), x
y ]

; b7 = −
[

z
x
, (x, y)

]

; c7 = −
[

y
z
,−(x, z)];

a8 =
(

x
y

,−[z, y]); b8 =
(− [y, x], z

x)

; c8 =
(

[z, x], y
z)

.

Consider all kinds of identities

ai = bj + ck, i, j, k = 1, 8. (8.3.1)

Applying the functor A or Q2 to (8.3.1), we obtain that the resulting equalities are true in Abc and

Gr (i.e., when ( ) = 0 or [ ] = ( ) ).
Direct computations give

a1 = −xy + x−z+y+z;

a2 = −xy − yz + y + xy − y + yz;

a3 = −z(xy) − y(x
y) + z(x

y) + y(x
y) − y − z + y + z;

a4 = −xy − z + zy + xy − zy + z;

a5 = −y − x+ y − y−y−z+y+z + x−y−z+y+z + y−y−z+y+z;

a6 = −y − x+ y − yz + x+ yz;

a7 = −z−y+x+y − y−y+x+y + z−y+x+y + y−y+x+y − y − z + y + z;

a8 = −y − x+ y − z + zy − y + x+ y − zy + z;

b1 = −y − x+ y + x− x(z
x) − y(z

x) + x(z
x) + y(z

x);

b2 = −xy + x− zx − x+ xy + zx;

b3 = −z−y+x+y + zx;

b4 = −y + yx − zx − yx + y + zx;

b5 = −y − x+ y + x− x−x+z+x − y−x+z+x + x−x+z+x + y−x+z+x;

b6 = −xy − z + xy − x+ z + x;

b7 = −x−x−y+x+y − z−x−y+x+y + x−x−y+x+y − x+ z + x;

b8 = −y + yx − x− z + x− yx + y − x+ z + x;

c1 = −x− z + x+ y − z(y
z) − x(y

z) + z(y
z) + x(y

z);

c2 = −− x+ xz − yz − xz + x+ yz;

c3 = −y−x+z+x + yz;

c4 = −zx + z − yz − z + zx + yz;

c5 = −x− z + x+ z − z−z+y+z − x−z+y+z + z−z+y+z + x−z+y+z;
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c6 = −x+ xz − z − y + z − xz + x− z + y + z;

c7 = −z−z−x+z+x − y−z−x+z+x + z−z−x+z+x − z + y + z;

c8 = −zx − y + zx − z + y + z.

The checking shows that none of identities (8.3.1) holds for free objects in Gr•. The same is true for
the category Grc, since Condition 1 represents any element x by a combination of elements with base
element x, and therefore Condition 1 does not help any of identities (8.3.1) to hold in Grc. Nevertheless

we cannot claim that we do not have identities between round and square brackets in Gr• or in Grc.
The same situation is observed for Gr; by definition, here we have two identities from (8.3.1); these
are Condition 2 and Condition 3 (for i = j = k = 1 and i = j = k = 2). Note also that we may

have identities in Gr that do not give new identities for W (F ) (where F is a free group and W (F )
is the corresponding Lie algebra), but “variations” (with square brackets) of these identities in Grc

(or in Gr) may give new identities in LL(G), for a free object G ∈ Grc, since, e.g., in W (G) we have

(x, x) = 0, but in LL(G), [x, x] �= 0, x ∈ G.
Let G be a free object in Gr. Let E be the set of all defining identities between both kinds of

brackets in Gr, and let E be the set of corresponding identities that satisfies LL(G) and thus the

identities inherited from E.
Denote by LL the full subcategory of LL consisting of those objects of LL that satisfy the conditions

from E. Of course, among the identities in E we have the bilinear properties of [ , ] and ( , ), the

identity (x, x) = 0, the Jacobi identity
(

(x, y), z
)

+
(

(y, z), x
)

+
(

(z, x), y
)

= 0,

the Leibniz identity
[

x, [y, z]
]

=
[

[x, y], z
]− [

[x, z], y
]

, (8.3.2)

and also the identities
[

x, (y, z)
]

=
[

(x, y), z
]− [

(x, z), y
]

,
(

x, [y, z]
)

=
(

[x, y], z
) − (

[x, z], y
)

which correspond to the known identities for round and square brackets in Gr and Gr•, respectively,
Conditions 1′, 2, and 3 in Gr•.

For the case of Abc, for a free object G ∈ Abc, E contains the usual identities (8.1.1) and only
one additional identity, Condition 1′ (see Chap. 7, Sec. 7.3); by virtue of Proposition 8.1.13 the set
of all defining identities E (which satisfy the elements of L(G)) consists of identity (8.3.2), bilinear

properties of the square bracket operation, and of the identity [x, 0] = [0, x] = 0. See also the remark
after the proof of Proposition 8.1.13.

Proposition 8.3.1. Let G ∈ Gr, Gn = [Gn−1, G] for n > 1, where G1 = G, and Gn = Gn/Gn+1. If
G is the free object in Gr generated by the set X, then G1 is the free abelian group generated by the
same set X, and every element of Gn, n > 1 has a representation as a combination of elements of the

form
[(

· · · [([(yk, · · ·
[(

y3,
[(

[(x, y1)], y2)]
)] · · · )], ym

)] · · · , yn−1

)]

(8.3.3)

(n − 1 round or square brackets), where x, y1, . . . , yn−1 ∈ X, and this representation is unique up to
identities from E.

Proof. It is obvious that G1 = G1/G2 is the free abelian group on the set X. We have G2 = [G1, G1],
and, by definition, G2 is an ideal of G generated by elements of the form [(g, h)] (here we mean
elements of both forms [g, h] and (g, h)), g, h ∈ G. Since G is a free object in Gr, we have

g = x�1 + · · · + x�n , h = y�1 + · · · + y�k ,
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where xi, yi ∈ X, i = 1, n, j = 1, k. Then by (8.1.2) and (8.1.3) we obtain that [(g, h)] has the form

[(g, h)] =
∑

i,j

[(

x�i , y
�
j

)]�
; (8.3.4)

here for a ∈ G, a
�
means that the action operations represented by � include also actions by conju-

gation. Now we have to show that if t, t1, t2 ∈ G2 and have form (8.3.4), then tg, t
g
, [g, t], t1 + t2 have

the same form for g ∈ G. It is obvious that tg, t
g
, and t1 + t2 have form (8.3.4). For [g, t] we have the

representation

[g, t] =
∑

l,i,j

[(

z�l ,
[(

x�i , y
�
j

)]�)]�
.

If we open one bracket (square or round, as in the representation) in each summand

[

x�i , y
�
j

]

= −x�i + x
(y�j )

i ,

(

x�i , y
�
i

)

= −x�i + x
(y�j )

i ,

(8.3.5)

and then apply (8.1.2) and (8.1.3), we will see that [(g, t)] has the representation of the form (8.3.4).

We have [(g, t)] = 0 in G2, since [(g, t)] ∈ G3, and this is also obvious from (8.3.5) and the fact that

xi = x
(y0j )

i in G2 for xi ∈ G2. In the same way we prove that the elements of G3 = [G2, G] have
representations of the form

∑[( 	

z�2 ,

[(

x�i , y
�
i

)]�)]�
,

where for a, b ∈ G, [
	


(a, b)] denotes elements either of the form [(a, b)] or of the form [(b, a)].
Suppose that the elements of Gn−1 can be represented as Z-combinations of the elements of the

form
[(

· · ·
[([(

y�k , · · ·
[(

y�3 ,
[(

[(x�, y�1 )]
�
, y�2

)]�)]�
. . .

)]�
, y�m

)]�
· · · , y�n−2

)]�
.

Then we obtain the corresponding result for Gn. These representations are unique up to identities
from E. From this it follows that the elements of Gn are combinations with coefficients from Z of

elements of the form (8.3.3). Since E is the set of all identities in L(G) =
∞∑

n=1
Gn, these representations

of elements of Gn are unique up to identities from E.

From Proposition 8.3.1 follows the main result.

Theorem 8.3.2. Let G be a free object in Gr on the set X. Then the Lie–Leibniz algebra LL(G) is

a free object in the category LL on the set X.

In the same way, applying Proposition 8.1.13 we obtain

Theorem 8.3.3. Let G be a free object in Abc generated by the set X. Then L(G) is a free Leibniz
algebra on the set X.

Corollary 8.3.4. Any free Leibniz algebra can be obtained up to an isomorphism by the functor L;
i.e., for any free Leibniz algebra A there is an object G ∈ Abc such that L(G) ≈ A.

Proof. Let A be the free Leibniz algebra on the set X. Take the free object G in Abc on the set
X. Now, by Theorem 8.3.3, L(G) is the free Leibniz algebra generated by the set X, and therefore

L(G) ≈ A.
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Consider the restriction LL
∣
∣
Gr
. It is obvious that LL

∣
∣
Gr

factors through LL. Thus we have the

commutative diagram

Grc

LL

����
���

���
���

���
���

���
���

���
���

�
Gr� ���

LL
∣
∣
Gr

���
��

��
��

��
��

��
��

��
�

LL �� LL

I

��
LL.

Corollary 8.3.5. Any free Leibniz algebra A can be considered as an object of LL, i.e., E2(A) ∈ LL.

Proof. It follows from Corollary 8.3.4 and the fact that Abc �
� �� Gr and E2 ·L = LL

∣
∣
Abc

= LL
∣
∣
Abc

.

Corollary 8.3.6. There is a full embedding functor E2 : Leibniz −→ LL such that IE2 = E2; the

functor S2 = S2I is a left adjoint to E2.

Proof. Let A be any Leibniz algebra; choose a free Leibniz algebra FA on the basis A and an epimor-
phism FA −→ A. We have E2(FA) ∈ LL by Corollary 8.3.5 and E2(A) ∈ LL; from this it follows that
the elements of A also satisfy identities from E; thus E2(A) ∈ LL, which means that there is a full

embedding functor E2 : Leibniz−→ LL with IE2 = E2. It is easy to see that S2 is a left adjoint to
E2.

Applying Witt’s theorem stating that the functor W takes free objects from Gr to free objects in
Lie, we obtain the following results.

Corollary 8.3.7. Any free Lie algebra can be obtained up to isomorphism by the functor W .

Corollary 8.3.8. Any free Lie algebra A can be considered as an object of LL either with trivial

square bracket operation or with the square bracket equal to the round bracket, i.e., E1(A) ∈ LL,
E1

′(A) ∈ LL.

Corollary 8.3.9. There are full embedding functors E1, E′
1 : Lie −→ LL such that IE1 = E1 and

IE′
1 = E1

′; the functor S1 = S1I is a left adjoint to E1 and the functor S′
1 = S1

′I is a left adjoint

to E′
1.
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Thus we have the diagram

Grc

A

12

Q1

23

Q2

23

LL

34

Abc

E

4	

L

��

E ��
Gr

��

A

��

LL

��

Q1 ��

Q2 �� Gr

W

��

C

��

T��

C

55 T

55

Leibniz

E2

66##
###

###
###

###
###

###
###

E2 ��
LL

I

��

S2

��
S1

′
��

S1 ��

Lie ,
E1

′
��

E1��

E1

77���
���

���
���

���
���

���
��

LL

S2

88#######################

S1

$%�����������������������

(8.3.6)

where A = A
∣
∣
Gr
, E is the obvious full embedding, (i.e., it is clear that E factors through Gr),

Qi = Qi

∣
∣
Gr
, i = 1, 2. Since Conditions 2 and 3 are satisfied for groups with trivial action or action by

conjugation, it follows that T and C factor through Gr; this gives the functors T and C. Q1 and Q2

are left adjoints to T and C respectively.

Corollary 8.3.10. For free objects in Gr the left and right directional diagrams in (8.3.6) commute
up to an isomorphism, i.e., if G is a free object in Gr, then

LA(G) ≈ S2 LL(G) = S2 LL
∣
∣
Gr
(G),

W Q1 ≈ S1 LL(G) = S1 LL
∣
∣
Gr
(G),

W Q2 ≈ S′
1 , LL(G) = S1

′ LL
∣
∣
Gr
(G).

Proof. It is sufficient to mention that the functors Ā, S̄2, Q̄1, Q̄2, S̄1, S̄
′
1 take free objects to free

objects and the new obtained objects are free on the same sets as the original ones. This fact can

be shown directly or by the analogous argument that we have used in the remark at the end of the
Sec. 8.2.

It may be useful to formulate the result concerning free Leibniz algebras in the following form.

Corollary 8.3.11. The composites of functors S2 LL, LA : Gr −→ Leibniz take free objects from
Gr to free Leibniz algebras, and for any free Leibniz algebra A there is a free object G ∈ Gr with
S2 LL(G) ≈ A ≈ LA(G).

Let V : LL −→ Leibniz be the obvious forgetful functor. The following commutative diagram,
which is obtained from the above stated results, was suggested by the referee of the paper [38]:

Gr
C ��

W
��

Gr

V ◦LL
��

Lie �� Leibniz,
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where Lie −→ Leibniz is an obvious inclusion functor.

These results together with Theorem 7.3.6 of Chap. 7 give E. Witt’s well-known construction for
groups with action on itself and prove an analogue of Witt’s theorem for this special kind of groups
and Leibniz algebras, which give a solution to the problems of J.-L. Loday stated in [62, 64].

Chapter 9

HOMOTOPICAL AND CATEGORICAL PROPERTIES OF CHAIN

FUNCTORS

The material presented in this chapter emphasizes more the algebraic aspects of the category of
chain functors Ch in comparison to [6], where we tried to explain the close analogy with the case

of topological spaces or simplicial sets. The objective of [6] is the verification of the closed model
properties of Quillen, CM2) – CM5). Property CH1), the existence of finite limits and colimits, is
not fulfilled in Ch. Although not every mapping f ∈ Ch(AAA∗,BBB∗) in the category of chain functors

admits a kernel or a cokernel, we prove that all cofibrations have a cokernel, all regular fibrations have
a kernel, and the pushout of a cofibration along a cofibration exists in Ch, resp. the dual statement
for fibrations. These results are applied in [8]. In Sec. 9.7 we include some basic material about chain

functors.

9.1. The Closed Model Properties of Ch

Recall that a mapping p ∈ Ch(EEE∗,BBB∗) in the category of chain functors is called regular whenever
it commutes with κ, ϕ, and the chain homotopies ϕκ � 1, j#ϕ � l (see Sec. 9.7 for the definition
of a chain functor). In what follows we will deal with regular injective mappings of chain functors

A∗ �� �� B. We will often call this kind of injections “inclusions” and denote it by A∗
� � �� B∗.

We briefly record the closed model structure for Ch from [6]:

(1) The weak equivalences are the homotopy equivalences.

(2) A cofibration q : AAA∗ −→ BBB∗ is an inclusion satisfying the homotopy extension property ([6,
Definition 4.1]).

(3) A fibration p : EEE∗ −→ BBB∗ is a mapping having the lifting property with respect to all trivial
cofibrations, i.e., to all cofibrations that are also weak equivalences.

In Ch we have a cylinder object KKK∗ × I and a cocylinder object KKKI∗,KKK∗ ∈ Ch ([6, § 1]).
In particular:

Lemma 9.1.1.

(1) The inclusion i0 :KKK∗ −→KKK∗ × I is a trivial cofibration.

(2) The projection p0 :KKK
I∗ −→KKK∗ is a trivial fibration.

(3) All objects in Ch are fibrant and cofibrant.

Proof. Assertions (1) and (2) follow from [6, example on p. 114 and § 1, Lemma 3.5]. The inclusion
{0} ⊂ AAA∗ will be a cofibration because An splits on each level n ∈ Z, An = An ⊕ {0} (cf. [6, Lemma

4.4]). The projection p : AAA∗ −→ {0} has the lifting property with respect to any trivial cofibration

q : BBB∗
⊂ �� CCC∗ : According to [6, Lemma 4.8], there exists a s : CCC∗ −→ BBB∗ satisfying sq = 1. So the
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commutative square

AAA∗
p �� {0}

BBB∗ q
��

f

��

CCC∗

0

��

has a lifting F : CCC∗ −→ AAA∗F = fs, satisfying Fq = f , Fp = 0.

Lemma 9.1.2. Let q : AAA∗
� � �� BBB∗ be an inclusion in Ch; then the following properties of q are

equivalent :

(1) Let j ∈ Ch(BBB∗ ∪AAA∗ × I,BBB∗ × I) be the inclusion; then there exists

r ∈ Ch(BBB∗ × I,BBB∗ ∪AAA∗ × I)

satisfying rj = 1.

(2) Let

LLL∗I
p0 �� LLL∗

AAA∗ q
��

g

��

BBB∗

G

�� (9.1.1)

be commutative, LLL∗ ∈ Ch; then there exists a lifting G : BBB∗ −→ LLL∗I , rendering (9.1.1) commu-
tative.

(3) For every Bn(X,U) (B′
n(X,U)) there exists a natural isomorphism as an abelian group (not

necessarily as a chain complex!), Bn(X,U) ≈ An(X,U) ⊕ Cn(X,U), resp. for B′
n(X,U).

(4) q is a cofibration.

Proof. Follows from [6, Lemmas 4.2, 4.3, 4.4].

Lemma 9.1.3. The following properties of a mapping p ∈ Ch(EEE∗,BBB∗) are equivalent

(1) Suppose

EEE∗
p �� BBB∗

KKK∗
i0

��

f

��

KKK∗ × I

F

��

KKK∗ ∈ Ch (9.1.2)

is commutative; then there exists a diagonal F ∈ Ch(KKK∗×I,EEE∗) rendering (9.1.2) commutative.

(2) p is a fibration.

Proof. Property (1) was the definition of a (Hurewicz-) fibration in [6, Definition 3.1]. The assertion

follows from [6, Theorem 5.1].

Theorem 9.5.2 in Sec. 9.5 is a dual statement to Lemma 9.1.2, extending Lemma 9.1.3 considerably
for regular fibrations.

Proposition 9.1.4.

(1) Let q : AAA∗ ⊂ BBB∗ be a (trivial) cofibration, then

q × I : AAA∗ × I ⊂ BBB∗ × I

is a (trivial) cofibration.
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(2) Let p : EEE∗ −→ BBB∗ be a (trivial) fibration, then

pI : EEE∗I −→ BBB∗I

is a (trivial) fibration.

Proof. (1) Since q is a cofibration, there exists a levelwise isomorphism Bn(X,U) ≈ An(X,U) ⊕
Cn(X,U) as described in Lemma 9.1.2 3). This induces a splitting

(B∗ × I)n(X,U) ≈ (A∗ × I)n(X,U)⊕ C̃n(X,U)

for suitable, obviously existing C̃n, with the same properties. Hence q×I is a cofibration. If q is a weak

equivalence, there exist s : BBB∗ −→ AAA∗, homotopies H : qs � 1, G : sq � 1. Forming s×I, H×I,G×I
yields a homotopy inverse to q × I.

(2) Let q : AAA∗ ⊂ CCC∗ be a trivial cofibration,

EEE∗I
pI �� BBB∗I

AAA∗ q
��

f

��

CCC∗

F

�� (9.1.3)

be commutative; then the adjoint diagram

EEE∗
p �� BBB∗

AAA∗ × I
q×I

��

˜f

��

CCC∗ × I

˜F

�� (9.1.4)

is also commutative, q × I according to (1) is a trivial cofibration, hence there exists a diagonal
˜F : CCC∗ × I −→ EEE∗, rendering (9.1.4) commutative. So the adjoint F : CCC∗ −→ EEE∗I is a diagonal for

(9.1.3). The remaining part of 2) follows, e.g., by replacing trivial cofibrations in the previous proof
by arbitrary ones.

We include an algebraic proof of the following assertion.

Lemma 9.1.5. Let ρ : AAA∗×I −→ cone AAA∗ be the projection; then there exists a σ : cone AAA∗ −→ AAA∗×I
satisfying

ρσ = 1, (9.1.5)

i0 r + σρ = 1 (9.1.6)

with AAA∗
i0 �� AAA∗ × I

r �� AAA∗ , r(an
′, an−1, an) = an

′ + an.

Proof. Recall that cone A∗ is defined in dimension n as
{

(an−1, an) | am ∈ Am

}

, (AAA∗ × I)n =
{

(an
′, an−1, an)

}

;

then we set

σ(an−1, an) = (−an, an−1, an)

and realize that σ ∈ Ch(cone AAA∗,AAA∗ × I) satisfies (9.1.5) and (9.1.6).

From this, we deduce immediately

Corollary 9.1.6. p0 :KKK∗I −→KKK∗ is a trivial fibration.
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Proof. p0 is by construction a weak equivalence. There is a section s :KKK∗ −→KKK∗I , p0 s = 1. Let

KKK∗I
p0 �� KKK∗

AAA∗
i0

��

f

��

AAA∗ × I

F

�� (9.1.7)

be a commutative square; then

F = fr + sFσρ

is a diagonal, rendering (9.1.7) commutative. Applying Lemma 9.1.3 p is a fibration.

There exists in Ch a canonical suspension ΣAAA∗ (resp. loop object ΩAAA∗); ΣAAA∗ is the cokernel of the
mapping

AAA∗ ⊕AAA∗
i0⊕i1 �� AAA∗ × I �� ΣAAA∗ ,

while ΩAAA∗ is the kernel of the projection

ΩAAA∗ �� AAA∗I
p0⊕p1 �� AAA∗ ⊕AAA∗ .

As in all categories with Z-graded objects, we have another kind of suspension (resp. loop construction)

(ΣAAA∗)n = An−1,

(ΩAAA∗)n = An+1.

Lemma 9.1.7. Suspension and loop functor are in the homotopy category Chh inverses of each other.

Proof. This is simply the content of [6, Lemma 8.1, Theorem 8.2].

According to [6] the category of chain functors with the above given classes of weak equivalences,

cofibrations and fibrations satisfies Quillen’s axioms CM2) – CM5), also by Corollary 6.2 (resp. Corol-
lary 7.2), the decompositions in the decomposition axiom CM5) for Ch are canonical.

Furthermore Ch belongs to the class of categories where the whole model structure, i.e., the class of

fibrations, cofibrations, and weak equivalences, is entirely determined by the concept of a homotopy
H :KKK∗×I −→ LLL∗ (resp. by its adjoint G :KKK∗ −→ LLL∗I), i.e., by the cylinder construction and its dual.
This follows from the fact that weak equivalences are homotopy equivalences and from Lemma 9.1.2(3)

(resp. Lemma 9.1.3).

9.2. The Chain Functor Property of a Special Pushout

Since the category Ch does not have arbitrary (co-)limits, we are obliged to investigate separately
in each case whether a kernel or cokernel exists. In the present section we prove that for a regular
injection q : AAA∗ −→ BBB∗ the pushout BBB∗ ∪ cone AAA∗ = PPP ∗ carries the structure of a chain functor. Since

PPP ∗ is also a cokernel, this is a special case of the existence of a cokernel (Theorem 9.3.1 in the next
section). This and some other results will be deduced from Theorem 9.2.1. Therefore we present a
detailed proof of Theorem 9.2.1. The axioms for a chain functor CH1) – CH7) are recorded in Sec. 9.7.

Let q : AAA∗ �
� �� BBB∗ be an inclusion in Ch; then we form the pushout

PPP ∗ = BBB∗ ∪AAA∗ cone AAA∗

Theorem 9.2.1. PPP ∗ is a chain functor.
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Proof. We verify properties CH1) – CH7) and begin by defining

P ′
∗ = B′

∗ ∪ cone A′
∗,

with natural inclusions l : PPP ′∗ ⊂ PPP ∗, i′ : P∗(U) ⊂ P ′∗(X,U). Since by assumption κ, ϕ and the related
homotopies ϕκ � 1, j#ϕ � 1 in AAA∗ are the restrictions of the associated items in BBB∗, we obtain all

this for PPP ∗. We have κi = i′. All inclusions k : (X,U) ⊂ (Y,B) induce monomorphisms for AAA∗ and
BBB∗, hence also for PPP ∗, and P∗(X,X) is clearly acyclic.

This confirms CH1) and CH2).

Ad CH3): Any cycle z̃ ∈ P∗(X,U) is of the form c − ẑ, ẑ ∈ cone AAA∗, c ∈ B∗(X,U), with dc = dẑ =

z ∈ AAA∗
� � �� cone AAA∗ (interpreting the injection AAA∗ −→ cone AAA∗, as always, as an inclusion). We

apply Lemma 9.7.5 and detect

(1) a z′ ∈ A′∗(X,U), a1 ∈ A∗(U,U) such that lz′ + q#a1 ∼ z, q : (U,U) ⊂ (X,U) in A∗(X,U);

(2) a c′ ∈ B′∗(X,U) such that lc′+q#a2 = c+dw, a2 ∈ B∗(U,U), w ∈ B∗(X,U), all (̂· · · ) ∈ cone AAA∗.
We have

c− ẑ = c− (lẑ′ + q#â2) + dv = l(c′ − ẑ′) + q#(a2 − â2) + d(v − w).

This confirms CH3) for PPP ∗.

Ad CH4): Kerψ ⊂ Ker∂ :

Suppose lz′+ q#a = dw in PPP ∗, z′ = zB + ẑ′, a = aB + â, w = wB + ŵ, (· · · )B ∈ BBB∗, (̂· · · ) ∈ cone AAA∗;
then dz′ = eB + ê ∈ P∗(U), eB ∈ B∗(U), ê ∈ cone A∗(U). We have

lz′B + q#aB − dwB = −(lẑ′ + q#â) + dŵ = z1A,

and deduce that z1A ∈ A∗(X,U). Since dz1A ∈ A∗(X,U) ∩ (cone A∗(U)), we conclude dz1A ∈ A∗(U).

Hence we obtain an a ∈ A∗(U,U) such that zA = z1A + q#a is a cycle in A∗(X,U), which according to
CH3) for A∗, implies that

zA = lz′A + q#a
1
A + dwA,

lz′B + q#(aB + a)− dwB = zA

and

l(z′B − z′A) + q#(aB − a− a1A) = dvB .

According to CH4) for B∗ we obtain

d(z′B − z′A) = i′ duB , uB ∈ B∗(U)

and

dz′A = i′ uA = i′ dûA, uA ∈ A∗(U), ûA ∈ cone A∗(U).

As a result

dz′B = i′ d(uB − ûA)

and

dz′ = dz′B + dẑ′ = i′ d(uB − ûA + x̂),

i′dx̂ = dẑ′.

This confirms the first part of CH4) for PPP ∗.

Ker j∗ ⊂ Ker p∗ κ∗ :

Suppose j#z = dw, z = zB + ẑ, w = wB + ŵ. We are required to find a u ∈ P∗(U), x′ ∈ P∗(X,U)
such that κz = i′ u+ dx′. This will be accomplished by changing z several times in its homology class

in P∗.
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1) We want to change z such that dzB is not only contained in A∗(X) but in Im i#.

To this end we observe that dzB ∈ A∗(X), hence j#zB ∈ A∗(X,U), and conclude t = dwB− j#zB ∈
A∗(X,U) and dwB ∈ A∗(X,U). So dt = j#dzB and according to CH4) for A∗ we obtain

κdzB = i′ uA + dx′A, uA ∈ A∗(U), x′A ∈ A′(X,U).

Application of ϕ yields

dzB = i#uA + dyA, yA ∈ A∗(X).

As a result there exists an x̂ such that

zB − yA + x̂ = zB ∼ z in P∗,

but now with dzB ∈ Im i#.
So we can from now on assume without loss of generality that dzB ∈ Im i# and that ẑ is the cone

over d zB in cone AAA∗.

2) We calculate

j#z − dwB = j#zB − dwB + j#ẑ = dŵ = j#ẑ + e,

e ∈ A∗(X,U), de ∈ Im i#. Property CH3) for A∗ allows us to assume that e ∈ A′∗(X,U) hence we can
apply ϕ and obtain a e ∈ A∗(X), such that j#(zB − e)− dw1B = 0, with suitable w1B ∈ B∗(X,U). So

zB − e ∈ B∗(X) is a cycle that is in PPP ∗ (not in BBB∗) homologous to z: z − (zB − e) = ẑ + e is a cycle
in cone AAA∗, hence bounding in PPP ∗.

Property CH4) for B∗ yields a uB ∈ B∗(U) and a x′B ∈ B′∗(X,U) such that κ(zB−e) = i′ uB+dx′B .
This confirms the second part of CH4) for PPP ∗.

Ad CH5): Is obvious.

Ad CH6): Suppose p : (X,U) −→ (Y, V ), as an excision map, is an isomorphism in the homology

of BBB∗ and AAA∗. Let e ∈ B∗(X,U) be a cycle such that p#e = dw, w ∈ B∗(Y, V ). Then we find a
w ∈ B∗(X,U), such that e = dw, p#w = w + dx.

If on the other hand, e ∈ B∗(Y, V ) is a cycle, then there exists a cycle e ∈ B∗(X,U), such that

p#e = e+ dx. The same is true for A∗
Let z = zB + ẑ ∈ P∗(X,U) be a cycle; then dzB = −dẑ ∈ A∗(X,U). Assume now that p#z is

bounding, hence that p#z = dwB + dŵ. There exists a t ∈ A∗(Y, V ) such that p#zB − t is a bounding

cycle. Hence there exists a t ∈ A∗(X,U) such that zB − t is a bounding cycle. This is equivalent to
z ∼ 0. So p∗ for P∗ is monic.

Let z = zB + ẑ be a cycle in P∗(Y, V ); then we find a zB ∈ B∗(X,U), such that p# dzB ∼ dzB , i.e.,

an s ∈ A∗(X,U) with ds = p#dzB − dzB and a x ∈ B∗(X,U), such that dx = p#zB − zB − s.
This confirms that p∗ for PPP ∗ is epic.

Ad CH7): Is obvious by construction of the cone AAA∗ and PPP ∗.
This completes the proof of Theorem 9.2.1.

There are of course other colimits that exist trivially in Ch:

Lemma 9.2.2. Any family of chain functors {AAAι∗, ι ∈ J} has a direct sum
⊕

ι∈J
AAAι∗ in Ch. This is

simply the direct sum of the chain complexes involved, and the other ingredients of a chain functor are

taken for each summand.
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9.3. Cokernels of Cofibrations

In this section we deduce the existence of a cokernel BBB∗/AAA∗ for a cofibration q : AAA∗ �
� �� BBB∗ .

Theorem 9.3.1. Let q : AAA∗
� � �� BBB∗ be a cofibration in Ch; then the chain complex functor BBB∗/AAA∗

can be equipped with the structure of a chain functor, so that r : BBB∗ −→ BBB∗/AAA∗ is a cokernel.

Proof. We apply Theorem 9.2.1 ensuring that PPP ∗ = BBB∗ ∪ cone AAA∗ is a chain functor and observe that

s : PPP ∗ −→ BBB∗/AAA∗ induces an isomorphism of homology groups. Since q is a cofibration, there exists,
due to Lemma 9.1.2, a splitting B∗ = An ⊕An for each n, which is not a splitting of chain complexes.
Setting da = a1 + a1, a1 ∈ An−1, a1 ∈ An, d[a] = [a1], we endow BBB∗/AAA∗ with the structure of a free

chain functor functorially. Assume that

(BBB∗/AAA∗)′ =
{

[b′] | b′ ∈ B′
∗
}

.

Since ϕ, κ and the chain homotopies ϕκ � 1, j# ϕ � l are preserved by q, we obtain induced mappings
ϕ : (B∗/A∗)′∗(X,U) −→ (B∗/A∗)∗(X), κ : (B∗/A∗)∗(X) −→ (B∗/A∗)′∗(X,U), chain homotopies ϕκ �
1, j#ϕ � l : (BBB∗/AAA∗)′ ⊂ (BBB∗/AAA∗) as well as a natural i′ : (B∗/A∗)∗(U) −→ (B∗/A∗)′∗(X,U) satisfying

κ i = i′. This confirms property CH1).

Ad CH2): An inclusion k : (X,U) ⊂ (Y, V ) induces a monomorphism for BBB∗ and AAA∗, hence for A∗.
Suppose

k#a1 = k#a2 + a, a ∈ A∗;

then a = k#(a1 − a2) = 0, hence a1 = a2.

Suppose [c] ∈ (B∗/A∗)∗(X,X) is a cycle, hence dc ∈ A∗; then there exists an a ∈ A∗ such that
da = dc. So z = c − a is a cycle in (B∗/A∗)∗(X,X), hence bounding, confirming that [c] ∼ 0 in
(B∗/A∗)∗(X,X).

Ad CH3): Let [z] ∈ (B∗/A∗)∗(X,U) be a cycle; then dz = zA ∈ An−1, hence by the acyclicity of

cone A∗ we obtain a x̃A ∈ cone A∗ with dx̃A = zA. So z− x̃A is a cycle in PPP ∗. Condition CH3) for PPP ∗
provides us with chains

z − x̃A ∼ l z̃′ + q# b̃ = l z′ + q# b+ ĉ,

(̃· · · ) ∈ P∗, ĉ ∈ cone A∗. So we conclude

[z] ∼ l [z′] + q# [b],

confirming CH3) for (BBB∗/AAA∗).

Ad CH4): Suppose l z′ + q# b = dw + a, a ∈ A∗. Since da = 0, there exists x̃a ∈ cone A∗ with

dx̃a = a, hence l z′ + q# b = d(w + x̃a). Due to CH4) for PPP ∗, we obtain a ũ ∈ P∗(U), such that
dz′ = dũ = d(u+ ĉ), ĉ ∈ cone A∗. This confirms

Ker ψ ⊂ Ker ∂

for (BBB∗/AAA∗).
Suppose j# [c] = d[w], j : X ⊂ (X,U), da ∈ A∗. Then there exists a â ∈ cone A∗, such that

dâ = dc. On the other hand j# c = dw + a1, hence j# z̃ = j# c − j# â = dw + a1 − j# â, hence
j# z̃ = dw + a, z̃ a cycle in P∗. Since a is a cycle, there exists a â2 ∈ cone A∗, such that dâ2 = a.
Application of CH4) to P∗ furnishes

κz̃ = i′ ũ+ d ỹ′,

ỹ′ ∈ P ′∗(X,U), ũ ∈ P∗(U), ũ = u+ v̂, ỹ′ = y′ + ŷ. As a result

κ(c) = i′ u+ dy′ + e, e ∈ cone A∗
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confirming

Ker j∗ ⊂ Ker p∗ κ∗
for (BBB∗/AAA∗).

Ad CH5): Is obvious.

Ad CH6): Holds for PPP ∗, hence for (BBB∗/AAA∗) because s∗ is an isomorphism of homology groups.

CH7): Follows, as already mentioned, from the natural splitting of BBB∗ on each level n.

The following assertion confirms the existence of a certain pushout. It will become crucial for the
verification of the Quillen axiom SM7 for the model structure under discussion [8].

Theorem 9.3.2. Let q1 : AAA∗ −→ BBB∗, q2 : AAA∗ −→ CCC∗ be cofibrations in Ch; then BBB∗ ∪AAA∗ CCC∗ =DDD∗ is a
chain functor.

Proof. KKK∗ = {(a,−a) | a ∈ A∗} ⊂ BBB∗ ⊕ CCC∗ can immediately be equipped with the structure of a
chain functor. We assert:

(1) The inclusion α :KKK∗ ⊂ AAA∗ ⊕AAA∗ is a cofibration.

Proof. We must display a natural retraction of Kn ⊂ An ⊕An on each level n ∈ Z, which respects

A′∗: Each (a1, a2) ∈ An ⊕ An can be written as (a1, a2) = (a1,−a1) + (0, a2 + a1). This defines the
splitting, having all required properties.

The inclusion q1 ⊕ q2 : AAA∗ ⊕AAA∗ ⊂ BBB∗ ⊕CCC∗ is a cofibration, because q1, q2 are. Therefore:

(2) The inclusion i :KKK∗ ⊂ BBB∗ ⊕CCC∗ is a cofibration.

Thus we can apply Theorem 9.3.1 to the result that (BBB∗ ⊕CCC∗)/KKK∗ = Coker i is a chain functor
(hence contained in Ch). However, (BBB∗ ⊕CCC∗)/KKK∗ = BBB∗ ∪AAA∗ CCC∗.

Corollary 9.3.3. Let q1, q2 be as in Theorem 9.3.2; then (BBB∗ ⊕CCC∗)∪KKK∗ cone KKK∗ is an object of Ch.

Proof. Follows from (2) and Theorem 9.2.1.

We call a pair of functors C∗, C ′∗ into the category of chain complexes with inclusion l : C ′∗ ⊂ C∗
having all ingredients of a chain functor (without knowing that they fulfill CH1) – CH7) of Sec. 9.7)
a chain complex functor.

Corollary 9.3.4. Let AAA∗, BBB∗, AAA∗ ⊕ BBB∗ be three chain complex functors. If two of them are chain

functors, so is the third.

Proof. Follows from Lemma 9.2.2 and Theorem 9.3.1.

9.4. Existence of a Particular Pullback

We will call a mapping p ∈ Ch(EEE∗,BBB∗) a regular fibration if it is a regular mapping (see Sec. 9.1)

and a fibration.
Let WWW ∗ be the pullback in the following diagram.

WWW ∗
μ ��

ζ

��

BBB∗I

p0

��
EEE∗ p

�� BBB∗

. (9.4.1)

We have W∗ = {(e; p(e), b1 , x)} = {(e, ω) | ω(0) = p(e)}, of course with e ∈ En, (b, b1, x) ∈ Bn⊕Bn⊕
Bn+1, where ω is considered as a path with endpoints ω(0) = b, ω(1) = b1 (cf. [6, § 1 (7)] concerning

the description of path objects).
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Theorem 9.4.1. Let p ∈ Ch be a regular mapping of chain functors; then WWW ∗ carries the structure

of a chain functor.

Proof. Since p commutes with κ, ϕ and the relevant chain homotopies, we have all these items also
for WWW ∗. Moreover, WWW ′∗, l, and i′ are obvious. All inclusions induce monomorphisms, and W∗(X,X)
is acyclic: Let (e; p(e), b1, x) ∈ W∗(X,X) be a cycle; then e = de, b1 = db1, dx = (−1)n+1(p(e) − b1),

hence

z = x+ (−1)n(p(e)− b1)

is a cycle in B∗(X,X), hence bounding. So there exists a x with dx = z, implying

d(e; p(e), b1, x) = (e; p(e), b1, x).

This confirms CH1) and CH2).
Let z = (e; p(e), b1, x) ∈ W∗ be a cycle; then de = 0, db1 = 0, dx = (−1)n(p(e) − b1). We have

e ∼ l e′ + q# aE , b1 ∼ l b′1 + q# a1, dw + x = l x′ + q# a, the last according to Lemma 9.7.5. So we

obtain

z ∼ l(e′; p(e′), b′1, x
′) + q# (aE ; p(aE), a1, a) + d(0; 0, 0, w).

This confirms CH3).
We come to the two parts of CH4):

Ker ψ ⊂ Ker ∂

Suppose

d(e; p(e), b1, x) = l(e′; p(e′), b′1, x
′) + q# (aE ; p(aE), aB , a)

then de = l e′ + q# aE, db1 = l b′1 + q# aB ,

dx− (−1)n(b1 − p(e)) = l x′ + q# a = x+ dw.

Therefore, de′ = deA, eA ∈ E∗(U), db′1 = dbU , bU ∈ B∗(U). According to Lemma 9.7.5, l e′ + q# a =

e+ dwe, db
′
1 + q# aB = b1 + dw1,

d(x− w) = x+ (−1)n(p(e)− b1) = l(x′ + (−1)n(p(e′)− b
′
1)) + q# b, b ∈ B∗(U,U),

hence there exists a y ∈ B∗(U) satisfying

dy = dx′ + (−1)n(p(e′)− b′1),

d(eA; p(eA), bu, y) = d(e′; p(e′), b′1, x
′).

This confirms the first part of CH4),

Ker j∗ ⊂ Ker p∗ κ∗.

Suppose

j# (e; p(e), b1, x) = d(e; p(e), u, w).

First we observe that we have an embeddingW∗(·) ⊂ (E∗⊕B∗I)(·). Let α = (e; b, b1, x) ∈ (E∗⊕B∗I)(·)
be any element; then we can write

α = (e; p(e), b1, x) + (0; b− p(e), 0, 0) = α̂+ α0, α̂ ∈W∗.

We know that (EEE∗ ⊕ BBBI) is a chain functor, hence the derived homology sequence is exact. So, if
j# z = dw in W∗ we find elements ũ ∈ (E∗ ⊕B∗I)∗(U), x̃ ∈ (E∗ ⊕B∗I)∗(X) satisfying z = i ũ+ dx̃ =

i# u+ dx+ i# u0 + dx0. So

z = (ez ; p(ez), b1z , xz), u = (eu; p(eu), b1u, xu), dx = (ex; p(ex), b1x, vx)

Setting z − i# u− dx = ρ = i# u0 + dx0 = (0; c, 0, 0) gives

ez − i# eu − ex = 0;
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but

p(ez + i# eu − ex) = c = 0.

Therefore z = i# u+ dx. By applying κ we obtain

κz = i′ u+ dκx

which was the assertion. This confirms CH4).
All remaining properties of a chain functor are left to the reader, because their proofs are either

technical or they are immediate.

We will need another pullback, which is dual to BBB∗ ∪ cone AAA∗. To this end define AAA∗(I,0) ⊂ AAA∗I

consisting of those paths with fixed endpoint 0, i.e., AAA∗(I,0) = {ω | ω(0) = 0} = {(0, c, x)} = Ker p0,

(0, c, x) ∈ An ⊕ An ⊕ An+1 using the terminology of [6, § 1]. We have a mapping π : AAA∗(I,0) −→ AAA∗,
by taking the endpoint of a path, i.e., π(0, c, x) = c. This is immediately seen to be a mapping of

chain functors. The fact that AAA∗(I,0) carries the structure of a chain functor is left to the reader. All
structural maps are inherited from AAA∗I . We obtain again a pullback diagram

WWW ∗
μ ��

ζ

��

BBB∗(I,0)

π

��
EEE∗ p

�� BBB∗

. (9.4.2)

and realize that

W∗ =
{

(e; 0, p(e), x)
}

=
{

(e;ω) | ω(0) = 0, ω(1) = p(e)
}

.

We claim:

Theorem 9.4.2. Let p ∈ Ch be a regular mapping of chain functors; the pullback WWW ∗ in (9.4.2)
carries the structure of a chain functor.

Proof. The proof consists in a precise repetition of the proof of Theorem 9.4.1 in this new situation,

where an element has now the form (e; 0, p(e), x). That makes the steps even simpler than in the proof
of Theorem 9.4.1.

We need more informations about BBB∗(I,0):

Lemma 9.4.3. BBB∗(I,0) is acyclic.

Proof. There are natural chain homotopies 0 � 1 : BBB∗(I,0) −→ BBB∗(I,0) that are standard for chain
complexes, carrying over immediately to the structure of a chain functor, i.e., they commute with l
and i′.

There is another description of WWW ∗ in Theorem 9.4.2. We know already that WWW ∗ is a chain functor

and that BBB∗(I,0) is a chain functor; we do not know yet that Ker p for a regular fibration p is a chain
functor, although we are able to define

(Ker p)′ = Ker p ∩ E′
∗, l : (Ker p)′(X,U) ⊂ (Ker p)(X,U), i′ : (Ker p)(U) ⊂ (Ker p)′(X,U)

as well as κ, ϕ, and the associated chain homotopies, which are inherited from E∗.
Therefore we formulate the following lemma for chain complex functors:

Lemma 9.4.4. Let WWW ∗ be the pullback in the diagram (9.4.2), where p is a regular fibration. There

is an isomorphism of chain complex functors

WWW ∗
α ��

Ker p⊕BBB∗(I,0).
β

�� (9.4.3)
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These mappings α and β commute with l and i′ (i.e., they are candidates for mappings of chain

functors).

Proof. Instead of a purely categorical proof, using the general properties of chain complex functors,

we present a direct proof that describes the relevant mappings explicitly. We have a commutative
diagram

EEE∗
p �� BBB∗

BBB∗0
0

��

q
�� BBB∗(I,0)

π

��

, (9.4.4)

whereBBB0∗ = 0 denotes simply the zero path inBBB∗, and q is a trivial cofibration (observe that, according

to Lemma 9.4.3, BBB∗(I,0) is contractible). So there exists a lifting π : BBB∗(I,0) −→ EEE∗, rendering (9.4.4)

commutative. We set π(ω) = eω, p(eω) = π(ω) and observe that deω = edω, eω1+ω2 = eω1 + eω2 , and
that for f : (X,U) −→ (Y,B), f# eω = ef#ω.

Now we are able to define

α(e, ω) = (e− eω, ω), β(x, ω) = (x+ eω, ω).

It is easy to verify that α, β display the compatibility properties mentioned in the assertion and that
β α = 1, α β = 1. This completes the proof of the lemma.

9.5. Kernels of Regular Fibrations

The kernel of any regular fibration can be endowed with the structure of a chain functor. Hence:

Theorem 9.5.1. Every regular fibration p has a kernel

Ker p �� EEE∗
p �� BBB∗ .

Proof. We have already equipped Ker p with the structural ingredients of a chain functor (cf. Lemma
9.4.4). The assertion now follows from Corollary 9.3.4, Theorem 9.4.2, and Lemma 9.4.4.

The following theorem is the perfect dual to Lemma 9.1.2 for regular fibrations.

Theorem 9.5.2. The following properties of a regular mapping p : EEE∗ −→ BBB∗ are equivalent:

1) p is a regular fibration.

2) Each commutative square

EEE∗
p �� BBB∗

KKK∗
i0

��

f

��

KKK∗ × I

F

��

, KKK∗ ∈ Ch (9.5.1)

admits a diagonal F :KKK∗ × I −→ EEE∗ rendering the square commutative.

3) Let WWW ∗ be the pullback of Theorem 9.4.1, j : EEE∗I −→WWW ∗, j(ν) = (ν(0), pI (ν)); then there exists

a s :WWW ∗ −→ EEE∗I , with j s = 1.

4) p induces a levelwise isomorphism En ≈ Bn⊕Bn, which is natural and commutes with l and i′

(i.e., E′
n ≈ B′

n ⊕ B
′
n); thus p is surjective and has a natural levelwise section which commutes

with l and i′.
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Proof. The equivalence of 1) and 2) (even for non-regular p) is the subject of Lemma 9.1.3.

1) =⇒ 3) : Observe firstly that j (as originating from a pullback diagram for WWW ∗) is completely
determined by p0 = ζ j, p0 : EEE

I∗ −→ EEE∗, μ j = pI . Now consider the commutative diagram

EEE∗
p �� BBB∗

WWW ∗
i0

��

ζ

��

WWW ∗ × I

μ̃

�� (9.5.2)

which has a lifting s̃ : WWW ∗ × I −→ EEE∗, hence the adjoint s : WWW ∗ −→ EEE∗I . Since ps̃ = μ̃ we deduce
pI s = μ. Since s̃ i0 = p0 s we deduce p0 s = ζ, p0 : EEE

I
∗ −→ EEE∗. So ζjs = ζ, μjs = μ, implying js = 1.

3) =⇒ 1) : Suppose that

EEE∗
p �� BBB∗

CCC∗
i0

��

f

��

CCC∗ × I

F

��

, CCC∗ ∈ Ch (9.5.3)

is commutative. We want to deduce the existence of a diagonal F : CCC∗×I −→ EEE∗ from the existence of

an s :WWW ∗ −→ EEE∗I with js = 1. Let F̃ : CCC∗ −→ BBBI∗ be a mapping of chain functors adjoint to F . The

pair (f, F̃ ) defines a unique mapping h : CCC∗ −→WWW ∗ with μh = F̃ , ζh = f . Let F = sh : CCC∗×I −→ EEE∗
be the adjoint of sh : CCC∗ −→ EEEI∗. We must show that pF = F , Fi0 = f . From the naturality of the
adjunction isomorphism

Hom(CCC∗ × I,EEE∗) ≈ Hom(CCC∗.EEEI
∗),

it follows that p sh = F is equivalent to pI sh = F̃ , which holds because pI s = μ and μ h = F̃ . On
the other hand, the adjunction isomorphism yields sh i0 = pE0 sh, implying

F i0 = sh i0 = pE0 sh = ζjsh = ζh = f.

3) =⇒ 4) : Recall that

Wn = {(e; p(e), b, y)}
and that there is a projection μ : Wn −→ BI

n so that μj = pI . We want to construct a tn : Bn −→ En,
such that pn tn = 1. So we define αn : Bn −→Wn by

αn(bn) = (0; 0, bn, 0),

which is functorial, compatible with l, but not with boundaries. Set

tn(bn) = p1 sn αn(bn)

It is now immediate to verify that pn tn = 1 and that tn has the same compatibility properties like
αn.

4) =⇒ 3) : Suppose we have a tn : Bn −→ En as before, then we construct s : WWW ∗ −→ EEE∗I with

js = 1 by setting

sn(en; p(en), bn, bn+1) =

= (en, en − tn pn(en) + (−1)n+1
[

d(tn+1(bn+1))− tn d(bn+1)
]

+ tn(bn), tn+1(bn+1)).

It turns out that 1) s ∈ Ch(WWW ∗,EEE∗I) and 2) js = 1WWW ∗ . The calculations asserting this fact are
straightforward.

Corollary 9.5.3.
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1) Let p : EEE∗ −→ BBB∗ be a regular mapping, admitting a section s : BBB∗ −→ EEE∗, ps = 1; then p is a

fibration.

2) Let q : AAA∗ −→ BBB∗ be a regular mapping and r : BBB∗ −→ AAA∗ be such that rq = 1; then q is a

cofibration.

Proof. Follows from 9.5.2. 4) resp. 9.1.2. 3).

We have, concerning j in Theorem 9.5.2. 3),

Corollary 9.5.4. If p is a regular fibration, then the mapping j is a regular fibration.

Proof. Follows because if p is a fibration, j has a section. The regularity of j is immediate.

Theorem 9.3.2 has of course a dual:

Theorem 9.5.5. Let πi : EEEi∗ −→ BBB∗, i = 1, 2 be regular fibrations, then there exists in Ch a pullback

PPP ∗ ��

��

EEE1∗
π1

��
EEE2∗ π2

�� BBB∗

. (9.5.4)

Proof. The proof is completely dual to that of Theorem 9.3.2: One has to realize that PPP ∗ is the kernel
of a regular fibration

PPP ∗ �� EEE1∗ ⊕EEE2∗
π1⊕π2 �� BBB∗ ⊕BBB∗

r �� BBB∗ ,

with r(b1, b2) = b1 − b2.

9.6. Exact Sequences in Ch

Definition 9.6.1. We call a sequence

AAA∗
α �� BBB∗

β �� CCC∗ (9.6.1)

in Ch exact whenever the following two sequences of chain complexes:

A∗
α �� B∗

β �� C∗ , (9.6.2)

A′∗
α′

�� B′∗
β′

�� C ′∗ (9.6.3)

are exact.

As a result of the characterizations of cofibrations and regular fibrations, we have:

Lemma 9.6.2. Suppose that

0 �� AAA∗
α �� BBB∗

β �� CCC∗ �� 0 (9.6.4)

is exact (i.e., exact in the sense of Definition 9.6.1 at AAA∗, BBB∗ and CCC∗); then:

1) α is a cofibration, if and only if β is a regular fibration.

2) CCC∗ is the cokernel of α and AAA∗ is the kernel of β.

Proof. 1) is a consequence of the characterization of (co-)fibrations in Lemma 9.1.2 3) (resp. Theo-

rem 9.5.2 4). Assertion 2) is straightforward.
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Definition 9.6.3. The exact sequence (9.6.4) splits whenever there exists an isomorphism

f : BBB∗
≈ �� AAA∗ ⊕CCC∗ , such that f α = iAAA∗ : AAA∗ −→ AAA∗ ⊕CCC∗, f = iCCC∗ β, where iAAA∗ , iCCC∗ : CCC∗ −→

AAA∗ ⊕CCC∗ are coproduct injections.

Proposition 9.6.4. The following properties of the exact sequence (9.6.4) are equivalent:

1) There exists a retraction λ : BBB∗ −→ AAA∗ satisfying λα = 1.

2) There exists a section s : CCC∗ −→ BBB∗ satisfying βs = 1.

3) The sequence (9.6.4) is splitting.

Proof. The proof follows entirely the pattern of the classical proof in homological algebra (cf. [86]).

Proposition 9.6.5. Let q : AAA∗ −→ BBB∗ be a cofibration; then there exists an isomorphism of chain

functors

cone AAA∗ ⊕Coker q ≈BBB∗ ∪AAA∗ cone AAA∗.

Proof. We consider the exact sequence in Ch

0 �� cone AAA∗
i �� BBB∗ ∪AAA∗ cone AAA∗

p �� BBB∗/AAA∗ �� 0 , (9.6.5)

with cofibration i (cf. Lemma 9.6.2 2)) which splits:
The commutative square with trivial fibration on the top

cone AAA∗ �� 0

cone AAA∗
i

��

1

��

BBB∗ ∪AAA∗ cone AAA∗

�� (9.6.6)

has a diagonal � : BBB∗ ∪AAA∗ cone AAA∗ −→ cone AAA∗. The result follows from Definition 9.6.3 and Proposi-
tion 9.6.4 3).

9.7. Chain Functors and Associated Homology Theories

In this appendix we present for the convenience of the reader some material about the definition

and the motivation of chain functors without proofs. Concerning details as well as further references,
we refer to [4].

It would be advantageous to define a homology theory h∗( ) as the derived homology of a functor

C∗ : K −→ chchch;

K = the category on which h∗ is defined. For us this will be always either a subcategory of the category
of all pairs of topological spaces, or of pairs of spectra or of pairs of CW spaces, of CW spectra, or
their simplicial counterparts. chchch denotes the category of chain complexes (i.e., C∗ = {Cn, dn, n ∈
Z, d2 = 0} ∈ chchch).

Let (X,A) ∈ K be a pair; then one would like to have an exact sequence (writing C∗(X) instead of
C∗(X,∅))

0 �� C∗(A)
i# �� C∗(X)

j# �� C∗(X,A) �� 0 (9.7.1)

such that the associated boundary ∂ : Hn(C∗(X,A)) −→ Hn−1(C∗(A)) induces the boundary ∂ :
hn(X,A) −→ hn−1(A) of the homology theory h∗( ).

In accordance with [5] we call a homology with this property flat. Due to a result of R. O. Burdick,

P. E. Conner, and E. E. Floyd (see [4] or [3] for further reference) this implies, for K = category of CW
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pairs, that h∗( ) is a sum of ordinary homology theories, i.e., of those satisfying a dimension axiom,

although not necessarily in dimension 0.
We call a functor C∗ equipped with a short exact sequence (9.7.1), which determines the boundary

operator, a chain theory for h∗. The non-existence of such a chain theory gives rise to the theory of
chain functors.

A chain functor CCC∗ = {C∗, C ′∗, l, i′, κ, ϕ} is a pair of functors C∗, C ′∗ : K −→ chchch, natural inclusions
i′ : C∗(A) ⊂ C ′∗(X,A), l : C ′∗(X,A) ⊂ C∗(X,A), and non-natural chain mappings

ϕ : C ′
∗(X,A) −→ C∗(X),

κ : C∗(X) −→ C ′
∗(X,A),

satisfying conditions CH1) – CH7) below:

CH1) There exist (of course in general non-natural) chain homotopies ϕκ � 1, j# ϕ � l (j :
X ⊂ (X,A)), as well as an identity

κ i# = i′, i : A ⊂ X.

CH2) All inclusions k : (X,A) ⊂ (Y,B) are assumed to induce monomorphisms on C∗. All
C∗(X,X) are acyclic.

It should be observed that the chain complexes C∗(X,A) appearing in (9.7.1) are not identical with
the chain complexes C∗(X,A) appearing in a chain functor. The latter have the property that for all

pairs (X,A) one has inclusions C∗(X) = C∗(X,∅) ⊂ C∗(X,A) ⊂ C∗(X,X). These groups cannot be
members of a short exact sequence (9.7.1).

Needless to say, we have that C ′∗, as well as φ, κ are not determined by the functor C∗(· · · , · · · )
but are additional ingredients of the structure of a chain functor.

Instead of the exact sequence (9.7.1), which we have for chain theories in the case of a chain
functors, we are dealing with the sequence

0 �� C∗(A)
i′ �� C ′∗(X,A)

p �� C ′∗(X,A)/im i′ �� 0 (9.7.2)

and there exists a homomorphism

ψ : H∗(C ′∗(X,A)/ Im i′) �� H∗(C∗(X,A))

[z′] � �� [l(z′) + q#(a)]
(9.7.3)

where z′ ∈ C ′∗(X,A), dz′ ∈ im i′, q : (A,A) ⊂ (X,A), a ∈ C∗(A,A), da = −dz′. By this assignment,
ψ is readily defined.

CH3) It is assumed that ψ is epic.

Since C∗(A,A) is acyclic and dz′ ∈ im i′, there exists an a with q#(a) = −dl(z′), and [l(z′)+ q#(a)]
turns out to become independent of the choice of a.

This assumption implies that each cycle z ∈ C∗(X,A) is homologous to a cycle of the form l(z′) +
q#(a), with z′ being a relative cycle, the analogue of a classical relative cycle z ∈ C∗(X) with dz ∈
im i#, whenever (9.7.1) holds, i.e., whenever we are dealing with a chain theory.

Suppose ∂ : Hn(C
′∗(X,A)/im i′) −→ Hn−1(C∗(A)) is the boundary induced by the exact sequence

(9.7.2).

CH4) We assume

Ker ψ ⊂ Ker ∂, (9.7.4)
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Moreover,

Ker j∗ ⊂ Ker p∗ κ∗, (9.7.5)

with κ∗ denoting the homomorphism induced by κ for the homology groups; j∗ and p∗ have an
analogous meaning.

CH5) Homotopies H : (X,A) × I −→ (Y,B) induce chain homotopies D(H) : C∗(X,A) −→
C∗+1(Y,B) naturally and are compatible with i′ and l.

The derived (or associated) homology of a chain functor

h∗(X,A) = H∗(C∗(X,A)),

resp. for the induced mappings, is endowed with a boundary operator ∂ : Hn(C∗(X,A)) −→
Hn−1(C∗(A)), determined by ∂:

Given ζ ∈ Hn(C∗(X,A)), we choose a lift z′, which exists by CH3), and a representative l(z′) +
q#(a) ∈ ζ, and set

∂ ζ = ∂[z′] = [i′−1 d z′].

This turns out to be independent of the choices involved.
This h∗( ) satisfies all properties of a homology theory eventually with the exception of an excision.

Let us assume that in K there are some mappings p : (X,A) −→ (X ′, A′) serving as excision maps (of

some kind, e.g., p : (X,A) −→ (X/A, �)). Then it is convenient to add:

CH6) Let p be an excision map; then p∗ = H∗(C∗(p)) is required to be an isomorphism.

This H∗(C∗( )) = h∗( ) turns out to be a homology theory. Moreover, under very general conditions
on K, every homology theory h∗( ) is isomorphic to the derived homology of some chain functor (see
[4] for further references).

Let λ : C∗ −→ L∗, λ′ : C ′∗ −→ L′∗ be natural transformations, where CCC∗, LLL∗ are chain functors,
compatible with i′, l and the natural homotopies of CH5); then we call λ : C∗C∗C∗ −→ L∗L∗L∗ a mapping
or a transformation of chain functors. Such a transformation induces obviously a transformation

λ∗ : H∗(C∗C∗C∗) −→ H∗(L∗L∗L∗) of the derived homology. This furnishes a category Ch of chain functors. A
weak equivalence in Ch is a λ : C∗C∗C∗ −→ L∗L∗L∗ which has a homotopy inverse.

Furthermore, we can introduce the homotopy category Chh with chain homotopy classes of trans-

formations of chain functors as morphisms.
In order to establish all this, it becomes necessary sometimes to assume that a chain functor C∗C∗C∗

satisfies:

CH7) All chain complexes C∗(X,A) are free (i.e., all Cn(X,A) are free abelian groups) with natural
basis bbb.

However, this is not a severe restriction as the following lemma ensures:

Lemma 9.7.1 ([6, Lemma 9.1]). To any chain functor C∗C∗C∗ (satisfying CH1)- CH6)) there exists a
canonically defined chain functor L∗L∗L∗ and a transformation of chain functors λ : L∗L∗L∗ −→ C∗C∗C∗ compatible

with ϕ and κ, inducing an isomorphism of homology, such that:
L1) All L∗(X,A) have a natural basis bbb in all dimensions;
L2) b ∈ bbb =⇒ db ∈ bbb; b ∈ bbb =⇒ i′(b) ∈ bbb, l(b) ∈ bbb, whenever this is defined and makes sense;
L3) For every homology class ζ ∈ H∗(C∗(X,A)) there exists a basic (with respect to the basis in

L1)) z ∈ (λ∗)−1ζ.

Lemma 9.7.2. Suppose {C∗, C ′∗.i′, l, ϕ, κ} satisfies all properties of a chain functor eventually without
CH3), CH4), CH6). Assume that there exists a chain functor LLL∗ ∈ Ch, q : LLL∗ ⊂ C∗ such that q

preserves all structure and induces an isomorphism of homology ; then C∗ is a chain functor.
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Proof. Follows immediately by checking the properties of a chain functor.

A chain functor KKK∗ is called flat whenever ϕ, κ and the chain homotopies ϕκ � 1, j# ϕ � l are
natural. In the beginning we introduced the concept of a flat homology theory.

Theorem 9.7.3 ([3, Theorem 3.3]). The following conditions for a homology theory are equivalent:

1) h∗ is flat;

2) there exists a flat chain functor associated with h∗.

Corollary 9.7.4 ([3, Corollary 3.4]). For a homology theory defined on the category of CW spaces,
conditions 1), 2) are equivalent to 3), and h∗ is the direct sum of ordinary homology theories.

Lemma 9.7.5. Let C∗ be any chain functor, d c = z, in C∗ (X,U); then there exist: z′, c′ ∈ C ′∗(X,U),
ai ∈ C∗(U,U), i = 1, 2, a3 ∈ C∗(U) such that

⎧

⎪⎨

⎪⎩

l z′ + q# a1 ∼ z, dz′ ∈ Im i′

l c′ + q# a2 = c+ dw, w ∈ C∗ (X,U)

z′ + i′ a3 = dc′.
(9.7.6)

This is Lemma 1.1 of [5] with k = 1. �
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