DOI 10.1007/s10958-017-3474-5
Journal of Mathematical Sciences, Vol. 225, No. 8, September, 2017

CATEGORICAL, HOMOLOGICAL, AND HOMOTOPICAL PROPERTIES
OF ALGEBRAIC OBJECTS

T. Datuashvili UDC 512.66; 512.58; 515.14

ABSTRACT. This monograph is based on the doctoral dissertation of the author defended in the
Iv. Javakhishvili Thilisi State University in 2006. It begins by developing internal category and in-
ternal category cohomology theories (equivalently, for crossed modules) in categories of groups with
operations. Further, the author presents properties of actions in categories of interest, in particular,
the existence of an actor in specific algebraic categories. Moreover, the reader will be introduced to a
new type of algebras called noncommutative Leibniz—Poisson algebras, with their properties and coho-
mology theory and the relationship of new cohomologies with well-known cohomologies of underlying
associative and Leibniz algebras. The author defines and studies the category of groups with an action
on itself and solves two problems of J.-L. Loday. Homotopical and categorical properties of chain
functors category are also examined.
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INTRODUCTION

The monograph is dedicated to the study of properties of different algebraic objects: internal cat-
egories, equivalently crossed modules, their cohomologies, actor objects, noncommutative Leibniz—
Poisson algebras, their cohomologies and their dual algebras, groups with action and Leibniz algebras,
the solution of two problems of J.-L. Loday, and the category of chain functors.

In Chaps. 1-4, we examine problems of the internal category theory in the category of groups
with operations and develop the cohomology theory of such categories and the cohomology theory
for crossed modules of the appropriate type. This field of research was suggested by G. Janelidze,
and problems presented in these chapters were proposed by him. This kind of investigation became
more attractive after the publication of the paper [78] of T. Porters, where the equivalence of internal
categories within categories of groups with operations with the category of crossed modules in this
category was established. The idea of the definition of categories of groups with operations comes from
J. Higgins [48] and G. Orzech [76]. The result of [78] was known for some specific types of categories
(e.g., groups, associative rings and algebras, Lie and Jordan algebras) in works of J. L. Verdier,
R. Brown, and C. B. Spencer [19], R. Lavendhomme and J. Roisin [58], and J.-L. Loday [60], but the
above result led to a study of internal categories within different algebraic categories simultaneously.
We hope that the structure of a category and the internalization of the well-known categorical notions
and constructions can lead to obtaining interesting properties of new introduced objects and notions.
The statements of Chaps. 2—4 give examples of such results: we define internal category cohomologies
in categories of groups with operations, calculate the corresponding complex, and describe completely
the cohomologies; we characterize cohomologically trivial internal categories and examine relations
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between internal category equivalence and homological and cohomological equivalences of internal
categories; under certain assumptions, we obtain necessary and sufficient conditions for the existence
of the internal Kan extensions, which was not known for ordinary categories.

The notion of a crossed module was introduced by J. H. C. Whitehead in 1949 during the study of
homotopy systems of connected CW-complexes (see [89]). The notion of an internal category appeared
later. It was a pleasant surprise to find the equivalence between internal categories in groups and
crossed modules defined by Whitehead. In Chap. 1, we study internal analogs of well-known categorical
notions and the relations between them. These notions for groups, in particular cases, give the notions,
or special cases of those, defined by Whitehead for homotopy systems; for example, in the case of
groups, the study of morphisms between internal functors gives a map called a crossed homomorphism
associated with a certain homomorphism. In the case where internal categories correspond to free
crossed modules with free groups of operators, the existence of a morphism between internal functors
is a special case of the existence of a deformation operator associated with a homomorphism, between
the homotopy systems of dimension 2, and it is a special case of the equivalence of these internal
functors considered as homomorphisms between homotopy systems in the sense of Whitehead. In the
same case, the equivalence of internal categories is a special case of the equivalence of the corresponding
homotopy systems (see [89]).

The crossed-module approach to the study of internal categories enables us at the same time to
develop the theory of crossed modules from the categorical point of view, for example, to define internal
equivalence of crossed modules, Kan extensions, crossed module cohomologies as the cohomologies of
the corresponding internal categories, etc. Thus, results obtained for internal categories give the
corresponding results for crossed modules. In the special cases where a category of groups with
operations is the category of groups, modules over a ring, associative, associative commutative, Lie,
Leibniz, or alternative algebras, we obtain the results for internal categories (equivalently, for crossed
modules) in these categories.

Another type of categories with structures called G-categories, where G is a group, was studied by
R. Gordon (see [47]). This type of categories occurs in the representation theory of finite-dimensional
algebras and algebraic topology and is also of independent interest in investigations. Note that crossed
modules in groups can be considered as G-categories (see [47]).

Chapter 5 is devoted to actor objects in categories of interest. This type of categories was defined by
G. Orzech (see [76]). This problem was posed by J. M. Casas after he was introduced to the work [32]
(see Chap. 3), where cohomologically trivial internal categories were characterized and the actions in
categories of interest were studied. Actions in algebraic categories were studied by G. Hochschild [50],
S. Mac Lane [70], A. S.-T. Lue [67], K. Norrie [75], J.-L. Loday [62], R. Lavendhomme and T. Lucas [57],
and others. The authors were looking for the analogs of automorphisms of groups in associative
algebras, rings, Lie algebras, crossed modules, and Leibniz algebras. We see different approaches to
this problem. Lue and Norrie (based on the results of Lue [68] and Whitehead [88]) associate to any
object a certain type of object—the construction in the corresponding category, called an actor of
this object [75], that has special properties analogous to group automorphisms, under which is meant
that the actor fits into a certain commutative diagram (see Chap. 5, diagram (5.1.7)). Lavendhomme
and Lucas introduced the notion of a I'-algebra of derivations for an algebra A, which is the terminal
object in the category of crossed modules under A. Recently F. Borceux, G. Janelidze, and G. M. Kelly
[11, 12] proposed a categorical approach to this problem. They study internal object actions defined
in [18] and introduce the notion of a representable action, which in the case of a category of interest
is equivalent to the definition of an actor given in [21] (see Chap. 5).

We define an actor and a general actor object in categories of interest; we give a construction of
a general actor object and study the problem of the existence of actors. The examples of groups,
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modules over a ring, Lie, Leibniz, associative, associative commutative algebras, crossed modules,
and precrossed modules in groups are considered. The construction and the results obtained in this
direction enable us to show the existence of an actor in the category of precrossed modules and to
define special objects in the categories of Leibniz and associative algebras respectively, for which actors
always exist.

In Chap. 6, we study noncommutative Leibniz—Poisson algebras (NLP-algebras), which are general-
izations of classical Poisson algebras. The study of this type of algebras was proposed by T. Pirashvili
to me and J. M. Casas. Another type of algebras with bracket operation was studied in [22]. We give a
construction of free NLP-algebras, define the cohomology of NLP-algebras, study their properties, and
relate them to the known cohomologies. The dual algebras of NLP-algebras are also considered. The
cohomology defined by us gives in a special case the cohomology of Poisson algebras. Cohomologies
of Poisson algebras were defined and studied by J. Hubschmann [52] in a different way.

Graded generalized Poisson algebras (satisfying the graded Leibniz identity) were studied by
I. Kanatchikov [53]. Note that a different type of algebras with brackets, namely, algebras with two
bracket operations (Lie-Leibniz algebras), appears in the study of the Witt construction for categories
of groups with action on itself [36] (see Sec. VII).

Chapters 7 and 8 are devoted to the solution of problems of J.-L. Loday. In 1999, Loday proposed
to me three questions, and later he informed me that he had stated these problems in [62, 64]. These
problems concern Leibniz algebras. This notion was introduced by Loday himself in 1989 and was
considered in a certain sense as a noncommutative analog of Lie algebras. There is a well-known
construction of E. Witt [83, 90], due to which we can associate to lower central series of a group the
graded object, which has a Lie-algebra structure; this actually defines the functor Gr — Lie. The
first problem of Loday: to define algebraic objects called “coquecigrues” that would have an analogous
role for Leibniz algebras as groups have for Lie algebras. The second problem: Witt’s theorem states
that if a group is free, then the corresponding associated Lie algebra is also free [83, 90]. “A free
coquecigrue should give rise to a free Leibniz algebra.” The third problem can be formulated as
follows. Coquecigrues should have groups as examples. Thus, it is reasonable to define the homology
of the general linear group GL(A) of a ring A as the homology of a coquecigrue in the corresponding
category. These homology objects should have certain interesting properties (see [64]). This problem
also involves the study of universal central extensions of concrete type of objects; the kernels of such
extensions must have the special description in terms of the objects defined by Loday. The solution
of this problem leads us to a new notion of the Leibniz K-theory of a ring (for details, see [64]).

Thus, we search for the category and the functor

?

|

Leibniz
with the properties stated above.
Note that, according to Encyclopedia Britannica, a coquecigrue is an imaginary creature regarded
as an embodiment of absolute absurdity.
We introduce the category of groups (abelian groups) with action on itself Gr® (Ab®), the notions
of an ideal, commutator, and central series in this category, and Lie-Leibniz algebras (ILL). Then we
introduce Condition 1 on the action and according to this condition define the full subcategories

Gr¢c—— Gr* Ab—— Ab* .

9

We construct Witt’s analogous functor

LL:Gr® — LL.
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This functor leads us to Leibniz algebras over the ring of integers Z by taking either the composite

A

Gr€ Ab® —% Leibniz

or the composite

Gr¢ —s LL 2+ Leibniz,
where A is the abelianization functor, I = LL‘ Ape and So is the functor that makes the Lie bracket
operation trivial. We introduce two more conditions (Conditions 2 and 3) between round and square
brackets for the objects of Gr¢ and according to these conditions define subcategories Gr and LL of
Gr¢ and LLL, respectively. We prove that the functor LL takes free objects from Gr to free objects in
LL. The composite

S9 LL|@ : Gr — Leibniz

gives free Leibniz algebras for free objects from Gr. It is proved that on free objects in Gr this functor is
isomorphic to the composite Lo A, where A is the abelianization functor; thus it is another isomorphic
way which leads us from free objects in Gr to free Leibniz algebras. Here we apply our result that,
in particular, the functor L : Ab® — Leibniz takes free objects to free Leibniz algebras. Note that
our proof of the freeness theorem is different; it is not a generalization of E. Witt’s proof for the case
of groups. We propose constructions of free objects in the categories of groups with action on itself
defined by us and free Leibniz algebras. The properties of commutators and related questions are also
studied. The results obtained in Chaps. 7 and 8 give solutions to the two above stated problems of
J.-L. Loday [62, 64]. The third problem suggests developing the (co)homology theory and to study
universal central extensions in Gr. We hope that the constructions and the results obtained in these
chapters will lead us to interesting investigations in this direction.

In Chap. 9, we study homotopical and categorical properties of chain functors category. This kind of
work was proposed by F. W. Bauer, and the material presented here is a part of our joint work on chain
functors [6, 7]. Chain functors were introduced by Bauer himself [4] (see Sec. 9.7 for the definition)
for calculating generalized homology theories by means of chains and cycles like what one does for
ordinary, simplicially defined homology theories by chain complexes. Like chain complexes, these chain
functors form a category displaying interesting properties by themselves. In [6], we introduce a closed
model structure in the category €h of chain functors. More precisely, we define fibrations, cofibrations,
and weak equivalences satisfying D. Quillen’s axioms CM2-CMb5 for a closed model category [79]. It
turns out that the first Quillen axiom (the existence of finite limits and colimits) fails for €h. In
particular, not every map has a kernel or a cokernel, and we do not detect arbitrary pullbacks and
pushouts in €h. The main issue of [7] is to exhibit that (1) all cofibrations have a cokernel, (2) all
regular fibrations have a kernel, and (3) every pushout of a cofibration along a cofibration exists in
Ch (respectively, for pullbacks and fibrations). All this deserves independent interest, constituting a
surprising justification for the concepts of fibrations and cofibrations in €h. By using these results,
we investigate interesting properties of exact sequences for fibrations and cofibrations. We will apply
the results presented in this chapter in a forthcoming paper [8] for revealing the given closed model
structure as a certain approximation to a simplicial one (satisfying, in addition to CM1-CM5, the
axioms SM6 and SM7). Simplicial model structures are discussed, for example, in [46, 49, 79].

Homological properties of nontrivial extensions of abelian categories by a functor are defined by the
author, and the coherence of such categories are studied in [26, 29]. In the special case, the results
obtained in this direction give new results for the category of modules over nontrivial extensions of
rings by bimodules.

This monograph consists of the Introduction and thirty two sections that constitute nine chapters.
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Chapter 1. In Sec. 1.1, we recall well-known definitions of an internal category, an internal functor,
a category of groups with operations (denoted by C), and a crossed module in C. We describe the
correspondence between internal functors and crossed module homomorphisms in C. In Sec. 1.2, we
describe morphisms between internal functors and relate these mappings to Whitehead’s notion of a
crossed homomorphism and an equivalence between the homomorphisms of homotopy systems. We
show that a morphism between internal functors implies the isomorphism of these functors (Proposi-
tion 1.2.1). In Sec. 1.3, we define an adjunction of internal functors, an internal category equivalence,
and an adjoint equivalence. We prove necessary and sufficient conditions for the internal adjunction of
functors in Cat(C) (internal categories in C) (Proposition 1.3.4), and show that an internal adjunction
implies an internal equivalence (Proposition 1.3.5). We obtain necessary and sufficient conditions for
an internal equivalence and and adjoint equivalence in Cat(C) (Propositions 1.3.6. and 1.3.7), which
imply that the existence of an adjoint pair of internal functors is equivalent to the adjoint equivalence
of the corresponding internal categories in C (Proposition 1.3.8). By Proposition 1.3.9, if the corre-
sponding crossed modules of internal categories are homotopy systems in the sense of Whitehead, then
the internal equivalence of these categories is a special case of the equivalence of the corresponding
homotopy systems in the sense of Whitehead [89]. We define full and faithful internal functors and give
necessary and sufficient conditions for these properties (Lemmas 1.3.11 and 1.3.12). We prove neces-
sary and sufficient conditions for an internal functor to be an internal equivalence (Theorem 1.3.13),
which is an analog of the well-known theorem for ordinary categories and functors (Theorem 1 in [72,
§ 4, IV]). At the end of the section, we give necessary and sufficient conditions for an internal category
to be equivalent to a discrete internal category (Proposition 1.3.14), which we apply in Chap. 3, in
the characterization of cohomologically trivial internal categories.

Chapter 2. In Sec. 2.1, we recall the definition of an internal diagram on C, C € Cat(C) (see [43]),
and denote the corresponding category by CC. Then we consider abelian groups in C©, study the
action properties of C on A € Ab(C®), and conclude that A can be considered as a Coker d-module in
the sense of [76], where d is the operator homomorphism of the crossed module corresponding to C. In
Sec. 2.2, we construct the complex for the definition of a cohomology of C' € Cat(C) with coefficients
in A € Ab(C®) in analogy to the definition of the cohomology of ordinary categories. Applying the
equivalence of internal categories and crossed modules, we compute completely this complex, which
enables us to compute cohomologies (Theorem 2.2.1).

Chapter 3. In Sec. 3.1, we give the definition of a category of interest, which was introduced by
G. Orzech (see [76]). For each category of interest C, we define the corresponding general category
of interest Cg and state the necessary and sufficient conditions for a set of actions to be the set of
split derived actions in Cg in the sense of [76] (Proposition3.1.1). We recall the definitions of a (split)
B-structure and of a B-module for B € C [76]. We present some preliminary results on the extensions
in categories of interest. We determine the necessary and sufficient conditions for the splitness of a
singular extension (Proposition 3.1.6), which is similar to the case of groups. In Sec. 3.2, we recall
the definition of a derivation in C (see [76]). We give the construction of the object I(C), C € C. We
show that this is a universal object that turns derivations into homomorphisms between the struc-
tured objects (Proposition 3.2.2). In Sec. 3.3, we investigate under which conditions a short exact
sequence of modules over the internal category C (equivalently, Coker d-module) induces the long ex-
act sequence of cohomology groups (Proposition 3.3.1). We describe H%(C, A) and H!(C, A), which
we apply in Sec. 3.4. We define homologically and cohomologically equivalent internal categories and
prove that internal category equivalence implies homological and cohomological equivalences (Theo-
rem 3.3.4). We prove that in the case where C is a category of vector spaces over a field k, these
three conditions are equivalent (Proposition 3.3.6). At the end of the section, we state the result,
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which relates G. J. Ellis’s cohomology of crossed modules in the category of groups [42] to internal
category cohomology (Proposition 3.3.7). In Sec. 3.4, we give the characterization of cohomologically
trivial internal categories. The examples show (see Example 3, Sec. 3.4) that HY(C, —) = 0 does not
imply Hl(C, —) = 0. Thus, the notion of a cohomological dimension has no sense in our case. We
describe separately internal categories C for which H?(C, —) = 0, and separately, those C for which
H!(C,—) = 0. We obtain

H(C, —) = 0 <= I(Coker d) = 0;

HY(C, —) = 0 «<= S(C) is equivalent to the discrete category (Coker d, Cokerd, 1,1,1,1), where S is
a singularization functor defined in this section (Theorems 3.4.1 and 3.4.3). In the case where C is the
category of groups, the first condition becomes simpler: HO(C, —) =0 <= C is a connected internal
category (Corollary 3.4.2). In the case where C is the category of abelian groups, the second condition
is equivalent to the condition: the homomorphism d : Ker dy — Cq (the crossed module corresponding
to C) is a split monomorphism (Corollary 3.4.4). At the end of the section we give examples of
computations of cohomologies for discrete, antidiscrete, and one-object internal categories.

Chapter 4. In this chapter, we consider the case C = Gr. In Sec. 4.1, we define Ext! in Cat(Ab) as a
pullback of naturally defined diagram. We give the description of these groups in terms of equivalence
classes of extensions. In Sec. 4.2, we define an internal Kan extension. We show that in the case where
the domain internal categories in the definition of a Kan extension are connected, then the Kan exten-
sion is a unique up to an isomorphism extension of a given internal functor (Proposition 4.2.4); and
under “extension” we mean here up to an isomorphism extension. In Proposition 4.2.5, we give the nec-
essary and sufficient conditions for the functor to be a Kan extension. We describe Homcyg(gr) (M, A),

A € Cat(Ab), as a pullback of certain naturally defined diagram, and ITI?)_I/nCat(Gr)(M ,A), the abelian
group of isomorphic classes of internal functors, as a cokernel of a certain defined morphism (Proposi-
tion 4.2.6 and Lemma 4.2.7). We prove that the short exact sequence in Cat(Ab) induces the Hom-Ext!
complex of abelian groups. For any short exact sequence in Cat(Ab) we deduce the commutative di-

agram (4.2.7) and prove Lemma 4.2.9 on the properties of ﬁa;lCat(Gr)( , ) and Extlcat(Ab)( ,). In
Sec. 4.3, applying the results obtained in the previous sections, under certain assumptions we prove
the theorems on the necessary and sufficient conditions for the existence of internal Kan extensions
in the case where the domain internal categories are connected. We prove the statements for two
cases, where the Kan extension is taken along the surjective and along the injective internal functors
(Theorems 4.3.2, 4.3.4, and 4.3.6). The case where the domain internal categories are nonconnected
is considered in Sec. 4.4 (Theorem 4.4.1). In the special case where the internal categories in the
diagram of the Kan extension are one-object categories, we show that the Kan extension reduces to
the unique extension of a homomorphism in Ab. From our conditions in this special case we obtain
the same conditions which we have for abelian groups.

Chapter 5. Let C be a category of interest with a set of operations 2 = Qy U Q21 U Qs and a set of
identities E. In Sec. 5.1, we present the main definitions and results, which are used in what follows.
We introduce the notions of an actor and of a general actor object for the objects of C. In Sec. 5.2, for
any object A € C we give a construction of the universal algebra 98B(A) with the operations from €.
We show that, in general, B(A) is an object of Cg (the general category of interest corresponding to
C defined in Chap. 3). For any A € C, we define an action of B(A) on A, which is a B(A)-structure
on A in Cg (i.e., the split derived action appropriate to Cg). In a well-known way, we define the
universal algebra B(A) x A which is an object of Cg. We define the homomorphism A — B(A)
in Cg, which turned out to be a crossed module in Co. We prove, that if an object A has an
actor in C, then B(A)=Actor(A) (Proposition 5.2.5). We show that the general actor object always
exists and B(A)=GActor(A) (Theorem 5.2.7). The main theorem states that an object A from C
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has an actor in C if and only if B(A) x A is an object in C and in this case A — B(A) is an
actor of A in C (Theorem 5.2.6). The cases of crossed modules and precrossed modules in groups are
considered. From the results of [11] (Theorem 6.3) and Theorem 5.2.6, applying Proposition 5.2.8,
we conclude that a category of interest C has representable object actions in the sense of [11] if and
only if B(A) x A € C for any A € C, and if it is the case, the corresponding representing objects are
B(A), A € C. In Sec. 5.3 we consider separately the case Q9 = {+, *,%°}. In the case of the groups
(Q2 = {+}), we obtain that B(A) ~ Aut(A4), A € Gr. In the case of Lie algebras (22 = {+,[, |})
for A € Lie, we obtain B(A) ~ Der(A). In the case of Leibniz algebras, we have B(A) € Leibniz for
any A € Leibniz; B(A) has a split derived set of actions on A if and only if for any B,C € Leibniz
that has a derived action on A we have [c, [a, b]] = —][c, [b, a]], for any a € A, b € B, ¢ € C, (which we
call Condition 1, and it is equivalent to the existence of an Actor(A)). In this case, B(A) = Actor(A)
(Proposition 5.3.5). We give examples of such Leibniz algebras. In particular, Leibniz algebras A
with Ann(A) = (0), where Ann(A) denotes the annulator of A, and perfect Leibniz algebras (i.e.,
A = [A, A]) satisfy Condition 1. We have an analogous picture for associative algebras. In this case,
B(A) is always an associative algebra, but the action of B(A) on A defined by us is not a derived
action on A. Here we introduce Condition 2: for any B and C € Ass, which has a derived action on
A, we have c* (axb) = (cxa) b for any a € A, b € B, ¢ € C, where * denotes the action. The
action of B(A) on A is a derived action if and only if A satisfies Condition 2 and it is equivalent to
the existence of an Actor(A). In this case, B(A) = Actor(A) (Proposition 5.3.6). Associative algebras
with conditions Ann(A) = (0) or with A2 = A satisfy Condition 2. These kinds of algebras were
considered in [57, 70]. For the special types of objects in Ass and Leibniz noted above, we prove
that B(A) ~ Bim(A) and B(A) ~ Bider(A) respectively (see Propositions 5.3.7 and 5.3.8), where
Bim(A) denotes the associative algebra of bimultipliers defined by G. Hochschild and by S. MacLane
for rings (called bimultiplications in [70] and multiplications in [50], from where the notion comes) and
Bider(A) denotes the Leibniz algebra of biderivations of A defined in Sec. 5.2, which is isomorphic for
these special types of Leibniz algebras to the biderivation algebra defined by J.-L. Loday in [62]. The
cases of groups, modules over a ring, and commutative associative algebras are considered.

Chapter 6. Recall that a Poisson algebra is an associative commutative algebra A equipped with a
binary bracket operation [—, —] : A® A — A such that (A, [—, —]) is a Lie algebra and the following
condition holds:

[a-b,c]=a-[bc+a,c] b
for all a,b,c € A.

Here we consider the case where algebras are not commutative and the bracket operation defines the
Leibniz algebra structure [65] (see Chap. 5 for the definition of Leibniz algebra). This kind of algebras
we call noncommutative Leibniz-Poisson algebras and denote the corresponding category by NLP. In
Sec. 6.1, we describe preliminary basic material and construct a free NLP-algebra over a set X. In
the case where X is a singleton, we give a description of the basis of the underlying abelian group
of the free NLP-algebra in terms of planar binary rooted trees. We define actions, representations,
and crossed modules in NLP, which are special cases of the corresponding notions for categories of
groups with operations (see [76]). In Sec. 6.2, we define a cohomology Hy; p(P, M) of an NLP-algebra
P (over a field k) with coefficients in a representation M over P as the cohomology of the cochain
complex obtained by taking

CIQILP(P7 M) =0, OI{ILP(Pv M) = HOIH(P, M)a

and in dimensions n > 2 by means of taking the pushout of cochain injections

cone (a*) =—— 6;{_1(P, M¢) —— cone (— (%),
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where

o Cx(P,M) — Ci(P,M?)
(defined in [22]) and

B* : CE(PM) — Cjy(P,ME)
(defined by means of differentials of Hochschild and Leibniz complexes) are cochain homomorphisms,
cone (a*) and cone (—(*) are the corresponding mapping cones, M® = Hom(P, M) has a natural P-
representation structure [22], and C'y and C, mean Hochschild and Leibniz complexes, respectively.
The differentials are defined as follows:

Rep =0, O\pp = (0,0,01), ORpp=09", n>2.

We define the restricted 2-dimensional cohomology HZ; p(P, M) and prove that there are one-to-one
correspondences between Hiyp(P,M) and the K-vector space Dernpp(P, M) of derivations from P
to M (Lemma 6.2.2), and between HZ; p(P, M) and the set Extnpp(P, M) of the equivalence classes
of extensions of P by M (Theorem 6.2.3). We derive the long exact sequence relating NLP-algebra
cohomology with Hochschild and AWB (algebras with bracket, see [22]) cohomologies and in a certain
sense with Leibniz cohomologies (Proposition 6.2.1). We prove that if P is a free NLP-algebra,
then HZ; p(P,—) = 0 and HZ p(P,—) = 0 for n > 2 (Corollary 6.2.4). Following [54], we define a
relative cohomology of NLP-algebras over a field and prove that there is a bijection between the set
CExtnLp (P, N; L) of equivalence classes of 3-fold crossed extensions (with fixed N) and the second
restricted relative cohomology HZyp(P, N; L) (see Theorem 6.2.6). In Sec. 6.3, we consider algebras
over the dual operad of NLP-algebras. The corresponding category of this kind of algebras is denoted
by NLP'. We give the construction of free objects in NLP'. In the case where F is a free NLP'-
algebra over the one element set, we show that there is a one-to-one correspondence between the set
of certain type planar binary rooted trees and the basis of the underlying vector space of F'.

Chapter 7. In Sec. 7.1, we define the category of groups with action on itself Gr®, the category of
abelian groups with action on itself Ab® and the category of groups with the bracket operation Grll.
This kind of groups are Q-groups in the sense of [55]. We construct adjoint pairs of functors relating
the categories Gr®, Ab®, Grll, and Gr. In Sec. 7.2, we define ideals and commutators for the objects
of Gr® (similarly for Grl }) and show that these notions are equivalent to the special case of the known
notions for Q-groups (see [55]). In Sec. 7.3, we define central series of groups with action on itself
and a category of Lie-Leibniz algebras LLIL.. We consider the category of groups with action on itself
Gr° satisfying the certain condition (see Condition 1). We give an analogue of the Witt construction
(see [90]) and prove that it defines the functor LL : Gr® — LLIL (Theorem 7.3.4); in particular, this
gives the functor Gr® — LLeibniz. In a similar way, one can construct the functor Ab® — ILeibniz,
which is actually the restriction of LL on Ab®. The functorial relations with the classical situation
(Gr — Lie) is considered, namely by the restriction of LL on Gr we obtain the result of E. Witt [83,
90] (see diagram (7.3.3)).

Chapter 8. In Sec. 8.1, we introduce Conditions 2 and 3 for groups with action on itself and denote
the corresponding full subcategory of Gr¢ by Gr. We prove that if A and B are ideals of G in Gr, then
the commutator [A, B] is also an ideal of G’ (Proposition 8.1.5). For ideals A, B, and C of G in Gr,
we prove that
[A,[B,C]] C [[4,B],C] + [[A,C], B]

(Proposition 8.1.6). These two statements are well-known for the case of groups that we do not have
generally in Gr°. Applying these results we prove that for the objects Gy, n > 1, in the definition
of central series of groups with action from Gr we have G,, = [G,_1,G] for n > 1 (Lemma 8.1.11).
From this fact we deduce that for the objects G, = G,/Gny1, where G is a free object in AbC,
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we have only those identities that are inherited from the identities of G by identifying the elements
29 =7, where z € G, y € G, ¥ denotes an action, and T denotes the corresponding class in G,,
which by definition of the category Ab® gives the Leibniz identity or its consequences (Lemma 8.1.12
and Proposition 8.1.13). In Sec. 8.2, we construct free objects in the categories Gr® (respectively,
in Gr¢, Ab®, Gr) and Leibniz. In Sec. 8.3, we discuss the questions concerning identities between
round and square brackets in Gr®. We consider the certain set of possible identities in Gr®; easy
computations show that none of them is valid in Gr® (even in Gr®). Nevertheless, we cannot claim
that there are no more identities between round and square brackets in Gr® or in Gr. We denote the
possible set of identities in Gr by E and the corresponding set of identities in LL, inherited from E
due to the functor LL = LL‘@ : Gr — LL, by E; thus, E is the set of identities that satisfy the
objects LL(G), where G is a free object in Gr. We define the full subcategory LIL C LI of all those
Lie Leibniz algebras over Z that satisfy identities from E. We prove that if G is a free object in Gr,
then LL(G) is a free object in LL (Theorem 8.3.2). Applying Proposition 8.1.13, we prove that the
functor L : Ab® — Leibniz preserves the freeness of objects (Theorem 8.3.3). As a consequence,
we also obtain that the composites Sy LL, L A : Gr — Leibniz correspond to free objects in Gr free
Leibniz algebras over Z (Corollary 8.3.11). Of course, it would be simpler to prove the commutator
properties and Lemma 8.1.11 for Ab®, then to show that the functor L preserves freeness, and since
the abelianization functor A : Gr® — Ab® has the same property, the composite LA : Gr® — Leibniz
would also preserve freeness. Nevertheless, we think that the general Lie—Leibniz case is interesting
and that under Conditions 2 and 3 we can show that the properties of commutators in Gr prove
Lemma 8.1.11 and that the functor LL : Gr — LL takes free objects to free objects, from which we
easily deduce the corresponding result for Leibniz algebras.

Chapter 9. In Sec. 9.1, we recollect the results of [6] and draw some more or less immediate con-
clusions. Thus, the four equivalent characterizations of a cofibration are the subject of Lemma 9.1.2,
while for the dual properties for a fibration (Theorem 9.5.5) we need some information that is not
available before Sec. 9.5. In Sec. 9.2, we prove that for an inclusion (i.e., a regular injection; see
Sec. 9.1 for the definition),

the pushout B, U cone A, carries the structure of a chain functor (see Theorem 9.2.1). Section 9.3 is
devoted to the verification of the fact that every cofibration admits a cokernel in €h (Theorem 9.3.1),
where we apply Theorem 9.2.1, and that a pushout diagram with cofibrations admits a pushout
in €h (Theorem 9.3.2). In addition, Sec. 9.5 contains the results on fibrations, which are dual to
assertions that were presented in Secs. 9.2 and 9.3 for cofibrations. In Sec. 9.4, we present the dual
to Theorem 9.2.1 (see Theorem 9.4.2), which ensures the existence of a special pullback in €h and
which is needed for the verification that every regular fibration has a kernel. In Sec. 9.6, we investigate
properties of exact sequences for cofibrations and fibrations. Since some proofs in Secs. 9.2, 9.3, and 9.4
consist of the verification of the defining properties of a chain functor CH1-CH7, we include in Sec. 9.7
some basic material about chain functors, together with a lemma on chain functors taken from [5],
which is needed to prove CH3) in Secs. 9.2 and 9.4.
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CHAPTER 1

INTERNAL CATEGORIES, ADJUNCTION, AND EQUIVALENCE
IN CATEGORIES OF GROUPS WITH OPERATIONS

In the beginning, we recall the well-known definitions of the category of groups with operations denoted
by C and of an internal category. Using the equivalence of categories Cat(C) ~ X Mod(C) obtained by
T. Porter [78], where Cat(C) is the category of internal categories in C and X Mod(C) is the category of
crossed modules of the appropriate type, we describe morphisms (= internal functors) and morphisms
between the morphisms in Cat(C), adjunction of internal functors, and internal equivalence. We show
that in this category any internal adjunction implies the internal equivalence and this is the special
case of the Whitehead homotopy equivalence of the corresponding crossed modules, which was defined
for certain types of complexes in the category of groups called homotopy systems (see [89]). For the
internal category equivalence we prove an analog of Theorem 1 from [72, Sec. 4, IV]. The necessary
and sufficient conditions for the equivalence of an internal category to the discrete internal category
is obtained.

However some of these results are true for more general internal categories, e.g., for internal
groupoids in more general categories, than for categories of groups with operations (see the remark
at the end of the proof of Proposition 1.2.1); we restrict ourself to this special case to point out our
interest in crossed modules and to show how this structure works in proofs. The results obtained
in this chapter give similar results for crossed modules and are applied for the characterization of
cohomologically trivial internal categories (Chap. 3) and in the study of the existence of internal Kan
extensions (Chap. 4).

In Chap. 3, we continue the study of categorical notions for internal situation; we give the definitions
of homological and cohomological equivalences and investigate their relations with internal category
equivalence (see Sec. 3.3).

1.1. Preliminary Definitions and Results

Let C be a category with finite limits. We recall the definition of an internal category [43].
An internal category C in C consists of:

(a) a pair of objects Cy and Cf,
(b) four morphisms

C1i>co, C1i>co, Cop——>C;, and C1 x¢y C1 —=C4

such that

doi = dli = 1(}0, dom = doﬂ'g, dlm = d17T1,
m(l xm)=m(mx1):C; xg, C1 xc, C1 — Cj,
m(l x i) =m(ix1)=1c,.
Here and below C; x¢, C; denotes the pullback

2
Ci1 Xgy G4 ——=C4

-k

Cp ——=~ (.
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Let C = (Co, C1,do, d1,i,m,) and C' = (Cyp, C},df), d},7,m’) be internal categories and F' = (Fp, F}) :
C — (' an internal functor; which means that Fy and F; are morphisms of C and the diagrams

%

/\ .
do,dl 201300 Cl X Co Cl—>Cl
Fll /Z\ lFo (Fl,Fnl lFl
h,d) :Cf —=C (¢ x%C’lTC’l

are commutative.

The idea of the definition of categories of groups with operations comes from J. Higgins [48] and
G. Orzech [76], and the axioms below are from [76, 78].

From now on, C will denote a category of groups with a set of operations {2 and with a set E of
identities such that E includes the group laws, and the following conditions hold: If €; is the set of
i-ary operations in €2, then

(a) Q=Q¢UQUQ;

(b) the group operations written additively: (0, —, +) are elements of g, Q1, and Qq, respectively.
Let Q) = Q\{+}, Q) = Q1\{-} and assume that if * € Qf, then (2 contains +° defined by
x+%y =y * . Assume further that Qo = {0};

(c) for each * € Q), E includes the identify = * (y + 2) = x xy + x * z;

(d) for each w € Q) and x € O, E includes the identities w(z+y) = w(z)+w(y) and w(x)*xy = w(z*y).

A category satisfying conditions (a)—(d) is called a category of groups with operations [76, 78]. The
categories of groups, rings, associative, associative commutative, Lie, Leibniz, and alternative algebras
are examples of categories of groups with operations.

Let C = (Cy, C1,dp,d1,i,m) be an internal category in C. Consider the split exact sequence

0—>Kerdo—>C1—<Z_é>Co—>0,
where dpi = 1. As usual, we have the maps
Cy <—9>_ Co x Ker dg
o1
defined by
0(x) = (do(z),z —ido(x)), O '(r,c) =c+i(r),
and we have the induced operations in Cy x Ker dj:
(', )+ (r,e) = (r' +r,d +i(r") + c—i(r)),
(r',d)x(r,c) = (r' xr,d xc+ % (i(r) + (i(r")) * ¢),
where * € Q). We shall use the following notation from [78]:
r-c=1i(r)+c—i(r),
r+c=(i(r)) xc,
cxr=cx*(i(r))

for each r € Cy, ¢ € Kerdp, and x € Q. The set Cy x Ker dy with the above structure is an object
of C; denote it by Cp x Ker dy. Moreover, we have the internal category (Cyg, Co x Ker dy, do, d1,7,m),
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which is isomorphic to C and is obtained from C by . Direct computation gives
do(r,e) =7, di(r,c)=d(c)+r, d= dl‘Kerdo )

i(r) = (r,0), m((d(c)+r),(rc) = (r,d +c).

We recall Lemma A and Proposition 4 of [78].

Lemma 1.1.1. For c € Kerdy, ¢ € Kerd;, and * € Q), we have

c+c/:c/+c,

/ /
cxc =c xc=0.

Lemma 1.1.2. Let C = (Cy,Cy,do,d1,i,m) be an internal category in C; then d = dy

Kerdy — Cy satisfies the following conditions:
(i) d(r-c)=r+d(c) —r;

(i) d(e)- ¢ =c+ —c;

(iii) d(c) ' =cxdc;

(iv) d(cxr)=d(c) *r

for each r € Cy, ¢,d € Kerdy and * € .

C
C

‘Kerdo :

Let A,B € C. As is well-known, a split derived action of B on A means that we have a set of
actions on A derived from the split exact sequence 0 — A — E — B — 0 (see [76]). For more

details concerning actions in C, see Sec. 3.1.

Recall that a crossed module in C is a pair of objects A, B € C, where B has a split derived action
on A, together with a homomorphism d : A — B satisfying conditions (i)—(iv) of Lemma 1.1.2.

Denote by Cat(C) the category of internal categories and functors in C. By [78], we have an
equivalence of categories Cat(C) ~ X Mod(C), where X Mod(C) denotes the category of crossed
modules in C. According to this equivalence, to each internal category C = (Cq,Cy,do,dy,i,m)

corresponds the crossed module
Ker do d—> CO .

Here d = dl‘Kerdo
Let F = (Fy, F1) : C — C' be an internal functor. From the isomorphisms

C ~ (Cy, Co x Kerdy, do,dy,i,m), C' =~ (Cf,CHxKerdf,dg,dp,i
we obtain the commutative diagram

i

N

80,81 : Copx Kerdyg —= Cy

Fll i’ lFo
PN

dd,d{ : Cf) x Ker djy —= Cy,
where F'; is defined by F;. Denote by pri and pry the obvious projection maps

Co DLk Co x Ker dy £>Kerd0 .

is a homomorphism in C that satisfies conditions of Lemma 1.1.2.

(1.1.1)
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From (1.1.1) we have

——— pr1F1(0,¢) =0, (1.1.2)

priF1(r,0) = Fy(r)
praFy(r,0) = 0. (1.1.3)

<A Fo(r)

Introduce the notation N
proF1(0,¢) = Fi(c).
From (1.1.2) and (1.1.3) and the fact that F'; is a morphism of C, we have
Fi(r,c) = F1((0,¢) + (,0)) = F1(0,¢) + Fi(r,0) = (0, Fi(c)) + (Fo(r),0) = (Fo(r), Fi(c)).
From the commutativity of diagram 1.1.1 we have
Fody = d{F;.
This equality for each (r,c) € Cy x Kerdy gives
Fod(c) + Fy(r) = d'Fi(c) + Fo(r);

so Fyd(c) = d'Fy(c), which means that the diagram

Ker d() %d- Co

Fil lFo (1.1.4)

Ker dj, — Cy
is commutative. Again, from the fact that F'; € Mor C, we have

Fi((r,c) + (r1,e1)) = F1(r,¢) + Fi(r1,c1)
= (Fo(r), Fi(c)) + (Fo(r1), Fi(er)) = (Fo(r) + Fo(r1), Fi(c) + Fo(r) - Fi(c1)).
On the other hand,
Fl((r, c) + (rl,cl)) =Fi(r+r,c+r-c) =
=

= (Fo(r+r1), Fi(ctr- 1)) = (Fo(r) + Fo(ry), Fi(ctr- c1)).
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From the above equalities we obtain
Fi(c) + Fo(r) - Fi(cy) = Fi(c+7 - c1).
For ¢ = 0 and r = 0 we have respectively
Fi(r-c) = Fy(r) Fi(c),
E(C +ec1) = Fvl(c) + ﬁ1(01)-
Similarly, for any binary operation %, except the addition in C, we have

Fl((r, c) * (rl,cl)) =Fi(r*r,cxci+r*cy+c*rp)
= (Fo(r+m), Fi(cxer +7%e1 +cxr))
= (Fo(r) = Fo(r1), Fi(cx 1) + Fi(rxci) + Fi(c* r1));
Fi((rye) * (r1,¢1)) = Fi(r,¢) * Fi(r1,¢1) = (Fo(r), Fi(c)) * (Fo(r1), Fi(er))
= (Fo(r) + Folm). Fi(0) + Fi(er) + Fi () + For1) + Fo(r) = Fi(e1) ).

From the above two equalities we obtain
Fi(cxer) + Fi(rsc) 4+ Fi(exr) = Fi(e) * Fi(e1) + Fi(c) * Fo(ry) + Fo(r) * Fi(c1),

which gives

Fi(c*c1) = Fi(c) * Fi (),
151(7’ xc1) = Fo(r) = 151(01),
151(6 k7)) = 151(0) x Fo(ry),

for each r,r1 € Cy,c,c1 € Kerd. N
Thus, we can consider the internal functor (Fy, Fy) : C — C’ as a pair (Fp, Fy), such that Fp :
Co — Cj and F, : Kerdy — Kerdj, are morphisms of C satisfying the conditions

Fi(r-c) = Fy(r) - Fi(c),
ﬁl(r*c) = {0(7*) *151(0), (L.15)
Fi(c*r) = Fi(c) * Fo(r),

d'Fi(c) = Fod(c),

for each 7 € Cy,c € Kerdy. In the case C = Grp for such a pair of morphisms (Fo,Fvl), FY is called
an operator homomorphism associated with Fy by J. H. C. Whitehead [89].

It is easy to show that every pair of morphisms (Fy, F}) satisfying conditions (1.1.5) determines an
internal functor F': C — C’ and this correspondence is one-to-one. This correspondence is involved
in the proof given in [78], but we will need this detailed account in what follows.

1.2. Morphisms between Morphisms in Cat(C)

First, we discuss this question in a more general situation and then pass to the case of the category
of groups with operations and crossed modules.
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1.2.1.

General Case. Let C and C be (ordinary) categories. Recall (see [72]) that given two

functors S, T : C — C’, a natural transformation ¥ : S — T is a function that assigns to each object
¢ € C a morphism 9(c) : S(c) — T'(c) of C’ in such a way that for each morphism v : ¢ — ¢; the

diagram

S(c1) FTRY T(c1)

is commutative. Hence 9 is a function |C| — Mor C’, such that

domd(c) = S(c),

codom Y(c) =

T(c), T()d(e) =9(c1)S()-

The composition of two natural transformations of functors

)

3

S—T K

for the diagram

is defined by &9(c) = £(c)¥(c) for each ¢ € |C|.

Let C be a category with finite limits and Cat(C) be the category of internal categories and functors

in C. Let C,C’ € | Cat(C)|, C = (Co,C1,do,dy,i m), C' = (C},C},

be internal functors. This means that
S0, To : Co — C) € Mor C,
and the following diagrams are commutative:
i

VTR

01:>>C0

dy
N
dg

/ > v
€1 == Gy,

N
Thus we have
S1i = 1Sy,
dyS1 = Sody,
d} S1 = Sodi,

4, dy i/ m'), and S,T: C — ('

S1,Ty: C; — C} € Mor C,

A
i
Tvi ='Ty,
d\ Ty = Tydo, (1.2.1)
di Ty = Tyd,.

What does the natural transformation 9 : S — T mean? In this case, ¥ is a morphism Cq — C}
of C, such that the following diagrams are commutative:

(T1,0do)
06 CIO Cl 14()) Cll X(dg,dll) Cll
jﬁ//ﬂ Td& jf//ﬂ Tda (9d1,51) lﬂy (1.2.2)
Co—ﬁ)cllv CO—ﬁ)C/b Cllx(d67d’1) CIIT>C/1
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Here (11, 9dp) denotes a morphism induced by T3 and 9dy, since from (1.2.1) and (1.2.2) dyTy
d}9dy = Todp and thus dT) = dj9dy. The picture is as follows:

Th

/ /
C——GCp
1

Similarly, (9dy, S1) in (1.2.2) is induced by ¥d; and Sy, since from (1.2.1) and (1.2.2) d}.S;
dydd; = Spd; and thus dyvd; = d’lSl. The picture is as follows:

pr2 dy,

!/ !/
) y .
1

= Todp,

= Sod1,

To il
The identity natural transformation 7’ —Lo T s the composite Co —= Cfj —— C} (it satisfies

condition (1.2.2)). The composite of two natural transformations of internal functors

TN

_—
NG
is defined as the composite

Co(ilcl X(d/ d/)Cl —>C

where (&,9) is a morphism induced by ¢ and ¢&:

Co

w\

! ! !
Ch X(ay,a7) C1 5= C1
4 Pml dy,

) ——=C).
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(&,0) factors through C} x( ) Cj. It follows from the equalities dj) = Ty = dy, which we obtain
from (1.2.2) for ¥ and {. We must check that the composite m/(, 1) satisfies conditions (1.2.2). The
first diagram of (1.2.2) is commutative because it commutes for 9 and the second is commutative
because it commutes for £. For the third diagram we must prove that the diagram

(K17ml (5719)d0)

Cl C/l ><( )C/l
(m/(&ﬂ)dhsl)l lm,

is commutative. For the elements we obtain

| (K1(c),m'(&do(c),¥do(c)))

l m/ (K1 (c),m’ (§do(c), ¥do(c))),
m/(&dq(c),9dq1(c)), S1(c
(m/(&dy(c),Vd1(c)), S1(c)) ———— m! (m! (&dy (c), 9dy (), S1(c))).

Thus, it suffices to show that
m' (K1 (c),m/ (§do(c),9do(c))) = m' (m’ (£dy(c), 9di(c)), Si(c))

for each ¢ € Cy. From the associativity of composition in C' and commutativity of the third diagram
of (1.2.2) for ¥ and &, we obtain

m' (m'(€dy(c),9d1(c)), S1(c)) = m' (Edi(c), m/ (Vdi(c), Si(c)))
= m/(&di(c),m'(T1(c),¥do(c))) = m/ (m'(€du(c), Ti(c)), ¥do(c))
=m' (m/(Kl (C)v ng(C))7 ﬂdO(C)) = m/(Kl (C)v m/(ng(C)v ﬁdO(C)))y

which proves the commutativity of the above diagram.

1.2.2. The case of a category of groups with operations. Let C be the category of groups
with operations, C = (Cy, Cy,dp, d1,4,m) and C' = (Cf, CY, dj, dy,7,m’) be internal categories in C,
and S,T : C —= (' beinternal functors. Then as was shown in Sec. 1.1, this yields the commutative
diagram

Ker d() d—> CO

sluT1 SOHTO (1.2.3)

Ker dj — C,
d/

where S = (Sp,51) and T' = (Tp, T1) satisfy conditions (1.1.5) (Fo,f’; are replaced by Sy, S1 and Tp,
Ty, respectively). A morphism or a natural transformation ¢ : (Sp, S1) — (Tp,71) is a morphism
¥ : Cp — Cf x Ker df, of C such that the following diagrams are commutative:

o Co
y T_ / T_
dd dy
Co—ﬁ>C’0|><Kerd6, Coﬂ—>C6D<Kerd’0,
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(T1,9do)

Co x Ker dy (Co x Kerdg) x g4 3y (Co x Ker dp)
(1931’,51)L lm’
(Cp x Ker dy) X (dg.d0) (Cpy x Kerdy) — Cf) x Ker d;,

From the above we have
9(r) = (So(r),a(r)), where a(r) = prod(r) € Kerdj;
d'a(r) + So(r) = To(r),
(r,c) ((To(r), T1(c)), So(r), a(r))

.

(So(r), T1(c) + a(r)) (1.2.4)

((So(dc + 1), a(de+ 1)), (So(r),S1(c))) —— (So(r), a(dec + 1) + S1(C))

for each r € Cy and ¢ € Ker d.
From the fact that ¥ is a morphism of C for each r,r; € Cp, we obtain:
1. For each unary operation w in C except the negation,

D(w(r)) = wi(r),

( ( )) (SOW(T ,aw ) = ( w(r))v
wd(r) = w(So(r), (r)) = (WS (r)),
aw(r) = wa(r).

2. ¥(r+r) =9(r) + 9(r),
(So(r+r1),a(r + 1)) = (So(r) + So(r),a(r + 1)), I(r)+9(r1) = (So(r),a(r)) + (So(r1),r1)
= (So(r) + So(r1), a(r) + So(r) - a(r1)),
a(r+r1) = a(r) + So(r) - a(ry). (1.2.5)
3. For each binary operation * in C except the addition,
Hrxry) = 9(r) « 9(ry),
I(r*xry) = (So(r*xry),alrxry)) = (So(r) * So(ri), a(r xry)),
I(r) = D(r1) = (So(r), e(r)) * (S1(r1), (1))
= (So(r) * (So(rl), a(r) = a(ry) + a(r) x Sp(r1) + So(r) * a(rl))),
alr+ry) = a(r) *a(ry) + a(r) x So(r1) + So(r) * a(ry).
From (1.2.4) and (1.2.5) we obtain
Ti(c) + a(r) = a(de +r) + S1(c),
T1(c) + a(r) = a(de) + Sp(dc) - a(r) + Si(c).
From (1.2.3) we have
Ti(c) + a(r) = a(de) + d'S1(c) - a(r) + Si(c).
Applying Lemma 1.1.2 we obtain

Ti(c) + a(r) = ad(c) + S1(c) + a(r) — Si(c) + S1(c),
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which gives ad(c) = T1(c) — Si(c). Thus, a natural transformation 9 : (So, S1) — (1o, 71) determines
the map « : Cy — Ker d|, satisfying the following conditions:

aw(r) = wa(r),

a(r+ri) = a(r)+ So(r) - a(ri), (1.2.61)

a(r+ri) = a(r) x a(ry) + a(r) = So(ri)+So(r) * a(r); (1.2.6)
d'a(r) = Ty(r) — So(r),
ad(c) = Ti(c) — S1(c). (1:2.62)

It is easy to show that such a map a : Cy — Kerd|, determines the natural transformation
¥ : Cp — Cj x Kerdj, between functors (Sp,S1) — (Tp,71) defined by the correspondence r —
(So(r),a(r)), and this correspondence a —— ¢ is one-to-one. In what follows under the natural
transformation of internal functors we shall mean a map satisfying conditions (1.2.6).

In the case C = Gr, a map « satisfying conditions (1.2.61) is called by Whitehead a crossed
homomorphism associated with Sy (see [89]). Consider the case where the complexes

C*:0—>Kerdo—d>Co and C;:0—>Kerd6—dl>06

are homotopy systems (for definition, see [89]). Then such type of a map a : Cp — Kerd) is
a deformation operator associated with a homomorphism Sy in the sense of Whitehead [89]. The
picture is as follows:

C*:"-0—>Kerd0d—>Co
| A

In this case, the existence of a map « satisfying conditions (1.2.6) in Whitehead’s terminology
means that homomorphism S = (Sp, 51,0,...) is equivalent to a homomorphism 7' = (7y,717,0,...).
(In formula (4.3) of [89],

w/gn — fn = d%+1€n+l +&ndy, n>1,

we must take w’ = 0, w’ is an element of C{, in our case, g1 = Ty, g2 = T1, and g; = 0 for i > 2,
fi=0S0, fa=S1,and fi=0fori>2 & =0,& =a,and §; =0fori >2,do=d, d; =0,d, =d,
and d; = 0 for i # 2, which gives (1.2.62) for n = 1 and n = 2, respectively).

Thus, in this case the existence of a morphism between internal functors is a special case of the
equivalence of these internal functors, considered as homomorphisms of homotopy systems in the sense
of Whitehead [89].

The identity natural transformation of internal functors (Tp,T}) L (Th, T1) is the composite

To il
Co — Cj —— C{ x Ker d),

and the corresponding map « : Cy — Ker dj) is zero. The composite of two natural transformations
of internal functors
) 3
(50751) — (T07Tl) — (K07K1)
is the composite
(&9) / ! / U m/ / U
Co — (Co x Kerdp) X (ar ay) (Co x Kerdy) —— (Cj x Ker dy)
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For the elements we have
= ((To(r), B(r)), (So(r), (1)) === (So(r), B(r) + a(r)),

where o, 8,5 + a : Cy — Kerd|, correspond to ¥, £ and & - ¥, respectively. It is easy to show that
B + « satisfies conditions (1.2.6).

Proposition 1.2.1. Let C,C’ € Cat(C) and a : (Sy,S1) — (Tp,T1) be a natural transformation
between internal functors S,T : C — C'. Then S and T are naturally isomorphic.

Proof. We show that there is a map o/ : Co — Kerdj, such that for each r,r; € Cp, ¢ € Kerdy the

following conditions are satisfied:

L. a+d =0

2. d/w(r) = wd/(r), for each unary operation w in C except the negation;

3. o/(r+ 1) = a(r) + To(r) - o/ (r);

4. o/ (rxry) = (r)xd(r1) + ' (r) *« To(r1) + To(r) * o/ (r1) for each binary operation * in C except
the addition;

5. d'd(r) = So(r) — To(r);
6. o/d(c) = Si(c) — Ti(c).

Define o/ (r) = —a(r). The first condition is satisfied by the definition of ¢/; w is the homomorphism
for the addition, hence, w(0) = 0 and w(—r) = —w(r). Thus, for the next conditions we have

2. o/ (w(r)) = —a(w(r)) = —w(a(r)) = w(—a(r)) = w(@/(r)).
3. Computing the left and right sides of Condition 3 we can see that they are equal:
o(r+r)=—alr+mr)=—(alr)+ So(r) - a(r))
—(So(r) - a(r1)) — a(r) = =((=d'a(r) + To(r)) - a(r1)) — a(r)
= —(d'(=a(r)) - (To(r) - a(r1))) — or) = =(=er) + To(r) - alr1) + (1)) — e(r)
= —a(r) = To(r) - a(r) + a(r) —a(r) = —a(r) = To(r) - a(ro),
o (r)+To(r) - (r) = —alr) + To(r) - (—a(r)) = —a(r) — To(r) - a(ry).
4. o/ (r*ry) = —alrxry) = —(a(r) * a(ry) + a(r) * So(r1) + So(r) * a(r1))
= —So( ) xa(ry) — a(r ) * So(rl) —a(r) *a(r)
—((=d'a(r) + To(r)) * a(r1)) = (a(r) * (=d'a(r) + To(r1))) — a(r) * a(r1)
= (( ‘a(r)) x a(r) + To(r) * a(r1)) — (a(r) * (=d'a(r1)) + a(r) * To(r1)) — a(r) * a(r1)
—((=a(r) x a(r1) + To(r) * a(r1)) — (a ( ) ( a(r1) +a(r) * To(r1)) — a(r)a(r))
= —To(r) xa(r) + a(r) x a(r1) —a(r) « To(r1) + a(r) * a(r) — a(r) * a(ry),
o (r) o/ (r1) + o/ (r) * To(r1) + To(r) * &/ (r1) = a(r) * a(ry) — a(r) * To(r1) — To(r) * a(ry).

Now it suffices to mention that for each object C of C and for elements a,b,c,d € C we have
axd+bxc = bxc+axd, which implies the analogous identity for actions (see Chap. 3, Proposition 3.1.1,
condition 12). Conditions 5 and 6 are obviously satisfied by the definition of o/, which completes the
proof of Proposition 1.2.1. O

Remark. A similar statement is valid for more general internal categories, if Ima (a : Co — C}
is defined by «) is a subobject of “internally” invertible morphisms, and in particular, for internal
groupoids in more general categories than C. Thus, Proposition 1.2.1 can be obtained from this and
the fact that internal categories in C are internal groupoids. Proceeding from our interest in crossed
modules expressed in the title, we gave a detailed proof of this proposition, which somehow contains
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the proofs of both mentioned statements (Ima is a subobject of “internally” invertible morphisms
and « is an isomorphism) in terms of crossed modules.

Let a : (Fp, F1) — (Go,G1) be a natural transformation of internal functors F,G : C — (',
and S : C — C be an internal functor. As in the case of ordinary categories we have the natural
transformation .S : (FySo, F1.51) — (GoSo, G151), defined by aSy. We must show that a.Sy satisfies
conditions (1.2.6); « is a natural transformation, so it satisfies conditions (1.2.61) (Sp replaced by Fp);
So is a morphism of C. From the above, we conclude that aSy satisfies conditions (1.2.61). Similarly,

d'a(r) = Gy(r) — Fy(r) foreach r e Cy.
Take r = Sy(7); then we obtain
d'aSy(F) = GoSo(T) — FuSo(F) for each 7 € Cy.
For the second condition of (2.62) we have
ad(c) = Gy(c) — Fi(¢) for each ¢ € Kerdy.

Take ¢ = S1(¢); then we have adSi(c) = G1.51(c) — F151(c); but dS; = Spd, which gives the desired
equality. N
Let (Tp,T1) : C' — C be an internal functor; then we can also define

To : (ToFo,TlFl) — (ToGo,TlGl)

as Tya. We must show that Tia satisfies conditions (1.2.6); « satisfies these conditions and 77 is
a morphism of C; this proves the first equality of (1.2.61). For the second and third conditions,
we apply (1.1.5). For (1.2.62), we again apply commutativity Tod' = dTy and the fact that T} is a
morphism of C.

1.3. Adjunction of Internal Functors, Internal Category Equivalence,
and Whitehead Equivalence of Homotopy Systems

Let C be a category with finite limits, C and C’ be internal categories in C, and S and T be internal
functors

T
c__—_—=cC.
S
We have the following well-known category theory notions for the case of internal categories.

Definition 1.3.1. We say that T is left adjoint to S if there are natural transformations of internal
functors ® : T'S — 1, ¥ : 1¢ — ST such that the composites

s grs 5% g, T s 2

are the identity natural transformations.
Definition 1.3.2. We say that an internal category C is equivalent to C’ if there is a pair of internal

T
functors C = C’ together with natural isomorphisms of internal functors
S

d:TS =5 1¢, U:lc —== ST.

In this case, we say that T and S are equivalences of internal categories.
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Definition 1.3.3. We say that we have an adjoint equivalence of internal categories C and C’ if there
T

is a pair of adjoint internal functors C — C’ such that the corresponding natural transformations
S

®: TS — 1y and ¥ : 1c — ST are isomorphisms.

From the results of Sec. 2 we have the following assertion.

Proposition 1.3.4. Let C = (Cy, Cy,dp,d1,i,m) and C' = (Cy, Cl, d, d},i',m") be internal categories
in C and T = (Ty,T1) and S = (Sy,S1) be internal functors

Ker dy _4, Co

T

Kerd, — C/ .
0 J 0

T is left adjoint to S if and only if there are maps ¢ : C{, — kerd}, and ¢ : Cy — Kerdy satisfying
the following conditions:

pw(r') = we(r'),

p(r' +11) = @(r') + ToSo(r') - p(r1), (1.3.11)
o(r' x 1)) = o(r") * p(r) + @(r') * ToSo(r}) + ToSo(r') * o(r]), (1.3.1)
d'o(r') =r" = ToSo(r"),
{g@d,(C,) :c/_TlSl(Cl) (1312)
for each r',r} € C}y and ¢ € Kerdj;
( Yw(r) =wy(r)
Y(r+mr1) =(r) +r- (),
(7"*7“1) Y(r) = p(r1) +9(r) * ri+rx4p(r), (1.3.2)
dy(r) = SoTo(r) —
Qﬂd(c) = SlTl(C) —
for each r,r € Co and ¢ € Kerdy;
Sip+1vSyg =0, I+ Ty =0. (1.3.3)

From Proposition 1.2.1 for the case of categories of groups with operations C we obtain
Proposition 1.3.5. In the category C internal adjunction implies equivalence of internal categories.
Proposition 1.3.6. Internal categories

C: Kerdy L Co and C':Kerd 4 Cy
i C are equivalent if and only if there are internal functors

(To,T1)
C—C
(S0,51)
and maps
0:Cy — Kerd, and 1 :Cy— Kerdy
satisfying conditions (1.3.1) and (1.3.2).
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Proposition 1.3.7. Internal categories C and C' in C are adjointly equivalent if and only if there
are internal functors
(To,T1)
C—_—=C
(S0,51)
and maps
¢:Cy— Kerdj, v :Cy— Kerdy

satisfying conditions (1.3.1), (1.3.2), and (1.3.3).
Thus by Proposition 1.2.1 & and ¥ are always isomorphisms and we do not require the existence

of the maps ¢’ : Cj — Kerd), and ¢’ : Cy — Ker dy satisfying conditions ¢ + ¢’ =0, ¢ + ¢ = 0,
and the following ones:

Pw(r') = we' (),
¢ +r) =)+ (),
@ (') = @)« (1) + () x4+ (1), (1.3.17)
d'¢'(r') = ToSo(r') — 7/,
'd'() =TiS:1(c) = ¢
‘w(r) = wy'(r),

(r) 9 (r1) + 9" (r) * SoTo(r1) + SoTo(r) * ' (r1), (1.3.2")

Proposition 1.3.8. The following conditions are equivalent in C:

T
(i) We have an adjoint pair of internal functors C —= C';

(ii) We have an adjoint equivalence of internal categories C and C'.

The following proposition follows from the definition of equivalence of homotopy systems given
by Whitehead [89], Proposition 1.3.6, and the note concerning natural transformations of internal
functors and deformation operators given in Sec. 1.2.

Proposition 1.3.9. Let C and C' be internal categories in the category of groups. If the corresponding
crossed modules

C, : Kerdy 4, Co and C,:Kerdy 4 Cy

are homotopy systems (see [89]), then the equivalence of internal categories C and C' is a special case
of the equivalence of C, and C., in the sense of Whitehead (see [89]).

Recall that a functor S : A — A’ between (ordinary) categories is called faithful if for each pair of
objects (A1, Ag) € |A| x |A|; the map

S : HomA(Al,Ag) — HomA/(So(Al),So(Ag))

defined by f —— S(f) is injective; S is called full if the above map is surjective, and S is full and
faithful if this map is bijective.
For internal categories in categories of groups with operations we obtain the analogous definition.
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Definition 1.3.10. An internal functor S = (Sp,S1) : C — C’ is called faithful if for each pair
(r,r1) € Cox Cq the map C(r,r;) — C'(So(r), So(r1)) defined by (r,c) — (So(r), S1(c)) for each
(r,c) € Co x Kerdy with d(c) + r = rq, is injective. (Sp,S1) is called full if this map is surjective and
S is called full and faithful if this map is a bijection.

Lemma 1.3.11. Internal functor S = (Sp,S1) : C — C' is faithful if and only if
S1|Kerd : Kerd — Kerd'
is a monomorphism (here as above d = di|Kerd,)-
Proof. By the definition of faithful functor the equality (So(r), S1(c)) = (So(r), S1(c1)) implies (r,¢) =
(r,c1) for each ¢,¢c; € Kerdy, and r € Cy with d(c¢) = d(c1). This condition is equivalent to the

following one: Si(c) = Si(c1) implies ¢ = ¢; for each ¢,¢; € Kerd, which means that Si|kerq is a
monomorphism. O

Lemma 1.3.12. Internal functor S = (So,S1) : C — C’ is full if and only if for each ¢ € Kerdj,
with d'd = So(r) for some r € Cy, there is an element ¢ € Kerdy such that d(¢) =r and Si(c) = .

Proof. By the definition of the full functor for an arbitrary element (Sy(r), ) with d’'(¢) + So(r) =
So(r1) there is an element ¢ € Kerdy such that d(c¢) + r = r1 and Si(c) = ¢, where r,71 € C; and
¢ € Kerdy. Taking r = 0, we obtain the desired condition.
Let (So(r), ") € C'(So(r), So(r1)). We have
d () = So(r1) — So(r) = S(r1 — ).
By the conditions of the lemma there is an element ¢ € Ker dy with S1(c) = ¢ and d(¢) =r, — 7. So
d(c)+r=r1, (r,c) € C(r,r1) and (So(r), S1(c)) = (So(r),c’), which proves the lemma. O

For internal categories we have the following analogue of Theorem 1 from [72], §4, TV.

Theorem 1.3.13. The following properties of an internal functor T : C — C' in C are equivalent:
g
i) T is an equivalence of internal categories.
(i) q g
(i) T is a part of an adjoint equivalence C —=C" .
(iii) T is full and faithful; for each r' € Cf there is an element r € Cqy such that we have an
isomorphism
(To(r), &) : To(r) —=—=1" .
The correspondence ' — r defines a homomorphism So : C, — Co, and the isomorphisms
0
(To(r), ') can be chosen in such a way that the map ¢ : ' — ¢ satisfies conditions (1.3.17).

Proof. By the definitions, (ii) implies (i). To prove that (i) implies (iii), let ¢ € Kerd. From (1.3.2),
we have d(c) = S1T1(c) — ¢; de = 0, so if Ti(c) = 0, then ¢ = 0 which by Lemma 1.3.11 means that
T is faithful. Similarly, from (1.3.1) we prove that S is faithful. To prove that T is full, let ¢’ € Ker d,
and d'd = Ty(r) for some r € Cy. Take ¢ = —9(r) + S1(’), ¢ € Kerdp. By Lemma 1.3.12 we must
show that dc = r and Ti(c) = ¢/. We have

de = d(—(r + S1(c))) = —dip(r) + dS1(c)
= —(SoTo(r) —r) +dS1(c) = r — SoTo(r) + Sod'd + 1 — SoTo(r) + SoTo(r) = r.

Thus, by the definition ¢ = —(r) + S1(c’); on the other hand, by (1.3.2) for each ¢ € Kerdy we
have ¢ = —1(r) + S1T1(c). From the above two equalities we obtain that S1Ti(c) = S1(¢/). But S
is a faithful internal functor. This proves that T1(c) = ¢/. The other conditions of (iii) are trivially
satisfied.
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Now we shall prove that (iii) implies (ii). By (iii) we have a homomorphism Sy : Cy — Cf, and a
map ¢ : G — Ker dj, satisfying conditions (1.3.11). For an arbitrary morphism (0,¢) : 0 — r’ we
have an isomorphism 0 —» TpSo(r') defined as the composite (TpSo(r'), ¢(r')) " - (0,¢). The latter
has the form (0,73 (c)) for some ¢ : 0 — Sy(r’), because T is full and this ¢ is unique because T is
faithful. We can define S;(c’) = c. Thus we have S1(¢) = T~ (—¢(d'¢') + ¢’). We must show that S;
is a morphism in C and S = (Sp, S;) satisfies conditions (1.1.5) (F} and Fy are replaced by S; and
So, respectively).

1. From the definition follows that Si(w(c)) = w(S1(c)).
2. 81(c) +ch) = T (—pld(c] + b)) + ¢ + ch);
S1(ch) + Su(ch) = Ty H(—pde) +¢)) + Ty (—ddh + ).
Thus it is sufficient to show that —p(d(c] + b)) + ¢} + ¢y = —pdd| + ¢} — pddy + . We have
—p(d(ci + 0’2)) +c1+ ¢y = —p((ddy) + (dcy)) + ¢y + ¢5)
—(pdc) + ToSo(d'ch) - p(dch) + ¢y + ¢y = —(ToSo(dey) - p(dch)) — pdcy + ¢ + c.
From (1.3.1) we have Ty So(d'c)) = —d'o(d'¢}) + d'dy = d'(—pd' ) + ¢}); thus we obtain
—p(d(ci + ) + 1+ ¢y = —((=d'p(d'cy) + d'ch) - p(d'cy)) — pdcy + ¢y + ¢
—((d'(=p(d'cy) + c1)) - p(d'ch)) — pd'ch + ¢t + &
= —pddy + ) —pddy— ) +@dd) —pdd + )+ cy = —pdd) + & — pd' d + .
3. Si(c) * cy) =Ty H(—p(d (¢} % ch)) + &) % c;
S1(ch) * Su(eh) = T (—pd! () + &) # T (—pd! () + &)
=Ty H(pd () * pd' (ch) — d' () x ¢y — ¢ % pd'(ch) + ¢ * &);
—p(d'(cy x b))+ x ey = —p((d'ch) * d'(ch)) + c) * &
—(pd'(c)) * pd (c5) + @d (c}) x ToSod' (c3) + ToSod' (c}) * d'(c5)) + ¢} * &
= —TpSod'(c}) * pd'(cy) — d'(c}) * ToSod'(ch) — pd'(c}) % pd'(ch) + ¢} % &
= (=d'cy +d'pd (c))) * pd'(c) + pd'(c}) * (=d'ch + d'pd (ch)) — pd'(c}) * pd'(ch) + ¢} * ¢
= —d'(c}) * pd'(ch) + pd'(c)) * pd (c3) — od'(c}) * d'(c))
+od'(ch) * pd (ch) — pd'(c)) * od (c3) + ¢ + ¢
= —cy * pd (c5) + pd (c]) * d'(cy) — pd'(c}) * ¢ + €} * ¢,

which gives the desired equality (here we again apply the equality a*xc+bxd = b+ d+ a*c for
the elements of C and its consequence for the actions).

4. We must show S1(r’ * ) = So(r’) * S1(c’). We have
S107 ) = T (pld (0 ) ' 5 )
S(r') # S1(¢) = So(r') * Ty (—pd () + ¢) = T (T So(r) * (~od () + ),
—o(d' (" x))+r"xd = - xdd)+ 1"«
= —p(r') = d (') + o(r') = TySod (') + ToSo (') * p(d'd) + 1" =
= —TpSo(r") * d' (') — (1) * ToSod' () — (") x pd' (') + 7' *
= —ToSo(r") x @d (') — @(r') * (d'pd (') + TSd' () + 1" * ¢!
= —ToSo(r") x pd () — (1) x d'(') + 7" ¢
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= —ToSo(r") * od' (') + (=d'o(r") +7") x ¢

= —TpSo(r') * d' (') + ToSo(r') * ¢ = ToSo(r') * (—pd'(c') + ).
5. We must show S1(r' - /) = Sp(r’) - S1 ( "). We have
Si(r' ) =T (- sOd/( )+ d);
—gpd'(r Y+ d = —go(r +d'cd =)+ = —(p(r") + ToSo(r') - p(d'd —1"))

—p(r') + (=d'p(r') +1') - (w(d’C’)JrToSo(d’ ) (=) +0' -l

+ (=d'p(r") + 1) - (p(d'd) + (=d'p(d'd) + d') - (=) +71" -

+ (=d'o(r) + 1) - (pd () + d (—p(d')) - ( + (1) — ')+T'C'

dp(r') + () = @d () + +o(=r") = +od () + 1" - ¢

= —((r") + (=d'o(r)) - (7" -+ 1" p(=r) + (=) + 1" od () +

= —((r') = (") + 1" 0" p(=r") ="t pd () + () + 1 e
=—p(r') 1" pd () 1" (=) =" p(=r) =1 et L

=—r")—=r"od () +7" - =1 p(=1").

/

—((r)
= —(p(r’
= —(p(r) + (- ') - (od

/
r C

From (1.3.1) we obtain
@(0) = @(=r") + ToSo(=7") - (r'), 0= p(=r") + (=ToSo(r")) - ('),
p(=r') = =(=ToSo(r")) - p(r') = = (=" +d'p(1")) - (1)
= —((=r") - (p(r") +o(r") = o(r"))) = =(=r") - ().

rp(=r") =0t (= (=) () =0 (=) - (=) = (' + (=1) - (= () = —(r).
Applying this to the above equality, we conclude
Si(r' &) =T =) — 7" - @d () + 7" - 4+ ().
On the other hand, we have
So(r') - S1(¢) = So(r') - Ty H(—pd'd + )
=T, {(ToSo(r) - (—ed' () + ) =Ty (( p(r') + ) (—pd' () + )
=T (=(r") + 7' (—pd () + &) + (") = T (=) =" od () + 1" - ¢ + (1)),

which proves the equality.
We have also to show that Spd’ = d'Sy. For each ¢’ € Kerdj,

d'S1(c) =d Ty H—pd () +);

c is a morphism

0— d'(d),
—pd' () + ¢ is a morphism

0 — TpSo(d'd),

so Ty ' (—pd' (') 4 ¢) is a morphism

0 — Sod'(c)
and hence

AT (—pd () + ) = Sod' ()
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which gives the desired equality. Note that by the definition of S; the last condition of (1.3.1) is also
satisfied.
To define ¢ : Cyg — Ker dy note that

d' oTy(r) = To(r — SoTo(r)).
Since T is full and faithful, there is an unique element ¢ € Ker dy such that
d(c) =r—SoTo(r), Ti(c)= Tp(r).

Define 1 by 9(r) = T H(—¢To(r)). Tt is not difficult to show that ¢ satisfies conditions (1.3.2) and
(1.3.3). We shall demonstrate the proof of the first equality of (1.3.3). For this we need to prove that
©TpSo = T1S1¢. We have

PToSo(r') = (=d'o(r') + 1) = p(=d'e(r")) + ToSo( d'o(r')) - (')

= (=d'o(r ’)) d'p(—d (1) + (=d'o(r")) - (1)
= p(=d' (1) = p(=d'p(r')) — (1) + o(r ) p(r') + o(=d'p(r"))
= o(r") = (ToSod (")) - p(d'p(r"))) = o(r ) (( "o(r') + d'ed o(r')) - p(dp(r")))
=p(r') = (= o) +od'o(r') + d (1) — ed'o(r') + o(1")).
We apply here the equality
p(=1") = =((=ToSo(r")) - ¢(1")),

which can be obtained from the second condition of (1.3.17). From (1.3.13) we have

TiS19(r") = —ed o(r') + (r'),

which gives the desired equality. Applying this, we shall prove the first equality of (1.3.3). We have

S1p(r") +9So(r') = T (—pd () + (")) + T (—pToSo (1)
=T (—(p(r") = TiS1p(r")) + (")) + T (=T1S10(r"))
=Ty (T1S10(r") — (') + (")) = S1p(r') = 0.
This completes the proof of Theorem 1.3.13. O

Note that (ii) = (i) can be proved directly. For the given T, S, ¢, 10 we must define @ by
% = S;H(—So(r")); it is proved that @ satisfies conditions (1.3.1) and (1.3.3) and (T, S,%,%) is an
adjoint equivalence of internal categories C and C’. Also note that by Lemmas 1.3.11 and 1.3.12, the
condition 7" is full and faithful, and for each v’ € C|y there is an element r € Cqy such that Ty(r) ~ r’ is
equivalent to the following: T induces the isomorphisms Ker d ~ Ker d', Coker d ~ Coker d’; this kind
of a morphism between crossed modules is usually called a weak equivalence (see, e.g., [42]).

Proposition 1.3.14. Let C = (Cy, C1,do,d1,i m) be an internal category in the category of groups
with operations C. C is equivalent to the discrete internal category, if and only if d = d1|Ker & s a
monomorphism and the natural epimorphism m : Cq — Coker d has a section.

Proof. Let the conditions of the Proposition hold. We shall prove that C is equivalent to the discrete
internal category C' = (Coker d, Cokerd, 1,1,1,1). Let u : Cokerd — Cp be a section of 7, mu =
lcokerd- For the category C' we have: Cj = Cokerd, Kerdj = 0, d = 0. Define internal functors
(To, Ty) : C — ', (Sp,S51) : ¢ — Cby Ty =, Ty =0, S = u, S; = 0. It is easy to see that these
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maps satisfy conditions (1.1.5). The picture is the following

Ker dg d Co

T1=0 l l To=m

0 :Kerdgﬁg(]’ = Cokerd .

Sl=0l lS():u

Ker dg Co

For the split extension

0 Imd Co == Cokerd —— 0 (1.3.4)

™

we have Cy ~ Coker d x Imd; so each r € Cy has a form r = (7 (r), dc). Define ¢’ : Co — Ker dy by
Y/ (7(r),dc) = ¢; d is a monomorphism, from which it follows that v is defined correctly. We must
show that the maps ¢’ and ¢ = 0 satisfy conditions (1.3.2") and (1.3.1) respectively. It is easy to see
that ¢ satisfies (1.3.1). For (1.3.2') we have:

1. For each unary operation w, except the negation
P (w(r)) = (w(n(r),de)) = ¥ (wr(r), wd(c)) = ¢ (rw(r), dw(c))) = w(e);
wy'(r) = wy/(n(r), de) = w(c).

2. Y (r1+1r2) = ((w(r1),der) + (w(r2),deg)) = ' (7(r1) + 7 (r2), dey + 7(r1) - deg); here the action
m(r1) - deg is induced from the extension (1.3.4):

7(r1) - deg = (w(r1),0) + (0,dez) — (7(r1),0).
Consider the action (m(r1),0) - ¢o induced from the extension

0 —— Ker d() C1 do

Co 0; (1.3.5)
we have (m(r1),0) € Cp, c2 € Kerdp. From Lemma 1.1.2 we obtain
d((m(r1),0) - c2) = (7(r1),0) 4+ (0,de2) — (7(r1),0).
From the above we conclude
¥(r1+7r2) = ' (w(r1) + 7(r2), dey + d((7(r1,0) - c2))
= (m(r1 +72),d(c1 + (7(r1),0) - c2) = e1 4 (7(r1),0) - c2 = ¢’ (r1) + SoTo(r1) - ¥ (r2).
3. Y (rixre) =/ ((w(r1),der) = (w(re),dea)) = ¢/ (w(r1)*xm(re), dey xdea + (dey ) s (re) +7(r1) xdez ).
The action (dey) * w(r2) is induced from the extension (1.3.4). Thus,
(dey) x w(rg) = (0,dey)  (mw(ra),0).
Consider the action ¢ * (7(r2),0) induced from (1.3.5). Here (7(r2),0) € Co, ¢1 € Kerdy. Thus from
Lemma 1.1.2 we obtain
d(cr * (m(r2),0)) = d((0,¢1) * (7(r2),0) = (0, der) * (w(r2), 0).
So
(dey) * m(ra) = d(cy * (w(r2),0)).
Similarly,
m(ry) *x deg = d((mw(r1),0) * c2).
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From the above arguments we have
P (r1 % re) = P (w(ry * r2),d(cr * c2) +d(er * (m(r2),0)) + d((7(r1), 0) * c2)
=/ (7(ry * r9),d(c1 * ca + 1 * (m(r2),0) + (7(r1),0) * c2))
= c1 x e+ ¢1 % (m(r2),0) + (7(r1),0) * 2
= (m(r1),der) * ¢ (m(r1), der) +¢'((w(r1), der) * (w(r2), 0) + (7(r1), 0) * &' (7 (r2), de2)
=/ (r1) * ¢/ (r2) + ¢/ (r1) * SoTo(rz) + SoTo(r1) * ¢/ (r2).
4. d/(r) = dY/(x(r),de) = (0,de), r — SuTo(r) = (m(r).de) — (x(r).0) = (0, do).

5. ¢'de ='(0,dc) = ¢, c — S1T1(c) =c— 0 =rc.

Thus ¢’ satisfies conditions (1.3.2"). Now we shall prove the converse statement. Let C be equivalent

T
to the discrete category C' = (Cy’,Cy’,1,1,1,1). Denote by T' and S internal functors C —= C’,
S

which induce the equivalence of the given categories. By Proposition 3.3.4 of Chap. 3 (where we do
not use in the proof the statement of Proposition 1.3.14) C and C’ are homologically equivalent. Hence
we have the isomorphisms Ker d ~ Kerd' = 0 and Coker d ~ Coker d’ = Cy induced by S and T' and
the following commutative diagram:

0 —— Kerd —— Kerdj _°, Co — Cokerd ——= 0

R T

d'=0 =
0 0 0 C) C) 0-

el

0 —— Kerd —— Kerdj _°, Co —— Cokerd —= 0

Thus d is a monomorphism. From the commutativity of the diagram we have mSpar = S = 1goker d;
which proves that Sy« is a section of 7. O

CHAPTER 2

COHOMOLOGY OF INTERNAL CATEGORIES
IN CATEGORIES OF GROUPS WITH OPERATIONS

In this chapter we define and study the cohomology H"(C, —) of an internal category C in the cat-
egory C of groups with operations [78], [76] (see Sec. 1.1 for the definition). As in Chap. 1, using
the equivalence of categories Cat(C) —= X Mod(C) [78], we describe completely the cohomology
H"(C,—) and the corresponding complex {K"(C,—), 9", n > 0}. In particular cases this gives the
description of the cohomology of internal categories in the category of groups, associative algebras, Lie
algebras, etc. Regarding the internal category cohomology as the cohomology of the corresponding
crossed module, we obtain the equivalent results for the crossed module cohomology.

2.1. Abelian Groups in the Category CC of Internal Diagrams

Let C be a category of groups with operations and C= (Cy, Cy,dp,d;,%,m) an internal category

in C. Recall that [43] an internal diagram F' on C consists of an object Fj . Cy of C / Co and
a morphism e : C; x¢, Fo — Fj such that ype = dym1, e(i x 1) = 1, and e(1 x e) = e(m x 1) :

412



Ci1 x¢y C1 x¢y Fo — Fp. By an abelian group in the category CC of internal diagrams on C is
meant a quintuple A = (Ag,7,e,n, i), where Ag —— Cy is an object of C/C, e : C; x¢,Ag —> A
an action of C on A, n: Cy — Ap a group identity and p : Ag xc, Ag — Ap an addition, which are
morphisms of C satisfying standard conditions. We can consider A as an internal category of the form
A = (Cyp, Ag, m,m,n, pn) with the additional structure e, which is isomorphic to the internal category
(Co, Co x Kermr,n’, 7', 1/, 1) with the additional structure ¢’ : (Cy x Kerdy) xc, (Co x Kerm) —
Co x Ker m; here 7'(r,a) = r, n'(r) = (r,0), ¢/((r,d’),(r,a)) = (r,a’ + a). Note that by Lemma 1.1.1
applied to A, Ker 7 is an abelian group and a; * as = 0 for all a;,as € Kerw. By the definition of an
internal diagram, ¢’ is a morphism in C satisfying the conditions
7'e((r,c), (r,a)) =d(c) +r,
6/((7", 0)7 (T’ a)) = (Tv a)7
e ((d(c) +r,d),€((r,¢), (r,a))) = € ((r, ¢ +¢), (r,a));

moreover, ¢ satisfies the distributivity condition (for the abelian group structure on A), from which
follows

e ((r,c), (r,0)) = (d(c) +r,0).
From the above and from the fact that ¢’ is a morphism in C we obtain
e’((r, C)v (T’ a)) = 6,(((0, 0)’ (0’ a)) + ((T’ C)’ (Tv 0))) = 6,((0, 0)’ (0’ a)) + 6,((7“, C)’ (Tv 0)) =
= (0,a) + (d(c) +,0) = (d(c) + 7, a);
on the other hand,

¢'((r.c), (r,a)) = €'(((0,¢),(0,0)) + ((r, 0), (r,a)))

= 6,((0, C), (07 O)) + 6,((7’, 0)7 (T7 a)) =
= (d(¢),0) + (r,a) = (d(c) + r,d(c) - a).

Thus, for each r € Cy, ¢ € Kerdy and a € Ker 7
e'((r,c), (r,a)) = (d(c) +r,a),
d(c)-a=a.

Consider the following equality:

¢ (((r,e), (r,a)) = (", ), (r',d))) = €'((r,0), (r,0)) = '((1", ), (', d)).
Direct computations give
e((rxrcxd +rxd +cxr!),(r=r',rxd +axr)) = (dc) +ra)*(d)+1,d),
(dlexd)+dr=d)+d(cxr)+rrxd +axr') =
= (d(c) *d() +r*d(d) +d(c) * ' +r*r' d(c) xa' +rxd +axd()+axr).
For the case where a’ = 0, we obtain
d(c) *a =0,

for each a € Ker, ¢ € Kerdp and * € 5.
Thus we can conclude that Ker 7 is a Coker d-module in the sense of [76] (see Definition 3.1.5 and
Sec. 3.3).
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2.2. The Standard Complex and the Cohomology

Let C= (Cy, C1,dg,dy,i,m) be an internal category in C, and A = (Ag, 7, e,n, ;) an abelian group
in the category C© of internal diagrams on C. We construct the standard complex {K*(C, A),5*} in
analogy with the definition of the cohomology groups of ordinary categories [24, 25]:

K°(C,A) = {f € C(Co,Ap) | nf =1cy},
Kl(C,A) = {QD € C(Cl,Ao) | Y = dl},
K™C, A) = {gp € C(C1 X, -+ X, CrsAg) | mp = dm},

n
for n > 1; here m; denotes the first projection (i.e., 71(zy,...,21) = x,). For each f € K°(C, A),
)

v € K"(C,A), z € Cq, and (2p41,...,21) € Cy Xgp " Xgy C1 (n > 0), the differentials are defined
by

8°(f)(x) = e(x, fdo(x)) — fd(x),

an(SO)(xn-i-l; L Jxl) =€ xn-l—la QO(xHJ L 7'1:1))
n

Z(—l)iSO(l’nH, oM Tig1, ), - ,331) + (—1)n+180(9€n+1, e, T).
i=1

We set H*(C, A) = H"{K*(C, A),0*} for n > 0.

Now we shall give another (semi-trivial extension) form to this complex, which will be isomorphic
to the previous one. By the diagrams

_l’_

A

~ 9

Co

CQ*£>C()I><K€I‘7T

Clxc AO

o XCO Cl

n

~
~
Nl
~
!

(Co x Ker dp) Xao ' Xy (Co x Kerd) -7 > Co X Ker

we define
K%(Cy x Ker dy, Co x Ker ) = {f’ € C(Co,Cox Kerm) | n'f = 100},
K (Cy x Kerdy, Co x Ker ) = {go' € C(Co x Kerdy, Co x Kerm) | 7'y = d'l},
K"(Cy x Kerdy, Cy x Ker )
= {go/ € C((Co x Ker dp) Xoo " X (Co x Kerdp), Cy x Kerﬂ') | ' = d/17r1} for n>1.

n

For the differentials we have the following equalities:

O (f)(rc) = € ((r,e), f'do(r,e) = f(di(r,0)) = (d(c) + 7, w2 f'(r)) = f(d(c) +7)
= (d(c) +r,maf'(r)) = (d(c) + r,m2f'(d(c) + 1))
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= (d(¢) +r,maf'(r) = maf'd(c) — maf'(r)) = (d(c) + 1, —m2f'd(c)),
a'1(9é")((d((31)+7° c2), (r,e1)) = €'((d(cr) + 1, e2),¢(r,¢1))
¢ (m/((d(er) + 7, ¢2), (r, 1)) + ¢ (d(er) + 7, ¢2)
+d(cr) +r,ma (r,c1)) — @' (r,co +c1) + ' (d(cr) + 7, co)
+d(cr) +r,mp! (1 e1)) — (d(cz) +d(er) + 7, mai! (1, c2 + 1))
+ (d(c2) + d(c1) + 7w (d(c1) + 1, ¢2)) (2.2.1)
(d(ca) + d(c1) + r,ma¢! (1, c1) — ma (1, c2 + ¢1) + T2 (d(c1) + 7, ¢2));
o 4d(er) +reng1)s .-, (d(er) + 1y c2), (1, cl))
(d(cn+1) + - d(er) + r,ma ((d(ep—1) + -+ d(c1) +7,¢0), ..., (r,c1)))

C2

0""(¢')((d(cn)

I+l

—I—Z 7r2g0 cn) + -+ d(er) +reng), -

o (d(ei—1)+ -+ d(e) 4y ci)y e (T cl))
+ (—1)”+17rgg0'((d(cn) + - +d(er) +reng1)s - (d(c1) +r,c2)),
for n > 1. For f' € K% Cqx Kerdy,Cox Kerm) we can write f'(r) = (r,maf’(r)). Since ¢’ €
K1'(Co x Ker dg, Cg x Ker 1) is a morphism of C, we can write
¢'(r,c) = ¢'((0,¢) + (r,0)) = '(0,¢) + ¢'(r, 0)

= (d(c), m2¢'(0,¢)) + (r, m2¢(r,0)) = (d(c) + 7,72’ (0, ¢) + ma¢ (1,0)).

Further, since we have
(d(c1) +7,¢2) = (0,¢2) + (d(c1),0) + (r,0),
(r,e1) = (0,¢1) + (r,0),

for ¢’ € K2(Cq x Ker dgy, Co x Ker 7), we obtain

¢'((d(e1) +7,¢2), (r,e1)) = ' (((0, ¢2), (0,0)) + ((d(c1),0), (0, ¢1)) + ((r, 0), (r, 0)))
= ¢'((0,¢2),(0,0)) + ¢'((d(c1),0), (0, 1)) + ¢'((r, 0), (r,0))
= (d(cz) +d(c1) + 7, m2¢((0,¢2), (0,0))) + w2 ((d(c1), (0, ¢1)) + m2¢'((,0), (r, 0))).
Similarly, since
((d(en—1) + -+ d(c1) +r,en), ..., (d(c1) + 1, ¢2), (r, 1))
= ((0,¢5),(0,0),...,(0,0)) + ((d(ca-1),0),(0,cn—1), (0,0), ...

.5 (0,0)) + - -+ ((d(cek),0), o (d(cx),0), (0, ck),
n—=k
(0,0),...,(0,0)) +---+ ((d(c1),0),...,(d(c1),0),(0,c1)) + ((r,0),...,(r,0)),
k—1

for n > 1 and ¢’ € K"(Cy x Kerdp, Cy x Ker ), we obtain

O ((d(cp—1) + - +d(c1) +1,¢n),-. ., (d(e1) + 7, ¢2), (r,c1))
= (d(cn) +d(cp_1) + -+ +d(c1) + 7m0 ((0,¢,),(0,0),..., (0,0)))
+ ma¢’ ((d(cn-1),0), (0, ¢n-1), (0,0),...,(0,0)) +
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+ mo¢’ ((d(ck),0), ..., (d(ck),0), (0,cx), (0,0),...,(0,0) ) +
ok —
+ ngpl((d(cl),O), ..y (d(c1),0), (0,01)) + mo! ((1,0),...,(r,0)).
Denote for n > 0 and ¢’ € K™(Cy x Ker dy, Cy x Ker )

@o(r) = mo@' ((r,0),...,(r,0)) for each r e Co;
(S ———
v1(c) = w2¢/((d(0)70), ..., (d(e),0), (0,0)) for each ¢ € Kerdy; (22.2)
er(c) = m¢'((d(c),0),...,(d(c),0)),(0,¢),(0,0),...,(0,0)) o
—_————
n—k k—1
foreach 1<k<n, c¢€ Kerdp.
So we have
@' (r,¢) = (d(c) +r,p1(c) + po(r)) for ¢ € K} (Cox Kerdy, Cox Kerm);
@' ((d(c1) +7,¢2), (r,¢1)) = (d(ca) + d(cr) + 7, 02(ca) + @1(c1) + @o(r))
for ¢ € K?(Cyx Kerdy, Co x Ker); (2.2.3)

O ((d(cp_1) +---+d(c1) +7,¢n),...,(d(c1) +7,c2),(r,c1)) =
= (d(cn) + -+ d(c1) + 1 onlen) + -+ @1(c1) + po(r))
for n>1, ¢ € K"(CoxKerdy,Cox Kerm).

The functions ¢g,1,...,¢p, are completely determined by ¢’ € K"(Cyx Kerdy, Cy x Ker ).
Again, from the fact that ¢ is a morphism in C, we obtain the following identities for ¢g, ¢1,. .., ©n,
for each r,7" € Cy, ¢, € Kerdy:

wo(w(r)) = w(po(r)) for each w € Q,
wo(r +7") = o(r) + 7 @o(r'), (2.2.4)
wo(r*xr") =r*x@o(r') + po(r) xr’ for each * e Qf;

for 1 <k <mn;
or(w(e)) = w(pk(c)) for each w € Qy,
(e + ) = grle) + en(c),
pr(r*c) = *gok( ) for each * € Q,
pr(cx ) =0 foreach =€ ),

or(r-c) = 7“'9%( )-
Maps satisfying conditions (2.2.4) are called derivations [76] (see Sec. 3.2), and the case of groups
is a special case of a crossed homomorphism defined by S. MacLane [69] and J. H. C. Whitehead [89)].
It is easy to see that prgf"co : Co — Ker for f/ € K%Cyx Kerdy, Cox Kern) also satisfies
conditions (2.2.4). Denote

K° = K°(Ker dy, Ker 1) = {900 | ¢o : Co — Ker 7 satisfies conditions (2.2.4)}
= Der(Cy, Ker ),
Kl = {gol € C(Kerdp,Kerm) | ¢1(r-c) =1r-¢1(c),

p1(rxc) =rxepi(c) foreachr € Cy, c € Kerdy, * € Qé},
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KF=K'x...xK'! for k>0,
—_————
k

K™(Kerdy,Kerm) = {(¢o0,--.,¢n) | ©o € K°, (¢1,.--,pn) € K"} for n>0.

The correspondence

@ frir— (1 p0(r)),

(g0, p1) —> ¢ = (r,¢) — (d(c) + 1, ¢1(c) + ¢o(r)),

(@0, .. ¢n) — ¢ defined by (2.2.3) for n > 1,
gives an isomorphism of Abelian groups

K"(Co x Kerdy,Co x Kerm) ~ K"(Kerdy,Kerm) for n>0.

Differentials for the complex K*(Ker dy, Ker 7) are obtained from the diagrams

K"™(Cy x Kerdp, Cy x Ker ) LA K" 1(Cq x Ker dg, Co x Ker

xl - lz

K"(Kerdy,Kerm) — — — o s K" (Ker dy, Ker 7)

for all n > 0. For the case n = 0 we have the following situation: Let ¢y € K%(Ker dg, Ker 7); the
vertical isomorphism carries ¢y to the homomorphism f’ : Cy — Cgx Ker7 defined by f’(r)
(r,¢0(r)) and also 8°(f")(r,c) = (d(c) + 7, —m2f'd(c)); so from (2.2.1) and (2.2.2) we obtain

=0 _

9 (¢o) = (Po, 1), where

Bo(r) = m(8°(f)(r,0) = ma(r,0) =0 for each 7 € Cy;
71(c) = m(3°())(0,¢) = ma(d(c), —ma f'd(c)) = —ma(d(c), pod(c)) = —pod(c) for each ¢ € Ker dy;
' (0. ¢1) = (B0, 71, P5), where
Po(r) = ma(9 () (r,0), (r,0)) =
= ma¢/ (1, 0) — ma¢/(r,0) + w24/ (r, 0) = ma¢/(r,0) = o (r)
P1(e) = m (0" (¢)((d(e),0)(0,0)) =
= 99’ (0,¢) — ma¢’ (0, ¢) + ma' (d(c),0) = pod(c) for each ¢ € Ker dp;
Ba(e) = ma (9 ())((0,¢),(0,0)) = =29/ (0, ¢) + 7' (0, 0) = 0,

for each ¢ € Kerdy, where ¢’ denotes the element of K!(Cyx Kerdy, Co x Ker ) corresponding to
(¢0, 1) € K (Kerdy, Ker 7). So we have

for each r € Cy;

=0
9" (o) = (0, —¢od),
=1
0 (9007 901) = (9007 w0d70)
Similarly, we obtain

=2

0 (90079017902) =
=3
0" (po, @1, P2, 3) =

07 Y1 — ond7 07 _902)7
©0, 300d7 P2, P2, 0)7

07 Y1 — ¢0d707 Y3 — 902707 _¢4)7
=5
0 (9007S01790279037S047905

(

(
—4

0 (o, 91, 92,93, 04) = (

) = (®0, vod, P2, Y2, P4, P4, 0),
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and generally for n > 2

=2

8 n(¢07 cee 790271) - (07901 - @Oda 07 ©3 — P2,... 70790271—1 - 902n—2707 _90271)7
=2n+1
07 (@0, -, Pant1) = (@0, Pod, P2, 02, - - -, P2n, P2, 0).

Note that the complex { K*(Ker dy, Ker 71),5*} depends only on K, K and d.
So we have H™(C, A) ~ H"{K*(Kerdy,Kern),d } for n > 0. Direct computations give for the
kernels and images of J the following equalities:

Kergoz{f€K0| fd:O}

Kerd' ={(0,¢1)| ¢1 € K'} ~ K1,

Kerd” = {(¢0,0d.0) | 9o € K°} ~ K°,
Ker53:{0,¢1,07802)| (p1.93) € K°} = K2,

forn>2
Kerd ™" = {(SOO,SDOd P2, 02, -+, Pan—2,P2m—2,0) | po€KP, (902,---,902n—2)€Kn_1}’\*K0><K"_17

Kerd " = {(0 ©1,0,03,...,0,020-1,0,02041) | (01,93,...,p2m+1) € K"H} ~ K

md" ={(0,fd) | fe K"},

Imd' = {(900, ©o0d,0) | ¢o GKO} ~ KO,

ImEQZ{(O,% ©od, 0,2) | o € K°(¢1,02) €K2} K?

Im 9 Z{(O 01— 0d, 0,03 — ©2,0,04) | o € K°, (01,02, 03,4) € K4} ~ K°
forn > 2

=2
Ima " = {(07 Y1 — @Oda 07 Y3 —P2,... 70790271—1 - 902n—2707 SOQn) |

®o S K07 (Sola"wSOQn) S K2n} ~ Kn+l7

=2n+1
Ima " = {(9007800d79027802790479047---78027178027170) |
0o € KY, (02,045, Pon) € K”} ~ K% x K"
This proves the following theorem:

Theorem 2.2.1. Let C be an internal category in C. For each abelian group A in C© we have:

(i) HY(C,A) ~ {f € K| fd=0};

H'(C,A) ~ K'/{fd| f e K"};

H"(C,A) =0 forn > 2;
(ii) for n > 2 the exact sequence

0 —— Ker 9" —— K"(C, A) 2 Ker ot — 0

is split; Ker 02"t =~ K" forn > 0, Ker 0% ~ K° and Ker 0*" ~ K° x K" ! forn > 1.

We will see in Chap. 3 that H°(C, A) ~ Der(Coker d, ker 7).
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CHAPTER 3

SOME PROPERTIES OF INTERNAL CATEGORY COHOMOLOGY
AND COHOMOLOGICALLY TRIVIAL INTERNAL CATEGORIES

In this chapter we study the functorial properties of internal category cohomology and the relations
between homological, internal category, and cohomological equivalences. We relate internal category
cohomology with the cohomology of crossed modules in groups defined by G. J. Ellis [42]. A natural
next step would be to study the cohomological dimension of internal categories in C. However, on one
hand H"(C, —) = 0, for all n > 2, and on the other hand H(C, —) = 0 does not imply H!(C,—) = 0
(see Example 3, Sec. 3.4). So the subject of investigation is to characterize those internal categories
C for which H(C,—) = 0, and separately, those C for which H'(C,—) = 0. Our characterizations
become very simple in the case where C is the category of groups: in that case HO(C, —) =0 if and
only if C is a connected category, and H'(C, —) = 0 if and only if the certain abelianization of C is
internally equivalent to a discrete category.

3.1. Extensions in Categories of Groups with Operations

This section contains preliminary results on the extensions in categories of groups with operations
that are essentially known [1, 2, 40, 80, 84]. Our purpose is to present them in the form convenient
for us.

Let C be a category of groups with operations with a set of operations €2 and with a set of identities
E (see Sec. 1.1 for the definition).

We formulate two more axioms on C (Axiom (7) and Axiom (8) of [76]).

If C is an object of C and x1, x2,z3 € C:

Axiom 1. 21 + (z2 % x3) = (2 x x3) + 21 for each x € Q.
Axiom 2. For each ordered pair (x,%) € Q) x 2 there is a word W such that

(z1 % z)Fwg = W (21 (2223), 31 (3%2), (w223)31, (2322) 71, T2 (2133), T2 (2321), (T123) T2, (T371)22),

where each juxtaposition represents an operation in .

A category of groups with operations satisfying Axiom 1 and Axiom 2 is called a category of interest
by Orzech [76] (see also [78]). All examples of a category of groups with operations, given in Sec. 1.1,
can be interpreted as categories of interest.

As we have noted in Chap. 1, in categories of groups with operations, from the equalities

(x+y)x(z+t)=x*xz+axt+ysztyst=x*xz4+y*sz+aoxt+yxt

it follows that zxt +y*z=y*z+x xt for x € Q), z,y,2,t € C, C € C.

Denote by E¢ a subset of identities of E which includes the group laws and the identities (¢) and
(d) from the definition of a category of groups with operations. We denote by C¢ the corresponding
category of groups with operations. Thus we have Eq ——=E , C = (Q,E), Cs = (Q,Eg) and
there is a full inclusion functor E: C —— Cg . Let @ be the left adjoint to the E. Thus Q(C) is
the greatest quotient of C from Cg¢ such that Q(C) € C.

We shall denote by C a category of groups with operations and it will be mentioned when it is a
category of interest.

Let E:0 Ao F B 0 be an extension of B by A in C. This means that p is
surjective and 7 is the kernel of p. An object A is called singular if it is an abelian group and aq *as = 0

p
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for all a1,a2 € A, x € Q). An extension 0 A—-g-L.B 0 is called singular [76] if A

is singular, and it is called split if there is a morphism s : B — E such that ps = 15.
Let E be a split extension. We shall identify a € A with its image i(a).
We have induced operations in B x A:

w(b,a) = (w(b),w(a)) for each w e Qf,
(b',a") + (b,a) = (' +b,a’ + s(b') + a — s(b)),
(t,a") % (b,a) = (b' xb,a’ xa+da *s(b) +s(b) xa) for each * € Q.
The set B x A with the above structure is an object of C; denote it by Bx A; we have an isomorphism
E =~ B x A. We shall use the following notations as in [76] and the previous chapters:
b-a=s(b)+a—s(b),

bxa=s(b)*a,

for each a € A, b € B and x € Q). Thus, a split extension induces actions of B on A corresponding to
each operation in C. These actions are called derived actions of B on A [76]. We shall call them split
derived actions.

Proposition 3.1.1. A set of actions in Cg is a set of split derived actions if and only if it satisfies
the following conditions:

1. 0-a=a, 7. (by*by)-(axb)=axb,

2. b-(ag4+az)=b-a1+b-ay, 8. ay x(b-az) = ay xaqg,

3. (b1 +b2)-a=by-(ba-a), 9. bx(by-a)=bxa,

4. bx (a1 +az) =bx*xay +bxay, 10. w(b-a) =w(b) - w(a),

5. (b1 +b3) xa=0byxa+ b *a, 11. w(a*b) =w(a)*b=ax*xw(b),
6. (b1 xb2) - (a1 *xaz) = aj * ag, 12, zxy+zxt=z*xt+xx*y,

for each w € Qf, x € Q) b,by,by € B, a,a1,a2 € A and for x,y,z,t € AU B whenever each side of 12
has a sense.

The proof is based on the construction of the object B x A € Cg and the corresponding split
extension 0 — A — B X A — B — 0 which induces the given set of actions as split derived
actions. It is similar to the cases of groups [71] and is left to the reader.

Note that in the formulation of Proposition 1.1 in [32] we mean that the set of identities of the
category of groups with operations contains only identities from Eq, but it is not mentioned there. The
same concerns some other statements of [32], which we formulate and prove here with corresponding
corrections. In C the conditions 1-12 of Proposition 3.1.1 are the necessary conditions for the split
derived actions. Of course according to the identities included in E we can add the corresponding
conditions to 1-12 and obtain the necessary and sufficient conditions of split derived actions in C.

We have analogous results for categories of interest. In this case the set of split derived actions
satisfies conditions 1-5, 8-11; conditions 6 and 7 are replaced by

b- (a1 x az) = ay * ag,
b-(ax*xby)=axby,
(by % b2) - a = a;
condition 12 is replaced by
r4+yxz=yxz+ax foreach z,ye A, 2z¢€B;
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we also have an additional condition: for each ordered pair (x,%) € Q) x Q) there is a word (from
Axiom 2) with (x1 % xg)*x3 = W( ) for each x1,z9,23 € AU B.

Let 0 A—‘~p-L.B 0 be an extension of B by A. For each element b € B choose
a representative u(b), with pu(b) = b and u(0) = 0. It induces a set of actions

b-a=u(b)+a—u(b),

bxa=u(b)*a,

which we shall call derived actions. As for the case of groups or rings [71], [70], we have a family of
factor systems {f, (g*)*egr2 | f,g«: Bx B — A} corresponding to each operation in 2s:

w(b) +u(d) = f(b,0') +u(b+1),

3.1.1
u(b) x u(t') = g (b,0) +u(b*b"), *e Q. ( )
The associative law for the addition and the distributive law give
f(b1,b2) + f(b1 + ba,b3) = by - f(ba,bs) + f(b1,ba + b3), (3.1.2)
f(bl . bg) *x by + g*(bl + bo, bg) = g*(bl, bg) + (bl * bg) . g*(bg, bg) + f(bl * b3, by * bg); (313)

also
f(b,0) = £(0,b) =0,
g*(b7 0) = g*(ov b) =0,
for each b,b1,ba,b3 € B and * € Q.

From (3.1.1) we obtain that the set of derived actions of B on A obtained from nonsplit extensions
satisfies conditions 1-12 with

3/. bl . (bg . a) = f(bl,bg) + (bl + bg) ca — f(bl,bg),
5. bixa+byxa= f(by,bo)*xa+ (by +b2) *xa

instead of conditions 3 and 5. Note that if A is singular, then conditions 3’ and 5’ coincide with
conditions 3 and 5, respectively.

Remark. According to other identities included in E we will obtain the corresponding identities for
derived actions in C. If C is a category of interest, then the factor systems satisfy additional conditions

W(b17 b27 b37 fa g*ygi) = 07 (314)
b1 - gx(b2,03) + f(b1,b2 * b3) = gu(b2,b3) + f (b2 * b3, b1), (3.1.5)

where condition (3.1.4) follows from Axiom 2, W is a word for each ordered pair (x,%) € Q) x Qf,
corresponding to W, and (3.1.5) follows from Axiom 1. For example, if in Axiom 2 W has the form

(bl * bg)ibg =Dby % (bgﬂ)g) + (blibg) * Do,
then (3.1.4) is of the following form:
b1 * gz(b2,b3) + gz(b1,b3) * ba + gu (b1, baxbz)+
+ (bl * (b2;kb3)) . g*(blibg, b2) + f(bl * (bg;kbg), (blibg) * bz) = g*(bl, bg);kbg + g;(bl + bQ, bg)
The following two lemmas are well known for the case of groups C = Gr [71].
Lemma 3.1.2. Let A and B be groups with operations, and let B act on A such that a set of actions
satisfies conditions 1, 2, 3', 4, 5', 6-12, where {f, (g*)*e%} s a family of functions from B X B to
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A satisfying conditions (3.1.2), (3.1.3) for each x € Q. Then the set B &5 4.y A of all pairs (b,a),
be B, ac A, with operations

w(b,a) = (w(b),w(a)) for each w e Qf,

(b,a)+ ¥, d)=(b+b,a+b-d + f(bV)),

(bya)* (b',a') = (bxb,axd +axb +bxad + g. (b))
is an object of Cg. The homomorphisms a — (a,0), (a,b) — b define the extension

0 —>A—" By A"~ B—>0
of B by A.
Proof. Straightforward verification. O
From Lemma 3.1.2 and the observations before, we have the following assertion.

Lemma 3.1.3. For each extension

0—sA—">p-?

B 0

in Cg there is an object B X s 4.y A such that E ~ B X .y A, and we have the commutative
diagram

7 p

E

|-

0—>A—21>Bb<{f7(g*)}Ap—l>B—>O

0 A B 0

Note that Lemma 3.1.3 holds also for categories of interest.

Corollary 3.1.4. A set of actions in Cg is a set of derived actions if and only if it satisfies conditions
1,2,3, 4,5, 6-12, where {f, (g+)xc, } s a family of functions satisfying conditions (3.1.2) and (3.1.3).

According to the above remark concerning the set of identities for the set of actions in C, we can
prove statements analogous to 3.1.2; 3.1.3 and 3.1.4 for the category C.

Definition 3.1.5. Let C be a category of groups with operations or a category of interest and A and
B € C. We say that A has a B-structure if there is an extension 0 — A — F — B — 0. We
say that A has a split B-structure if the above extension is split; we say that A is a B-module if A is
singular and has a split B-structure.

Let 0 — A — E — B — 0 be a singular extension; then the action of B on A does not depend
on the choice of representatives of the elements of B in E. Let {f, (9x)scqy} and {f’, (91)seq;} be two
different families of factor systems corresponding to two different choices of representatives of elements
of B in F, u and u’ respectively. Then we have

u(b) +u(b) = f(b,V)) +u(b+1),
u'(b) + ' (V) = f1(b,V) + ' (b+ V),
w(b) +u(t)) — ' (B') — ' (b) = f(b, V) +u(d+ ) —u'(b+V)— f(bb),
b (u(®) —u'(0)) +ub) —u'(b) =ub+b)—u'(b+V)+ f(b,b) — f'(bV).
) u'(b), for each b € B; then we obtain
FO,6) = f1(5,8) =b-p(b) = (b +b) + (D). (3.1.6)

o
D

=
[
D

=

S
I

=

=
|
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Similarly, for each % € Q) we have

b (b)) + (b) # b —h(bx V) = gu (b, V) — g.(b, ). (3.1.7)

We state without proof the following proposition since it is similar to the case of groups and it will
be cited in the following section.

Proposition 3.1.6. A singular extension

0—s-A—>pr-".R 0

is split if and only if there is a function v : B — A such that the family of factor systems {f, (g*)*e%}
of the given extension satisfies the conditions

Fb,8) =b-p(¥)) — (b + ) +¥(b),

(b, 1) = bx (V) — (b V) +2(b) + V',
for each x € Q0 and (b,b') € B x B.

Let A be an object of C. Denote by S(A) the greatest singular quotient of A. Then S is an

abelianization functor from C to the category of abelian groups Ab.
Lemma 3.1.7. Let C be a category of interest and A, B € C. If A has a split B-structure, then S(A)
s a B-module and the natural homomorphism A S S(A) is a homomorphism of split B-structures.
Proof. S(A) has an induced B-structure defined by b-cla = cl(b-a) and b cla = cl(b * a) for each
x € 5. From Axiom 1 and Axiom 2 it follows that these actions are defined correctly and 74 is a
homomorphism of B-structures. It is also easy to check that S(A) satisfies conditions analogous to

1-12 for categories of interest and thus has a split B-structure; it is also abelian by definition, which
proves that S(A) is a B-module. O

3.2. Derivations

Let C be a category of groups with operations and B € C. Consider categories B-mod(Cg)
and B-mod(C), B-modules in Cg and in C respectively. We have the full inclusion functor & : B-
mod(C) — B-mod(Cg). For any C' € B-mod(Cg) by definition we have the split exact sequence in
Cq

0—>C—>BxC=—=B——>0;
Denote S(C) = Ker Q(7); we will have a surjection C — S(C). Actually it defines a functor B-

mod(Cg) — B-mod(C). It is easy to check that S is a left adjoint to &; thus for any A € B-mod(C)
and C € B-mod(Cg) we have the natural isomorphism

B-mod(Cg)(C,E(A)) = B-mod(C)(S(C), A).
Definition 3.2.1 ([76]). Let A be a B-module. A map § : B — A is called a derivation if
(w (b)) = w(4(b)),
S(b+bV)=48(0b)+b-61),
S(bxb')=06(b)*b +bxd(b),

_ —

for each w € Qf, *x € Q) and b,V € B.
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As in Chap. 2 derivations from B to A will be denoted by Der(B, A). Let
D:{0102...0nab| 0; €U «— |V eB, xe}u
U{ =/ |V eB, e} Ul — |V eB},i=1,..n beB}.

So D is the set of all words of the form w = 0102 ...0,0b. Let I(B) be the free abelian group generated
by D modulo:

1. ww+w)=wwtww, 10. b* (b -w)=bxw,

2. 00=0, 11. w(b-w) =w(b) - (ww),

3. 0-w=w, 12, w(wxb) = (ww) *xb=wxw(b),
4. b-(wH+w)=b-w+b-w, 13. xxy+zxt=z*xt+xz*y,

5. (b+b)-w=0b-(V-w), x,y,2,t € BUD,

6. bx(wWH+w)=bxw+bxw, whenever each side has a sense,
7. (b+b)xsw=bxw+b *xw, 4. O(b+0b)=0b+0b-0V,

8. bxw=wx"b, 15. O(bxb)=bx0b + (0b) x b,

9. (bxb)- (wxb) = wxb, 16. O(wb) = w Ob,

for each b,b’ € B, w,w' € D, w € Q}, x € Q.

Denote I(B) = SI(B).

Note that with some modifications of the above construction, I(B) can be constructed in the
categories of interest.

It is easy to check that the map dg : B — I(B) defined by 9dg(b) = b is a derivation, which
defines the derivation 0 : B — I(B).

Proposition 3.2.2. Let B € C and A be a B-module in C. For any deriation 6 : B — A there is
a unique homomorphism of B-modules 6 : I(B) — A such that the diagram

B—2 .4

| A4

I(B)
15 commutative.

Proof._Let w = 010z ...0,0b be an element in I(B); define dg(clw) = 010z ...0,6b. It is easy to show
gat d¢ is defined correctly and it is a homomorphism of B-modules in Cg. By adjunction of £ and S,
d¢ defines a unique homomorphism § of B-modules in C which makes the diagram commutative. [

7 p

Proposition 3.2.3. Let 0 A E B 0 be an extension of B by A, A’ be a B-
module, and 7 : A — A’ be a homomorphism of B-structures. Let u(b) be a representative for each
b € B in E, which induces a B-structure on A; consider E-structures on A and A’ due to p. Then
there exists a derivation § : E — A" with 6i = 7 if and only if the extension of B by A’ obtained from
the given extension by T is split.

Proof. Let {f, (g*)*e%} be a family of factor systems of the given extension, corresponding to the
map u. Then the extension of B by A’ corresponds to the given B-structures on A’, and the family
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of factor systems {7f, (Tg*)*e%} is the extension obtained from the given one by 7. Suppose there is
a derivation § : E — A’ such that the diagram

A"+ E

A

A/

is commutative. By Lemma 3.1.3 we have E' ~ B X 5,11 A. We shall identify E with B x; ,.)} A.
So we obtain

d(b,a) =6((0,a) + (b,0)) =6(0,a) + (0,a) - 6(b,0) = 6(0,a) + 6(b,0) = 7(a) + 1(b),

where 1) denotes the function B — A’ defined by ¥(b) = §(b,0). From the fact that J is a derivation,
we obtain that the factor systems {7f, (Tg*)*e%} satisfy the conditions of Proposition 3.1.6 and the
corresponding extension is split.

Suppose that the extension

0= & = B gy & =B ——0
is split. Then there is a function 1 : B — A’ satisfying the conditions of Proposition 3.1.6. Define a
function ¢ : B X 4.1 A — A" by §(b,a) = 7(a) 4+ ¢(b). J satisfies the condition §i = 7, and it is

easy to check that § is a derivation, which proves the proposition. O

For the complete solution of an analogous question in the case of groups, see [69].

3.3. Functorial Properties of the Cohomology, Internal Category Equivalence,
and Homological and Cohomological Equivalences,
Relation with Ellis’s Cohomology of Crossed Modules

Let C = (Cyp, Cq,dp,d1,i,m) be an internal category in C and A = (A, m,e,n, 1) be an abelian
group in the category C© of internal diagrams on C. Recall from Sec. 2.1 that by Lemma 1.1.1 applied
to A, Kerr is an abelian group and a * ' = 0 for each a,a’ € Ker; So Ker 7 is a Cp-module in the
sense of [76] (see Sec. 3.1, Definition 3.1.5). Moreover, we proved in Sec. 2.1 that Im d acts trivially on
Ker 7, where d = di|Kerdy; Im d is an ideal of Cy in the sense of [76] (see Chap. 5, Definition 5.1.1), thus
Cokerd € C. As we have noted in Sec. 2.1 we can consider Ker 7 as a Coker d-module. Conversely, for
cach Coker d-module L we can construct an abelian group in C©, and these two processes are converse
to each other. Thus for any Coker d-module L we can speak of cohomologies H(C, L), i > 0, and
HY(C, —) is a functor Coker d-mod — Ab. The properties obtained for internal category cohomology
give the corresponding properties of the crossed module cohomology.

Proposition 3.3.1. Let C € Cat(C), and

0 r L L 0 (3.3.1)

be an exact sequence of Coker d-modules.

(a) Then we have the exact sequences of cohomology groups
0 — H(C, L)) — H°(C, L) — H°(C, L"),

HY(c, ') — H(C, L) — HY(C, L").
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(b) If exact sequence (3.3.1) is split, then it induces the exact sequence of cohomology groups
0—H%c, ) —H%C, L) — H°(C, L") —
—— HYc, 1)) —=H'(C, L) —= HY(C, L") — 0.
Proof. Both statements follow from Theorem 2.2.1 and the commutative diagram

0 — Homc, —str(Ker dy, L') —— Homc, sty (Ker dy, L) — Homc, _str (Ker do, L")

| | |

0 Der(Co, L) Der(Cy, L) — Der(Co, L")

with exact rows, where the vertical homomorphisms are induced by d. Note that 7 is surjective if
(3.3.1) is split. O

Let C be a category of groups with operations, and C = (Cy, Cy, dy, d1, 4, m) be an internal category
in C. We have the split exact sequence

do
0 —— Ker d() —_— C1 < CO —_— 0, (3.3.2)
1

where dpi = 1. Consider the group with operations Cy x Ker dy. Recall that (see Sec. 1.1)
(', )Y+ (rye)= (" +r,d +1"-¢),
(') x(rye) = (r'sr,d e+ xr+1" *c),
where r-c=1i(r) +c—i(r), rxc=1i(r) xc, * € Q) and C; ~ Cy x Ker dp;
We can define a derivation § : Cg — L, for L € Coker d-mod, as a map satisfying the conditions
of Definition 3.2.1 (L has a Cp-module structure due to the natural homomorphism Cy — Coker d).
As we have mentioned above, the split extension (3.3.2) induces a split Cy-structure on Ker dy, which

by Lemma 3.1.7 induces a Cp-module structure on S(Kerdy). Also Imd acts trivially on S(Ker dp),
and we can define Coker d-module structure on S(Kerdp) by

clr-cle=cl(i(r) +c—i(r)) and clrxcle=cl(r=c),

for each r € Cy, ¢ € Kerdy and x € Q.
We have a split Cg-structure on Imd: r -dc = r + dc —r, r * dc = r * dc, which also induces a
Coker d-module structure on S(Imd):

clr-clde = cl(r +dc—r),
clr*clde = cl(r * dc),

for each r € Cy, ¢ € Kerdp and * € 5. By Lemma 3.1.7 the natural homomorphisms 7y : Ker dy —
S(Kerdp) and 7 : Imd — S(Imd) are Cy-structure homomorphisms. The homomorphism d is a split
Co-structure homomorphism:

dir-c¢)=r+dc—r=r-dec,

d(r *c) =r*de.

S(d —
It induces a Coker d-module homomorphism S(Kerd) S@ S(Imd) where d is defined from the
decomposition of

d : Ker dq Imd —~ C .
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Consider the extension

0 Imd i Co Pl Cokerd —= 0

for the internal category C in C. Let {f, (g*)*e%} be one of the families of its factor systems. We have
Co ~ Coker d X (§,4,)1 Imd. As we have seen in the proof of Proposition 3.2.3, for an abelian group (in
C®) A = (Ag, T, e,n, u), aderivation § : Cy — Ker 7, and each element (cl, dc) € Coker dX g5 (g Imd,
we have

d(clr,dc) = 6(0,dc) + 6(clr,0) = diy(de) + o(clr,0).

Denote 611 (de) = 7(de), d(clr,0) = 1p(clr). It is easy to check that 7 : Imd — Ker 7 is a Coker d-
structure homomorphism (Im d has a Coker d-structure from the above extension and Cy-structure is
due to p1), and ¢ : Coker d — Ker 7 is a function satisfying the conditions

7f(clr,clr’) = clr-y(clr’) —(clr + clr’) +(clr), (3.3.3)
Tg«(clr,clr’) = clr xap(clr’) —ap(clr x clr’) + (el r) * clr’. (3.3.4)

From this and from the proof of Proposition 3.2.3 we conclude that there is a one-to-one correspon-
dence: {0 | ¢ € Der(CoKerm)} +— {(r,¢) | 7:Imd — Kern is a Cy-structure homomorphism
and 1) : Coker d — Ker 7 is a function satisfying conditions (3.3.3), (3.3.4) }.

Note that since Im d has Cy-structure due to pq,

Homc, str(Im d, Ker 7) &~ Homcoker d-str (Im d, Ker 7).

From the condition §i; = 0 we have that 7 = 0 and 1 is a derivation. The picture is the following:

p1

Ker dy d Co Coker d
Im d\ ) W
Kerm
Thus from Theorem 2.2.1 (i) we obtain
H(C, A) = Der(Coker d, Ker )
~ Homcoker d-mod (I(Coker d), Ker 7). (3.3.5)

Note that actually we proved the exactness of the sequence
0 —— Der(Coker d, Ker m) —— Der(Cy, Ker 7) —— Der(Im d, Ker 7)

for any L € Cp-mod, such that Imd acts trivially on L; this could be done directly, but we will use
the argument in extensions terminology below for H! too.
By Proposition 3.2.3 and Proposition 3.1.6 we have

{6d | 6 €Der(Co,Kerm)} ~ {T € Homcoker d-st:(Im d, Ker 7) |

an extension of Coker d by Ker 7 corresponding to the factor systems {7 f, (Tg*)*e%} is split}.

If d is a surjective homomorphism, then internal category C is connected (i.e., for each two objects
r and 7’ there is a morphism r» — 7’). In this case Cokerd = 0, and we have f = g. = 0 for each
* € Q5. Thus we obtain

{5d | § € Der(Cy, Ker 7r)} ~ Homc, str (Co, Ker 7).
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From Theorem 2.2.1 (i) for a connected internal category C in the category of interest C, we have
the following isomorphisms:

HY(C,A) ~ Homc, st (Ker dp, Ker m) / Homc,, st (Co, Ker )
~ Coker Homc, st (d, Ker )
~ Coker Homc _moa(S(d), Ker 7). (3.3.6)

Let C and C’ be internal categories in C;
C*:0—>Kerdo—d>Co—>0 and C;:0—>Kerdo—dl>C’0—>0

be the corresponding crossed modules considered as complexes. Denote by H(C,) and H(C, A),
1 =0, 1, respectively the homology of the complex C, and the cohomology of the internal category C
with the coefficient in A, A € Ab(C®). Note that in the case C = Ab, H(C, A) = H'(C,, A), where
the right side denotes the cohomology H*(Hom(C,, A)) of the complex C, with coefficient in A.

Definition 3.3.2. We shall say that internal categories C and C’ in C are homologically equivalent

T
if there are internal functors C —= C’ that induce the isomorphisms H;(C.) ~ H;(C,), i = 0, 1.
S

Definition 3.3.3. We shall say that internal categories C and C’ in C are cohomologically equivalent

T : , .
if there are internal functors C = C’ that induce isomorphisms H'(C, A) ~ H'(C’, A), H'(C, A) ~
S

H'(C', A’), i = 0,1 for each A € Ab(CC) and A’ € Ab(C®"), where A has C'-module structure due to
S and A’ has C-module structure due to 7.

Theorem 3.3.4. If internal categories C and C' in C are equivalent, then they are homologically and
cohomologically equivalent.

Proof. By Proposition 1.3.6 the equivalence of internal categories
d / i d’ /
C:Kerdy —=C and C':Kerdy——C
means that there are internal functors (Tp,T1) : C — C’, (Sp, S1) : ¢’ — C and maps ¢ : Cj —
Kerdy, ¢ : Co — Kerdy satisfying conditions (1.3.1) and (1.3.2). To prove that C and C’ are
homologically equivalent, we must show that (7p,7}) induces the isomorphisms Kerd ~ Kerd' and

Coker d ~ Coker d'. From (1.3.1) and (1.3.2) we have

od () = —T151(),
Yd(c) = S1T1(c) — ¢,

for each ¢ € Kerdp and ¢ € Kerd),. Then for each ¢ € Kerd and ¢’ € Kerd' we obtain
SlTl (C) = C, TlSl(c’) = C/.
Thus Tl‘Kerd ’ Sl‘Kerd’ = 1Kerd7 and Sl‘Kerd ’ Tl‘Kerd = IKerd-
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We have the following diagram:

0 Kerd Ker dg LA Cy —— Cokerd ——= 0
lTlKerd lTl lTo lf“o

0 —— Kerd —— Ker d|, AN Co — "> Coker'd —= 0, (3.3.7)
lslm & lSI lso l§o

0 Kerd Ker dg — Co —— Cokerd ——0

where 7 and 7/ denote the natural morphisms, and Ti 0, §0 are induced by Tj and Sy, respectively.

We shall now show that Coker d ~ Coker d’. Again from (1.3.1) we have d'¢(r") = ' =TSy ('), from
which we obtain 7'd'¢(r') = 7(r")—7TpSo(r'). Since 7'd'p(r’) = 0, we conclude that 7/ TSy (") = 7/(r')
and TpSo = 1Coker d- Similarly, from di)(r) = SoTo(r) — r we obtain that SoTo = 1coker d-

To prove that the internal category equivalence implies cohomological equivalence, consider C-
module A, i.e., A € Coker d-mod. A can be considered as a Coker d’-module due to §0, because Sy is
a homomorphism in C.

From (3.3.5) we have (Ker 7 is denoted by A):

HY(C, A) = {6 € Der(Cy, A) | 6d =0} = Der(Coker d, A),

HY(C', A) = {§' € Der(C{, A) | §'d =0} = Der(Cokerd', A).
As we have proved above, Coker d ~ Coker d’; analogously, as will be shown below, for Ty, Sy, we have
8'Tyy € Der(Coker d, A) and 65, € Der(Coker d’, A), from which it follows that HO(C, A) ~ HO(C', A).

To prove that H!(C, A) ~ H*(C’, A), first we shall show that if (Tp,7T}) : C — C’ is an equivalence
of internal categories, then T' induces a homomorphism of abelian groups Der(Tp, A) : Der(Cj, A) —

Der(Cy, A) defined by & — 6'Ty. We must show that §'Ty € Der(Cp, A). For this we shall prove that
0'Ty satisfies conditions of Definition 3.2.1.

L §"To(w(r)) = w(6'To(r));
2. To prove the second condition, recall that r’'-a = Sy(r’) - a for each r’ € C{, and a € A. We have
(5/T0(7’1 + 7’2) = 5/(T0(7‘1) + To("r’g)) = 5/T0(7‘1) + To("r’l) . 5,T0(T2) = (yTo(Tl) + SQTQ(Tl) . 5/T0(7‘2).

By (1.3.2) SoTo(r) = dip(r) + r and from Sec. 2.2 we know that d(c) - a = a for each ¢ € Kerdy and
a € A. Thus 5,T0(7“1 + 7“2) = 5,T0(7“1) +7ry- 5,T0(7“2).

3. Since d(c) xa = 0 (see Sec. 2.2) and hence SoTp(r) *a = (di)(r) +r) * a, for each r € Cp, a € A
we have
(yTO(Tl * r2) = (5/(T0(7“1) * TQ(T’Q))
= (5,T0(7“1)) * To(’r'g) + T(](?“l) * 5/T0(’I"2) = (5,T0)(’I"1)) * S()To(’I"Q) + To(Tl) * 5/T0(’I"2)
= (5/T0(7’1) * SQT()(TQ) + SoTo(Tl) * (5/T0(7’2) = (5/T0(7’1) * g + 11k (5/T0(7’2).

Similarly, Sy induces the homomorphism Der(Cg, A) — Der(Cj, A). Now we shall show that T
induces the homomorphism of abelian groups

Hom(T3, A) : Homcy _ g (Ker d', A) — Homg, —str(Kerd, A)
defined by

o — d/Ty.
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Here

Homc, st (Ker dp, A) = {a € C(Kerdp, A) | afr-c) =r-a(c),a(r *c) =rx*a(c) for each
binary operation * in C except the addition, for each r € Cy, ¢ € Ker do}.

The following equalities show that /T is a Cg-structure homomorphism:
Ty (r-c) =d' (To(r) - Ti(c)) = To(r) - &' Ti(c) = SoTp(r) - /Ty (c)
= (dp(r) +7) - 'Ti(c) = dip(r) - (r-a'Ti(c)) = r-a'Ty(c);
Ty (r xc) = o/ (Ty(r) x Ti(c)) = To(r) * o' Ti(c) = SoTo(r) x o/ Ty (c)
= (d(r) +7) * o/Ti(c) = r * ' Ty (c).
Similarly, S induces the homomorphism

Hom(S1, A) : Home, —sr (Kerdo, A) — HomczJ (Ker d6, A).

—str

By the definition of the cohomologies of internal categories, we have the commutative diagram

Der( /07 A) —d/> HomC6 _str(Ker d67 A) — Hl(c/v A)

Der(To7A)l/ lHom(ThA) lHl(TA)
Der(Cyp, A) 4 Homc, _gtr (Kerdp, A) — Hi(c,4) - (3.3.8)
Der(So,A)l/ lHom(Sl,A) lHl(S,A)

4

Der(Cf, A) —= Homgy g, (Ker dj, A) —= HY(C', A)

Here the homomorphisms H!(T, A) and H!(S, A) are induced by Hom(77, A) and Hom(S7, A), respec-
tively, and d denotes the homomorphism defined by d(é) = dd. From the commutativity of (3.3.8) for
each cla’ € HY(C', A),d € Homey _ g, (Kerdj, A) we obtain
HY(TS, A)(clo/) = cl(/T1 S).
From (1.3.13), we have o/T1S) = o/ (—pd' + 1) = —d/pd' + o/. But o/ pd’ € Der(Cy, A) :
dp(w(r')) = w(de(r');
op(ry + 1) = o (p(r1) + ToSo(r) - ¢(r3)) = o' @(r}) + ToSo(rh) - o/ p(ry)
= 'p(r}) + (=d'p(r]) + 1) - /p(ry) = o/o(ry) + 11 - (1)

The corresponding condition for the binary operation * of C is proved analogously. Thus, o/¢d’ is a
derivation for each o/ and cl(o/T}S1) = cla/. In the same way we prove that H' (ST, A) = 1 and so
HY(C,A) ~ HY(C, A) for each A € Ab(CC®). Similarly, we can prove that H'(C, 4’) ~ H!(C/, A’) for
each A’ € Ab(CY). This completes the proof. O

Consider the following conditions on internal categories C and C’:

(i) C and C' are homologically equivalent;

(i) C and C’ are equivalent;

(iii) C and C’ are cohomologically equivalent.

Proposition 3.3.5. Let C and C' be internal categories in the category of abelian groups. Then we
have the following implications (i) <= (ii) = (iii)) = (i).
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Proof. By Theorem 3.3.4 it suffices to show that (iii) = (i). From (3.3.5) we know that
HO(C, A) = Der(Coker d, A) ~ Homcoker d-mod (I(Coker d), A),
H(C’, A") = Homcoker ¢/ -mod (I(Coker d'), A'),
for each A € Ab(CC) and A’ € Ab(C®). In the case of abelian groups (C = Ab) we have
H°(C, A) = Hom(Coker d, A),
H(C’, A) = Hom(Coker d', A),

for each abelian group A. Here and below Hom denotes Hompyy,. By (iii) we have Hom(Cokerd, A) ~
Hom(Coker d’, A) for any A, which implies an isomorphism Coker d ~ Coker d'.

To show the isomorphism Kerd ~ Kerd', apply the functor Hom(—, A) to the diagram (3.3.7); we
obtain the following commutative diagram:

Hom(d,A)

0 —— Hom(Coker d, A) —— Hom(Cy, A) Hom(Ker dg, A) — HY(C, A) —— 0
T ~ THom(d’,A) THom(Tl LA) THl(T7A)
, , Hom(d',A) , 1/
0 —— Hom(Coker d’, A) —— Hom(Cy, A) Hom(Kerd;, A) — H'(C',A) —0 -

Tm THom(d,A)

0 —— Hom(Coker d, A) —— Hom(Cy, A)

THom(ShA) THl(S,A)

Hom(Ker dg, A) — H'(C, A) ——= 0
(3.3.9)

Hom(d,A)

Take A = Ker dy; from the right-hand side of the diagram (3.3.9) for elements, we have
SlTl | — Cl(SlTl)

|

1Kerd0 —cl 1Kerd0

By (iii), H'(ST,Ker dg)(cl IKerdy) = cl1Kerdy; thus cl(S171) = cl1lkerd,- From this it follows that
there is an element o« € Hom(Cy, Kerdp) such that ad = 5177 — 1kerq,- Thus, if ¢ € Kerd, then
¢ —51T1(c) = 0 and ¢ = S17T1(c). In the same way we show that ¢ = T151(¢), for each ¢ € Kerd',
which proves that Kerd ~ Ker d'. O

Proposition 3.3.6. If C and C' are internal categories in the category of vector spaces Vecty over a
field k, then (i) <= (ii) <= (iii).

Proof. Tt suffices to show that (i) = (ii). Consider the exact sequence

0 Imd Co Coker d —— 0,

which is split as we are in the category of vector spaces. Thus Cy =~ Coker d x Im d, and each element
r € Cy can be viewed as a pair r = (clr, dc) for some ¢ € Ker dy. Define the map ¢ : Cy — Ker dy by

Y(clr,de) = S1T1(c) — c.

We must show that 1 is defined correctly and that it does not depend on the choice of ¢. Let dc = deq,
then ¢; — ¢ € Kerd. We have

S1Ti(c) —c— (S1T1(c1) — 1) = S1Th(c) — SiTi(c1) —c+ 1
=S51T\(c—c1)—c+eci=c—c1—c+c =0,

as S111 is an identity morphism by (i).

|Kerd
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Now we shall prove that v is a homomorphism of vector spaces, di(r) = SoTp(r) — r and ¥Pd(c) =
S1T1(c) — c.

Y(kr) = (kclr, kde) = (clkr,dke) = S1T1(kc) = kS1Ti(c) = ky(c) for each k€ K,
Y(r+mr) =((clr,de) + (clry,der)) = Y(cl(r +71),d(c + ¢1))
=S1Ti(c+c1) —c—c1 = S1Ti(c) + S1Ti(c1) — ¢ — c1;
Y(r) +1(r) = Y(clr,de) + Y(clry,dey) = S1Ti(c) — e+ Si1Ti(c1) — a1
=S51T(c) + S1Ti(c1) —c— 1.
From the definition of ¢ we obtain
dip(clr,de) = d(0,51T1(c) — ¢) = (0,dS1T1(c) — dc) = (0, SoTod(c) — d(c)). (3.3.10)
On the other hand, as ST = Lokerq by (i), we have (see diagram (3.3.7)):

SoTo(clr,de) — (clr,dec) = (§0f0(clr), SoTod(c)) — (clr,de)
= (clr, SoTpd(c)) — (clr,de) = (0, SoTpd(c) — de). (3.3.11)

(3.3.10) and (3.3.11) prove that di(r) = SoTo(r) —r,
Again by definition we have

Yd(c) = (0,dc) = S1T1(c) — ¢
which completes the proof of Proposition 3.3.6. O

In [42] G. J. Ellis, following [9], regards the (co)homology of the classifying space B(M — G) of a
crossed module 0 : M — G in groups as the (co)homology of the crossed module 0 : M — G.

Let 9 : M — G be a crossed module in Gr and A be a Coker 9-module. Suppose & : B — F
is a crossed module with F' a free group, and crossed modules 9 and & are weakly equivalent in the
sense of [42], which means that there is a morphism between these crossed modules, which induces
isomorphisms Ker d ~ Ker @', Coker  ~ Coker &. Denote by H*(d : M — G, A) the cohomology
defined in [42]. Theorem 6 of [42] states that there is an isomorphism

H2(8 : M — G, A) = Coker (Der(F, A) o Homp_str(B,A)).

Applying this result, from Theorem 2.2.1 we obtain the following assertion.

Proposition 3.3.7. There is an isomorphism
H%(0: M — G, A) ~ H(C, A),

where C denotes the internal category in Gr associated to &' : B — F, and A is an object of Ab(GrC)
associated with Coker O-mod A.

3.4. Relations H'(C,—) =0, H{(C,~) =0

Theorem 3.4.1. Let C be a category of groups with operations, and C = (Cy, Cy,do,d1,i,m) be an
internal category in C. H°(C, A) = 0 for each A € Ab(CC) if and only if I(Coker d) = 0.

Proof. From (3.3.5) we obtain
HO(C, —) = 0 <= Homqoker d-mod (I(Coker d), —) = 0 <= I(Cokerd) = 0. O

Corollary 3.4.2. Let C be an internal category in the category of groups; then HO(C, —) =0 if and
only if C is a connected category.

Proof. In the category of groups I(Coker d) = 0 <= Cokerd = 0 <= d is a surjective homomorphism
<= C is a connected internal category. O
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Consider the case H'(C, —) = 0. If an internal category C in the category of interest C is connected,
then d is surjective and from (3.3.6) we obtain

H!(C,—) = 0 «<= Coker Homc, —mod(S(d), —) = 0 <= Homc, —mod(S(d), —)
is an epimorphism <= S(d) is a split monomorphism <= S(d) is an isomorphism.

Let C be a category of interest and C = (Cyp, Cy,dp, d1,%, m) be an internal category in C. Denote
by S(C) an internal category represented as a crossed module in the following form:

S(d)
S(Kerdy) — Coker d X+ (r4,)y S(Imd),
where d = dy ‘Ker do’ {f:(9+)+eqy } is one of the families of factor systems of the extension

i1 p1

0 Imd Co

Cokerd ——= 0,

d: Kerdy — Imd is defined by d (d = i1d), and 7 : Imd — S(Imd) is a natural homomorphism.
For ordinary internal categories we have the following theorem.

Theorem 3.4.3. Let C be a category of interest and C = (Cq, C1,do, d1,1, m) be an internal category
m C, d= dl‘Ker do’ S : C — Ab be an abelianization functor, and 7 : Imd — S(Imd) be a natural
homomorpshism of Coker d-structures. The following conditions are equivalent:

(i) HY(C, A) =0 for each A € Ab(C®);

(ii) d induces an isomorphism of Coker d-modules S(d) : S(Kerdy) —— S(Imd) (d is defined by
d) and the extension of Cokerd by S(Imd) obtained from

11 P1

0 Imd Co Cokerd ——=0
by T is split;
(iii) S(C) is equivalent to the discrete category (Coker d, Cokerd, 1,1,1,1).
Proof. (i) = (ii). Let 79 : Kerdy — S(Kerdp) be a natural split Cy-structure homomorpshism;
then
7d = S(d)7p. (3.4.1)

As we know from Sec. 3.3, S(Kerdp) is a Coker d-module. So if H'(C,—) = 0, then in particular
HY(C,Cy xS(Kerdy)) = 0 and from Theorem 2.12.1 (i) we conclude that for the homomorphism 7y
there is a derivation &y : Co — S(Ker dg) with dod = 7o; since d = i1d, we have

Soird = Tp. (3.4.2)

The composite i1dg is a Cg-structure homomorphism, so there is a unique Coker d-module homomor-
phism « : S(Imd) — S(Kerdp), such that

aT = 50’i1. (3.4.3)

The picture is as follows:
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From (3.4.1), (3.4.2) and (3.4.3) we obtain

aS(EO)TO = aTE = (501'1& = 70,

from which it follows that aS(d) = 1; so S(d) is a monomorphism. But it is also an epimorphism.
Thus we obtain that S(d) is an isomorphism.

Again, since H'(C,CoxS(Imd)) = 0, for Co-structure homomorphism dr there is a derivation
§: Cg — S(Imd) with 6d = 7d. Since d = i;d and d is an epimorphism, we obtain that di; = 7. By

Proposition 3.2.3 we conclude that an extension of Cokerd by S(Imd) obtained from the extension
0 Imd —— Cy Pl Cokerd —=0 by 7 is split.

(i) = (i). Now let U € Cokerd-mod, and ¢ : Kerdy — U be an arbitrary Cy-structure
homomorphism. We shall show that there is a derivation §; : Cg — U such that the diagram

Ker dy LA Co

| A

U

is commutative. By Proposition 3.2.3 there is a derivation § : Cy — S(Imd) with diy = 7. §y =
S(d)~16 is also a derivation. We have

50i18 = S(a)_lélla = S(E)‘%E = S(a)_lS(a)To = 1T70- (3.4.4)

¢ induces a Coker d-module homomorpshism ¢ : S(Kerdy) — U such that ¢79 = ¢. Take 6, = $dp.
Applying (3.4.4) we obtain

d1d = $pdod = $doird = ¢19 = P
(ii) <= (iii) is obvious by the definition of S(C) and Proposition 1.3.14. O

Corollary 3.4.4. Let C = (Cy,Cy,dy,d1,i,m) be an internal category in the category of abelian

groups, d = dl‘Ker do’ The following conditions are equivalent:

(i) Hl(c7 _) =0;
(ii) d is a split monomorphism;

(iii) C is equivalent to the discrete category (Coker d, Cokerd, 1,1,1,1).

Examples.

1. C is a discrete internal category in C. We have C = (Cy, Co, 1¢,, 1cys Lays 1oy ), d = 0 and

Coker d = Cp. From (3.3.5) we obtain
HO(C, A) = Homc, -mod (I(Co), Ker ).
Thus
H(C,—) =0 <= I(Cy) = 0.
Since Ker dy = 0, we have
HY(C,—) =0.
In the case where C is the category of groups,

H(C,-)=0+<= Cy=0.

1c
2. Cis an antidiscrete category; as a crossed module it has the form Cy —% Cyp . Since Cokerd = 0

we have
H°(C, —) = Der(Coker d, —) = 0.
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From Theorem 3.4.3 it follows that
H'(C,—) =0.
Note that this can be obtained easily by direct computation.

3. An internal category as a crossed module is of the form C; —2%.0. So we have Co = 0,
Kerdy = Cq, d =0, from which we obtain that Cy is a singular object and

HO(C7 -) =0,
Hl(C, —) = HomAb(Cl, —).
Thus H(C,—) =0 <= C; = 0.

CHAPTER 4

KAN EXTENSIONS OF INTERNAL FUNCTORS

We consider the notion of the Kan extension for internal functors in the category of groups Gr.
According to the equivalence of categories Cat(Gr) = X Mod(Gr) [78], the internal nature of categories
enables us to consider them as crossed modules and to think of the problem of necessary and sufficient
conditions for the existence of internal Kan extensions, which is not known for the case of ordinary
categories. Thus we follow the algebraic approach to this problem, use homological algebra methods,
and under certain assumptions establish the necessary and sufficient conditions for the existence of
internal Kan extensions. Questions related to this problem are also discussed.

Due to MacLane-Whitehead’s well-known classification of connected cell complexes according to
their 3-type [73], we can also consider the topological approach to this question; it will be the subject
of the forthcoming paper (see [34]).

Since every internal category in Gr is a groupoid, this kind of questions can be treated by means
of category theory (groupoid) methods. Note that in our case the groupoid approach did not give
desirable result.

4.1. Extensions in the Category Cat(Ab)

Let Cat(Ab) denote the category of internal categories in the category of abelian groups Ab. By the
equivalence of categories Cat(Ab) =2 X Mod(Ab), where X Mod(Ab) is a category of crossed modules
in Ab, we can consider an internal category in Ab as a pair of abelian groups (Ag, A1) together with
a homomorphism between them:

A A T Ay, Ao, Ay € Ob(AD), d* € Mor(Ab).

In what follows, an internal category A € Cat(Ab) will be denoted by A = (Ap, A1); this means
that there is also a homomorphism d4 : A, — Ap.

A
Definition 4.1.1. Let A: A, —2= A, , C:Ch e Cp € Cat(Ab). Define Extéat(Ab)(C, A) as the
pullback of the diagram

EXt%Jat(Ab) (07 A)
l l/Extl(Cl,dA) )
Extkb(CQ, AO) EXt}&b(Cl, Ao)

EXt}&b(Cl, Al)

Ext(d,Ap)
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Definition 4.1.2. An extension of C' = (Cy, C1) by A = (Ap, A1) is a commutative diagram of the
type

1 o1

Ei:0 Aq By o 0
E Fl dAl dBl dcl
Ey:0 Ag s By - Co 0

with exact rows; thus E; € Ext}, (Ci, 4;), i =0, 1.

Denote by Exteag(ab)(C; A) the set of all extensions of C' by A. By a homomorphism 6 : £ — E’
we mean a pair § = (6, 0;) of triples 8y = (v, fo,Y0), 01 = (a1, 51,71) such that the diagram

0 Ay “ By 7 o) 0
1, VL
E 0 A 2 B oo 0
y dA dB dct
E 0—r Ay —— = By —— = Cy 0
e Tl
) b
0 Al B) ch 0

is commutative. It can be written in short from as follows:

Let A= A’ and C' = C’. We shall say that two extensions F and E’ of C by A are congruent £ = E’
if there is a morphism 6 = (0y,6,) : E — E’, where 0y = (14,, 5o, 1c,) and 01 = (14,,51,1¢y). Asis
well known, in this case 8y and 1 are isomorphisms, and so 8 = (8y, 51) : B — B’ is an isomorphism
of internal categories in Ab.

Ind T .
If F':E{ ——=E| and E":E! —— EJ are two extensions and E{, = E{, we can define the

composition of these extensions E : E| _r, E{ , where I =T"oI".
Thus F is of the form

E . ll—\ l/dA//OdA/ ldBHOdB/ l/dcllodcl
E{:0 —> Af — Bf —= Clfj —0

Now we can define a larger congruence relation in Ext(C,A). If E = E"o E" !l o... 0 E!, then
E = FE' if and only if E’ is obtained from E by replacing E’ by its congruent extension E” = E', for
any ¢, ¢ = 1,...,n. Let R be the equivalence relation generated by this congruence relation. It is easy
to see that

ExtGan(any(Cs A)/ R~ Extyan) (C; A).
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It is straightforward to verify that Cat(Ab) admits limits and colimits. Thus in a natural way we
can define homomorphisms Extéat( Ab)(ga,A) and Extéat( A]D)(C’,w), where ¢ and 1 are morphisms in
Cat(Ab), Also they can be defined directly by Definition 4.1.1. Thus Extc,e( (-, -) is a bifunctor.

Let Ab, denote the category whose objects are the diagrams of the form

in Ab, and morphisms d — d’ are the morphisms of diagrams, i.e., the triples

M

N

(M,V,%)Z K—J{)K,

v

N2~ N/

such that the above diagram commutes. The exactness in Aby means the exactness of each row in the
corresponding diagram. Let

d Ext! : Cat(Ab)? x Cat(Ab) — Aby
denote the functor defined by

Ethl%b(Al, Bl)

\%ﬁ)

d Ext'(A, B) : Ext}, (A1, Bo)

/@’Bl)

EXt}&b(AO, Bo)
on objects, and by the commutative diagram

Ext!(A1,81)

Ethl%b(Al, Bl)

T

d Ext!(A, B) : Ext}, (A1, Bo)

/

Ext! (Ao,
EXt}&b(Ao,Bo) t1(Ao,B0)

Ext}, (A1, BY)

Ext! (A1,
(A1,60) Ethl%(Al,Bé)

/

for the morphism 8 = (8y, 1) : B — B’ in Cat(Ab).
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Similarly, for o = (ag,a1) : A — A’ in Cat(Ab)°, d Ext!(a, B) is defined by the commutative
diagram

Ext!(a1,B
EXt}&b(Al,Bl) (al 1)

T

d Ext!(a, B) : Ext}, (A1, Bo)

EXt}%b (All ’ By )

Ext!(a1,Bo)

/

Ext!(cag,B
Xt (20.50) Ext}, (A}, By)

EXt}%b (AO 5 Bo)

For the morphism (a, 3) : (A, B) — (A’, B') € Cat(Ab)? x Cat(Ab), d Ext!(«, 3) is defined by the

composition
d Ext'(A’, B) o d Ext' (o, B) = d Ext!(a, B') o d Ext! (A, B).

For any object A € Cat(Ab) we have a functor (4, -) : Cat(Ab) — Cat(Ab)°? x Cat(Ab) defined
by B +— (A, B) and  —— (14,03). The functor (-, B) is defined similarly. Also, there is a pullback
M

functor @1 : Aby — Ab, which to each diagram K assigns the pullback object P of this diagram
e
N

P/M\K
N

It is easy to see that

Extgat(Ab)(A, B) = limod Ext! o(4, -)(B) = lim od Ext! o(-, B)(A).

4.2. Kan Extensions of Internal Functors in Cat(Gr)

(a) The Notion of an Internal Kan Extension.

For the definition of the Kan extension of a functor for ordinary categories, see [72].

Let A,C, M € Cat(Gr) be internal categories in the category of groups Gr. Proceeding from the
definition of the Kan extension and our aim, to give its internal analogy, according to the equivalence
of categories Cat(Gr) = X Mod(Gr) (here X Mod(Gr) denotes the category of crossed modules in

A
Gr), we consider internal categories as crossed modules and denote them as follows: A : A; L A,

M C
M:Mld—>M0, C:ClLCO. Let T : M — A and K : M — C be internal functors.
From Sec. 1.1 we have T' = (Ty,T1), K = (Ko, K1), where Ty : My — Ap and Ky : My — Cj are
homomorphisms of groups, 71 : M7 — A; and K7 : My — C; are structural maps, i.e., they are
homomorphisms of groups and satisfy the conditions
Ki(r-m) = Ky(r) - K1(m),

Ti(r-m) = To(r) - Ty(m) (4.2.1)
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for r € My, m € My, and the following diagrams are commutative:

d M d]b[

M, —— My My —— My
Tll lTO, Kll lK
Ar—> Ao Cr— Co

We write T € Homoph(Ml, Al), K € Homoph(Ml, 01)

Since internal categories in Gr are groupoids, every morphism between internal functors is an
isomorphism (see also Proposition 1.2.1).

Let S = (Sp,S1), R = (Ro, R1) : C — A be internal functors and 0 : S — Rand ¢ : RK — T
morphisms of internal functors. Recall (see Sec. 1.2) that we can consider these morphisms as maps
0:Cy — Ay, e:My— Ajq, which satisfy the conditions

dAU = RO - S(), O‘dc = R1 — 51, (4.2.2)
o(r+1r")=0a(r)+So(r) o), rr €Cy;
dd =Ty — RoKy, ed =T, — RiK;, (4.2.3)

e(m+m') =e(m) + RoKo(m) -e(m’), m,m’ € M.

Note that if A € Cat(Ab), then the action of Ay on A; is trivial, so that ¢ and ¢ are group
homomorphisms satisfying conditions (4.2.2) and (4.2.3). In that case,

d4B =Ty — SoKo
Bd° =Ty — S1Ky |

From Chap. 2, if @ and o’ are morphisms of internal functors

Hom(SK,T) = {,8 € Homg, (Mo, A1)

P p Y pr R F,F".C——(C ¢ Cat(Gr),
then the composite o/« can be considered as a map
o +a: Co—C1,

satisfying the corresponding conditions.

As for the case of abelian groups, an internal category A € Cat(Gr) will be denoted for simplicity
as a pair (Ag, 41); this means that there is a group homomorphism d . Ay — Ay satisfying the
usual conditions (see [78], [31]).

Definition 4.2.1. Let A = (Ap, A1), C = (Cy,C1), M = (My, M;) be internal categories in the
category Gr, and suppose K = (Ko, K1) : M — C and T = (Tp,T1) : M — A are internal functors.
An internal right Kan extension of T" along K is a pair (R = (Rp,R1),¢), where R is an internal
functor C — A and ¢ : RK — T a morphism of internal functors such that for each internal functor
S = (Sp,951) : C — A and a morphism « : SK — T there is a unique morphism of internal functors
0:5 —> Rwitha=¢+ oK.

Here 0 K means the morphism SK 7K RK , i.e., the composite of the maps

Ko
MO —— 00 —U> Al,

satisfying the conditions
d* . oK = RyKy — SoKo,
oK -d¥ = RiK, — S1K1,
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oKo(m+m') = aKo(m) + SoKo(m) - cKo(m'), m,m’ € My.

Also, by the observation given before Definition 4.2.1, € is a map My — A; satisfying conditions
(4.2.3); o is a map My — A; satisfying the conditions

dAa = TO — SoKo,
adM = T1 — SlKl;

o is amap Cyp—— A; satisfying conditions (4.2.2).
The diagram is

C RK —S-T
KT Y : UKT / . (4.2.4)
ML 4 SK

Note that, as in the case of groupoids, the notions of internal right and left Kan extensions are
equivalent. Thus in what follows we can omit the word “right.”

Recall that an internal category C' is called connected if for its two objects 7,7’ there exists a mor-
phism r — 7/, which in the language of crossed modules means that d° is a surjective homomorphism

dC
for C; ——= Cy.
Lemma 4.2.2. Let C,C’ € Cat(Gr) and C be a connected internal category. Then for any internal

functor F = (Fy, Fy) : C — C' there is only one endomorphism F — F, which is the identity
morphism.

Proof. Let a : F — F be an endomorphism; thus « : Cy — C] is a map satisfying the conditions
ad® =0, d%a =0, and a(r + ') = a(r) + Fy(r) - a(r'), 7,7’ € Cy. The diagram is

a¢

Cq Co

Fy F1 FO FO .

e c

dc’

Since C' is connected, d° is surjective; so it follows that o = 0, which means that o : F — F' is
the identity morphism (see Chap. 1). O

Corollary 4.2.3. Let C,C’ € Cat(Gr), C be a connected internal category, and F,G : C — C' be
internal functors. If o : F — G is a morphism of internal functors, then it is a unique isomorphism.

Proof. Since C' and C' are groupoids, o is an isomorphism (see Chap. 1). Thus we have a bijection

Hom(F,o)

Hom(F, F) Hom(F,G)

Hom(F,o—1)
which by Lemma 4.2.2 implies that ¢ is a unique isomorphism. O

Remark. Corollary 4.2.3 can be proved directly, and the statement of Lemma 4.2.2 can obviously be
obtained as its special case. Both statements are true also in the case where C'is an arbitrary internal
category and d¢ is a monomorphism. When C’ € Cat(Ab), we obtain a more general condition
Hom (Coker d°, Ker d®") = 0 (see Lemma 4.2.7).
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Proposition 4.2.4. Let C and M be connected internal categories in Cat(Gr), and A € Cat(Gr);
(R,€) is an internal Kan extension of an internal functor T : M — A along K : M — C' if and
only if R is a unique (up to isomorphism) internal functor R : C' — A with the property that there
is an isomorphism ¢ : RK = T.

Proof. Let (R,¢) be an internal Kan extension of 7' along K. Then from Definition 4.2.1 it follows
that (R,¢) satisfies the conditions of the proposition. Conversely, let (R, ) be a pair satisfying the
conditions of the proposition. We shall show that (R, ¢) is an internal Kan extension. Let S : C — A
be an internal functor and « : SK — T a morphism of internal functors. Then « is an isomorphism;
by the condition, R is a unique (up to isomorphism) functor with this property. Thus there is an
isomorphism ¢ : S & R. This isomorphism is unique by Corollary 4.2.3 and ¢ - 0 K = «, since by the
same Corollary 4.2.3, Hom(SK,T) consists of only one element, which proves the proposition. O

Note that if A € Cat(Ab), then Proposition 4.2.4 is true under the more general condition:
Hom (Coker d¢, Ker d*) = 0 and Hom(Coker d™ , Ker d4) = 0.

Proposition 4.2.5. Let A,C,M € Cat(Gr), K : M — C,T: M — A, R: C — A be internal

functors, and ¢: RK —Z= T be an isomorphism. (R,e) is an internal Kan extension of T along
K if and only if for each internal functor S : C — A the assignment 0 — oKy (K = (Ko, K1))
determines a bijection

Hom(S, R)— Hom(SK, RK).

Proof. 1t follows from the composite

Hom(S, R) — Hom(SK, RK) fom(SH)

Hom(SK,T),
where Hom(S K, €) is a bijection. O

(b) On Homg, ey (M, A), M € Cat(Gr), A € Cat(Ab).

Let M € Cat(Gr) and A € Cat(Ab) be internal categories and 7' : M — A an internal functor. So
To € Homg, (Mo, Ao), T € Homepn (M, A1) and Tyd™ = dAT,. We can express Homg,(gry(M,A) as
a pullback of the diagram in Ab

HomCat((Gr) (Mv A) Homoph(Ml ’ Al)

lHom(MhdA) . (425)

l Hom(dM A
HomGr(Mo, AO) ( o)

Homoph (Ml s Ao)

Thus Homeyggr) (M, A) is an abelian group. Denote by }/I?)_r?lCat(Gr)(M ,A) the set of all isomorphic
classes of internal functors from M to A. Obviously, this set has an abelian group structure; note that
the action of Ay on A; is trivial, since A € Cat(Ab). So if o : T — T is a morphism of internal

functors, T = (Tp,T1), T' = (T}, T}) : M — A, then « is a group homomorphism My —>= A;
satisfying the conditions

dla =T) - Ty,
ad =T - T).

For each o € Homg, (M, A1) we have dia e Homg, (Mo, Ag), ad™ € Homsg; (M1, Ay). The first is
obvious, and the second is obtained from the following equalities for each mg € My, m € M:

adM (mg - m) = a(mg + dM (m) —mg) = a(mo) + ad™ (m) — a(mg) = ad™ (m)
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(here we apply the fact that d* : My — M is a crossed module);
dAa(mg) - ad™ (m) = ad™ (m)

since A € Cat(Ab), and Ay acts trivially on A;.
Thus ad™ (mg - m) = d4a(mg) - ad™ (m).
For each o € Homg, (M, A1) we have

Hom (M, d*) - Hom(d™, Ag) (o) = Hom(d™, Ag) - Hom(My, d™)(c).
Since Homcyg(gry(M, A) is a pullback of diagram (4.2.5), this means that Hom(dM, A;) and

Hom(Mjy,d*) induce homomorphism of abelian groups ¢y; defined by ¢ar(a) = (d4a, ad™), for
a € Homg,(Mj, A1); the diagram looks as follows:

Hom(dM,A)
HOInGr(Mo, Al) Homoph(Ml, Al)
om(M7y,d?)
o / \
HomCat(Gr) (M7 A) Homoph(Mb AO)

/l@;)

HomGr(Mo, Ao)
Homg, (Mo,d

Note that since for a € Homg, (Mo, A1), (d4a,adM) is an internal functor M — A, any a €

Homg,(My, A1) can be considered as a morphism of internal functors (d4a, ad™) *— (0,0), and

the diagram is
d]\l

M1—>M0

ol o

Av—= 4o

Thus Homg, (M, A1) is an abelian group of all morphisms between the internal functors M — A.
Now one can easily prove the following

Proposition 4.2.6. For M € Cat(Gr), A € Cat(Ab) we have
ITI?)BCat(Gr)(M, A) = Coker ¢jy.
Lemma 4.2.7. Ker ¢y = Hom(Coker d™, Ker d4).

Proof. We have Ker )y = Ker Hom(d™, A;) N Ker Hom (M, d4). From the exact sequence

0 — Ker dAc Aq Ap
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we obtain the exact sequence

Hom (My, Im d*)

Hom
0 — Homg, (M, Ker d4) — Homg, (M, A;) Homg, (M, Ao)

which implies
Ker Hom (M, d*) = Homg, (M, Ker d*).
Similarly, we have a sequence
aM
M, 7> ImdM < My —> Cokerd™ —— 0

from which we obtain the sequence

HOII](Ml, Al)

0 — Hom(Coker ™, A;) — Hom(Mjy, A;) — Hom(Im d™, A;)

|

0

and Ker Hom(d, A1) = Hom(Coker d™, A;). Now it is easy to see that Ker ¢y, is a pullback of the
diagram

Ker pas Homg, (My, Ker d4)

| |

Homg, (Coker d™, A1) Homg, (M, A1)

From the diagram

My —= Coker dM

we see that Ker oy = Homg, (Coker d, Ker d*). O
Using the notation of Sec. 4.1, we can define the functor
d Hom : Cat(Ab)? x Cat(Ab) —— Aby
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HOIIlAb(Al, Bl)

d Hom(A, B) : Homup (A1, Bp) -

/9((#‘,30)

HOIIlAb(AQ, Bo)
The functor on homomorphisms is defined obviously. It is easy to see that
Homeyg(ab) (A, B) = lim od Hom(A, -)(B) = lim od Hom( -, B)(A).

Note that analogous equalities are true for the case A € Cat(Gr), B € Cat(Ab). The functors
(A, ), (-,B), dHom, @1 are left exact, so the functors Homgggan) (4, - ), Homeagap) (-, B) are also
left exact; the same is true for Homcy,g(gr) (4, -) : Cat(Ab) — Ab. This can also be proved directly.

Lemma 4.2.8. For the exact sequence

0 p-2.p P pn 0

in Cat(Ab) and an internal category A € Cat(Ab) we have a complex of abelian groups

Hom(A,B3") Hom(A,8")
0—— HomCat(Ab) (Av B/) - HomCat(Ab) (A7 B)

HomCat(Ab) (A7 B”) -

Ext!(A,8") Ext!(A,8")
- EXtéat(Ab)(Aﬂ B) ——— EXtéat(Ab) (4, B)

Extcat(ab) (4, B")

where Hom(A, ') is a monomorphism, and we have the exactness in Homeyg(ab) (A, B);  thus
Homeyg(ab) (A, ) is a left exact functor.

Proof. The given exact sequence induces an exact sequence in Abg:

0—— HOHlAb Al, —_— HOHlAb Al, Bl

\ WdB
Hom(A1 ,dB

HOHlAb AI,BQ —_— HomAb Al,Bo) —_—

HomA\b d BO
Homyy, (d#,Bo)

0—— HOIIlAb(AQ, BO —_— HomAb(Ao, BO

H:E[OII‘IA]:) Al,Bl %EXtAb A]_,B/

HOHM \

HomAb AI,BQ —)EXtAb Al,BO) —_—

Homyy, (dAy /

—— Hompyy, (Ao, Bj) —— ExtAb(Ao, Bj)
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%EXtAb A]_,Bl HEXtAb Al,B//

T~ T

EXtAb Al,BO —_— EXtAb A]_,B ) . (426)

/

Applying the functor 1£1 : Aby — AD to (4.2.6), we obtain the desirable complex. O
Note that an analogous statement is true for the first argument.

T
Let B—2>C == D be the diagram in Cat(Gr), where J is a surjective internal functor (i.e.,
S

for J = (Jo, J1), Jo and Jp are surjective homomorphisms). It is obvious that if 7'~ S, then T'J ~ SJ.
But as we shall see below (Lemmas 4.2.9 and 4.2.10), the converse statement is not always true.
Consider an exact sequence of internal categories in Ab:

I J

0 AC B C 0.

For any D = (Dy, D;) € Cat(Ab) it induces the commutative diagram

0 —_— HomAb(C’o, Dl)

el

0 —— Homcag(an) (C, D)

HomAb(Bo, Dl) —_—

l@B
Hom(J,D) Homcat(Ab) (B7 D) Hom(I,D)

Ethb(Oo, Dl)

soAl lc , (4.2.7)
1)
—_— Homcat(Ab) (A, D) —_— EthCat(Ab)(C7 D)

— Homyy, (Ao, D1)

where ©a, ©p, o are the morphisms defined above, and ( is induced by the pair
(Extl, (Co,d?),Ext}, (d°,D)). By Lemma 4.2.8 the second row in (4.2.7) is a complex, where
Hom(J, D) is a monomorphism, and we have the exactness in Homgygap) (B, D).

Denote Ef);téatmb)(C, D) = Coker (; then § induces the homomorphism

o~ —1
6 : Homeagap) (4, D) — Exteaean) (C, D).

From (4.2.7) we obtain the sequence

o — Hom(J,D) —— Hom(I,D)
KerdNKerpy — HomCat(Ab) (Ov D) HomCat(Ab) (Bv D)
—— 5 —1
— Homga(an) (4, D) — Extg,ian) (C, D) - (4.2.8)

Lemma 4.2.9. In (4.2.8) we have:
(i) (4.2.8) is a complex;
(ii) if pp is a monomorphism, then so is s;

(iii) (4.2.8) is exact in ITIBI/nCat( y(C, D);
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(iv) if ¢ is @ monomorphism, then (4.2.8) is exact in ﬁc\);l(;at( ) (B, D);
(v) if pa is a monomorphism, then so is ﬁ(;;l(;at( y(J, D).

The proof is easy by diagram (4.2.7) and is left to the reader.

Note that if A is a connected internal category, or D has no parallel morphisms, then ¢4 is a
monomorphism, and by (v) ITI_(\)_I/H(J,D) is also a monomorphism; thus, in this case, T'J ~ SJ implies
the isomorphism T' ~ S for the surjective internal functor J € Homcggap)(B,C), and any T,S €
Homcae(an) (C, D).

Lemma 4.2.10. Let B, C, D be internal categories in Ab, and J = (Jy,J1) : B — C be a surjective
internal functor. For internal functors T,S:C —= D the isomorphism TJ =~ SJ implies the

isomorphism T ~ S if and only if there is an isomorphism TJ ——= S.J given by the homomorphism
o : By — Dy, with Ker Jy — Kera.

Proof. Tt follows from diagrams (4.2.7) and (4.2.8); the picture is

Ker «

B By
g P

Cy e
nlls /0l

and 8 :T — S is defined by a : SJy = a. O

Note that when all categories are internal in the category of vector spaces over a field, Jy and Jy
have sections; if these sections give the section of internal functor J (i.e., the corresponding diagram
for the sections commutes), then we can construct § without any additional conditions on « and
consequently in that case T'J ~ SJ implies T' = S.

4.3. The Existence of Internal Kan Extensions

Let K : M — C be an internal functor in Ab. Define the internal categories Im K and Ker K in
a natural way. If K has the form
d]\l

M1—>M0

ol e

Cr—=Co

then these internal categories as crossed modules have the form

d¢

Im Kq

ImK1

ImKo s

d M

Ker Kq

Ker Ky

Ker Ky .
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Let K’ : M — Im K be an internal functor defined by K. Then K has a decomposition

K/

M mK ~C .

Here for simplicity we consider the case of abelian groups.

Proposition 4.3.1. Let A,C,M € Cat(Ab); K : M — C and T : M — A be internal functors.
Suppose that C and M are connected. If R' is an internal Kan extension of T along K', and R is
an internal Kan extension of R’ along I, where K' and I are defined by the decomposition K = I K,
then R is an internal Kan extension of T along K.

C
/| .

k| ImK : (4.3.1)

Proof. The picture is

M—FA

Since M is connected, Im K is also a connected internal category.

By Proposition 4.2.4, R*'K' ~ T, R is a unique functor up to isomorphism with this property, RI =~
R', and R is also unique up to isomorphism. Hence we have RK = R(IK') ~ (RI)K' ~ R'K' ~ T.

We shall show that R is unique up to isomorphism with this property. Let R : C — A be an
internal functor with RK ~ T. We have R'K' ~T ~ RK ~ R(IK') = (RI)K'.

By the uniqueness of R’ it follows that R’ ~ RI; but R’ ~ RI, and again by the uniqueness of R
we obtain R ~ R. U

Is the statement converse to Proposition 4.3.1 true? The answer is negative in general. Let R be
an internal Kan extension of 7" along K. Then in (4.3.1) R is a Kan extension of RI along I, but, in
general, RI is not a Kan extension of T along K’. Indeed, we have

RK ~ T,

and R is unique up to isomorphism with this property. Suppose that there is an internal functor
R:C — A with RI =~ RI. Then

RIK'~ RIK' — RK ~RK ~T — R~ R. O

Now we shall show that in the above situation RI is not an internal Kan extension of T" along K.
Let R’ : Im K — A be an internal functor with R'K’ =~ T; by RK ~ T we have RIK' ~ R'K’, but
this does not always imply the isomorphism RI =~ R’ (see Lemma 4.2.10).

We shall investigate the necessary and sufficient conditions for the existence of internal Kan ex-
tensions for the case where K is a surjective and K is an injective internal functor (i.e., Ky and K;
are injective homomorphisms). For the above observation, these results, in general, do not provide
an answer for arbitrary K (in this way we obtain only sufficient conditions for arbitrary K, but not
necessary).

Theorem 4.3.2. Let C,M € Cat(Gr) and A € Cat(Ab). Suppose that M is a connected internal
category. Let K = (Ko, K1) : M — C be a surjective internal functor such that Ker Ko—— M)

has a retraction. There exists a Kan extension of T = (Tp,T1) : M — A along K if and only if

T‘KerK ~ 0 and HomGT(COker dKerK’ Ker dA) =0.
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Proof. From the conditions it follows that C is also connected. For the exact sequence of internal
categories

K

0 —— Ker K€ M C 0

we have the commutative diagram shown in Fig. 1.

By Lemma 4.2.7, Ker ke k = Homg, (Coker d¥er K Ker dA) and, since C and M are connected,
Coker d® = Cokerd” = 0 so that Kergoc = Kergy = 0. The second row is exact, since
Ker Ko M, has a retraction. The third row is also exact, since Hom(K7, Ap) is a monomor-
phism. Applying the Snake lemma to the diagram from Fig. (1), we obtain the exact sequence of
abelian groups

0 — Homg, (Coker d¥* K Ker d4) S }/I?)BC%(Gr) (C,A) ——

—— Homgy (gr) (M, A) — Homggy (e (Ker K, A) . (4.3.2)

We have clT € ITI_(\)_I/H(M, A). By the exactness of (4.3.2), there exists cl R € ITIB_I/nCat(Gr)(C, A) such
that cl(RT) = clT if and only if clT‘KerK =0, ie., T|KerK ~ 0, and it is unique if and only if
Homg, (Coker d¥*" ¥ Ker d4) = 0, which proves the theorem. O

Corollary 4.3.3. Let A, C, M be internal categories in the category of vector spaces over some field
k. Suppose that M is connected. If K : M — C'is a surjective internal functor, then a Kan extension
of T : M — A along K exists if and only if T|KerK ~ 0, and either A has no parallel morphisms, or
Ker K is a connected internal category.

Proof. The result follows from the fact that in the category of vector spaces Ky has a section and
therefore Ker Ky < M is always split. The condition Hom(Coker d¥er K Ker dA) = 0 is equivalent to
the condition: either Coker d¥°* X = 0 or Ker d* = 0. Coker d¥** X = 0 means that Ker K is connected

and it is easy to verify that Ker d* = 0 means that A has no parallel morphisms. O

Remark. The statement of Theorem 4.3.2 and therefore of Corollary 4.3.3 holds also for arbitrary
M under the same condition that Ker Ko~ M, has a retraction; for the proof we have to apply
the general Definition 4.2.1 of internal Kan extension (see Sec. 4.4).

Consider now the case of abelian groups.

Theorem 4.3.4. Let A = (Ag, A1), C = (Cy,C1), M = (My, M;) € Cat(Ab); suppose that M is
connected and K : M — C is a surjective internal functor. If one of the following conditions holds:

(i) Aj is injective in Ab;

(ii) Cy is projective in Ab;
(iii) d© is a split epimorphism;
(iv) d? is a split monomorphism,

then a Kan extension of T along K exists if and only if

T‘Ker K~ 0 and HomAb(COkeI‘ dxer K, Ker dA) = 0.
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Proof. Tt follows from the conditions that C' is also connected. From the results of Sec. 4.2 we have
the commutative diagram

00— HOIIIA\b(C'()7 Al) _— HOIIIA\b(]\/[o7 Al) _— HomA\b(Ker Ko, Al) 4d> EXt}&b(Cm Al)

wcl le ‘PKerKl l(
Hom(K,A)

5
0 —— Homcai(ap) (C, A) — > Homcagab) (M, A) —— Homcagab) (Ker K, A) —— Extlcat(Ab)(C, A)

(4.3.3)
from which we obtain the complex of abelian groups
w T Hom(K,A) ——
Ker d N Ker pker k — Homeyg(ap) (C, A) Homgag(ap) (M, A) —
—— Hom gy (ap)(Ker K, A). (4.3.4)

Since M is connected, s is a monomorphism, and from Lemma 4.2.9 it follows that s is a
monomorphism. Recall that ¢ is induced by the homomorphisms Ext}, (d”, A1) and Ext}, (Co,d?);
thus under the conditions of the theorem it follows that ( is either zero or a monomorphism in
(4.3.3). Again by Lemma 4.2.9, (4.3.4) is an exact sequence. We have cIT € Hom(M, A); from
the exactness of (4.3.4) there exists R : C — A with RK ~ T if and only if T‘KerK ~ 0, and
R is unique up to isomorphism with this property if and only if ﬁ(;;l(K ,A) is a monomorphism,
which is equivalent to the condition Kerd N Ker gker k = 0. Since ¢ is a monomorphism, we have
Ker pker k& Kerd , and so we obtain the condition Ker ¢ke x = 0, which is equivalent to the

condition Homayp,(Coker d¥°* K Ker d4) = 0. O

Note that if condition (iv) holds, then the condition Homg,(Coker dX°" ¥ Ker d4) = 0 is automati-
cally satisfied. See also the remark at the end of the proof of Proposition 4.3.6.

Now we shall consider the case where K is an injective homomorphism. This is more complicated,
and we have to establish the necessary and sufficient conditions under stronger restrictions than for
the case of an epimorphism.

Definition 4.3.5. Let F' : A — B be an internal functor. We shall say that F' is a contractible
functor if F' = 0.

Theorem 4.3.6. Let A,C, M be internal categories in Ab and K : M — C an injective internal
functor. Suppose that C' and M are connected and the following conditions hold:

(i) d° has a section;

(ii) d°/M has a section;

(iii) we have an inclusion Ker d®—— M, .

There exists a Kan extension of T : M —s A along K if and only if 5(T) =0 (4 : ﬁc\);l(M, A) —
—1
Ext (C/M, A)), and every internal functor C/M — A is contractible.
Proof. Consider the commutative diagram

Ky T

0 My Cl Cl/Ml —0
aM i ac i dC/M ¢ (4.3.5)
0 My s Co —— Co/Mo —0
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with exact rows. We see that if C' is connected, then the quotient category C'/M is also a connected
category. (4.3.5) induces the commutative diagram shown in Fig. 2.

Here the first row is exact; by Lemma 4.2.8 the second row is a complex and we have exactness in
Homeyg(ab) (C/M, A) and Homg,gap)(C; A) in general.

We shall show that under the conditions of the theorem, the second row is also exact in
Homeyg(ap) (M, A). Let F' € Homgggan) (M, A) and 0(F) = 0. Then there exist F7 € Homyy (M, A1)
and Fy € Hom(My, Ag) such that 9(F)) = 0 and 0y(Fy) = 0 and Hom(Mi,d*)(Fy) =
Hom(dM™, Ag)(Fp). From the exactness in Hom(M;, A1) and Hom(My, Ag), there exist a €
Hom(C,A;) and ¢ € Hom(Cy, Ag) such that o — F; and ¢ — Fy; but Hom(Cy,d?)(a) #
Hom(d®, Ag)(¢) in general. Taking the difference 1) = d*a — ed®, we have Hom (K1, Ag)(¢)) = 0, and
by the exactness of the corresponding row there exists § € Hom(C1 /M, Ag) with Hom(7, Ao)(0) = 1,
where 7 is the natural epimorphism from (4.3.5). The diagram is

0 ——= Kerd”——= Kerd® —s Kerd®/M —~ (

A, 0 Mo

%‘i—((/idc idC/]\J (4.3.6)
dA 0 M© Co —4= Cy/My — 0

We have 07 = d*a — ed® and 97‘1‘M1 =0.
Since, from condition (iii) of the theorem, Kerd® < Mj, we obtain 97‘1| rerge = 0, and in the
diagram

Cc t dc
Ker d* —— Cl —_— C() (4.3.7)

Ag
there exists ¢ : Cy — Ag with pd® = 6 = 1. Taking ¢ + ¢ : Cy — Ag, we have
(¢ +¢e)d® = pd® + ed® = 4 ed® = d*a — ed” + ed® = d*a.

Now it remains to show that (¢ + €)Ky = Fy. Since eKy = Fy, it is sufficient to show that @Ky = 0.
Consider the composite pKod™, where d™ is an epimorphism; by (4.3.6) and (4.3.7) we have

eKod™ = pd° K| = (f1)K; =0,

since 711 = 0. Thus ¢K=0. This completes the proof of the exactness in Homcyg(ap) (M, A4).
In (4.3.7), by definition,

ﬁ?)_r?lcat( ) (%, A) = Coker g, E;E(Jat( )(x, A) = Coker (..

By Lemma 4.2.9 (v), since ¢); is a monomorphism, ITI?)I/nCat(Ab) (1, A) is also a monomorphism.
From the conditions of the theorem it follows that (c/)s is @ monomorphism. It is easy to check that

we have the exactness in IjI?)_r?lCat(Ab)(C, A).
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4]

Ext!(r0,41)

00— mOEEuAQO\EOT\:V _— IOBPVAQOT\:V _— EOEPVAEOT>HV _— mvnﬂ\ZuAQo\io“\:v Emm— mvnﬂ\ZuAQol»C

Yo/m

0 ——— Homgyg(ab) (C/M, A) —— Homcyuyan) (Cs A)

pel

0 ————— Homyy, (C]

\

0 ———— Homyy, (C|

IOET‘ A)

YM

L/Mi, Ay) —— Homyy,

Homyy,

0 EOEPU AQ

h/Mo, Ag) —— Homyy,

EOSQA A) —~—

Co/m

wabpv _— EOBPUA

mxﬁoiﬁ )

Hom(Kop,Aq)
Qo, .\»ov E— mO~D>UA

5

Cc

1o}
My, Ar) —— Extl, (C]

(C/M, Ay

Hom (M ,d4) Cat()

K1,A0)

C1, Ao) Homyp,

9o

qu\»ov _— muudevAQo

Ext! (r,A) —1

/My, Ay) —— Extl, (C1, Ay)

TN

M1, Ao) m“uﬂ;UAQH\gT\»o \V@%\;UAQT\»O

\

\Ng_uu }ov B — mxd%vAQov }ov

0——> EOEopi WC/M,A) ——— EOEO%A y(Cy A) ——— Homgyyg( ) (M, A) ——— mﬁoni y(C/M, A) —— Extcae()(C, A)

Fig. 2
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/ﬂe shall show that under the conditions of the theorem we have the exactness in
Homcgg(ap) (M, A). It is obvious from diagram (4.3.7) that

¢ - Homgay(an) (K, A) = 0.

Let cl F € ﬁc\);l(;at( y(M, A) and g(cl F) = 0. Then for F' € Homgyyap) (M, A) there exists y €
Ext},, (Co/Mo, A1) such that §(F) = Coym(y)- Now we have

Co Bxtyy, (10, A1)(y) = Bxtyyy, (7, A)Coynr (y) = Excty, (1, A)3(F) = 0.

From the conditions of the theorem it follows that (o is a monomorphism and therefore
Ext},, (70, 41)(0) = 0. By the exactness of the first row, there exists an element z € Hompyy, (Mo, A7)
such that d(z) = y and o (2) = Coym(y) = O(F). Thus §(F — ¢p(z)) = 0. By the exactness
of the second row in Homgygap) (M, A) it follows that there is an element L € Homgagan)(C) A)
such that Homea (K, A)(L) = F — @p(2), and from the commutativity of diagram (4.3.7) we obtain
I‘/I_(\)_I;I(K ,A)(cl L) = cl F', which proves the exactness in I/{_(;_I;lcat(Ab)(M ,A) and completes the proof of
the theorem. O

Remark. From the proof of Theorem 4.3.6 it is not difficult to see that conditions (i) and (ii) in the
theorem can be replaced by the condition: d4 is a split monomorphism, which is equivalent to the
condition that A is (internally) equivalent to the discrete internal category (Serction 1.3., Propositi-
on 1.3.14). Also, condition (iii) can be replaced by: d? is a split epimorphism. It can be proved that
this condition means that A is equivalent to the one-object internal category Kerd4 — 0, i.e., to the
abelian group Ker d4 considered as an internal category. This remark concerns also conditions (iii)
and (iv) of Theorem 4.3.4.

Remark. Suppose that all categories A, C', M are connected internal categories with only one object
in the category of groups; i.e., d4 = d = d™ = 0 and Ay = Cy = My = 0. These conditions imply
that Ay, C1, and M; are abelian groups, internal functors are abelian group homomorphisms, and
an isomorphism between internal functors is an equality. In this case the notion of an internal Kan
extension (Definition 4.2.1) reduces to the notion of a unique extension of a homomorphism in the

category Ab
T X
K
T

M—A

For the case where K is surjective, we find that there exists a unique homomorphism R: C' — A
with RK = T if and only if T! ker ¢ = 0- We obtain the same condition from Theorem 4.3.4, where
in our case condition (iii) (d® is a split epimorphism) is automatically satisfied. Note that we have
Coker d¥* K = 0, since d¥°" X = 0 and consequently Homyy,(Coker d¥*" X Ker d4) = 0 always.

Now suppose that K is an injective homomorphism. For the case of abelian groups we find that
there exists a unique homomorphism R : ¢ — A satisfying the condition RK = T if and only
if §(T) = 0 (0 : Homyy, (M, A) — Ext}, (Coker K, A)) and Homyy(Coker K, A) = 0. As we have
mentioned (see Remark above), condition (iii) in Theorem 4.3.6 can be replaced by the condition:
d? is a split epimorphism. Thus in our case all the conditions of Theorem 4.3.6 are satisfied, and
we obtain the same necessary and sufficient conditions which we have for the unique extension of a
homomorphism between abelian groups.
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4.4. Nonconnected Case

In this section, under the same assumptions as for the connected case, we give the necessary and
sufficient conditions for the existence of internal Kan extensions in the case where M is any internal
category in Gr and K in the diagram (4.2.4) is a surjective internal functor.

Let K = (Ko, K1) be an internal functor M — C'. As in Sec. 4.2. we denote by Ker K the internal

category d*' K : Ker K1 — Ker Ky, where d¥¢r & = qM ‘Ker Ky

Theorem 4.4.1. Let C = (Cy,Cy), M = (Myp,M;) € Cat(Gr), A = (Ag, A1) € Cat(Ab), K =
(Ko, K1) : M — C be a surjective internal functor such that the injection Ker Ky — My has a
retraction. There exists a Kan extension of T = (Tp,Th) : M — A along K : M — C' if and only if

T‘KerK ~ 0 and

Homg, (Coker d¥* & Ker d?) = 0.

Proof. Similarly to the proof of Theorem 4.3.2, we obtain in Ab the commutative diagram shown in
Fig. 3.

Since Iy : Ker Ky — My has a retraction, Hom([y, A1) is an epimorphism. Each row and column
in diagram shown in Fig. 3 is exact. Applying the Snake lemma to this diagram and Proposition 4.2.6,
we obtain the exact sequence of abelian groups

Homg, (Coker d™ , Ker d*) A Homg, (Coker d¥°" X Ker d*) v Homcay (C,A)

Hom(K,A) Hom(I,A)

Homcay (M, A) Homca (Ker K, A) . (4.4.1)

Suppose that the conditions of the theorem hold. We shall show that there exists a Kan extension
of T along K. -

Since T|KerK ~ 0, this means that Hom(/, A)(c17") = 0. By the exactness of (4.4.1), there ex-
ists an internal functor R € Homc,t(C, A) such that Hom(K, A)(cl R) = clT, which is equivalent to
the condition that there exists an isomorphism ¢: RK =2 7. Suppose that there is an internal

functor S : ¢ — A with a:SK Z=— T . This gives an equality c1SK = clRK = clT. Since

Homg, (Coker d¥¢* ¥ Ker d4) = 0, ITI?)_IE(K, A) in (4.4.1) is a monomorphism. Thus we have an iso-
morphism S ~ R. We have to show that there exists a unique isomorphism o : S — R, with

0Ky = —¢ + a. From the diagram shown in Fig. 3, we have the following commutative diagram:
Hom(Ip,A1)
—t+
I I@Ker P (4.4.2)
Hom(K,A) Hom(I,A)

R-S+——RK-SKr——— 0

Since Homg, (Coker d¥°" X Ker d4) = 0, ¢ker k is a monomorphism. So in (4.4.2) s = 0. From the
exactness of the corresponding row of the diagram shown in Fig. 3, we conclude that there exists a

K
unique o € Homg, (Cp, A1) such that o —% et a.
Since the diagram

Hom(Ky,A
Homg,(Cy, A) (Ro.A) Homg, (My, A1)

e |

Homey (C, A) Homca (M, A)

_—
Hom(K,A)
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is commutative and Hom(K, A) is a monomorphism, we obtain ¢c(c) = R — S, which means that o
is a morphism of internal functors o : S — R; this proves that (R, ¢) is a Kan extension.

Now suppose that there exists a Kan extension (R, ¢) of T along K. Then from the diagram shown in
Fig. 3 we have Hom(/, A)(T") ~ 0, which means that Tker xk ~ 0. Since R is unique up to isomorphism

with the property RK —=T , from the exact sequence (4.4.1) we obtain that ﬁ&/n(K, A)is a
monomorphism so that ¢y = 0 in (4.4.1). Next we shall show that ¢ = 0 in (4.4.1), from which it
follows that Homg,(Coker d¥** ¥ Ker d4) = 0. Let 8 € Homg, (M, A1) and ¢y (8) = 0; therefore we
can consider 8 as a morphism of internal functors 5 : RK — RK. By Proposition 4.2.5 we have the
bijection Hom(R, R) — Hom(RK, RK). Thus there is a morphism v : R — R with 7Ky = 5. In
the diagram shown in Fig. 3, we have

~v € Homg,(Co, A1), Hom(Ky, A1)(vy) = .
From this it follows that ¢ = 0, which completes the proof of the theorem. O

In the case, where A,C, M € Cat(Ab), the condition “the injection Iy : Ker Ky — My has a
retraction” can be replaced by one of the conditions (i)—(iv) of Theorem 4.3.4. We do not give here
the proof of this theorem, since it is based on arguments analogous to those given for the connected
case in Sec. 4.3 (Theorem 4.3.4).

CHAPTER 5

ACTORS IN CATEGORIES OF INTEREST

This chapter is dedicated to questions of the definition, the existence, and the construction of an actor
for the objects in categories of interest. For an object A of a category of interest C we construct the
group with operations B(A) and the semidirect product B(A) x A and prove that there exists an
actor of A in C if and only if B(A) x A € C. The examples of groups, associative, Lie, Leibniz and
alternative algebras, modules over some ring, crossed modules and precrossed modules in the category
of groups are discussed.

5.1. Preliminary Definitions and Results

This section contains well-known definitions and results that will be used in what follows.

Let C be a category of interest with a set of operations 2 and with a set of identities E (see Sec. 3.1
for the definition).

We will write the right side of Axiom 2 in the definition of a category of interest as W (x1, xo; x3; *, %).

As in Sec. 3.1 we denote by Eg the subset of identities of E, which includes the group laws and
the identities (c¢) and (d) from the definition of a category of groups with operations (see Sec. 1.1).
We denote by Cg the corresponding category of groups with operations. Thus we have Eq —— E |
C=(QE), Cqc=(Q,Eqg), and there is a full inclusion functor C —— Cg.

In the case of associative algebras with multiplication represented by *, we have Q) = {*,x°}. For
Lie algebras take Q) = ([, |,[, ]°) (where [a,b]° = [b,a] = —[a,b]). For Leibniz algebras (see the
definition below), take Q5 = ([, ],[, ]°) (here [a,b]° = [b,a]). It is easy to see that all these algebras
are categories of interest. In the example of groups, ), = &.

We recall the following definitions and the results from [76].

Definition 5.1.1 ([76]). Let C € C. A subobject of C' is called an ideal if it is the kernel of some
morphism.
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Theorem 5.1.2 ([76]). Let A be a subobject of B in C. Then A is an ideal of B if and only if the
following conditions hold;

(i) A is a normal subgroup of B;

(ii) For any a € A, b€ B and x € Qf, we have axb € A.

For the definition of a split extension and B-structure on A, A, B € C we refer the reader to Sec. 3.1.
As in [76] and Chap. 3, for A, B € C we will say we have “a set of actions of B on A”, whenever

there is a set of maps fy : B x A — A, for each * € Q.
A B-structure induces a set of actions of B on A corresponding to the operations in C. If

p

0 A—-FE B 0 (5.1.1)
is a split extension in C, with the section s : B — E, ps = 1g, then for b € B, a € A, and * € Q'

we have
b-a=s(b)+a—s(b), (5.1.2)
bxa=s(b)*a. (5.1.3)

(5.1.2) and (5.1.3) are called derived actions of B on A in [76] and split derived actions in Chap. 3,
since we considered there the actions derived from nonsplit extensions too when A is a singular object.

Given a set of actions of B on A (one for each operation in 29), let B x A be a universal algebra
whose underlying set is B x A and whose operations are

(t',d") + (b,a) = (V' +b,d' + V' - a),
(b',a) x (bya) = (V xb,a’ xa+a *b+b *a).

Theorem 5.1.3 ([76]). A set of actions of B on A is a set of derived actions if and only if B x A is
an object of C.

Together with the condition on the set of derived actions given in the theorem above, we will need
Proposition 3.1.1 of Chap. 3, where the identities are given which satisfy the set of derived actions in
the case A, B € Cg and which guarantee that the set of actions is a set of derived actions in Cg.

As we remarked in Sec. 3.1, if we are in the category C with the set of identities E, conditions
1-12 of the Proposition are necessary conditions. In every concrete case it is possible, according to
other identities included in E, to write the corresponding conditions for derived actions that will be
necessary and sufficient for the set of actions to be a set of derived actions (i.e. for B x A € C).
Denote all these identities of derived actions by EG and E respectively. If the addition is commutative
in C, then E (resp. Eg) consists of the same kind of identities that we have in E (resp. in Eg),
writt%\d/own for the elements from the set AU B, whenever each identity has a sense. We will denote
by Axiom 2 the identities for the action in C, which correspond to Axiom 2 (see Chap. 3). In the
category of groups, Lie, associative, and Leibniz algebras derived actions are called simply actions.
We will use this terminology in these special cases; we will also say “an action in C” if it is a derived
action, and we will say a set of actions is not an action in C if this set is not a set of derived actions.
Recall that a left action of a group B on A is amap € : Bx A — A, which we denote by £(b,a) = b-a,
with the conditions

(bl—l-bg)'a:bl'(bg'a),
0-a=a,
b-(a1+a2):b-a1—|—b-a2.

The right action is defined in an analogous way.
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All algebras below are considered over a commutative ring & with unit.
In the case of associative algebras, an action of B on A is a pair of bilinear maps

BxA— A, AxB-—A, (5.1.4)

which we denote respectively by (b,a) — b * a, (a,b) — a * b, with conditions

(b1 * ba) *xa = by * (by x a),

a* (by % by) = (a*by) * b,

(b1 % a) * by = by * (a * ba),

bx (a1 * az) = (bxay) * ag,

(a1 *xag) *b=aq x (ag * b),

ay * (b az) = (a1 *b) * ag.
Here the associative algebra operation is denoted by * (resp. aj * az), and the corresponding action
by the same sign * (respectively, b * a).

Recall that a Lie algebra (A, (, )) over k is given by a k-module A and a k-module homomorphism
(,): A®r A — A, called a round bracket, such that the equation

(z,2) =0
and Jacobi identity
((z,9),2) + (5, 2), @) + ((z,2),y) =0 (5.1.5)
hold for x,y,z € A.

For Lie algebras an action of B on A is a bilinear map B x A — A, where the result of action is
denoted by (b, a), which satisfies the conditions

((b1,b2),a) = (b1, (b, a)) = (b2, (b1, a)),
((0, (a1, a2)) = (a1, (b, a2)) + ((b, a1), az).
Note that we actually have above again two bilinear maps (5.1.4): b,a — (b, a), a,b — (a,b) with
the conditions
(b,a) = —(a,b),
((b1,b2), @) + ((b2, @), b1) + ((a,b1),b2) = 0,
((b,a2),a1) + ((az,a1),b) + ((a1,b),az2) = 0.

Recall from [62] that a Leibniz algebra L over a commutative ring k with unit is a k-module equipped
with a bilinear map [—, —] : L x L — L which satisfies the following identity, called the Leibniz identity:

[z, [y, 2]] = ([, ], 2] = [z, 2], 4]

for all xz,y,z € L.
Obviously, when [z,z] = 0 for all z € L, the Leibniz bracket is skew-symmetric; therefore the
Leibniz identity comes down to the Jacobi identity, and a Leibniz algebra is then just a Lie algebra.
For Leibniz algebras, an action of B on A is a pair of bilinear maps (5.1.4), which we denote by
b,a —> [b,al], a,b — [a,b] with the conditions

a1, [az, b]] = [[a1, as], b] — [[a1, 1], as],

[a1, [b, az]] = [[a1, 0], az] — [la1, az], b],

la1, az]] = [[b, a1}, az] — [[b, az], a1],
=1 [

[b,
[ [bl,bg = a,bl],bg]— [a,bg],bl],
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[b1, [a, bo]] = [[b1, a], ba] — [[b1, be], ],
[b1, [b2, a]] = [[b1, b2], a] —[[b1, a], ba].
Recall [83] that a derivation for an algebra A over a ring k is a k-linear map D : A — A with
D(ay,a2) = (D(a1),a2) + (a1, D(az)).
The set of all derivations Der(A) of A with the operation defined by
(D,D")=DD' -~ D'D
is a Lie algebra.
We recall the construction of the k-algebra Bim(A) of bimultipliers of an associative k-algebra A

(called multiplications in [50] and bimultiplications in [70]). An element of Bim(A) is a pair f =
(f*,%f) of k-linear maps from A to A with

fx(axad)=(fxa)xd,
(axa)* f=ax(d*f),
ax(fxad)=(axf)xd.

We prefer to use the notation *f instead of f*°. We denote by f * a (resp. a * f) the value f * (a)
(resp. *f(a)). Bim(A) is a k-module in an obvious way. The operation in Bim(A) is defined by

frf'=(fxfxxfxf),
and Bim(A) becomes a k-algebra. Note that here we use notations different from those in [57, 70].

Here, as above, * denotes an operation in associative algebra, and fx f’*, *f x f’ denote the composites
of maps. Thus

(f = f'=)(a) = f* (f' * a),
(ef * f)(a) = (ax f) = f.
For the addition we have
FH 1= (o) + foxnf + (<),
where
((f#) + f'¥)(a) = fxa+ [ *a,
(xf + (xfN(a)=ax f+axf

For a Leibniz k-algebra A we define the k-algebra Bider(A) of biderivations in the following way. An
element of Bider(A) is a pair ¢ = ([, ¢}, [¢, ]) of k-linear maps A — A with

[[ah CLQ], SO] = [ala [CLQ, SOH + [[ala 90]7 CL2:| )

[907 [ala CLQH = “907 al]a CLQ] - “907 a2]7 al] )

[ah [CLQ, 90]] = [a17 [QO7 CLQH .
We used above the notation [¢, [(a) = [p,al,[,¢](a) = [a, ¢]. Biderivations were defined by Loday in
[62], where another notation is used; biderivation is a pair (d, D), where, according to our definition,
o, | =D, [,¢] = —d, and instead of the third condition we have in [62] [a1, d(a2)] = [a1, D(a2)].

The operation in Bider(A) is defined by
[o, 1= (1L [, 1L [le. '], 1),

where

[a, [QO, 90,]] = “aa 90]790,] - “aa 90,]780]7 (5161)
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e, ¢],a] = [¢,[¢',al] + [l,al, ¢]. (5.1.62)
Note that we can define [[p, ¢], | by

[[907 SOI]JC"] = _[907 [a7 90,]] + [[QO, CLLSO/}' (516/2)

To avoid confusion, we disregard x° in special cases, e.g., for the [, ] operation. Both above given
operations define a Leibniz algebra structure on Bider(A). It is easy to see that the second definition
(5.1.61), (5.1.65) gives the algebra which is isomorphic to the biderivation algebra defined in [62];
according to this definition [(d, D), (d', D")] = (dd’ — d'd, Dd’' — d'D).

We have a set of actions of Der(A), Bim(A) and Bider(A) on A. These actions are defined by

[D,a] = D(a),
ax f=xf(a),

[907 a] = [@? ](a)> [av 90] = [,QD]((I),

where a € A, D € Der(A), f = (fx,+f) € Bim(A), ¢ = ([ ,¢],[p, ]) € Bider(A) and A is a Lie
algebra, an associative algebra, and a Leibniz algebra respectively.

In the case of Lie algebras the action of Der(A) on A is a set of derived actions; thus this action
satisfies the corresponding conditions of an action in LLie, but for the case of associative and Leibniz
algebras these actions do not satisfy all the conditions given above respectively for the action in Ass
and Leibniz. Note that for the case of Leibniz algebras if [, [¢',a]] = —[¢, [a, ¢']] for any a € A and
o, ¢" € Bider(A), then the above two ways of defining operations in Bider(A) are equal, and the action
of Bider(A) becomes a derived action (see below Proposition 5.3.8).

We have an analogous situation for associative algebras. The action of Bim(A) on A is not a derived
action because the condition

(fxa)xf = fx*(axf) (5.1.7)
fails. So if we have the condition for associative algebra A that for any two bimultipliers is fulfilled
(5.1.7), then the action of Bim(A) on A defined above is a set of derived actions on A (see below

Proposition 5.3.7).
An alternative algebra A over a field F' is an algebra that satisfies the identities

2’y = x(zy)
and
ya® = (yx)w

for all z,y € A. These identities are known respectively as the left and right alternative laws. We
denote the corresponding category of alternative algebras by Alt. Clearly any associative algebra is
alternative. The class of 8-dimensional Cayley algebras is an important class of alternative algebras
that are not associative [81].

The axioms above for alternative algebras are equivalent to the following:

z(yz) = (zy)z + (yz)z — y(z2)
and
(zy)z = z(yz) — (x2)y + z(2y)

We consider these conditions as Axiom 2, and consequently alternative algebras can be interpreted as
a category of interest.
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For alternative algebras over a field F', an action of B on A is a pair of bilinear maps (5.1.4), which
we denote again by (b,a) — ba, (a,b) — ab with the conditions

blaraz) = (bay)az + (a1b)az — ai(bas),
(a1a2)b = ai(agb) — (a1b)az + aq(basg),
(bai)ag = b(ajaz) — (baz)ar + b(azaq)
aq(agb) = (araz)b + (azaq)b — as(aib),
(b1b2)a = by(bea) — (bia)be + by(abs),
a(bibg) = (aby)bs + (b1a)by — by(abs),
( )
( )

)

(abl)bg = a(blbg) ab )bl + a(b2b1
b1(baa) = (b1bz)a + (bab1)a — ba(bra).

)

For the definition of a crossed module in the categories of interest, we refer the reader to Sec. 1.1,
i.e., the definition is analogous to that of for categories of groups with operations.

Definition 5.1.4. For any object A in C, an actor of A is a crossed module 0 : A — Actor(A), such
that for any object C' of C and an action of C' on A there is a unique morphism ¢ : C' — Actor(A)
with ¢-a = ¢(c) - a, cxa = p(c) *xa for any x € Q' a € A, and c € C.

See the equivalent Definition 5.2.9 in Sec. 5.2.

From this definition it follows that an actor Actor(A), for the object A € C, with these properties
is a unique object up to an isomorphism in C.

Note that according to the universal property of an actor object, for any two elements x,y in
Actor(A) from z % a = y * a (here we mean equalities for the dot action and the action *, for any
x € Qo' and any a € A) and (wy -+ wpz) - a = (w1 -+ wpy) - a,wy - - wy, € O, it follows that x = y.

It is well known that for the case of groups Actor(G) = Aut(G); the corresponding crossed module
is 0 : G — Aut(G), where 0 sends any g € G to the inner automorphism of G defined by g (i.e.
9(9)(d)=9g+9 —g, ¢ € G). For the case of Lie algebras, Actor(4) = Der(A), A € Lie, and the
operator homomorphism 0 : A — Der(A) is defined by d(a) = [a, ], so d(a)(a’) = [a,d'].

As we have seen above, in general, in Ass and LLeibniz the objects Bim(A) and Bider(A) do not have
derived actions on A in the corresponding categories. So the obvious homomorphisms A — Bim(A),
A — Bider(A) do not define crossed modules in Ass and LLeibniz for any A from Ass and Leibniz,
respectively.

It is well known [75] that for the case of groups if N is a normal subgroup of G and 7 : N — Inn(N)
is the homomorphism sending any element n to the corresponding inner automorphism (7(n)(n’) =
n+n’' —n), since G acts on N by conjugation, we have a unique homomorphism 6 : G — Actor(N),
with 6(g) - n = ¢g-n. Inn(N) is a normal subgroup of Actor(NN), 6 extends 7, and we have the
commutative diagram

0 N G G/N 0
|

Tl el | (5.1.8)

v
0 —— Inn(N) —— Actor(N) — Out(N) — 0.

According to the work of R. Lavendhomme and Th. Lucas [57] in the categories Gr, Lie the actor
crossed modules A — Actor(A) are terminal objects in the categories of crossed modules under
A. TIf Ann(A) = (0) or A2 = A, then Bim(A) acts on A, and the corresponding crossed module
A — Bim(A) is a terminal object in the category of crossed modules under A. It is easy to see that
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in this case
Bim(A) = Actor(A).

Definition 5.1.5. A general actor object GActor(A) for A, A € C, is an object from Cg, which has
a set of actions on A, which is a set of split derived actions in Cg, i.e. satisfies the conditions of
Proposition 3.1.1; there is a morphism d : A — GActor (A) in Cg that defines a crossed module
in Cg, and for any object C' € C and a split derived action of C' on A, there exists in Cg a unique
morphism ¢ : C' — GActor (A) such that cxa = ¢(c) *a for any c € C, a € A, x € Q.

It is easy to see that Bim(A) and Bider(A) are general actor objects for A € Ass, A € Leibniz
respectively. These constructions satisfy the existence of a commutative diagram like (5.1.8).

5.2. The Main Construction
In this section C is a category of interest. Let A € C; consider all split extensions of A in C

pj

Ej :0 A Kl Cj Bj 0, je€l.

Note that it may happen that B; = B = B, for j # k; then these extensions will correspondent to
different actions of B on A. Let {b;-,b;* | b; € Bj, * € Q5} be the corresponding set of derived actions
for j € J. For any element b; € Bj, denote bj = {b;-,bj*, * € Q5}. Let B={b; | b; € B;, j € J}.

Thus each element b; € B, j € J is a special type of function b; : 3 — Maps(4 — A),

According to Axiom 2, from the definition of a category of interest, we define the * operation,
b; * by, * € Q), for the elements of B by the equalities

(b; * br)* (a) = W (bi, by; a; *, %),
(b; xbg) - (a) = a.
We define the operation of addition by
(bi +by) - (a) = b; - (by, - a),
(b; + byg) * (a) = b; *x a + by * a.

For a unary operation w € Q) we define

w(bg) - (a) = w(by) - (a),
w(bg) * (a) = w(by) * (a),
w(b*b) =w(b)* b and we will have w(b) * b’ = b *w(b'),
wby+ - +by) =wbr) + - +w(by),
(=bg) - (@) = (=bk) - a,
(=b) - (a) = qa,
(=bg) * (a) = —(bg * a),
(=b) * (a) = —(bx (a)),
—(by+ -+ by) = by — - — by,
where b, b, b1, ..., b, are certain combinations of star operations on the elements of B, i.e. the elements

of the type by, %1 -+ %,_1b; , n > 1.

We do not know if the new functions defined by us are again in B. Denote by B(A) the set of
functions (22 — Maps(A — A)) obtained by performing all kinds of the above-defined operations
on elements of B and new obtained elements as the result of operations. Note that b = V' in B(A)
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means that bxa =V %a, wy... wpb-a=wy ... wyb -afor any a € A, x € QL wy .. w, € Q) and for
any n. It is an equivalence relation and by B(A) we mean the corresponding quotient object.

Proposition 5.2.1. B(A) is an object of Cg.
Proof. Direct easy checking of the identities. O

As above, we will write for simplicity b - (a) and b x (a) instead of (b(4))(a) and (b(x))(a) for
b€ B(A) and a € A. Define the set of actions of B(A) on A in a natural way. For b € B(A) we define
b-a=b-(a),bxa=>bx(a), x € Q. Thusif b =Db;, *; --- *,_1 b;,, where we mean certain brackets,
we have

b¥a = (by %1 -+ %,_1 b;, )% (a),
b-a=na.

The right side of the equality is defined inductively according to Axiom 2. For by € By, k € J, we
have

by *a = by x (a) = by * a,
by -a=Dby - (a) = b - a.
Also
(b1 +ba+---+by)*xa=0byx(a)+---+by*(a), for b €B(A), i=1---,n
(by+by+--+by)-a=by-(ba - (bp-(a))--), b €B(A), i=1,---,n
wb)-a=a if b=by*---xb,, b e€B(A), i=1---,n
wbg) -a=w(bg)-a, kel, b€ By.
Proposition 5.2.2. The set of actions of B(A) on A is a set of derived actions in Cg.

Proof. The checking shows that the set of actions of B(A) on A satisfies the conditions of Proposition
3.1.1, which proves that it is a set of derived actions in Cg. O

Define the map d : A — B(A) by d(a) = a, where a = {a-, ax,* € Q,}. Thus we have by definition
d(a)-d =a+d —a,
d(a)xd' =axd, Va,a €A, xecQ.
Lemma 5.2.3. d is a homomorphism in Cg.
Proof. We have to show that d(wa) = wd(a) for any w € Q). For this we need to show that
d(wa) - (') = (wd(a)) - (a)
W(d(wa)) -a' = W' (wd(a)) - d
d(wa) * (a') = (wd(a)) * (a') for any x € .

for any w’ € )

We have
d(wa) -a' = wa +d — wa,
wd(a) -a' = w(a)-d =wa+d — wa,
The second equality follows form the first one. For the third equality we have
d(wa) * d’ = (wa) x d,

(wd(a)) xa’ = w(a) xa’ = w(a) * d
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for w = — we have to show that d(—a)-(a') = (—(da))-a’ and (d(—a))*a’ = (—d(a))*a’. The checking
of these equalities is an easy exercise.

Now we will show that d(a; + a2) = d(a1) + d(ag). Direct computation of both sides for each a € A
gives

d(a1+a2)-(a) =a1+az+a—as —ay,
(d(al) + d(ag)) < (a) =d(ay) - (d(ag) . a),

which shows that the desired equality holds for the dot action. The proof of w(d(a; + a2)) - a =
w(d(a1) +d(ag)) - a is based on the first equality, the property of unary operations with respect to the
addition, and the fact that d commutes with unary operations.

For any * € ), we shall show that

d(ay + az) * (a) = (d(al) + d(ag)) * (a).
We have
d(ay; +az) * (a) = (a1 + a2) ¥a=ay xa+ ag *a,
(d(a1) +d(az)) * (a) =d(a1) xa+d(az) xa=a; *a+az *a
which proves the equality.

The next equality we have to prove is d(aj * a2) = d(a1) * d(a2). For this we need to show that
d(ay * az) - (a) = (d(a1) * d(a2)) - (a), w(d(a; * az)) - a = w(d(ay) * d(az)) - a, and d(a; * a2)*(a) =
(d(ay) * d(az))*(a) for any ¥ € Q.

We have d(ay * az) -a = a1 * ag + a — a1 * ay = a, since A € C and therefore it satisfies Axiom 1.

(d(a1) *d(a2)) - a = a, by the definition of the action of B(A) on A. The next equality is proved in
a similar way by applying the fact that d commutes with w and w(a; * ag) = w(ay) * as.

For the next above given identity we have the following computations:

d(ay x ag)*(a) = (a1 * ag)xa = W(ay, az; a; *,%),
(d(a1) * d(az))*(a) = W (d(a1), d(az); a; %, %).

These two expressions on the right sides of above equalities are equal, by the type of the word W

in Axiom 2 and the definition of d. O

Proposition 5.2.4. d: A — B(A) is a crossed module in Cg.

Proof. We have to check conditions (i)—(iv) from the definition of a crossed module given in Sec. 1.1.
Condition (i) states that d(b-a) = b+ d(a) —b for a € A, b € B(A); so we have to show that

db-a)*a’ = (b+da—b)*a and wy ...w,(d(b-a))-a’ =wi...w,(b+da—D)-a'. Below we compute
each side for the dot action of the first equality:
db-a)-d=b-a+d —b-a,
(b+d(a)—b)-a'=b-(d(a)-(=b-a')=b-(a—b-d —a)=b-a+d —b-a.

The second equality is proved in a similar way. Now we compute each side of the first equality for the
* action. d(b-a)xa’ = (b-a)*a’ = axa’ by Proposition 3.1.1; (b+da—0b)*xa’ = bxad' +d(a)*a’ —bxa' =
bxa +axa —bxa' = axa'; here we apply Axiom 1, that @+a*a’ = axad’ +a, for any element @ of A.

We have to show: (ii) d(a1) - ag = a1 + ag — aq, (iii) d(a1) * ay = a1 * az; both (ii) and (iii) are true
by the definition of d. Note that a; % (d(az2)) = d(az2) *° a1 = ag *° a; = a1 * as.

The first condition of (iv) states that

dlbxa) =bxd(a) forany beB(A), ac A x*cQ.
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Thus we have to show
d(b = a)_%a’ = (bx d(a))‘%a', w(db*a)-a =wb*da)-a for weQ), xeQ,. (5.2.1)

First we show (5.2.1) for the dot operation. The second equality for the dot operation is proved
similarly by applying the properties of unary operations. The right side of (5.2.1) in this case is equal
to a’. For the left side we obtain

dlbxa)-a' =bxa+ad —bxa.
If b = by, then b* a = b; * a and since B; € C and B; acts on A (action is in C), by Axiom 1 for the
action of Bj on A we shall have bxa+da' =d' +bx*a, andso d(b*a)-d =d'.

If b = by, *1 -+ %,_1 b;, then, by the definition of the * operation in B(A), b * a is the sum of
the elements of the type b;, * @; for certain i;, and the element @, € A; this kind of element again
commutes with any element of A. So, d(b*a)-a’ = a’. We will have the same result if b is the sum of
the elements of the type b;, *1 --- %,_1 by, .

Now we shall show (5.2.1) for the * operation. By the definition of d we have

dlbxa)xa = (bxa)¥d'.
In the case b=Db;, 1 € J, bxa = b; xa = b; * a, so we obtain
dbxa)¥a' = (b; xa)¥a = W(b;,a;d’; *,%).
We have the last equality according to the properties of an action in C, which correspond to Axiom
2. For the right side of (5.2.1) in the case b = b; we have
(b*d(a))¥a = (b; xa)xa’ = W(b;,a;ad’; *,%).

Suppose b = b;, *1 --- *,_1 b;,; then in the same way as in the previous proof, we have that b * a
is the sum of the elements of the type b;, * @, and (b * a)¥a’ is the sum of the elements of the type
(bi, *a;)* a’. The element from the right side of (5.2.1) will be the same type as the sum of the elements
(bi, *xa;) xa’. Applying Axiom 2 to the element (b;, *az)*a’, by the definition of the operation for the
elements of B(A) (for the element (b;, xa;) *a’) and from the facts that by, xa = b;, xa, Gy *xa = a; *a,
we will have the desired equality (5.2.1). In an analogous way we will prove (5.2.1) for the * operation
in the case where b is a sum of the elements of the form b;, *; --- *,_; b; . The second condition of
(iv) can be proved in a similar way. O

Proposition 5.2.5. If A has an actor in C, then B(A) = Actor(A4).

Proof. From the existence of Actor(A) it follows that Actor(A) is one of the objects B;, which acts
on A. We have a natural homomorphism e : Actor(A) — B(A) in Cg sending b; to b;, b; € B;.
According to the note made in Sec. 5.1, if b; # b} in Actor(A), then b; # bl; thus e is an injective
homomorphism. Let ¢; : Bj — Actor(A) be a unique morphism with go(bj)%a = bj%a, bj € Bj,jel,
a € A; e is a surjective homomorphism, since for any element by, *; - - -%,_1b;, of B(A) there exists the
element ¢;, (bi, ) *1 -+ - *n—1 ¢4, (b;,) in Actor(A) with e(v;, (biy) *1 -+ - *n—1 @i, (bi,)) = b 1+ *p—_1 by,
which ends the proof. O

Theorem 5.2.6. Let C be a category of interest and A € C; A has an actor if and only if B(A)x A €
C. If it is the case, then Actor(A) = B(A).

Proof. From Proposition 5.2.5 it follows that if A has an actor, then B(A) € C and B(A) has a
derived action on A. By the theorem of Orzech [76] (see Sec. 5.1, Theorem 5.1.3) we will have
B(A) x A € C. The converse is also easy to prove. Since B(A) x A € C, from the split exact sequence

0—=A—> B(A) x A——=B(A) ——=0 in Cg, B(A) = Coker i, and thus it is an object of C;
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again by Theorem 5.1.3, *B(A) has a derived action on A in C (it is the action we have defined). By
Proposition 5.2.4, d : A — B(A) is a crossed module in Cg; since B(A) € C and the action of B(A)
on A is a derived action in C, it follows that d : A — B(A) is a crossed module in C. Now we have
to show the universal property of this crossed module. For any action of B on A, k € J, we define

¢k : B — B(A) by ¢k (b)) = by, for any by, € By, where by, € B. By the definition of B, bi*a = by*a,
x € Qf, and we obtain ¢ (by) % a = by * a; @y is a homomorphism in C. For another homomorphism
@, we would have ¢, (by) ¥ a = by a = pr(bg) * a, w(@),(bg)) -a = @ (whi) -a = (wbg) -a = w(p(by)) - a,
for any by € By, a € A, w € Qf, and * € Qf, which means that ¢ (by) = ¢}.(bx), for any by, € By; this
gives the equality ¢ = ¢}, which proves the theorem. O

Theorem 5.2.7. Let C be a category of interest. For any A € C, B(A) = GActor(A).

Proof. By Propositions 5.2.2 and 5.2.4 and Lemma 5.2.3 we have the crossed module d : A — B(A)
in Cg. For any object C € C which has a derived action on A we construct the homomorphism

¢ : C — B(A) in Cg with the property c*a = ¢(c) *a and show that ¢ is unique with this property
in the same way as we have done for ¢ in the proof of Theorem 5.2.6. U

Suppose [ is an ideal of C' in C and Actor([) exists. Thus we have the crossed module d : I —
Actor(I). Denote Im d = Inn(I). Thus we have

Inn(l) = {a € Actor(I) | a € I}.
Recall that by definition of d, d(a) = a, and a is defined by
a-(d)=a+d —a,
ax(d)=axd.

It is easy to see that Inn(7) is an ideal of Actor([). this follows from the fact that d : I — Actor(7)
is a crossed module, and it can also be checked directly. Since I is an ideal of C, we have an action of
Con I, defined by c-a=c+a—c cxa=cxa, x € Qb Itisa derived action. Thus there exists a
unique homomorphism 6 : C' — Actor([), such that

O(c)xa=cxa, acl, c€C, x¢cb.
Let 7: I — Inn(/) be a homomorphism defined by d; then 6 induces the commutative diagram
0 I C C/1 0

(T T

0 —— Inn(/) —— Actor(I) — Out(l) —= 0,

which is well known for the case of groups [75] (see Sec. 5.1).

For any object C' € C there is an action of A on itself defined by a-a’ = a+a' —a;axa’ = axd’, for
any a,a’ € A, x € Q), where * on the left side denotes the action and on the right side the operation
in A. We call this action the conjugation.

Let F4: 00— A—> AXx A== A——=0 be the split extension which corresponds to the
action of A on itself by conjugation. Consider the category of all split extensions with fixed A;
thus the objects are 0 ——= A —— C =—= C' —— 0, and the arrows are triples (14,7,7’) between
extensions which commute with section homomorphism too.

Proposition 5.2.8. IfE;: 0 ——= A—— C == B ——=0 is a terminal object in the category of
split extensions with fixred A, then the unique arrow (1,v,3) : Ea4 — E; defines a crossed module
B : A— B, which is an actor of A.
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Proof. The proof is similar to that of Proposition 5.2.4. It is obvious that B has the universal property
of an actor. We have to prove that §: A — B is a crossed module; thus we shall show the following
identities:

B(a)-a' =a+d —a,
B(b-a)=b+p(a) - b,
Ba)*ad =axad
B(b*a) =bxp(a).

for any a € A, b € B, x € Q. We have the commutative diagram

Ejy: 00— A—AXx A== A——0
| ol
E: 0 A C B——0

from which we obtain (a) -a’ = a+d —a and S(a) *a’ = a xd for any a,a’ € A, x € Qf, which
proves the first and third equalities. Since E; is a terminal extension, it has the following property:

if for b,b’ € B we have bxa =V % a, wi - wy(b) ¥ a = wy - wy (V) * a for any a € A and any unary
operations wy, -+ ,wp € Q),n €N, then b =10
For the second equality we have

(B(b-a))-a' =b-a+d —b-a,
(b+pB(a)—b)-a'=b-(B(a)-(=b-d))=b-(a—b-a' —a)=b-a+d —b-a,
(Bb-a))*a' =(b-a)xd =ax*d
by condition 8 of Proposition 3.1.1.
For the fourth equality we have
Bb*xa)-a = (b*a) d =d;

it follows from the property of the derived action in the categories of interest as a result of Axiom 1
(Proposition 3.1.1). The same property gives

(b*B(a))-a =d.
For a star operation we have
Bbxa)*xa = (bxa)xd,
(bxB(a)) *xa = (bxa)*d,

here we apply Axiom?2 for the set (AU B) and the fact 8(a) x ' = a *a’. For any unary operation
w e Q,

w(B(b-a)) = Blw(b-a)) = Bwbd) - w(a));
here we apply condition 10 of Proposition 3.1.1:
w(b + B(a) —b) = w(b) + Bw(a)) — w(b).

As we have proved above, these elements are equal.
Below we apply condition 11 of Proposition 3.1.1 and obtain

w(B(bxa)) = B(w(b*a)) = Hw(b) *a),
w(bx*f(a)) = w(b) *w(a).
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As we have shown above, these elements are equal. For wy,...,w, the corresponding equalities are
obtained similarly. O

By Proposition 5.2.8, Definition 5.1.4 is equivalent to the following one.

Definition 5.2.9. For any object A in C an actor of A is an object Actor(A) with (split derived)
action on A, such that for any object C' of C and an action of C' on A there is a unique morphism
¢ : C — Actor(A) with ¢-a = ¢(c) -a, cxa = (c) *xa for any x € Qy’, a € Aand c € C.

It is a well-known fact that the category of crossed modules in the category of groups X Mod(Gr)
is equivalent to the category G with objects groups with the additional two unary operations wq,wy :
G — G, G € Gr, which are group homomorphisms satisfying the conditions

(1) wowr = w1, wiwp = wo,

(2) wilx)+y—wi(z) =2z+y—=z, z,y € Kerwp.

This category is a category of interest. The computations and properties of actions in this category
and the direct checking of identities (1), (2) show that B(A) is an actor of A € G. Thus the same is
true for the category of crossed modules X Mod(Gr). From the results of Norrie [75] it follows that
the object A(T,G, ) constructed by her, for any crossed module (7', G, 0), is an actor in the sense of
Definition 5.1.4. Thus it follows that in the category of interest G there exists an actor for any A € G.
By Proposition 5.2.5 it follows that B(A) is an actor for any A € G. This is another way of proving
that B(A) = Actor(A) in G.

The category of precrossed modules is equivalent to the category of interest G, whose objects
are groups with additional two unary operations wg,wi, which are group homomorphisms satisfying
identity (1). By Theorem 5.2.7, B(A) = GActor(A), for any A € G. It is easy to check that B(A)
satisfies identity (1) and thus B(A) € G; therefore B(A) = Actor(A). From this we conclude that in
the category of precrossed modules always exists an actor.

Internal object actions were studied recently by F. Borceux, G. Janelidze, and G. M. Kelly [11],
where the authors introduce a new notion of representable action. From Theorem 6.3 of [11], applying
Proposition 5.2.8 it follows that in the case of the category of interest C the existence of representable
object actions is equivalent to the existence of an Actor(A) for any A € C in the sense of the
Definition 5.1.4. Thus by Theorem 5.2.6, C has representable object actions if and only if B(A) x A €
C, for any A € C, and if it is the case, the corresponding representing objects are B(A), A € C. For
the categorical approach to the question of an actor, see also [12, 17].

5.3. The Case Q9 = {+,*,+°}

It is interesting to know in which kind of categories of interest C there exists Actor(A) for any
object A € C; or what the sufficient conditions for the existence of Actor(A) for a certain A € C are.
In the case of groups (22 = {+}), a direct check shows that B(A) € Gr, and the action of B(A) on
A is a derived action. This follows also from Propositions 5.2.1 and 5.2.2; thus B(A) is an actor of A
by the Theorem 5.2.6. This fact is also a consequence of Proposition 5.2.5 since it is well known that
Aut(A) is an actor of A in Gr; thus B(A) ~ Aut(A). In the case of Lie algebras (2 = {+,[, ]}), the
object B(A) € Lie and the action of B(A) on A is a derived action, so B(A) is an actor again in Lie
and therefore B(A) ~ Der(A).

Consider the case of Leibniz algebras. In this case we can define the bracket operation for the
elements of B in two ways (see Sec. 5.1 for the definition of the set B).

Definition 5.3.1.
[a, [biﬂbj]] = [[a7 bi]7bj] - [[a’ bj]’bi]’
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[ [bi,bj],a] = [bl, [bj, CL] ] + [ [bi,a], bj ] .
Definition 5.3.2.
[a,[bi,b;] | = [[a,bi],b;] — [[a. bj], bi ],
[ [blv bj]v (I] = _[biv [CL, b]] ] + [ [bi,a]a bj ] .
The bracket operation [b, V'] for any b, ', which are the results of bracket operations itself, is defined

according to the above formulas.
The addition is defined by

[bi + by, a] = [bi,a] + [bj, al,
[a7bi + b]] = [(I, bl] + [CL, b]]
For any b,b' € B(A), b+ ¥ is defined by the same formulas.
The action of B(A) on A is defined according to Definition 5.3.1 or 5.3.2. So we have two different

ways of definition of an action. It is easy to check that none of them is the derived action in Leibniz.
The algebras B(A) defined by Definitions 5.3.1 and 5.3.2 are not isomorphic.

Condition 1. For A € Leibniz, and any two objects B, C € LLeibniz, which act on A, we have

[c, [a,b]] = —[c, [b,a]],
ac€ A beB,ceC.
Note that, in this condition, by action we mean the derived action.
Example. If Ann(A) = (0) or [A, A] = A, then A satisfies Condition 1.

Proposition 5.3.3. For any object A € Leibniz, the Definitions 5.3.1 and 5.3.2 give the same algebras
if A satisfies Condition 1.

The proof follows directly from the definitions of operations in B(A) and Condition 1.
Below we mean that B(A) is defined in one of the ways.

Proposition 5.3.4. For any A € Leibniz, B(A) is a Leibniz algebra. The set of actions of B(A) on
A is a set of derived actions if and only if A satisfies Condition 1.

Proof. The computation shows that if Condition 1 holds, then the same kind of condition is fulfilled
for b,c € *B(A), from which follows the result. O

Proposition 5.3.5. For a Leibniz algebra A there exists an actor if and only if A satisfies Condition
1. If it is the case, then B(A) = Actor(A).

Proof. By Proposition 5.3.3, B(A) is always a Leibniz algebra, and by Theorem 5.2.7, B(A) =
GActor(A). If A satisfies Condition 1, by Proposition 5.3.4, B(A) has a derived action on A and
thus B(A) = Actor(A4). Conversely, if A has an actor, then B(A) = Actor(A) by Proposition 5.2.5,
and so the action of B(A) on A is a derived action; thus we have, for any a € A, b; € B;, b; € Bj,
1,7 € J, the following equalities:

[bis [a,bs] ] = [[biyal, b ] = [ (b, by, a],

[biv [b]7a]] = [[bmb]]va] - [[biva]7bj]7

from which follows Condition 1, which proves the theorem. O
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We have an analogous picture for associative algebras. The operations for the elements of B (see
Sec. 5.1 for the notation) in this category are given by

(bi xbj) * (a) = b; * (bj * a),
*(b; xbj)(a) = (a*b;) * bj,
(bi +bj) *(a) =b;xa+bj xa,
*(b; +bj)(a) = ax*b;+ ax*b;.
The set of actions of *B(A) on A is defined according to (5.3.1).

(5.3.1)

Condition 2. For A € Ass and any two objects B and C from Ass which have derived actions on A,
we have
cx (axb) = (cxa)xb,
forany a€ A, be B, ce C.
Example. If Ann(A4) = (0) or A2 = A, then A satisfies Condition 2. For this kind of associative

algebras it is proved in [57] that A — Bim(A) is a terminal object in the category of crossed modules
under A.

Proposition 5.3.6. For A € Ass, the algebra B(A) is an associative algebra and the set of actions
of B(A) on A defined according to (5.3.1) is the set of derived actions in Ass if and only if A satisfies
Condition 2. If it is the case, B(A) = Actor(A).

The proof contains analogous arguments as for the case of Leibniz algebras and is left to the reader.
It is easy to see that in Ass and Leibniz generally we have the injections
B(A) — Bim(A) and B(A) — Bider(A)
which are homomorphisms in Ass and Leibniz respectively.

Proposition 5.3.7. Let A be an associative algebra with the condition Ann(A) =0 or A2 = A. Then
B(A) ~ Bim(A) = Actor(A).

Proof. Tt is well known that Bim(A) is an associative algebra [70]. The action of Bim(A) on A (see
Sec. 5.1) is not a derived action in general, and the condition

frlaxf)=(f*a)*f (5.3.2)
fails for any f = (fx,*f) and f" = (f'*,xf’) from Bim(A4). A direct check shows that in the case
Ann(A) = (0) or A%2 = A, identity (5.3.2) holds for the action [57]. For any action of the object B on
A, B € Ass, we define ¢ : B — Bim(A) by ¢(b) = (b%,*b), which is a unique homomorphism with
the property that ¢(b) * a = b*a, x € 2, since in Bim(A) for any two elements f, f’ € Bim(A) from
f = [ it follows that fx = f’x, *f = xf’. Thus Bim(A) is an actor of A in Ass, and the isomorphism
B(A) ~ Bim(A) follows from Proposition 5.2.5. O

We have the analogous result for Leibniz algebras.

Proposition 5.3.8. Let A € Leibniz and Ann(A) = (0) or [A, A] = A. Then B(A) ~ Bider(A4) =
Actor(A).

Proof. We will follow the first definition of the bracket operation in Bider(A) (see Sec. 5.1, (5.1.61),
(5.1.62)). A direct check shows that Bider(A) is a Leibniz algebra (see Remark below and cf. [62]).
The action of Bider(A) on A is not a derived action, and the following condition fails:

[907 [a7 90,]] = [[907@]7@0,] - [[907 @l]aa]a (533)
where ¢ = [[ 790]7 [907 H and 90, = H 790,]7 [90/7 H € Bider(A)'
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From (5.1.62) we have
[, 1¢,a]] = [lo,¢],a] = [lg,al,¢']. (5.3.4)
We shall show that if Ann(A) = (0), then [p, [¢',a]] = —[e, [a, ¢']], and from (5.3.4) will follow (5.3.3).
For any a’ € A we have the following equalities:

!/

[a/’ [QO, [SOIJ CLH] = - [a/’ [[90,7 a]? QO] ] = - [ [a’
[a/’ [QO, [a7 SOIH ] = - [ [CLI, [a7 90,]]7 90] + [ [a,
Thus we obtain that for @’ € A

/

e’ all, o] + [d', ¢l (¢ al ],
[[

790]7[a7¢/]] = ala[solaa]]ago] - HCL,QO],[QO,,CLH.

[ [0, ¢ al] + [p, [a, T]] = 0.

In analogous way we show that

[le: [¢', all + [@, [a, #']],d" ] = 0.
From which we conclude that
[, ¢ al] + [@,[a,¢]] =0.
The case [A, A] = A can be proved analogously. Thus we have a derived action of Bider(A) on A and

the crossed module A — Bider(A) (a — ([, a], [a, ]) has the universal property of the actor object.
By Proposition 5.2.5 B(A) ~ Bider(A), which ends the proof. O

Remark. As we have also mentioned in Sec. 5.1, if [p, [¢/, a]] = —[p, [a, ¢']] for any ¢ = ([, ¢],[¢, ])
and ¢ = ([ ,¢],[¢, ]) from Bider(A), then the two definitions of Bider(A) according to (5.1.61),
(5.1.62) and (5.1.61), (5.1.6%) coincide, and this algebra is isomorphic to the Leibniz algebra of bideriva-
tions defined by Loday [62].

In the category of R-modules over a ring R, it is obvious that Actor(A) = 0 for any A since
every action is trivial in this category. The same result gives our construction, B(A) = 0, for any
R-module A.

As in the case of associative algebras, in the category of commutative associative algebras the con-
dition for the action (bja)by = b1(absy) fails; also in this category we must have ba = ab, for b € B(A),
and b1by = baby for by, b € B(A). All these conditions are satisfied and we have B(A) =Actor(A4) in
commutative associative algebras if and only if A satisfies Condition 2. If Ann(A) = (0) or A% = A,
then A satisfies Condition 2. For this kind of commutative algebras, Actor(A) = Bim(A4) = M(A),
where M(A) is the set of multiplications (or multipliers) of A [59],[57], i.e., k-linear maps f: A — A
with f(ad’) = f(a)d'.

In the category of alternative algebras, Actor(A) does not exist for any A. The existence of an actor
in Alt will be studied in the future.

CHAPTER 6

NONCOMMUTATIVE LEIBNIZ-POISSON ALGEBRAS

In this chapter we study one of the generalizations of the classical Poisson algebras. This kind of
studies was begun in [22]. Recall that a Poisson algebra is an associative commutative algebra A
equipped with a binary bracket operation [—,—] : A ® A — A such that (A, [—, —]) is a Lie algebra
and the following condition holds:

[a-bc]=a-[bc]+][a,c]-b
for all a,b,c € A.
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Here we consider the case where algebras are not commutative and the bracket operation defines the
Leibniz algebra structure (see below Definition 6.1.1). This kind of algebras we call noncommutative
Leibniz—Poisson algebras and denote the corresponding category by NLP. We give a construction of
free NLP-algebras and define actions, representations, and crossed modules, which are special cases of
the corresponding notions for the category of groups with operations [76] (see Secs. 1.1 and 3.1). We
define the cohomology of a NLP-algebras P (over a field k) with coefficients in a representation M
over P and study its properties, in particular, the relation with extensions of NLP-algebras and with
Hochshild and AW B (algebras with bracket [22]) cohomologies. Algebras over the dual operad (in
the sense of [63]) of NLP-algebras are considrered. The construction of free objects in this category
and their relation with certain types of planar binary rooted trees are studied.

6.1. Noncommutative Leibniz—Poisson Algebras

6.1.1. Preliminaries. Let £ be a commutative ring with unit. All modules are taken over k. In
what follows Hom and ® mean Homj and ®; respectively. Associative algebras considered in this
work are in general without unit.

For the definition of a Leibniz algebra, we refer the reader to Sec. 5.1.

Definition 6.1.1. A noncommutative Leibniz—Poisson algebra (for short, NLP-algebra) is an asso-

ciative algebra P equipped with a k-module homomorphism [—, —] : P® P — P, such that (P, [—, —])
is a Leibniz algebra and the following identity holds:
[a-b,c]=a-[bc]+][ac]-b (6.1.1)

for all a,b,c € P. In other words, a NLP-algebra is an AWB [22] P such that the bracket satisfies the
Leibniz identity.

A morphism between NLP-algebras is a homomorphism of associative algebras which respects the
bracket operation. We shall denote the category of NLP-algebras by NLP.

Examples 6.1.2.
1. Poisson algebras.

2. Any Leibniz algebra is a NLP-algebra with trivial associative product (a-b = 0). On the other
hand, any associative algebra is a NLP-algebra with the usual bracket [a,b] = ab — ba.

3. Any associative dialgebra [63] is a NLP-algebra with respect to the operations ab = a + b;
[a,b] =a—4b—DbF a.

4. If P, and P, are NLP-algebras, then the k-module P; ® P> endowed with the operations
(a1 ® az) - (b1 ® bz) = (a1b1) @ (azbz),
[a1 ® a, by @ bo] = a1, [b1,b2] | @ ag + a1 ® [as, [b1, ba] ]
is a NLP-algebra.
5. For the example of a graded version of NLP-algebra coming from physics, the reader is referred
to [53].
Lemma 6.1.3. In any NLP-algebra the following identity holds:
[a,bc,d]] + [a, [b,d]c] = [[a,bc],d] — [[a,d], be]. (6.1.2)
Proof. One easily sees that both sides of the identity equal [a, [bc, d]]. O

Remark. Any other two different decompositions according to Leibniz identity and (6.1.1) do not
give a new identity.
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Definition 6.1.4. Let P € NLP. A subalgebra of P is an associative and Leibniz subalgebra of P.
A subalgebra R of P is called a two-sided ideal if a - r,7 - a,[a,r],[r,a] € R, for all a € P,r € R.

The inclusion functor inc : Poiss — NLP from the category of Poisson algebras to the category of
noncommutative Leibniz—Poisson algebras has a left adjoint (—) py;ss : NLP — Poiss, which assigns
to a NLP-algebra P the Poisson algebra obtained by the quotient of P with the smallest two-sided ideal
spanned by the elements [z, x| and xy — yx, for all ,y € P. On the other hand, the Liezation functor
[65] assigns to any NLP-algebra P the noncommutative Poisson algebra Pr;,. = P/{{[z,z] | = € P}).

6.1.2. Free NLP-algebras. For any set X we shall build an associative k-algebra with the addi-
tional binary bracket operation satisfying the Leibniz identity and condition (6.1.1).

We consider those formal combinations (words) of two operations (-, [—, —]) with elements from X
which have a sense and do not contain elements of the form [a, [b,]], [a - b,c], [[a,b], ¢ - d] in their
combination, where a,b,c are from X or are combinations of elements in X and dot and bracket
operations. Denote by W(X) the set that contains X and all above described type of words. Let
W, (X) be the subset of those words of W (X) that contain n elements of X, i.e. the number of both
operations together is n — 1; we say that this word is of length n. Obviously, W(X) = ,,~1 Wa(X).
We define the following maps: -

Anms Brm 2 Wi (X) X Wi (X) — Whpm (X)

o, m is defined for any pair (a,b) € W, (X) x W, (X) by apm(a,b) = a-b, where the right side denotes
the word from W, 1., (X), which is defined uniquely; /3, »,, is defined only on those pairs (a, b), for which
the word [a,b] € W,4m(X), and by definition 5, ,,(a,b) = [a,b]. In the case [a,b] € Wyim(X), Bum
is not defined.

Let F(W (X)) be the free k-module generated by the set W(X). The dot operation on F(W (X))
is defined as a linear extension of a, ., on the whole F(W(X)). The bracket operation is also a linear
extension on F(W (X)) of (3, for those words on which £, ,,, is defined. If [a,b] & Wy4m(X), for
a € Wyp(X),b € W,,(X), we decompose [a,b] according to the Leibniz identity and the identities
(6.1.1), (6.1.2), until we obtain the sum of bracket operations on such pairs of words on which S is
defined. Acting on every step in such a way we will obtain the sum ¢; +- - -+c¢, with ¢; € F, 4, (W(X))
and, by definition, [a,b] = ¢1 + - -+ ¢,. According to Remark 6.1.1, any two different decompositions
give the same elements of F(W (X)), and [a, b] is uniquely defined.

By construction, F(W (X)) has a structure of an NLP-algebra. Let i : X — FW(X) be the

natural inclusion of sets.

Proposition 6.1.5. For any NLP-algebra B and a map ¢ : X — B, there exists a unique NLP-
algebra homomorphism @ : F(W (X)) — B such that the following diagram commutes:

X - PW(X))

| A

B

Proof. For any element wp(z1,...,z,) € F(W(X)) we define

P(wp(x1,...,2n)) = wp(e(x1),. .., 0(xn)),

where wp(—,...,—) denotes the corresponding element of B. It is obvious that ¥ is an NLP-algebra
homomorphism, @i = ¢, and it is a unique homomorphism with this property. U
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Actually our construction defines the functor F' from Set to NLP, F(X) = F(W (X)), which is a
left adjoint to the underlying functor

F

Set NLP .

U

If X is a one element set, X = {e}, the free NLP-algebra construction on {e} has an interesting
interpretation in terms of planar binary rooted trees.
By a tree we mean in this paper a planar binary rooted tree. We let T be the set of trees. It is a

graded set
T=]]%n

n>1

where ¥, is the set of trees with n leaves. So T; has one element\/ denoted by e, and ¥ has two

elements

while T3 has five elements. The number of elements of ¥,, is known as Catalan numbers, and they are
2n)!
Cn = n!((rﬁgl)! [63]
Let us also recall that on trees there exists an operation is called grafting. The grafting defines a

map
gr:fnlx..-x‘znk—>Tm n=mny+- - +ng.

The grafting of a tree t and a tree s is obtained by joining the roots of ¢ and s and creating a new
root from that vertex.

We shall define two operations on trees, dot and bracket operations; the second is a partial operation,
i.e., defined not for every type of trees. These operations will enable us to “read” trees. By “reading”
we mean: to correspond to each tree a unique word, which is a formal combination of the element e
and operations - and [—, —|, whenever they have a sense. We shall define operations on trees in such
a way that all words obtained by “reading” trees according to our laws will belong to W ({e}) and it
will be a one-to-one correspondence between the set ¥ of all planar binary rooted trees and W ({e}).

The left side of a tree is “generally” for the dot operation, and the right side is for the bracket
operation if it is not a special case explained below. We denote by s” and s’ the right and the left side
trees respectively of a tree s.

The associative dot operation is defined for a pair of any type of trees ¢t and s by the following

formulas in terms of the grafting operation according to [77]. As above we shall denote the tree\/
by e:

t-s=gr(t,s") for s=e,

t-s=gr(t-s',s") for any t and s.

Y =

and for any tree t, ¢ - e is the tree obtained by “adding” on the left from the vertex of e the tree ¢t. For

instance,

Thus
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We shall define two preliminary bracket operations on every type of trees (the second operation is
defined by means of the first one). The general bracket operation [—, —] is a partial operation; it is
defined only for special type of trees by means of the two preliminary bracket operations depending
on the case.

The first preliminary bracket operation we denote by [—, —],; it is analogous to the dot operation,
but the “reading” law for [—, —], is not associative. In terms of the grafting operation, we have the
following formula:

[t,slp = gr(tl, [t", s]p)

NV YAy

and for any tree ¢, [e,t], is the tree obtained by adding on the right from the vertex of e the tree ¢.

o O

having in mind that

and the tree

is [[e, e - €]p, €]p.

We will apply this operation as a final result of the bracket operation only for a special kind of
trees. The list will be given below.

The second bracket operation SR[—, —], we will use for another type of trees. As indicated in the
notation for this operation, it is defined by means of [—, —],. For a pair of trees (t,s) we first apply
[—, —]p; thus, we take [t, s],, then we perform the 90° rotation procedure of s to the left and then take
a symmetric picture of s to give a normal look to the tree.

Thus, for instance,

is SR[e, e - [e, €]]p.
We have the following rules for performing the partial bracket operation for certain types of trees.

1. [t,e] = [t, €], for any type of tree, but not a dot product (i.e., t # a - b).
2. [e, s] = le, s]p, when s is any dot product s =ay -+ - ap—1 - an,n > 1, with a, = e.

3. [e,s] = SRle, s]p, when s is a dot product s = by - --bp—1-bp,n > 1, where by, # dy-- - --dj-e, k > 0.

We shall “read” the tree \<>/

as e - [e,e]. All other “reading” rules for trees follow from the definition of a dot product and 1-3 for
the bracket operation. One can see that we are considering two classes of trees. Any tree belongs to
one of the class of trees, and each tree from each class can be read only in a unique way and gives a
word from W ({e}). Conversely, to every word we can correspond a unique tree according to the same
rules, and this correspondence is one to one.
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Let V4 : NLP — Ass and V7, : NLP — Leibniz be the forgetful functors.

Proposition 6.1.6. If P is a free NLP-algebra, then VA(P) and VL(P) are free associative and free
Leibniz algebras, respectively.

Proof. Let P be the free NLP-algebra on the set X. Denote by X’ the set of all kinds of those words

of the type [---, -+ -], which does not contain words of the form

[a-b,c], [a,[b,d], [[a,b], c-d], a, b, c, d e P. (6.1.3)
Let X” be the set of all kind of words of the types aj - --a, and ay - - - ap[...,...], where ay,...,a, € X,
n > 1 and the bracket [---, ---] does not contain words of the form (6.1.3). Let X3 = X U X’ and
Xo = X UX". It is easy to show that V4(P) is the free associative algebra on the set X; and Vi, (P)
is the free Leibniz algebra on the set Xo. O

6.1.3. Representations of NLP-algebras. Let P € NLP. In particular, P is an associative
algebra and a Leibniz algebra, so we can speak of P-P-bimodules and Leibniz representations over P
(see [65]).

Definition 6.1.7. A representation over P is a P-P-bimodule M together with two k-module homo-
morphisms

[-,-]:P®OM — M,[-,-] M®P — P
such that the following identities hold:
[pl, p2,m ] [[pl,m » ] [ph p2]
[ph m, p2 ] = [ p1,m|,p 2] [pl,pQ ]
[ phpz]:[mpl, ] [mpz ]
[p1m, pa] = p1[m, pa] + [p1, p2]m
[mp1, pa] = m[p1, p2] + [m,pﬂpb
[p1p2, m| = p1[p2, m| + [p1, m|p2

for all m € M, p1,ps € P.

Let us observe that the first three axioms mean that M is a representation over P as Leibniz
algebras. In the case of Poisson algebras, this definition gives the well-known definition of a Poisson
representation in [44]. Note that a representation over P is a P-module in the sense of Definition 3.1.5,
for the case C = NLP.

Examples 6.1.8.

1. Let R be a two-sided ideal of a NLP-algebra P; then R is a representation over P operating on
R. In particular, if R = P, then P is a P-representation.

2. Let ¢ : P — @ be a homomorphism of NLP-algebras; then () is a representation over P with
the operations pg = ¢(p)q; ap = q(p); [p,q] = [¢(p), dl; la,p] = [0, 9 (P)], p € P, ¢ € Q.

Definition 6.1.9. A homomorphism of representations over P is a linear map f : M — M’ satisfying

f(pm) =pf(m), f(mp) = f(m)p, flp,m]=[p,f(m)], flm,p]=[f(m),p],
pe P, meM.

Definition 6.1.10. Let M be a representation over P. We define the semidirect product M x P as
the NLP-algebra with underlying k-module M & P and operations defined by

(ma,p1) - (M2, p2) = (p1ma + mip2, p1p2),
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[(m1,p1), (M2, p2)] = ([p1,ma] + [m1, pa], [p1, p2])-

Note that here we follow the usual notation of semidirect products in algebras with bracket and
denote the operating algebra from the right side.
The following definition is a special case of the definition given in [76] (see Definition 3.2.1).

Definition 6.1.11. Let P € NLP, and M be a representation over P. A derivation from P to M is
a linear map d : P — M satisfying

d(p1p2) = d(p1)p2 + p1d(p2),
dlp1,p2] = [d(p1),p2] + [p1,d(p2)]-

We denote by Dernpp (P, M) the k-module of such derivations.

Lemma 6.1.12. Let P € NLP, and M be a representation over P. Then there is a one-to-one
correspondence between the derivations from P to M and the sections of the projection pr : M x
P— P.

Definition 6.1.13. Let P, M € NLP. An abelian extension of P by M is a short exact sequence

E:0 M— g

P 0,
where @ € NLP and M is abelian (i.e., mm’ = [m,m'] =0, m,m' € M).
Any abelian extension defines a unique representation on M over P in such a way that

i(j(@m) = qi(m), i(mj(q)) = i(m)q,
Z[](q)7m] = [q,i(m)], z([m,j(q)]) = [z(m),q]
for any m € M, q € Q.
Two abelian extensions E and E’ are called equivalent if there exists a homomorphism of NLP-
algebras f : Q — @' inducing the identity morphisms on M and P. Note that in this case f is an

isomorphism. Let M be any representation over P. Denote by Extnrp(P, M) the set of all equivalence
classes of those abelian extensions of P by M that induce the given representation on M over P.

6.1.4. Actions and Crossed Modules in NLP. Since NLP is a category of groups with opera-
tions, according to the general definition of an action (called split derived actions in Chap. 3) of one
object on another in this category, we obtain the corresponding definition for NLP-algebras.
First recall that an action of P on M for associative algebras is given by two k-module homomor-
phisms - : P M — M, - : M ® P — M with the conditions
p(mimz) = (pm1)mz, mi(pmea) = (mip)ma,
(mima)p = ma(map), pi(pam) = (p1p2)m,
pi(mpz) = (p1m)p2,  m(pip2) = (mp1)p2.
An action of P on M for Leibniz algebras is given by two k-module homomorphisms [—, —] :
PoM — M,[—,—]: M ® P — M with the conditions
[p7 [m17m2]:| = [[paml]7m2] - [[p7 m2]7m1:|7 [mla [p7 m2]:| = [[mlap]7m2:| - [[ml7m2]ﬂp:|7
[mh [m27p] :| = [ [ml,mg],p] - [ [mlap]7m2 ]7 [pl7 [p27m] ] = [ [pl7p2]7m:| - [ [plam]7p2 ]7
[pla [m7p2]:| = [ [plam]7p2] - [ [p17p2]7m]7 [m7 [p17p2]:| = [ [m7p1]7p2] - [ [m7p2]7pl :| .
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Definition 6.1.14. Let M, P € NLP. We say that P acts on M if we have an action of P on M as
associative and Leibniz algebras given, respectively, by the k-module homomorphisms

“Sl=-1:Pe®M —M, -[-—-]  MR®P—M
and the following conditions hold:
[p1p2, m| = p1[p2, m] + [p1,m|pa,  [p1m,pa] = p1[m, p2] + [p1, p2m,
[mp1, p2] = mp1, p2] + [m, p2lp1,  [mama, p] = mi[ma,p] + [my, plma,
[m1p, ma] = mi[p,ma] + [m1,ma]p, [pm1,ma] = p[mi, ma] + [p, ma]my
for all m,mq,me € M, p,p1,p2 € P.

It is easy to verify that having a P-action on M, we can construct the semi-direct product M x P
with the usual operations; we will have M x P € NLP, and the corresponding natural extension
0— M — M x P — P — 0 will split. And, conversely, every split extension of M by P in NLP
induces a set of actions, i.e., bilinear maps satisfying conditions of Definition 6.1.14. For the general
case of groups with operations see [76] (see Sec. 3.1).

Let us observe that when M is an abelian NLP-algebra, that is, M - M = 0 = [M, M], then the
last definition gives the axioms of representation from Definition 6.1.7. It is easy to verify that in this
case the semidirect product agrees with Definition 6.1.10.

Definition 6.1.15. Let M, P € NLP with an action of P on M. A crossed module is a morphism
i : M — P in NLP satisfying the following axioms:

p(pm) = pp(m),  p(mp) = p(m)p,

pulp,m] = [p, pu(m)),  plm,p] = [u(m),pl,
p(m)ym’ = mm’ = mp(m’),
[u(m),m'] = [m,m'] = [m, u(m")].
A homomorphism of crossed modules is a pair (o, 3) : (M, P,u) — (M', P’ 1), where «, 3 are

morphisms in NLP such that

Bu=p'a and a(pm) = B(p)a(m);

a(mp) = a(m)B(p);
alp, m] = [B(p), a(m)];
alm,p] = [a(m),B(p)] forall pe P, me M.

Thus the crossed module notion in NLP is a special case of the corresponding notion in categories
of groups with operations [78] (see Sec. 1.1).

Examples 6.1.16.
1. Let f : P — P’ be a homomorphism in NLP; then i : Ker f < P is a crossed module.

2. Let R be a two-sided ideal of P; then i : R — P is a crossed module. In particular, (P, P, Id)
is a crossed module.

3. Let M be a representation over P, then the homomorphism 0 : M — P is a crossed module.

Note that example 1 follows from example 2 since Ker f is an ideal.
Let Cat(NLP) be the category of internal categories in NLP, and let X Mod(NLP) be the category
of crossed modules in NLP. As a special case of the result of [78] we obtain

Proposition 6.1.17. There is an equivalence of categories

Cat(NLP) ~ X Mod(NLP).
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6.2. Cohomology of NLP-Algebras

Through this section we consider NLP-algebras over a field k. Let P be a NLP-algebra over k, and
M a representation over P. In particular, P is an associative algebra and M is a P-P-bimodule and,
on the other hand, P is a Leibniz algebra and M is a representation over P. Let C7; (P, M) be the
Hochschild complex, and Cj (P, M) the Leibniz complex. We recall that for n > 0

CT (P, M) = C?(P, M) = Hom(P®", M)

and coboundary maps 07, and 07 are given by

T (ps- . pas) = <—1>”+1{p1f<p2, )+

n
+ Z(_l)zf(pla ey PiDit1y - 7pn+l) + (_1)n+lf(pl7 o 7pn)pn+l}a
i=1

n+1
aZ(f)(pla cee 7pn+l) = [pl7f(p27 cee 7pn+1):| + Z(_]‘)Z [f(pla o 7]3\7;7 cee 7pn+1)7pi]+
=2

+ Z (_1)j+1f(p17"'7pi—17[pivpj]7pi+17"'7]5}7"'7pn+1)-
1<i<j<n+1

Thus C}; (P, M) and C}(P, M) are k-vector spaces complexes.
We will need below the P-P-bimodule M€, defined by M¢ = Hom(P, M) as a k-vector space, and
a bimodule structure is given by (p1f)(p2) = p1f(p2); (fp1)(p2) = f(p2)p1. On the other hand, M®

has the structure of a P-representation by means of [p1, f](p2) = [p1, f(p2)]; [f,p1l(p2) = [f(p2), p1].
We have an isomorphism of k-vector spaces 0, : CZH(P, M) — C} (P, M), n > 1. We denote the

coboundary maps of the complex C’}}(P, M*€) by 8;’,*. Thus we can define the homomorphism
g CH(P,M) — CH(P, M), n>1
by
B = Oy 107, k>0,
52k — 822'“_19%_1, k> 1.
It is easy to see that [* is a homomorphism between the cochain complexes UE(P, M) =

(CH(P,M),d?,n > 1) and Cj (P, M®) = (O (P, M¢),05",n > 1). There is also a homomorphism of

cochain complexes
o' Cp(P,M) = (Cl(P,M),8%,n > 1) — Cpy (P, M°)
defined in [22] by
a' (f)(p1)(p2) = [p1, f(p2)] + [f (1), p2] = f (1, p2))
and for n > 1 by
a"(f)(P1s- - 2a)(Pnt1) = [f(015 -+ P)s Prs] =
—f([pr, Pnsals 025 - on) — f(P1s P2 Pngals o) — - = F(P1y -+ - P, [Py Prya]) -

Note that o = ;.
Take Cpy(P,M) = 0, Cpy(P,M¢) =0, C.(P,M) = 0, a" = " = 0, for n < 0 and consider the
mapping cones: cone («*) and cone (—(*). By definition we have the complexes
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cone (a*): 0 cone (—F*): 0

CL(P, M) Cr(P, M)
ol —g

-0y \ =

C%(P,M) & CH(P,M?) CL(P,M®) & C%(P,M)
_ A2

oz, \ laH aHl ’ o

Cy(P,M) @ Cj(P,Me) Cy(P,M¢) @  C}(P,M)

3 e, _ 8 .
_821 \ \Laif 8H2 \L 63 _az

Let 41 and is be the following injections of complexes
cone (a*) i 6*H_1(P, Me) 2 cone (—B%).

Consider the pushout C*(P, M) = cone(a*) || cone(—/*). Thus we have the complex

(i1,i2)

/\

(C*(P,M),0%):

CL(P,M) CL(P, M)
ol —pt
—o} -1
Cy(P,M) & Ci(P,M & C;(P M)
—8?_1 Oz2 lagl _62 —32
C3H(P,M) @ CH(P,M¢) @ C3P/M)

3
~0% \lV o3

Take i = (i1, —i2); then the following sequence is exact:
0—— 6*H_1(P, M¢) — cone(a*) U cone(—B*) —= C*(P, M) —=0 . (6.2.1)
From (6.2.1) we obtain the long exact sequence of cohomologies
0 — H'(cone(a*) Ll cone(—3*)) — H'C*(P,M) —
— > H'Cy; (P, M) —~ H?(cone(a*) L cone(—B*)) —= H2C*(P, M) —
—— H?C(P,M¢) — H3(cone(a*) U cone(—f3*)) —= H3C*(P,M) — - - - . (6.2.2)
Note that ¢ is an isomorphism in (6.2.2), which implies that 1 is a monomorphism.
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Define
CRip(P, M) =0, Cipp(P, M) = Hom(P, M),
Clp(P,M) =C"™"(P,M), n>2;
Rip =0, Ap = (94,0,07),
ogp=0", n>2.
We have 813;:11) Rp=0,n>0,s0 {CLp(P,M),0% p,n > 0} is a complex that has the form

0

Hom(P, M)

0

C4(P,M) & CL(P,M% @ C%P,M)
a2 _62

(P,M) & C4%(P,M°) @ C3(P,M)

The cohomology groups Hyp(P, M), n > 0, of an NLP-algebra P with coefficients in the repre-
sentation M over P are defined by

Hyp(P,M) = H"(C{pp(P,M),0Np), n > 0.

We have HE, (P, M) = H*(C*(P,M),0*) for k > 2. According to the definition of AWB coho-
mology given in [23], we have H"(cone(a*)) = Hywp(P, M), where P is considered as an algebra
with bracket and exact sequence (6.2.2) gives the corresponding exact sequence for cohomologies of
an NLP-algebra P in the dimensions >2.

Proposition 6.2.1. The following sequence is exact:
HE(P, M€) — Hyp(P, M) & H?(cone(—3")) — Hj p(P, M) —
—— Hy(P, M) — Hj (P, M) & H*(cone(—3*)) — Hy p(P, M) — -
As is well known from the general results on mapping cones, the short exact sequence
0 —— O (P, M) 2~ cone(—B*) — (T (P, M), ~0}) —= 0
yields the long exact sequence
0 —— H'(cone(—B*)) — Dery, (P,M) —= Dery (P, M¢) —

—— H(cone(—f")) —> HE(P,M) —"> H3 (P, M*) — .-

relating H*(cone(—£*)) with the Hochschild and Leibniz cohomologies, where the connecting homo-
morphism ¢/ is induced by 57, j > 1.
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We have the natural injection C% (P, M)®C?% (P, M) — C%;p(P, M), which image we denote again
by the sum C% (P, M) ® C%(P, M). Consider the restriction

dip = R :
NLP NLP 20620
We define the 2-dimensional restricted cohomology of NLP-algebra P with coefficients in M by
Hwp (P, M) = Ker diyp/ Im 8%y p.

We have an obvious injection
w1 Ker ddpp — Ker 0% p

which induces the injection of the corresponding cohomologies
X : Hypp(P, M) — Hipp(P,M).
From the definition of C{;p (P, M) we have
Lemma 6.2.2.
Hyyp(P, M) =0,
Hiyp(P,M) = Dernpp (P, M).

Proof. The proof follows directly from the fact that C%; p(P, M) = 0 and from the definition of 9% p
and the Definition 6.1.11. O

Theorem 6.2.3. H¥; (P, M) = Extpp(P, M).
Proof. Let (f.,0, f) be a restricted 2-cocycle in C% p(P,M). Thus we have

—p1f-(p2,p3) + f-(p1p2, p3) — f.(p1,p2p3) + f.(p1,p2)ps = 0,
[p1, f(p2,p3)] + [fy(p1,p3), p2] — [fy(p1,p2), p3]—
—fy(lp1, p2l,p3) + f(p1, [p2, p3]) + f([p1, p3], p2) = O,

[f-(p1,p2),p3] — f-([p1, 3], p2) — f-(p1. P2, p3]) = pLfy(p2, p3) — fi(pip2, p3) + fy(p1,p3)p2,

p1,p2,p3 € P. Let Q = M ® P be a k-vector space. We define the operations on () in the following
usual way:

(m1,p1) - (ma,p2) = (p1mao + maps + f.(p1,p2), P1p2),
[(m1,p1), (m2,p2)] = ([pl,mﬂ + [m1, p2] + fy(p1, p2), [plvpz])-
A straightforward verification shows that @ is a NLP-algebra and we have the abelian exten-

sion E:0 M Q ‘. p 0 with i(m) = (m,0), j(m,p) = p, and the induced P-
representation structure on M is the given one. It is easy to show that if (f/,0, f[’]) is a 2-cocycle from

the same class of 2-cohomology, then the extension E’ defined by the pair (f/, f[’]) is isomorphic to F.

Given any class of extensions FE :0 M Q ‘. p 0 from Extnpp(P,M), we

choose a k-linear section u of j, uj = 1, defining a 2-cocycle (f.,0, fj) and show that the class of
(1,0, fy) in H%; p(P, M) does not depend on the choice of a section of j, which ends the proof. [

Note that, in the above proved bijection, to a split extension corresponds the 2-cocycle (f.,0, fﬂ)
for which there exists a k-linear map g : P — M such that

fp,p") =pg®) +9(p)p’ — 9(pp’),
fu,0") = [p, 9] + lg(p), '] = glp, p']
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for all p,p’ € P.
Corollary 6.2.4. If P is a free NLP-algebra, then
Hipp(P,—) =0

and
Hpp(P,—) =0
forn > 2.
Proof. Since every extension 0 M Q ! P 0 splits for a free algebra P, for n = 2

the fact follows from Theorem 6.2.3. Let n > 2. From Proposition 6.1.6 it follows that V4(P) is
a free associative algebra and Vi,(P) is a free Leibniz algebra. It is well known that cohomologies
of free associative algebras and free Leibniz algebras vanish in the dimensions > 2 [65]. Thus we
have H{j(P,—) = 0 and H{"(P,—) = 0 for n > 2. Applying this and the fact that o and g are
homomorphisms of cochain complexes, one easily shows that C{;p(P, M) is exact in dimensions > 2
for a free NLP-algebra P, which ends the proof. U

Corollary 6.2.5. If P is a free NLP-algebra, then for any representation M over P we have
Hip(P, M) =~ KerdZ; p/Kerdy p.

Proof. 1t follows from Corollary 6.2.4 and the facts that we have the injection
X : Hipp(P, M) — Hiyp(P, M)

defined above and the isomorphism

Cokery = Cokerx
for any NLP-algebra P. O

6.2.1. Relative cohomology of NLP-algebras and 3-fold crossed sequences. As for the case
of Lie algebras (see [54]), we consider the relative cohomology of NLP-algebras and its relation with
3-fold crossed sequences of the special type.

Consider an exact sequence

A 7

E:0 L M J g 0 (6.2.3)

in NLP, where N acts on M and p: M — N is a crossed module in NLP.
From this it follows that A(L) is in the center of M. The sequence (6.2.3) uniquely determines an
action of P on L by

p-l=2"n-AD), -p=A" ) ),

o, ] = X", A, [Lp] = AT, nl,
where p € P,l € L, n € N, v(n) = p; here we use the fact that p: M — N is a crossed module and
uwn - (1)) =n-pr(l) =0, (A1) - n) = u([n, \1)]) = w([\(),n]) = 0. This action does not depend
on the choice of the element n, with v(n) = p, since A(l) is in the center of M. In particular, L is an
abelian object and we have a P-representation structure on it.

Let L be a representation over P. Now we fix N and a surjective homomorphism v : N — P
and consider all kinds of the above defined crossed extensions, which induce the given representation
structure on L. A morphism between two such crossed extensions £ — E’ is a morphism of ex-
tensions (11,9, 1n,1p), which respects the action. It is easy to see that if there exists a morphism
(1n,,1n,1p), then it is an isomorphism of crossed modules

M, N, ) L Ny
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We shall say that two such crossed extensions are equivalent E ~ E’ if there exists a morphism
(lL,go, 1w, 1p) E — F'.

Let CExtnrp(P, N; L) denote the set of all equivalence classes of such crossed extensions.

Let PN € NLP, v : N — P be a fixed surjective homomorphism, and L be a representation
over P; v induces a N representation structure on L, and the homomorphism of cochain complexes
v*: Cipp(P L) — CXypp(N,L). We define C{;p(P, N; L) as the cokernel of v*. Thus we have the
exact sequence of complexes

0 —> Ciyp(P,L) > Cpp(N, L) —> Cyp(P,N; L) —0 .

Denote HE;p(P,N; L) = H"(C¥p(P,N; L)) for n > 0, and H p(P, N; L) = H*(C¥yp(P, N; L)),
where H?(C%;p(P, N; L)) has the obvious meaning; i.e., we consider the second restricted coboundary
homomorphisms in C¥; p (P, L) and in CYy p (N, L), which give the corresponding restricted coboundary
homomorphism in C{; p(P, N; L) and define the second relative restricted cohomology.

Theorem 6.2.6. There is a bijection
CExtnpp(P, N; L) — H2NLP(P7 N;L).

Proof. Let E be an extension (6.2.3). Denote R = Kerv; let 7 : M — R and k : R — N be the
canonical surjective homomorphism and the inclusion respectively. Let u be a linear section of 7.
Thus M is isomorphic to L @& R as a vector space and the isomorphism is given by

m— (A\"Y(m — ur(m)), 7(m)),
(I,r) — A1) + u(r).
The action of N on M defines an action of N on L & R given by
n - (A7 m = ur(m)), 7(m) = (v(n) - A7 (m = ur(m) + £.(n,7(m)),n - 7(m) ).

Thus the left dot action defines a k-linear map f. : N ® R — L. In the same way, for the right dot
action and actions by bracket, we will have k-linear maps f/, fﬁ tR®N — Land fj: N®@ R — L.

Moreover, f. |ror=['|ror: fij [rRer= [} |roR-
Let f = (f, O,f_u) be an element from C&;p(NV, L) such that

7(711 & ng) — f(m & n2),f_[](n1 & n2) = f[](nl ® ng), if ne €R,

- , 0 _ (6.2.4)
fn1®@mng) = fi(n1 @na), fi(n1 @ng) = fm @ng), it n1 € R.

Such a pair exists, we can take, e.g., f.(p1 ® p2) = f_[](pl ® p2) = 0, p1,p2 € P, and define by (6.2.4)
other types of elements of N ® N. Here we have in mind that as a vector space N = R&® P. From the
properties of the action we obtain d?(f)(n; ® na ®ng) = 0 if at least one of the n; belongs to R; from
the fact that p: M — N is a crossed module, we obtain that (f., f) |rer is a factor system of the

extension 0 L-—2~M-"+R 0 . From this it follows that there exists k3 € Ca;p(P, L)

such that v3(k3) = d?(f); then we have U3d2_(f) = 0, which gives that o2(f) is a 2-dimensional cocycle
in C3;p(P,N;L). It is easy to see that o(f) does not depend on the choice of f in CZ;p(N,L).
For another linear section 1’ of 7, we will have functions ¢., ¢/, ©[ go/ﬂ, which will give

v(n) - A"Hm —ur(m)) + f.(n,7(m)) + u(n - 7(m))
=v(n)- A\ (m —u'7(m)) + @.(n,7(m)) + ' (n - 7(m)). (6.2.5)

484



Analogous equalities exist for pairs (f/,¢’), (f,¢p); ( fé,go’[]). u — u' defines a function R — L
which can be extended up to N — L (taking e.g. 0 : P — L), denote one of such extensions by
f': N — L. From (6.2.5) we obtain

f.(n,7(m)) = @.(n,7(m)) = v(n) - fH(k7(m)) = fH(n - k7(m)) = Oy (f1)(n, k7 (m));
here we use the fact that f'(n) - (vk7(m)) = 0 and that N acts on L due to v. Analogous formulas
exist for (fy,¢p), (f0.), (ff,¢p)-

From this we conclude that 02(@,6[}) € C4.p(P,N; L) defined by (go.,gof,goﬂ,go’[]) is in the same
cohomology class in HZ; p(P, N;L) as 02(7_,7[]) and one can easily check that this procedure does
not depend on the choice of the extension map f1.

Thus we showed that each extension (6.2.3) uniquely defines a determined cohomology class and
actually at the same time we proved that to isomorphic extensions corresponds the same class in the
relative cohomology.

The second part of the proof is analogous to the one given in [54] for Lie algebras. Let clf =
c(f.,0,f) € C% p(P,N; L) be a 2-cocycle. Choose any cochain f = (f.,0, fy) € C%4p(N,L) as a
representative of this class. Since clf is a cocycle, there exists k € C3;p(P, L) with d?(f) = v3(k).
The diagram is

00— CI%ILP(Pa L) — CI%ILP(N7 L) — Cl%LP(RNéL) —0

d ‘| |
0 —— C3p(P,L) —= C3;p(N,L) —= C3;n(P,N; L) —= 0
From this it follows that the restriction of f on R ® R is a cocycle R ® R — L, and moreover
dzf(nl ®ng ®nz) = 0 if at least one of the n; belongs to R, ¢ = 1,2,3. Note that by the restriction of

J we mean the corresponding restrictions of f. and fjj, and similarly for d’f(n1 ® ny ®n3). We take
M = L @ R as a vector space and define operations on M by

(l7 T) : (llv T/) = (f-(rv Tl)) r- T,)y
[(L T)v (llv T/)] = (f[] (Tv Tl)) [Tv T/]) .

The actions of N on M are defined according to the following formulas:

n-(l,r)=(v(n)-1+ f(n,r),n-r),

["I’L, (l7 T)] = ([V(?’L), l] + fﬂ (na 7’), ["I’L, T])a

(l,T’) n= (l ' V(n) +f.(r,n),r '”I'L),

[(la 7’), Tl] = ([l7 I/(Tl)] + fﬂ (T7 n)? [7’, "I’L]) .
A straightforward verification shows that M is an NLP-algebra and the structure defined on M does
not depend on the choice of representatives for ¢l f in C’I%LP (N, L); A and v are defined in the obvious
way: A(l) = (1,0),u(l,r) =r and u: M — N is a crossed module in NLP. It is easy to show that to
the cocycles of the same cohomology class correspond isomorphic extensions, and we have a one-to-one
correspondence between isomorphic classes of extensions and cohomology H2NLP(P, N; L), which ends
the proof. O

6.3. NLP'-Algebras

Let k be a field. The operad theory gives rise to a duality for quadratic operads [45]. The following
description of NLP'-algebras is due to T. Pirashvili and J. M. Casas [23]; it follows from Proposition B3
of the Appendix B to [63].
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An NLP'-algebra is an associative algebra A equipped with a bilinear binary operation * : A® A —»
A such that the following identities hold:

(1) (a-b)xc=a-(bxc);

(2) (a-b)xc+ (axc)-b=0;

(3) (axb)xc=ax(bxc)+ax*(cxb);
(4) a*(b-c)=0.

From (1) and (2) it follows that

2. (axc)-b=—a-(bxc).

For any set X, consider the set

W(X):{xl...xk(xkﬂ*(a;k+2*(---*(mn_1*mn)...))), 0<k<n,n>1, € X, izl,...,n}.

Thus the elements of W (X) are certain type of symbolic words from the elements of X, dot, and
operations. Note that if n — k = 1, then the word has the form z7 - - - x - xxy1; it is clear that W(X)
contains X.

Let F(W (X)) be the k-vector space with basis W(X). We can define operations -, : W(X) x
W(X) — W(X) by gluing the words due to dot and * symbols when such a word exists in W(X).
For instance,

((a-b),(cxd)) —=a-b-(cxd),
(a,bxc) —>ax(bxc).

If such a word does not exist in W (X), then we perform - and x operations
W(X) x W(X) —= F(W(X))

according to the identities (1), (2'), (3) and (4). We extend bilinearly this operations on F(W (X)),
and it is easy to see that F(W (X)) has the structure of an NLP'-algebra.

Proposition 6.3.1. For any set X, F(W (X)) is a free NLP'-algebra generated by X and we have
the pair of adjoint functors

U

NLP! Set

F
Proof. A straightforward verification. O

Consider the case where X = {e}. As for the case of NLP-algebras, we have the description of
W ({e}) in terms of certain types of trees. Consider trees of the following simple type:

(6.3.1)

We denote the set of this kind of trees with n leaves by T,. The left side of the tree we shall use
for the dot operation, and the right side for the x operation. The tree

we shall “read” as e-e-e-e, and we denote it by t". The tree
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we shall “read” as e x (e x (e x (e xe€))), and we denote it by t*.
The tree (6.3.1) we “read” ase-e-e-(ex (ex(ex(exe)))).

Let T = |J T,. Thus, for certain types of trees of 7' we have defined the dot and * operations.
n>1
These operations can be expressed in terms of grafting in the following way:

T

e -t =grle-tht"

Denote\/ by e. We have defined

and if s =e.”.e,n>1,thens -t =e-((e?le) t).
For the * operation we have the following rules:

vy

ext* = gr(e', ).

Y

e-t* = gr(e,t"). (6.3.2)

N

For any t € T, such that t' #|, we have defined

and for any t* we have

Thus

We have defined

Thus

e-t=gr(e- tl,tT);

here we can have in mind that e- |= e in the case t! =|, and in this case (6.3.2) follows from this
formula. In general, for s* and any ¢t we will have

s -t=gr(s -tht").

Note that products of the kind

NS
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are not defined in 7.

According to the above rules, each tree from T corresponds to a word of one of the following
types: a1 ...Qn, @1 * -+ *x Qp O A1 -+ a * (Agy1 * (Qpao * -+ * (Ap—1 *xay)...)), where n > 1, a; = e,
i=1,...,n,0 <k <n, and this correspondence is one to one. Thus, for X = {e} we have a bijection
W({e}) «— T. It is easy to see that, for each n, the number of trees in 7;, (and respectively the
number of words of the length n) is equal to n.

CHAPTER 7

CENTRAL SERIES FOR GROUPS WITH ACTION AND LEIBNIZ
ALGEBRAS

The well-known construction of E. Witt defines the functor from the category of groups to the category
of Lie algebras [90], [83]. The aim of this chapter is to define a category and to give an analogue of
Witt’s construction for its objects, which will lead us to the category of Leibniz algebras. This problem
was stated by J.-L. Loday [62]; later an analogous question for the possibly defined partial Leibniz
algebras was proposed to me, which was inspired by the work of Baues and Conduché [10]. Since the
main interest was in the absolute case, the author decided to begin with this one. The results obtained
in this chapter give the solution to the first problem of J.-L. Loday formulated in the Introduction
(see [62, 64]).

7.1. Groups with Action on Itself

Let G be a group that acts on itself from the right side; i.e., we have a map ¢ : G x G — G with

g, +9") =¢lelg, q').9"),
£(g9,0) = g, (7.1.1)
e(ld +9".9)=¢ldg,9) +e(d",9),

for g,¢,¢" € G. Denote (g,h) = g", for g,h € G. We denote the group operation additively;
nevertheless the group is not commutative in general. If (G',¢’) is another group with action, then a
homomorphism (G,e) — (G',¢’) is a group homomorphism ¢ : G — G’ for which the diagram

GxG—=0G

(so,so)l l@

G xG —C

€

commutes. In other words, we have

eg") = (9)?™, g,heG.
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If we consider an action as a group homomorphism G — Aut G , then a homomorphism between
two groups with action means the commutativity of the diagram

G ? AutG C Hom(G, G)
lHom(Gm)
¢ Hom(G, G")
THom«aG’)
el v Aut G’ ¢ Hom(G', &)

so that ¢ - (v(h)) = V'(¢(h)) - ¢, h € G. Note that the action defined above is a split derived action
within the category of groups Gr® in the sense of Chap. 3.

Recall [55] that an Q-group is a group with a system of n-ary algebraic operations Q (n > 1) that
satisfies the condition

00---0w =0, (7.1.2)

where 0 is the identity element of GG, and 0 on the left side occurs n times if w is an n-ary operation.
In special cases ()-groups give groups, rings, and groups with action on itself. In the latter case 2
consists of one binary operation, an action, and the condition (7.1.2) is satisfied. We shall denote the
category of groups with action on itself by Gr®. Let Ab® denote the category of abelian groups with
action on itself; here we mean the action within Gr. We have the functors

Q1

—_—
T

E L
Ab®* —=Gr* Q2 Gr
A c

A
where Q1(G), for G € Gr*, is the greatest quotient group of G that makes the action trivial; Q2(G)
is a quotient of G by the equivalence relation generated by the relation ¢" ~ —h+g+h, g,h € G; A
is the abelianization functor; thus A(G) = G/(G, G), where (G, G) is the ideal of G generated by the
commutator normal subgroup of G (for the definition of an ideal see Sec. 2). A(G) has the induced
operation of action on itself. Each group can be considered as a group with the trivial action or with
the action by conjugation; they give functors 7" and C, respectively. Every object of Ab® can be
considered as an object of Gr®; this functor is denoted by E. It is easy to see that the functors Q1, Q2,
and A are left adjoints to the functors T', C' and E, respectively. Let G € Gr®. Define the operation
of square brackets [, ]: G x G — G on G by
lg,h) = —g+4¢", g.hed.

Proposition 7.1.1. For the operation |, | we have the following identities:

(i) [g:h1 + ho] = [g, ha] + [g + [g, Pa], ha];

(i) g+9 h]=—g" +[9.h]+ g + g hl;

(i) [9,0] = [0, 9] = 0.
Proof. These identities follow directly from (7.1.1). O
Corollary 7.1.2. For g,h € G

9", =h] = ~[g,B);  [=9,h] =g —[g,P] —g.
Denote by Grll the category of groups with an additional bracket operation [, | satisfying conditions

(i)-(iii) of Proposition 7.1.1; morphisms of Grl! are group homomorphisms preserving the bracket
operation. We shall denote the objects of Grl! by GLI.
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Conversely, if Gl € Grl!, we can define an action of GI! on itself due to the bracket operation by
g"=g+lg.h), ghedll

It is easy to prove that these two procedures are converse to each other and actually we have an
isomorphism of categories
Gr® ~ Grll.

7.2. Ideals and Commutators in Gr®
Let G € Gr°.

Definition 7.2.1. A nonempty subset A of G is called an ideal of G if it satisfies the following
conditions:

1. A is a normal subgroup of G as a group;

2. a9 € A, fora € A, g € G,

3. —g+g*€ A, foraec Aand g € G.

Definition 7.2.2 (Kurosh [55]). A nonempty subset A of an Q-group G is called an ideal if
(a) A is an additive normal subgroup of G;
(b) For any n-any operation w from 2, any element a € A, and elements z1,xa,...,z, € G,
—(r1-rpw) + a1 mi—1(a+ x)xiqy o xw €A
fori=1,2,...,n.

This definition in the case of groups is the definition of a normal subgroup of a group, and in the
case of rings is the definition of a two-sided ideal of a ring.

Proposition 7.2.3. For a group G € Gr® considered as an Q2-group, where § consists of one binary
operation of action, Definitions 2.1 and 2.2 are equivalent.

Proof. Condition (b) of Definition 2.2 has the form
-z + (a+z1)? €A for i=1; (7.2.1)
—2{? + 2™ e A for i=2. (7.2.2)

Taking 1 = 0 in (7.2.1), we obtain a®> € A, which is condition 2 of Definition 2.1. Taking xo =0 in
(7.2.2), we have —x1 + 2§ € A, which is condition 3 of Definition 2.1.
Conversely, we shall show that conditions 2 and 3 of Definition 2.1 imply conditions (7.2.1) and
(7.2.2). From condition 2 we have a™ € A; also
—27? + (a + 21)"? = —27* + a™ + a7?,

and it is an element of A since A is a normal subgroup of G. By condition 3 of Definition 2.1,
—21 +2¢ € A. We have —27? + 2§72 = (—x1 + 2¢)"2, and this is an element of A due to condition
2, which ends the proof. O

Thus an ideal of G is a subobject of G in Gr®. It is clear that G itself and the trivial subobject of
G are ideals of G. An intersection of any system of ideals of G is an ideal, and therefore we conclude
that there exists the ideal generated by a system of elements of G.

Proposition 7.2.4. Let A be an ideal of G. For ay,as € A, ¢1,92 € G we have
(a1 + g1)®7 2 e g* + A.
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Proof. Since A is an ideal of G, there exist a},a), € A, such that a; + g1 = g1 + @}, az + g2 = g2 + db.
Therefore

; 92-+ab

(014 )79 = (g1 +a )07 = (g 4 =
= gF — P + (gF)% +a) " € g + A;
here we apply —g¥2 + (¢92)% € A. O

Let A and B be subobjects of G. Denote by {A, B} the subobject of G generated by A and B, and
let A+ B denote the subset of G

A+B={a+blac A, be B}.
Proposition 7.2.5. If A is an ideal of G and B is a subobject of G, then
{A,B} = A+ B.

Proof. Tt is obvious that A+ B C {A, B}. Since A is an ideal, it follows that A 4+ B is a subgroup of
G. By Proposition 7.2.4, (a1 + by)®2 7?2 ¢ bl{Q -+ A. Since B is a subobject, bl{Q € B, and since A is an
ideal, bll’2 + A=A+ bl{2 € A+ B, which ends the proof. O

For Q-groups see Propositions 7.2.4 and 7.2.5 in [55].
Proposition 7.2.6. If A and B are ideals of G, then A+ B is also an ideal.
Proof. For g€ G, a € A and b € B we have
g+(a+b)=("+g)+b=d +bV +9gec A+B+y,

for certain o’ € A and v/ € B. Thus g+ (A+ B) C (A+ B) + g. In the same way we show that
(A+B)+gC g+ (A+ B) and thus g+ (A+ B) = (A+ B) + g. It is obvious that (a + b)Y € A+ B.
Now we have to show that —g 4+ ¢*t? € A 4+ B. We have

—g+¢"" = —g+9"—g"+ (9" €A+ B
since —g+ g% € A, —g° + (¢*)® € B. O
It is easy to verify that the ideal generated by a system of ideals of G' coincides with the additive
subgroup of G generated by these ideals. For Q-groups see [55].

Definition 7.2.1'. Let Gll € Grl! and A be a nonempty subset of Gll. A is called an ideal of Gl
if

1’. A is a normal subgroup of Gl! as of an additive group;

2. [a,g] € A, for a € A, g € GlI;

3. [g,al € A, fora € A, g Gl

It is easy to see that the isomorphism of categories Gr® ~ Grll carries ideals to ideals.

Proposition 7.2.7. If A is an ideal of G, then the quotient group G/A with the induced action on
itself is an object of Gr®.

Proof. Straightforward verification. O

In what follows, for G € Gr* and g, ¢’ € G, [g, ¢'] will indicate the element —g+ g9 of G and (g, ¢')
the commutator —g — ¢’ + g + ¢’. Let A and B be subobjects of G.

491



Definition 7.2.8. A commutator [A, B] of G generated by A and B is the ideal of {A, B} generated
by the elements
{la,b],[b,a], (a,b) | a€ A, be B}.

Definition 7.2.9 ([55]). Let G be an Q-group, A, B be Q-subgroups of G, and {4, B}q be the Q-
subgroup of G generated by A and B. The commutator [A, B]g is the ideal of { A, B}q generated by
elements of the form

(a,b)=—a—b+a+0b, ac A, beB,
and
[a1,...,an;b1,. .., bp;w] = —arag - apw — biby - - - bpw + (a1 + b1)(ag + ba) - -+ (an + by)w, (7.2.3)
where w is an n-any operation from €, aq,...,a, € A and by,...,b, € B.
If G is a group with the trivial action on itself or with the action by conjugation, then [A, B] in
Definition 2.8 is the normal subgroup of G generated in {A, B} by commutators (a,b), a € A, b € B,
i.e., the usual commutator for the case of groups. The same is true for Definition 2.9; if an 2-group

is a group without multioperations, then the commutator [A, Blq is the usual commutator (A, B) of
a group [55].

Proposition 7.2.10. In the case of groups with action on itself, Definitions 2.8 and 2.9 are equivalent.

Proof. For groups with action, (7.2.3) has the form
—a% — b3 4 (ay + by)®2t02. (7.2.4)

Take a1 = a, ag = by = 0, by = b; then —a + a® € [A, Blg. Take in (7.2.4) a; = by =0, as = a, by = b;
then we obtain

—b+b" € [A, Blq.
Thus we have shown that [A, B] C [A, Blg. Conversely, for x = —a$? — 0% + (a1 + b1)?2"2 € [A, Blq
we have © = —a$2 — b3 + (a$2)P + (092)>> € {A, B}. Let {A, B} = {A, B}/[A, B] and let g be the
class of the element g € {A, B} in {A, B}. We have a® =@, b = b in {4, B}. Thus

I
7=l B () () = B a4 B =
= —af? = by’ +ap? + b7 = —af® — ) +af? + by =0,
which means that z € [A, B]. O

Below we formulate without proofs two statements for Q-groups from [55], which in the case of
groups with action give the corresponding results.

Proposition 7.2.11. For any Q-subgroups A and B in G we have
[4, Bla = [B, A]q.
Proposition 7.2.12. An Q-subgroup A is an ideal of G if and only if
[A,Gla C A.

Corollary 7.2.13. Any Q-subgroup A of an Q-group G that contains the commutator [G,Glq is an
ideal of G.

Proof. Tt follows from the inclusions [4, G]q C [G, Gl C A. O
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7.3. Central Series in Gr®* and the Main Result
Let G € Gr°.

Definition 7.3.1. The (lower) central series
G=G1 DG D---DG, DGp41 D+
of the object G is defined inductively by
Gpn = [G1,Gn-1] + [G2, Gr—2] + - - - + [Gn—1, G1].
By definition, we have [G,,, Gin] C Gpim.
Proposition 7.3.2. For each n > 1, Gp41 is an ideal of G,,.

Proof. We have Gy = [G1, G1], which is an ideal of Gy, by definition. G5 = [G1,Gs] + [G2, G1]. By
Proposition 7.2.11, [G1, Ga] = [G2, G1]. We have
[G1,G2] C [G1,G1] = G2 C {G1,G2}
and [G1,G2] is an ideal of {G1, G2 }; from this it follows that [G1, Go] is an ideal of G5 and therefore,
by Proposition 7.2.6, G5 is an ideal of G2. We have
Gny1 = [G1,Gn] + (G2, Gr1] + .. [Gp—1, Go] + (G, G1 .
For 1 < k < n, [Gk,Gp_k+1] is an ideal of {Gg,Gn_ks1}; Gn C Gy, from which it follows that
Gn C {Gk,Gp_k11}. At the same time
Gk, Gn—k+1) C [Gk, Gn—i] C Gh.
Therefore |Gk, Gy—k+1] is an ideal of G, for each 1 < k < n. Thus each summand of G,; is an ideal

of G,,. By Propositions 7.2.6 and 7.2.11 we conclude that G, 11 is an ideal of G,,. O

Since (G, G;) C Ga; C Gi41, each G;/G;41 has an abelian group structure. Let
LLG:Gl/GQ@Gg/Gg@"'@Gn/Gn.H@'”, (7.3.1)

where @ denotes the direct sum of abelian groups.

Let k be a commutative ring with the unit, and A a k-module. For the definitions of Lie and Leibniz
algebras we refer the reader to Sec. 5.1. Let k& be a commutative ring with the unit and let Lie be the
category of Lie algebras over k. Morphisms in Lie are k-module homomorphisms ¢ with

p(z,y) = (p(z), p(y)).

Leibniz algebras considered in Chap. 5 are in fact right Leibniz algebras over a k. The dual notion
of a left Leibniz algebra is made out of the dual relation

[$> [yv ZH = [[$>y]v Z] + [y> [:Ev Z]]v
for z,y,z € A.
A morphism of Leibniz algebras is a k-module homomorphism ¢ : A — A’ with ¢[z,y] =

[p(2), p(y)].
In this paper we deal with right Leibniz algebras. Denote this category by LLeibniz.

Definition 7.3.3. A Lie-Leibniz algebra is a k-module A together with two k-module homomor-
phisms
(?)7[7]: A®k’A — A

called round and square brackets, respectively, such that (z,x2) = 0 for x € A and both Jacobi and
Leibniz identities hold.
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A morphism of Lie-Leibniz algebras is a k-module homomorphism ¢ : A — A’ with

e, y) = (e(x),0(y)),
ple, yl = [p(2), e(y)]-
We denote the corresponding category by LL.

Condition 1. For each z,y,z € G, G € Gr*
x— 2@ p vt gt Y =0

It is straightforward to verify that if G satisfies Condition 1; then the group G!!, which corresponds
to G (i.e., [, ] is defined by [g,h] = —g + g", g, h € G), satisfies the following condition.

Condition 1'.
[$y7 [yvz]] = [[x7y]7zm] + [_[$7Z]7yz]7 T,Y,z € GH

Let G be a group. Consider G as a group with the (right) action by conjugation, i.e. g9 = —g'+g+¢.
Then G satisfies Condition 1, and in this case Condition 1’ is equivalent to the Witt—Hall identity for
groups. Each group with the trivial action on itself (i.e., ¢ =g, 9.9 € @) also satisfies Condition 1.
For an arbitrary set X, let Fx be a free group with action on itself generated by X (see Sec. 8.2 for
the construction). The quotient Fx /. of Fx by the equivalence relation generated by the relation
corresponding to Condition 1 is obviously a group that satisfies Condition 1. See also an example at
the end of the proof of Theorem 7.3.4.

Denote by Gr® a category of groups with action on itself satisfying Condition 1. In an analogous
way we define the category Ab®. It is easy to see that the functors F, A, T, C, Q1, Q2, defined in Sec. 1,
give the functors between categories Ab®, Gr¢, and Gr. We shall denote below these functors by the
same letters. Fx/~ is a free object in Gr® and consequently the action in it is neither the trivial one
nor the conjugation.

Let G € Gr°. Denote G, = Gpn/Gmy1, then LLg = Y. Gp.
m>1
Consider the maps (, Jmn, [ Jmn : Gm X G, —> Gty defined by round and square brackets in G,

respectively:
T,y ——> (.’E, y)7
T,Yyr——= [.’E, y]

By the definition of Gj, it is clear that if x € G,,, y € Gy, then (z,y),[z,y] € Gumin. For z € Gy,
denote by T the corresponding class in G,y,.

Theorem 7.3.4. Let G be a group with action on itself satisfying Condition 1. Then we have:
(a) 2y =T, —y +x +y =7, for each v € Gy, y € Gp;

(b) Zhe maps (, Vmn and [, Jmn @ Gm X Gn — Gugrn induce bilinear maps cmn, Bmn : Gm X Gpn —

Gm—i—n;
(¢c) The maps amp, Bmn, m,n > 1 define bilinear maps (, ),[,]|: LLg X LLg — LL¢, which give
a Lie—Letbniz structure on LL¢.
Proof. (a) Let © € Gy, y € Gy, myn > 1. Then [z,y] = —z + 2¥ € Gy C Gy, and since z € G,
we obtain that 2¥ € G,,. In G,, we have m = —Z + 2Y, but since [z,y] C Gpin C Gpmt1, we have
[z,9] = 0 in G,,, and thus in G, we have T = z¥. In the same way we show for the action with

conjugation that —y +x + y = T (see also [83]).
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(b) We shall check this condition for a square bracket; for a round bracket the proof is similar [83].
First we shall show that the map Bin : G X G — Gpn is defined correctly. Let T € G, ¥ € G,
where z € Gy, y € Gy,. By definition, B, (Z,7) = [Z,7] = [z, y], where [z,y] € Gpim. Let T = 2’ for
2’ € G, thus * — 2/ € G,,41. For simplicity, suppose that  — 2’ € [Gi11,Gm—i] C Gme1 (a more
general case is treated similarly). Then z = [a,b] + 2/, where a € G;11, b € Gp,—;. From this we have
in Gpan:

[z, 9] = [la, 0] + &', y] = =" + [[a, b], y] + 2" + [, y] = =2’ + [[a, 0], y] + 2" + [2, y]. (7.3.2)
[[a,b],y] € Gmint1 C Gmin. Applying condition (a), we obtain

—2' + [[a,b],y] + 2’ = [[a,b],y] =0 in Gin.

Thus from (7.3.2) we have [z,y] = [/,y]. If z — 2’ = (a,b) € [Gix1, Gm—i] C Gm+1, then by the same
argument we have

[z,y] = [&" + (a,0),y] = —2' + [(a,0),y] + 2" + [2',y] = [(a, b), y] + [2", 9] = [+, v/,
since [(a,b),y] = 0 in G4y The correctness of B, for the second argument is proved in an analogous
way.
Now we shall show that the maps f,,, are bilinear. Let Z1,Zs € G,, and 7 € G,,. We have in G, 4,

[El +fg,§] = [':Ul + $27y] = =22 + [ajlvy] + z2 + [1'2,:1/] = [.ZL‘l,y] + [$27y]7
here we again apply condition (a). Let € G, and 7,75 € Gp,. We have in Gty

[E7y1 +y2] = [xayl +y2] = [‘T?yl] + [$y1792] =

= [l',yl] + [$y17y2] = [f7 gl] + [W7 g2] = [j7 gl] + [Ev ?2],

since, by condition (a) 2¥1 = T. This proves that maps (3, are bilinear.

(¢) The maps aypn, Bmn can be continued linearly in a natural way up to the bilinear maps (, ), [, ] :
LLg x LLg — LLg. The proof of the fact that ( , ) satisfies condition (5.1.5) and (/,1) = 0 for
any | € LL¢g is similar to the proof of the corresponding statement in Witt’s theorem (see [83,
Proposition 2.3], [90]). It remains to show that the square bracket operation [, ] satisfies the Leibniz
identity.

The object G satisfies Condition 1; therefore we have Condition 1’ for the square bracket in G.
Since the square bracket operation in LLg is linear for both arguments, we can limit ourself to the
case where T € Gy, T € Gy, Z € Gy. Applying conditions (a) and (b) of the theorem, we have

@, [y, 2] = [27, [9,2]] = [, [y, 21};
[z,7),2] = [[z,7],27] = [[z, 4], ="];
~[[z,2,9] = [~z 2], ¥7] = [~[z, 2], y°].
By Condition 1’ we obtain
[z, [7.2]] = [7,7],2] - [[7,2],7] in Gminse,
which completes the proof of the theorem. O

The following example is due to the referee.
Example. Let G be the abelian group of integers Z°®, which acts on itself in the following way:
2¥ = (=1)Yz. We have [z,y] = 0 for y even, [z,y] = —2z for y odd, and G,, = 2""Z°*. It is easy to
see that Z* € Gr® and LLgze is a free Leibniz algebra generated by a single element over a two element
field (see also [65]).
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It is easy to see that by Theorem 7.3.4 we have actually constructed the functor LL : Gr® — LL.
In an analogous way one can construct the functor L : Ab® — Leibniz. For A € LL let S;(A) denote
the greatest quotient algebra of A that makes the square bracket in A trivial. Then S1(A) € Lie and
we have the functor Sy : LIL. — Lie. Similarly, we construct the functor Sy : LIL. — Leibniz. Let
S1'(A) denote the greatest quotient algebra of A that makes the square bracket in A equal to the round
bracket; thus S;'(A) € Lie, and Sy’ is a functor. Si, Si’, and Sy are left adjoints to the embedding
functors Eq, E,’, and E» respectively, where E; considers a Lie algebra as a Lie-Leibniz algebra with
a trivial bracket operation, E;’ considers a Lie algebra as a Lie-Leibniz algebra with square bracket
equal to round bracket, and Fy considers a Leibniz algebra as a Lie-Leibniz algebra with trivial round
bracket operation. Denote by W : Gr — Lie the functor defined by Witt’s theorem [90], [83]. Thus
we have the following functors between the well defined categories:

Q1

5 T
AP  ——=Gr¢ Q2 GrGr
A c

-

L LL w
S1

Jo5

Es

Leibniz——1LL ~ ST Lie
52 El

-

where LLT = EyW, Es L = LLE, LLC = E;'W. A more detailed account of this diagram will be
given in the next chapter, where free objects in Gr® and free Leibniz algebras are studied.

CHAPTER 8

WITT’S THEOREM FOR GROUPS WITH ACTION AND FREE LEIBNIZ
ALGEBRAS

In this chapter we give the solution to the second problem of J.-L. Loday formulated in the Introduction
(see [62], [64]). We introduce two more conditions (Condition 2 and Condition 3) between round and
square brackets for the objects of Gr® defined in Chap. 7, and according to these conditions define the
full subcategories Gr and LL of Gr¢ and LLL, respectively. We prove that the functor LL defined in
Chap. 7 takes free objects from Gr to free objects in LIL. The composite S5 LL‘@ : Gr — Leibniz is
the functor we were looking for, which takes free self-acting groups from Gr to free Leibniz algebras,
where Sy is the functor which makes the round bracket operation trivial in Lie-Leibniz algebras.
This result is an analogue of E. Witt’s theorem [90], [83] for groups with action on itself and Leibniz
algebras. The properties of a commutator in Gr and the construction of free objects in this category
and in Leibniz and other related questions are considered.

8.1. Some Properties of Commutators for Groups with Action

For the definitions of the categories Gr®, Gr® we refer the reader to Chap. 7. Recall that we have
defined square bracket operation in Gr® by [g,h] = —g + ¢", for g,h € G, G € Gr®.
We have (see Proposition 7.1.1)

g, h1 + ha] = [g, h1] + g™, ha] = [g, ha] + [g, ha]"2;

J (8.1.1)
lg+4 h =1[g,h] +1g,n]; [9,0] =0,9] =0,
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where 2* = —g+ 2z +g¢, z,9€G.
From (8.1.1) it follows that

[gv - ] [ " h] [ h]_h; [_97 h] = _[97 h];g (812)
For the round bracket we have (g, h) = —(h,g) and the identities analogous to (8.1.1) and (8.1.2):

(g,h1 +h2) = (g,h1) + (g h_l,h2) = (g,h2) + (9, hl)h_2§
(g+9g.h) = (g.h)" 8 + (g, h); (8.1.3)
(9,0) = (0,9) =0,
(9.~h) = —(g. 1) ™" <= (~g.h) = —(g.h) - (8.1.4)

These identities are well known for groups (see, e.g., [83]) and are special cases of (8.1.1) and (8.1.2).

For the case of groups, it is proved that if A and B are normal subgroups of G, then the commutator
(A, B) is also a normal subgroup of G. Below we will show that the analogous statement is true for a
certain type of groups with action on itself.

Consider the following conditions:
Condition 2. [:ry, (y,z)] = [(az,y),zx] + [— (:E,z),yz].
Condition 3. (my, [y,z]) = ([x,y],zw) + ( — [m,z],yz).

In Sec. 8.3 we will see that the objects of Gr® do not generally satisfy these conditions. Note that
for groups with trivial action on itself, or with the action by conjugation, Conditions 1/, 2, and 3 are
always satisfied (see Sec. 7.3 for Condition 1’). The same is true for the example Z* from Chap. 7. For
any set X, consider a free object Fy on the set X in the category Gr® (see Sec. 8.2 for the construction
of free objects in this category). Let Fx/ ~ be the quotient object, where ~ is the minimal congruence
relation generated by the relations expressed in Conditions 1/, 2 and 3. Then Fx/ ~ is an object of
Gr¢ that satisfies the above two conditions.

Denote by Gr the full subcategory of Gr® of those objects that satisfy Conditions 1’, 2, and 3. Thus
Gr is the full subcategory of Gr°.

Since groups with action are Q-groups, [A, B] is an ideal of G if and only if [[A4, B], G] C [A, B] [55]
(see Proposition 7.2.12).

Now we are going to prove statements concerning some properties of elements of [A, B], {A, B} and
G, where A and B are ideals of G. These statements will readily imply that [A4, B] is an ideal of G if
A and B are ideals of G and G € Gr. Note that in this case {4, B} = A+ B, and this object is also
an ideal of G (Proposition 7.2.5).

Below for g,h € G, gﬁ =—h+g-+h.

Lemma 8.1.1. Let a,b,g € Gr®. Then we have
0 (@) = @)
(i) () = (@ )",
The proof is an easy computation of both sides.
Lemma 8.1.2. Let A and B be ideals of G € Gr. Then for anya € A, b€ B, g € G the elements
[a. 6], [b,a]", (a,0)", [a, b}, [b, ],

(a,)?, [g,[a,b]], [g,[b,a]], [g; (a,b)]
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belong to [A, B].
Proof. We have

g

[0 =—g+[a,b)+9=—g—a+a®+g=—g—a+g+(a®)*

o\ b g(=b o=
——g-a+tg+(@ )V =-g-—atg+td  —d"
= g-atg-g ™V tat g —gig+ o)
=(a,b)* + [ag(_b),b],

g

where ¥ = g — g(-% € B, since B is an ideal, which proves that [a, b]* € [A, B].

We have [b,a]* € [A, B], since [b,a]* € [B, A] by the above-given proof and the equality [B, A] =
[A, B] (see Chap. 7). For the round bracket we have

(a,b)" € [A,B], since (a,b)" = (a”,b").
For the next element we have
[a,b)9 = —a? + a"*9 = —a? 4 a9t = (a9, V] € [A, B],

where O/ = —g + b+ g € B; here we apply the fact that B is an ideal of G.

From the previous result and from [B, A] = [A, B] it follows that [b,a]? € [A, B].

It is easy to see that

(a,b) = (af, 1) € [A, B].
For the element [g, [a, b]] we apply Condition 1’:
[9:[a. 8] = [(979)% [a,b]] = [lg~ al,b9 V] + [ [g7,b],a"].
This element is from [A, B], since A and B are ideals of G and [A, B] = [B, A].

From the previous result it follows that [g, [b,a]] € [A, B]. In the same way applying Condition 2,
we prove that [g, [a,b]] € [A, B]. O

Remark. We do not need to check that elements of the type (g,t) belong to [A, B], where ¢ is a
generator of [A, B], since

(9,t) € [A,B] & (t,9) € [A,B] & t" € [A, B].
The latter inclusion has been considered in Lemma 8.1.2.
Lemma 8.1.3. Let A, B be ideals of G, G € Gr°. For g € G, t,t; € [A,B], i=1,2
(a) If [g,t;] € [A,B], i = 1,2, then [g,t1 + t2] € [A, B].
(b) If [ti,g] € [A, B], i = 1,2, then [t; + to, g] € [A, B].
(c) If [g,t] € [A, B], then [g,—t] € [A, B].
The proof follows from (8.1.1) and (8.1.2).

Lemma 8.1.4. Let A and B be ideals of G, G € Gr. If fort € [A,B] and any g € G we have
t9,t",[g,t] € |A, B, then for any g1 € {A, B} the elements
(), () (ol
91.9

T (N N
[97 tg1]7 [97 tﬂ]v [97 [917 t]]
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belong to [A, B].
Proof. Tt is obvious that (t91)9, (t*)* € [A, B]. By Lemma 8.1.1, for the elements (£91)*, ()9 we

(=91) (99)
have (t91)* = (¢* - )91 € [A,B]. Since {4, B} = A+ B is an ideal, (t*)¢ = (759)9_1 € [A, B], and
therefore ¢ € {A, B}.
For the element [g1,t]? we have

91,11 = g + 97" =~ + 97" = [o.1] € [4, B,
where t' = —g+t+g € [A,B] and g{ € {4, B}.

For the element [g1,1]* we will show that ([g1,1],9) € [A, B], from which it follows that [g1,1]" €
[A, B]. Applying Condition 3, we obtain

— - - —-91)
([.glat]a(g gl)gl) = (.gi? [t7.g 91]) - (_ [9179 gl]atg( . ) c [A, B]

For the element [g,t9'] we show that [g,[t,q1]] € [A, B], from which, by (8.1.1), it follows that
[9,t9'] + [g, —t]9* € [A, B]. Since [g,t] € [A, B], we have [g, —t] € [A, B] = [g,—t]*"" € [A, B], which
implies that [g,t9'] € [A, B].

By Condition 1’ we have

(9, t-an)] = [lo ™"t ot ]+ [= [97" ol 2]
€ [[A, B,{A,B}] + [{A,B},[A, B]] C [4,B].
For [g,t™] € [A, B] we show that [g, (t,g1)] € [A, B], which can be done analogously to the previous
proof by applying Condition 2.
For the element [g, [g1,t]] we have
[ga [gl7t]:| = [(9_91)917 [gl7t]:| = [[g_glagl]at(g_gl)] + [_ [g_gl7t]7gl]
€ [{A4,B}.[A, B]] + [[A, B],{A,B}] C [, B]. O

Proposition 8.1.5. Let A and B be ideals of G € Gr. Then the commutator [A, B is also an ideal
of G.

Proof. By Lemmas 8.1.1-8.1.4 we have proved that the generators of [A, B] (as an ideal of {4, B})
satisfy the conditions t9, t”, [g,t] € [A, B] for any g € G, where t is any generator of [A, B] (Lemma
8.1.2), and from Lemmas 8.1.3, 8.1.4 it follows that if the generators satisfy these conditions, then any
element of [A, B] satisfies the same conditions, which is a necessary and sufficient condition for [A, B|
to be an ideal of GG, which proves the proposition. O

Remark. From the above proved lemmas we obtain [[A, B],C] C [A, B], which is a necessary and
sufficient condition for [A, B] to be an ideal of G [55] (see Chap. 7), and this is another similar way
to prove Proposition 8.1.5 by applying the same lemmas.

If A, B,C are normal subgroups of a group G, we have
(A, (B,C’)) C (B, (C, A)) + (C’, (A, B)), (8.1.5)

where (A, B) denotes the commutator subgroup of G (see, e.g., [83]).

For groups with action on itself, the analogous inclusion for square brackets does not hold in general
for the ideals A, B,C of G, when G € Gr®, nor in the case when G satisfies the Condition 1’ (i.e.,
G € Gr°).

Proposition 8.1.6. Let A, B,C be ideals of G, G € Gr. Then we have
[A,[B,C]] c [[A,B],C] + [[4,C], B].
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For the case of groups, this result gives (8.1.5). We have formulated the right side of the inclusion in
this form, since it is more convenient for the proof using Conditions 1/, 2, 3. We need several lemmas.
For simplicity, denote

Dapc = [[A B],C] + [[A,C],B].

By Proposition 8.1.5, [A, [B,C]] and D are ideals of G; therefore it is sufficient to prove that the
generators of [A,[B,C]] (as an ideal of {A, [B,C]}) belong to D. By the definition of a commutator,
[A,[B,(C]] is an ideal of {A,[B, C]} generated by the elements

{[a,t], [t,al, (a,t)|a € A, t € [B,C]}.
The commutator [B, C] itself is an ideal of {B, C} generated by the elements
{[b,c], [e,b], (b,c)|b e B, ce C’},

and we have {B,C'} = B+ C, since B and C' are ideals of G.
Lemma 8.1.7. Let A, B and C be ideals of G, G € Gr. Fora € A, b€ B, c € C the elements

[a, b, c]], [a, [c, b]], [a, (b, c)], [[b, q, a],

[[c, b], a], [(b, c),a], (a, b, c]), (a, [c, b]), (a, (b, c))
belong to Dapc.
Proof. For the first element we apply Condition 1. We have

[a,[b,d]] = [(@™®)?, b.d]] = [(a®,0),e™ "] + [~ [(a,¢),b°] € Dapc

For the next element we apply the first result and we have [a, [¢c,b]] € Dacp = Dapc-
In the same way, applying Conditions 2, 3 and also the corresponding Witt—Hall identity for com-
mutators in groups, we prove that all elements given in the lemma belong to D. ]

Lemma 8.1.8. Let A, B, and C be ideals of G, G € Gr, and t; € [B,C], i =1,2.
If (a,t;) € Dapc, i = 1,2 for any a € A, then
(a,t1 +t2) € Dapc.
If [a,t;] € Dapc, i = 1,2 for any a € A, then
[a,t1 + t2] € Dapc.
If [tiya] € Dapc, i = 1,2 for any a € A, then
[t1 + t2,a] € Dapc.
The proof follows from (8.1.1) and (8.1.3) and the fact that D is an ideal of G.
Lemma 8.1.9. For any ideal I of G, G € Gr* and elements g, h € G,
If [g,h] € I, then [—g,h], [g,—h] € I.
If (g,h) € I, then (—g,h), (g,—h) € 1.
The proof follows from (8.1.2) and (8.1.4) and the fact that I is an ideal of G.

Lemma 8.1.10. Let A, B, and C be ideals of G, G € Gr. For anyt € [B,C], any a € A, and any
x € {B,C} we have:

(a) [a,t] € Dapc, then [a,t*] € Dapc.
(b) [a,t] € Dapc, then [a,tz] € Dapc.
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€ Dapc, then (a,t*) € Dapc.
€ Dapc, then (a,tz) € Dapc.

(C/ (CL, [.’E,t]) S DABC~
(") If [t,a] € Dapc, then [t*,a] € Dapc.
(b// If [t,a] € Dapc, then [ti,a] € Dapc.

(C”) va ]7a] € Dapc-

Proof. We will show that [a, [¢, z]] € Dapc, from which it follows that [a,t*] € Dspc. Since B and C
are ideals of G, {B,C} = B+ C, any element = € {B,C} has the foomx =b+c¢, b€ B, c€ C. We
have

[a,[t,0+ ] = [a,[t,b] + [t*,c]] = [a,[t, 0] + [aP), [°, )]
By Proposition 8.1.5, [B,C] is an ideal of G. By Lemma 8.1.7 applied to A, [B,C|, B and A, [B, (],
C we obtain

[a,[t,b+d]] € Daypepp+ Dapone CDacs+ Dape = Dapo,
since [B,C]| C C, [B,C] C B (since B and C are ideals of G) and Dacp = Dapc. We have
[a, [t 2]] = [a, =t + ] = [a,¢"] + [a, —1] ).

Since [a,t] € D, by Lemma 8.1.9 [a,—t] € D, and since D is an ideal of G, [a, —t]*") € G. This
proves that [a,t*] € Dapc.

(b) is proved in an analogous way; we prove first that [a, (¢,2)] € Dapc for any a € A, t € [B,C],
r € {B,C}, from which it follows that [a,t"] € Dapc.

(c) Since x = b+ ¢, for b € B, ¢ € C, we have

la, [z, ] = [a,[b+ c.t]] = [a,[b,2]" + [, #] = [a, [b,4]] + [alT", [c,7]].
In the same way as in (a), applying Lemma 8.1.7 we can prove that [a, [b,]] € Dagip,c) C Dasc
and [al1° [c, 1] C Dacipc] € Dacs C Dape. By (b) we have [a,[b,1]7] C Dapc, since [b,t] €
[B,[B,C]] C [B,C] and c € {B,C}.
(@), (b'), (¢’) are proved in a similar way.
For (a”) we first show that [[t,z],a] € Dapc. We have

(it,],a] = [it.b+dya] = [[t.6] + [, ], a] = [{t.5],a) = + [[t*,d],a].

Applying Lemma 8.1.7, we show that [[t,b],a] € Dapp,c) C Dapc and since Dapc is an ideal of
[t%.c]

G, we have [[t,b],a] — € Dapc.
Next, we show by Lemma 8.1.7 applied to t* € [B,C], c € C, a € A, that the element [[t?, c], a] from
[A, [[B,C],C]] is included in D 4(p cjc and hence in Dapc, since B is an ideal of G and [B,C] C B.
Applying Lemma 8.1.9, from [[t, x],a] € Dapc it follows that [t*,a] € Dapc.
(b”) We begin by proving that [(t,z),a] € Dapc. We have
(t,0)

[(t,b + c),a] = [(t,c) + (¢, b)g,a] = [(t,c),a]; + [(t,b)g,a].

Again by Lemma 8.1.7 [(t,¢),a] € Daip,cjc C Dapc, from which [(t, ¢), a]M € Dapc.

For the second summand we have
[(t,0)",a] = [(t°,b°),a] € Dagp.c1p € Dacs = Dapc;
hence [(t,z),a] € Dapc.
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‘We have

[(t,a:),a] = [—t+t£,a] = [—t,a]g—l— [ti,a].
By Lemma 8.1.9, [—t,a] € Dapc, and therefore [—t,a]é € Dapc, from which [t°,a] € Dapc.
b,
(¢") We have [[z,t],a] = [[c+b,1],a] = [[c, " + [b,],a] = [[c, t]b,a]M + [[b,t], a].

By Lemma 8.1.7,
[[b,t],a] C Dagp,cyp C Dase-
For the first summand we have [c,t] € [B,[B,C]] C [B,C]; [[e,t],a] € Dapcjc C Dasc by
Lemma 8.1.7. Thus for ¢’ = [¢,t] we have [t,a] € Dapc. From (b”) we obtain
[(t')g,a] € Dapc since be {B,C},
and therefore
le.t)",] " € Dasc,

since Dapc is an ideal of GG. This ends the proof of the lemma. O
The proof of Proposition 8.1.6 follows from Lemmas 8.1.7-8.1.10.
Lemma 8.1.11. If G € Gr, then for
Gpn = [G1,Gn-1] + [G2,Gr—2] + -+ - + Gp—1, G4 ]

we have
G = [Gn-1,G], (8.1.6)
forn > 1, where G1 = G.

Proof. For n = 2,3 (8.1.6) is trivial. For n = 4 we have
G4 = [G1,G3] + [G2, Ga] + [G3,Gy].
Thus [G3,G1] C Gy, and for G4 C [G3,G1] we will show that [Ga, G| C [G3,G1]. We have
[G2,Ga] = [[G1,G1], G2 C [G1,[G1,Ga]] + [Gh1,[G1,Ga]] C [G3,Gl,

since [G1, Ga] C Gs.
Assume that (8.1.6) is true for any G, where I < n. For [ = n we have [G,,—1,G1] C G,,. We have
to show that

[Gr, Grn—k] C [Gp-1,G] for 1<k<n. (8.1.7)
For k = 1, [Gl,Gn_l] = [Gn_l,G].
For k = 2, by Proposition 8.1.6,
(G2, Gp—2] = [[G1,G1],Gn—2] C [G1,[G1,Gnos]] + [G1,[G1,Gr—2]] = [Gn-1,G],

since [G1,Gp—2] = G—1 by our assumption.
Suppose that (8.1.7) is true for 1 < k <t — 1, where t < n. We will show (8.1.7) for k = ¢.
By our assumption, Gy = [G¢—1, G]; therefore
(G, Gn—t] = [[G, Gt—l]aGn—t] - [G, [Gt—l,Gn—t] + [Gt—l, G, Gn—t]
- [G7 Gn—l] + [Gt—17 Gn—t-l—l] C [G7 Gn—l] + [Gn—17 G] = [GTL—17 G]a

here we have used the fact that [Gy—1,Gp—¢] C Gp—1, |G, Gn—t] C Gr—¢11 and that, by our assumption,
[G¢—1,Gp—t+1] C [Gp—1, G], which proves the lemma. O
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From this lemma the construction of the functor Gr¢ — LI becomes simpler for the objects of Gr.
Namely, if G € Gr, then

LL(G) = i Gy [ [Gn, G]. (8.1.8)
n=1

Let G be a free object in Gr (see Sec. 8.2 for the construction) and G,, = [G,_1,G], n > 1. Let E
be the set of all defining identities between the brackets (both round and square) in G, n > 1, and
E the set of all defining identities that satisfy the elements of the groups G,, = G, /|Gy, G], n > 1.
Under “defining identities” we mean that any identity in G follows from the identities from F.

Remark. We could define G, from the beginning by (8.1.6), but we would need Propositions 8.1.5
and 8.1.6 for proving [G,,, Gi| C Gptm, which we have applied in proving Theorem 7.3.6 of Chap. 7.

If G is a free object in Gr, then we have Conditions 1/, 2, 3 for the elements of G, but there can be
more identities between the round and round and square brackets. In the case of Ab® we have another
picture, the only identity we have in Ab® is Condition 1’ (and of course its consequences).

Let G be a free object of Ab® and ¢1,...,gx € G. Let P(g1,...,gr) be any expression of the elements
gi,i=1,...,k and bracket operations in G.

We say that P is a pure n-bracket if after decomposing each g; in terms of brackets it contains
only n-brackets. Here we have in mind that Ab® = Abl and the corresponding isomorphism for Ab®.
For example, for the basis elements x1,x9,x3 of G, [r1,[x2,x3]] is a pure 3-bracket. If g is a pure
m-bracket and h is a pure k-bracket, then [g, h] is a pure m + k-bracket.

It may happen that according to Condition 1/, a linear combination of pure n-brackets is an element
of Gn+1.

Lemma 8.1.12. Let G be a free object in Ab®. If P(q1,...,qt) € Gy is a linear combination of pure
n-brackets in G and P(g1,...,9:) € Gny1, then P(gL,...,9;) = 0 in G, = G, /Gny1 is either the
Leibniz identity or its consequence.

Proof. There exists an expression Q)() € Gp41 with n+ 1 brackets such that P() —Q() = 0. Since G is
free, P() — Q() = 0 is either equivalent to Condition 1’ or to its consequence. Now the proof is a direct
computation. Take x,y, z as pure k, [, m-brackets, respectively, in Condition 1/, with k + 1+ m = n.
Then from (8.1.1), (8.1.3) and the fact that ¢" = g + [g, h], for any g, h € G we obtain that the pure

n-bracket combination part of Condition 1’ has the form [z, [y, 2]] — [[z,y], 2] + [[, 2], y]. Note that in
Ab® we have [—g,h] = —[g, h]. The same result we have in the case P() — Q() = 0 is equivalent to a
consequence of Condition 1/, which ends the proof. O

Proposition 8.1.13. Let G be a free object in Ab®. Then the elements of the object L(G) (L : Ab® —
Leibniz) satisfy only the Leibniz algebra identities for square brackets i.e., the square bracket operation
is bilinear and in G,, = Grn/Gns1, n > lwe have the Leibniz identity

z,[v.7] = [[z.9).7] - [[7.2],7],
where x,y,2 € G and T € Gy, § € Gy, Z € Gy denote the corresponding elements with m + 1+t = n.

Proof. Suppose G is free in Ab® and we have in G, the identity or relation P(Z;;) =

l
> Pj(%j1,...,Tjt) = 0, where each P; denotes a bracket element in P, and ¥ denotes the sum of these
j=1

elements in G,,, Ti; € ékji, kji+---+kjy=n,7=1,...,1. We suppose that each Z;; # 0 and P con-
tains at most n brackets. For each inverse image m;Z in Giji, j=1,...,L,i=1,...,t (ie, m;Z = Tji,

_ l
by the natural homomorphism Gj;; — Gy;j;) we have P(azgz) = Zl PJ(.T‘/]-I, ... ,x;t) € Gpy1. Since
]:
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each Zj; # 0, we have xj; ¢ Gpji+1; thus each x;; contains kji brackets as a summand. Hence
each Tj; has an inverse image zj; € Gyj;, Zj; — Tj, and Zj; is a pure kji-bracket. We have

P(zj) = Zl: Pj(Zj1,-..,%jt) € Gny1, and each Pj(Tj1,...,7;;) is a pure n-bracket. P(T;;) = P(T;i)
and, by ijarznlma 8.1.12, P(Zj;) = 0 is either the Leibniz identity or its consequence. O
Remark. In Ab®, Condition 1 has the form

&) gVt gt Y =,
which is, of course, equivalent to Condition 1’.

Direct computations show that in Ab® we have the identities

[g,h]" = [¢%,h], x,9,h € G € AD°.
The first two identities can be obtained from the identities in Gr¢

[_g’ h]g = _[g’ h]v
lg,—h] " =[-g,h]", g heG eGr

@

applying the functor A : Gr — ADb®. It is easy to see that these identities follow from (8.1.2), and
all the above identities do not give new identities for LL(G’), or L(G).

8.2. Free Objects in Gr*, Gr, Ab® and Leibniz

In this section we recall the definition of free objects in algebraic categories. We give the construction
of free objects in the categories of groups with action and in Leibniz algebras.
Let A be any algebraic category.

Definition 8.2.1. Let A be an object in A. A is a free object on the set X if there is an injection
X — A and for any object B € A and a map « : X — B, there exists a unique homomorphism
@: A — Bin A such that the diagram

=

is commutative.

We will deal with free objects in the following algebraic categories: Ab, Ab°, Gr, Gr®, Gr°, Gr,
Leibniz, Lie, LL and LL; the last noted category will be defined in Sec. 8.3.

Let X be a set, and Mx be the free magma generated by X. Recall (see, e.g., [10] or [83]) that a
magma is a set M with a (generally nonassociative) binary operation

M x M ——- M.
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3

We write the elements of Mx in the “vertical way”; so the elements of Mx have the form

Ttiy

Tt—1,ip—1 T3
ER|I(EESN
.' Tt1
Tt—1,3
( Jit—l,z)
Tt—1,1

(8.2.1)

L1iq

()

where z, ;s € X, 7 =1,2,...,t, s =1,2,...1;.

We denote this kind of elements by 2z to indicate that the element (8.2.1) is represented by the
element x € X.

Let F(Mx) be a free group generated by Mx. The operation in F(Mx) is denoted by “+,” so the
elements of F(Mx) have the form

+orP a5+ k2l

where 7} is an element of type (8.2.1) for each i = 1,...,n. The empty word (neutral element) of
F(Mx) is denoted by 0.

Define in F(Mx ) the action of elements by

O O
(%%-1) ) (95—1) ()

)ylm+...+y9n _ ( ( D)(?/1D)> 4ot < ( D)(%D)> 7
g T

n

]

(z
P+ 20 =2+ 2l @rttn) — .
Now it is easy to see that the following statement holds.

Proposition 8.2.2. The object F(Mx) is a group with action on itself and it is a free object in Gr®
on the set X.

Actually we have defined the functor F : Set — Gr®, which is left adjoint to the forgetful functor U.
Let ~ be a minimal congruence relation on F(Mx) generated by the relation defined by Condition
1. Then we obtain

Proposition 8.2.3. The object F(Mx)/ ~ is a free object in Gr° on the set X.

In the same way we construct free objects in Gr.
On the other hand, in diagram 7.3.3 of Sec. 7.3 the functor A is left adjoint to the full embedding
functor F, and therefore we obtain
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Proposition 8.2.4. A(F(Mx)/ ~) is a free object in Ab® on the set X.

Here we give the construction of free Leibniz algebras. Let k be a commutative ring with the unit and
X be any set. Denote by W (X) the set that contains X and all those formal combinations of square
brackets and elements of X that do not contain words of the form [a, [b, ¢]], where a, b, ¢ are elements
of X or combinations of elements of X and brackets. Let F(W (X)) be the free k-module generated
by the set W (X). Consider the map n: W(X) x W(X) — F(W(X)) defined by n(wy,ws) = [wy, ws]
if w1, ws] € W(X); for [wy,ws] ¢ W(X) we decompose the word [wi,ws] according to the Leibniz
identity and express it as a sum of the words from W (X) in F(W(X)). We define n(wy,ws) as this
final sum. Note that any two different decompositions give the same element of F'(W(X)). We define
the bracket operation on F(W (X)) as the k-linear extension of the map 7 to F(W(X)). It is easy to
see that the obtained object is a free Leibniz algebra on the set X (cf. [65]).

Remark. Since the functors Q1, Q2, S1, S1’, A, and Sy in the diagram (7.3.3) of Sec. 7.3 are left
adjoints to the embedding functors, these functors take free objects to free objects. These new obtained
objects are free on the same sets as original taken objects. Moreover, we have Q1(G) ~ Q2(G) and
S1(L) ~ Si'(L), where G and L are free in Gr® and LL respectively. Here, e.g., for the case of
the functor ); we have in mind that Q1 F and Qs F are left adjoints to one and the same functor
UT = UC = Ug; thus Q1. F = Q2F =~ Fg, where Ug : Gr — Set is an underlying functor and
Fg is its left adjoint, which corresponds to any set ofthe free group generated by this set. Thus
Q1(G) = Q2(G) for free object G. We apply the analogous argument for the other functors above.

8.3. Identities in Gr¢ and the Main Results

In this section all algebras (Lie, Leibniz, Lie-Leibniz) are considered over the ring of integers Z. We
investigate the question of the existence of identities between round and square brackets in Gr®. If E
is the set of the identities for the category Gr, we define the full subcategory LIL of LIL (Lie-Leibniz
algebras) of those objects satisfying identities E, where E denotes the set of all identities inherited in
LL from E. We prove that if G is the free object in Gr generated by the set X, then every element of
G, =G, /Gry1 is represented as a combination of elements of the form

(- (@ 1@ (@ TOLT)] )] T)] - T )|

where two brackets mean that we have either a round or a square bracket for x,y1,...,y,—1 € X, and
this representation is unique up to identities from E. By this result we easily prove that the functor
LL takes free objects from Gr to free objects in LIL, and L(G) (resp. LA(G")) is a free Leibniz algebra
if G (resp. G') is a free object in Ab® (resp. in Gr).

The category Gr is defined in Sec. 8.1 as the full subcategory of those objects of Gr® that satisfy
Conditions 1’, 2, 3. We look for possible identities in Gr between the round and square brackets.
We have well-known Witt—Hall identities for round brackets in Gr. By Witt’s theorem [83], [90] the
functor W : Gr — Lie in diagram (7.3.3) takes free objects to free objects. Taking into account
the same kind of argument as we have at the end of Sec. 8.1 for the case of groups with action and
Lie-Leibniz algebras, we conclude that in Gr we do not have such identities for the round brackets that
“inherit” new identities for Lie algebras. Thus if new identities exist in Gr, they give the same Jacobi
identity, the identity (x,2) = 0 and the bilinear property for the operation (, ) in the corresponding
Lie algebra. Below we consider in Gr those “variations” of the well-known identities in Gr which by
applying the usual functors (see diagram (7.3.3) of Chap. 7)

Ab° A Gr€ & Gr
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give the known identities in Ab® and Gr. As above, for z,y € G, G € Gr* we denote 2~ = —y +z + .
Consider the following expressions:
a1 = [2Y, (y,2)]; b1 = [(z,9),2"]; cr= [~ (2,2),y7];
az = (2%, [y, 2]); by = ([z,y],2"); e = (= [2,2),9°);
as = —[(y,2),2"]; by = —[2", (z,y)]; 3 =—[y* —(2,2)];
ag = (2", —[z,y]); by = (— [y, 2],2"); ca = ([z, 2], 5%);
as = [z, (y,2)]; bs = [(2,),2 ; s =[—(2,2),y];
ag = (, [y, 2)); be = ([z,9),2); e = (= [z,2],9);
ar = — [(y,z),xg]; by = — [zg, (z,y)|; cr = —[yi, - x,z)],
ag = (mg,—[z,y]); bg = (— [y,x],zz); g = ([z,x],yé).
Consider all kinds of identities
a;=bj+cp, i,5,k=138. (8.3.1)

Applying the functor A or Q2 to (8.3.1), we obtain that the resulting equalities are true in Ab® and

Gr (i.e., when (

Direct computations give

)=0or[ |=( )).

a] = —fL’y + x—Z-i-y—i-z;

ag = —2¥ —y* +ty+a¥ —y+y’

as = _Z(xy) _ y(xy) + Z(:cy) + y(:cy) —y—z+y+z;

ag = —a¥ —z+ 2 +a2¥ —2Y + 2

as = —y—x + Y — y—y—z—i-y-i-z + $—y—z+y+z + y—y—z-l-y-‘rz;

ag=—-y—c+y—y ++y*;
a7 = _Z—y-i-:c-i-y _ y—y-i-:c-i-y + Z—y-i-:c-i-y + y—y-i-:c-i-y —y—z+y+z;

ag=—-y—c+y—z+2Y—y+rx+y—2Y+z

bp=—a+z—2"—x+a¥+ 2%
b3 — _z—y-i-x-i—y_‘_z:c;
by=—-y+y" —2"—y" +y+2%

b5 =—y—x + y 4+ — x—x-i-z-i-:c o y—x-i-z—i-x + x—:c—i—z-i—:c + y—x-i-z—i-x;

bg =—a¥—z+2¥—c+z2+u;

b7 — _x—x—y-l-:c-i-y_Z—x—y-i—:c-i—y_’_x—:c—y—i-x—i-y_x_’_z_i_x;
bs=—y+y' ' —r—z+z—y"'+y—x+z2+;

Cl = —xr—2z + x _|_ y — Z(yz) — $(yz) _|_ Z(yz) + ;E(yz);
c=——c+2" -y -2 +r+y5

cgz_y—x+z+x+yz,

cp=—-2"4z—y  —z+ 2"+ 97

C5=—T— 2+ T+ z—z FHYTE _ g#HUTE 4 ot 4 gty
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c6=—r+2°—z—y+z—a*+tr—z+y+z;

cr = _Z—z—m—i-z—l—m _ y—z—w—l—z—i-w + Z—z—w—l—z—i—w —z24y+ 2z

cg=—2"—y+2"—z+y+=z

The checking shows that none of identities (8.3.1) holds for free objects in Gr®. The same is true for
the category Gr¢, since Condition 1 represents any element x by a combination of elements with base
element z, and therefore Condition 1 does not help any of identities (8.3.1) to hold in Gr¢. Nevertheless
we cannot claim that we do not have identities between round and square brackets in Gr® or in Gr€.
The same situation is observed for Gr; by definition, here we have two identities from (8.3.1); these
are Condition 2 and Condition 3 (for i = j = k = 1 and ¢ = j = k = 2). Note also that we may
have identities in Gr that do not give new identities for W (F') (where F' is a free group and W (F)
is the corresponding Lie algebra), but “variations” (with square brackets) of these identities in Gr*
(or in Gr) may give new identities in LL(G), for a free object G' € Gr°, since, e.g., in W(G) we have
(z,7) =0, but in LL(G), [Z,7] #0, z € G.

Let G be a free object in Gr. Let E be the set of all defining identities between both kinds of
brackets in Gr, and let E be the set of corresponding identities that satisfies LL(G) and thus the
identities inherited from E.

Denote by LI the full subcategory of LI consisting of those objects of LI that satisfy the conditions
from E. Of course, among the identities in E we have the bilinear properties of [, ] and ( , ), the
identity (x,z) = 0, the Jacobi identity

((z,9),2) + ((y.2),2) + ((2,2),y) =0,
the Leibniz identity
[a:, [y,z]] = [[x,y],z] — [[x,z],y], (8.3.2)
and also the identities

[':Ev (y,Z)] [(:c,y),z] - [(.ﬁL‘,Z),y],

(':Ev [y7 Z]) = ([$7 y]v Z) - ([1’, Z]v y)
which correspond to the known identities for round and square brackets in Gr and Gr®, respectively,
Conditions 1’, 2, and 3 in Gr®.

For the case of Ab®, for a free object G € Ab®, E contains the usual identities (8.1.1) and only
one additional identity, Condition 1’ (see Chap. 7, Sec. 7.3); by virtue of Proposition 8.1.13 the set
of all defining identities E (which satisfy the elements of L(G)) consists of identity (8.3.2), bilinear
properties of the square bracket operation, and of the identity [z,0] = [0,z] = 0. See also the remark
after the proof of Proposition 8.1.13.

Proposition 8.3.1. Let G € Gr, G,, = [Gy,_1,G] for n > 1, where G1 = G, and G, = Gy /Gpi1. If
G is the free object in Gr generated by the set X, then G4 is the free abelian group generated by the
same set X, and every element of G, n > 1 has a representation as a combination of elements of the
form

(- (@ (@ [(@720072D)] )] T)] - T (8.3.3)

(n — 1 round or square brackets), where x,y1,...,yn—1 € X, and this representation is unique up to
identities from E.

Proof. Tt is obvious that G; = G1/Gs is the free abelian group on the set X. We have Gy = [G1, G1],
and, by definition, Go is an ideal of G generated by elements of the form [(g,h)] (here we mean

elements of both forms [g, k] and (g, h)), g,h € G. Since G is a free object in Gr, we have
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where z;,y; € X, i =1,n, j = 1,k. Then by (8.1.2) and (8.1.3) we obtain that [(g, k)] has the form

O
(g, )] = [, 97)] (8.3.4)
0.
here for a € G, @~ means that the action operations represented by [ include also actions by conju-
gation. Now we have to show that if ¢, 1, %y € G and have form (8.3.4), then t9, t*, [g, ], t; + to have
the same form for g € G. It is obvious that ¢9, t*, and ¢; + t5 have form (8.3.4). For [g,t] we have the
representation
]

0.0 = 3 [P [6R00)]

Lijg
If we open one bracket (square or round, as in the representation) in each summand

oo .o, W)
[a:i,yj]——a:i +x,77, (835)
0O 0 O (yjl-:l) o
(1’7; » Yi ) = —Z; +$7, )

and then apply (8.1.2) and (8.1.3), we will see that [(g,t)] has the representation of the form (8.3.4).
We have [(g,t)] = 0 in Ga, since [(g,t)] € G3, and this is also obvious from (8.3.5) and the fact that

0 _
T; = azgyj) in Gy for z; € G9. In the same way we prove that the elements of G3 = [G2,G] have

representations of the form

g

3 [(zgﬁx?,y?ﬂg)] ,

where for a,b € G, [(a,b)] denotes elements either of the form [(a,b)] or of the form [(b,a)].
Suppose that the elements of G,,_1 can be represented as Z-combinations of the elements of the

form
O o

[( [([(QE, [(yg, [([(J:D,yllj)]g,ylgj )]D)]...)],ya)]g... ,yg—z)]g

Then we obtain the corresponding result for G,,. These representations are unique up to identities
from E. From this it follows that the elements of G, are combinations with coefficients from Z of

— o __
elements of the form (8.3.3). Since E is the set of all identities in L(G) = > G, these representations
n=1
of elements of G,, are unique up to identities from E. O

From Proposition 8.3.1 follows the main result.

Theorem 8.3.2. Let G be a free object in Gr on the set X. Then the Lie-Leibniz algebra LL(G) is
a free object in the category LIL on the set X.

In the same way, applying Proposition 8.1.13 we obtain

Theorem 8.3.3. Let G be a free object in Ab® generated by the set X. Then L(G) is a free Leibniz
algebra on the set X.

Corollary 8.3.4. Any free Leibniz algebra can be obtained up to an isomorphism by the functor L;
i.e., for any free Leibniz algebra A there is an object G € Ab® such that L(G) ~ A.

Proof. Let A be the free Leibniz algebra on the set X. Take the free object G in Ab® on the set
X. Now, by Theorem 8.3.3, L(G) is the free Leibniz algebra generated by the set X, and therefore
L(G) = A. O
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Consider the restriction LL‘@. It is obvious that LL|@ factors through LL. Thus we have the
commutative diagram

Gr° > Gr LL
LL|
I
LL
LL.

Corollary 8.3.5. Any free Leibniz algebra A can be considered as an object of LI, i.e., E2(A) € LL.

Proof. Tt follows from Corollary 8.3.4 and the fact that Ab°C—— Gr and F»-L = LL| Abe = L| Abe*
O

Corollary 8.3.6. There is a full embedding functor Fs : Leibniz — LIL such that IEy = E»; the
functor So = Sol is a left adjoint to E>.

Proof. Let A be any Leibniz algebra; choose a free Leibniz algebra F4 on the basis A and an epimor-
phism Fy — A. We have Ey(F4) € LL by Corollary 8.3.5 and Ey(A) € LL; from this it follows that
the elements of A also satisfy identities from E; thus Ey(A4) € LL, which means that there is a full
embedding functor Ej : Leibniz—s LL with IEy = Ey. It is easy to see that S5 is a left adjoint to
E,. O

Applying Witt’s theorem stating that the functor W takes free objects from Gr to free objects in
Lie, we obtain the following results.

Corollary 8.3.7. Any free Lie algebra can be obtained up to isomorphism by the functor W.

Corollary 8.3.8. Any free Lie algebra A can be considered as an object of LL either with tm’vﬁal
square bmiket operation or with the square bracket equal to the round bracket, i.e., E1(A) € LL,
Ell(A) e LL.

Corollary 8.3.9. There are full embedding functors E1, E'y : Lie — I[TL_such that IE, = Ei and
IE', = E{; the functor S1 = S11 is a left adjoint to E1 and the functor S’y = Si'I is a left adjoint

to Ell .
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Thus we have the diagram

Q1
T
E 2
A C
Q,
E T
Ab® Q2 Gr
A
C
L LL LL 5 w (836)
— El
o Ea — By .
Leibniz LIL Lie
§2 §1 ’
E2 E1
I
52 /

LL

where A = A|@, E is the obvious full embedding, (i.e., it is clear that E factors through Gr),
Q, = Qi|@, 1 =1,2. Since Conditions 2 and 3 are satisfied for groups with trivial action or action by

conjugation, it follox_vs that_ T and C factor through Gr; this gives the functors T and C. @, and Q,
are left adjoints to T and C' respectively.

Corollary 8.3.10. For free objects in Gr the left and right directional diagrams in (8.3.6) commute
up to an isomorphism, i.e., if G is a free object in Gr, then

W@, ~ 5 IL(G) = 8 LL|(G),

WQQ ~ ?1 ,E(G) = Sl/ LL|@(G)
Proof. Tt is sufficient to mention that the functors A, So, Q1, Q2, S1, S take free objects to free
objects and the new obtained objects are free on the same sets as the original ones. This fact can

be shown directly or by the analogous argument that we have used in the remark at the end of the
Sec. 8.2. O

It may be useful to formulate the result concerning free Leibniz algebras in the following form.

Corollary 8.3.11. The composites of functors So LL, L A : Gr — Leibniz take free objects from

@2 free Leibniz ﬁlgebms, and for any free Leibniz algebra A there is a free object G € Gr with
Se LL(G) =~ A~ L A(G).

Let V : LL — Leibniz be the obvious forgetful functor. The following commutative diagram,
which is obtained from the above stated results, was suggested by the referee of the paper [38]:

Gr c Gr

o e

LLie —— LLeibniz,
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where LLie — LLeibniz is an obvious inclusion functor.

These results together with Theorem 7.3.6 of Chap. 7 give E. Witt’s well-known construction for
groups with action on itself and prove an analogue of Witt’s theorem for this special kind of groups
and Leibniz algebras, which give a solution to the problems of J.-L. Loday stated in [62, 64].

CHAPTER 9

HOMOTOPICAL AND CATEGORICAL PROPERTIES OF CHAIN
FUNCTORS

The material presented in this chapter emphasizes more the algebraic aspects of the category of
chain functors €h in comparison to [6], where we tried to explain the close analogy with the case
of topological spaces or simplicial sets. The objective of [6] is the verification of the closed model
properties of Quillen, CM2) — CM5). Property CH1), the existence of finite limits and colimits, is
not fulfilled in €h. Although not every mapping f € €h(A., B,) in the category of chain functors
admits a kernel or a cokernel, we prove that all cofibrations have a cokernel, all regular fibrations have
a kernel, and the pushout of a cofibration along a cofibration exists in €h, resp. the dual statement
for fibrations. These results are applied in [8]. In Sec. 9.7 we include some basic material about chain
functors.

9.1. The Closed Model Properties of ¢Ch

Recall that a mapping p € Ch(E,, B,) in the category of chain functors is called regular whenever
it commutes with x, ¢, and the chain homotopies pr ~ 1, jup ~ [ (see Sec. 9.7 for the definition
of a chain functor). In what follows we will deal with regular injective mappings of chain functors
A,>—— B. We will often call this kind of injections “inclusions” and denote it by A,“—— B,.

We briefly record the closed model structure for €h from [6]:

(1) The weak equivalences are the homotopy equivalences.

(2) A cofibration ¢ : A, — B, is an inclusion satisfying the homotopy extension property ([6,
Definition 4.1]).

(3) A fibration p : E, — B, is a mapping having the lifting property with respect to all trivial
cofibrations, i.e., to all cofibrations that are also weak equivalences.

In ¢h we have a cylinder object K, x I and a cocylinder object K1, K, € &h ([6, § 1]).
In particular:
Lemma 9.1.1.
(1) The inclusion ig : K, — K, x I is a trivial cofibration.
(2) The projection py : KI — K, is a trivial fibration.
(3) All objects in €h are fibrant and cofibrant.
Proof. Assertions (1) and (2) follow from [6, example on p. 114 and § 1, Lemma 3.5]. The inclusion

{0} C A, will be a cofibration because A,, splits on each level n € Z, A,, = A,, ® {0} (cf. [6, Lemma
4.4]). The projection p : A, — {0} has the lifting property with respect to any trivial cofibration

q: B, _c. C. : According to [6, Lemma 4.8], there exists a s : C, — B, satisfying s¢ = 1. So the
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commutative square

B, — C,
has a lifting F : C, — A,F = fs, satisfying Fq = f, Fp = 0. O
Lemma 9.1.2. Let q: A,“——= B, be an inclusion in Ch; then the following properties of q are
equivalent:
(1) Let j € €h(B,UA, x I,B, x I) be the inclusion; then there exists
r € Ch(B, xI,B,UA, xI)
satisfying rj = 1.
(2) Let
L!-2.r, (9.1.1)
of lo
A, — B,
be commutative, L, € C€h; then there exists a lifting G : B, — L,!, rendering (9.1.1) commu-
tative.

(3) For every B,(X,U) (B (X,U)) there exists a natural isomorphism as an abelian group (not
necessarily as a chain complez!), B,(X,U) =~ A, (X,U) & C,(X,U), resp. for B (X,U).

(4) q is a cofibration.
Proof. Follows from [6, Lemmas 4.2, 4.3, 4.4]. O

Lemma 9.1.3. The following properties of a mapping p € Ch(E,, B,) are equivalent

(1) Suppose
E.—'-B,
fT TF K. cch (9.1.2)

20

is commutative; then there exists a diagonal F € €h(K, x I, E.) rendering (9.1.2) commutative.
(2) p is a fibration.

Proof. Property (1) was the definition of a (Hurewicz-) fibration in [6, Definition 3.1]. The assertion
follows from [6, Theorem 5.1]. O

Theorem 9.5.2 in Sec. 9.5 is a dual statement to Lemma 9.1.2, extending Lemma 9.1.3 considerably
for regular fibrations.

Proposition 9.1.4.
(1) Let q: A, C B, be a (trivial) cofibration, then

gxIT:A. xICB,x1I

is a (trivial) cofibration.
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(2) Let p: E, — B, be a (trivial) fibration, then
pI B — B!
is a (trivial) fibration.

Proof. (1) Since ¢ is a cofibration, there exists a levelwise isomorphism B, (X,U) ~ A,(X,U) &
Cn(X,U) as described in Lemma 9.1.2 3). This induces a splitting

(By x Dy (X,U) ~ (A x Dn(X,U) ® Co(X,U)

for suitable, obviously existing 6n, with the same properties. Hence ¢ x I is a cofibration. If ¢ is a weak
equivalence, there exist s : B, — A, homotopies H : qs ~ 1, G : s¢ ~ 1. Forming s x I, HxI,Gx I
yields a homotopy inverse to ¢ x I.

(2) Let g : A, C C\ be a trivial cofibration,

s I
E!l ".B, (9.1.3)

1 E

A* —>C*
q

be commutative; then the adjoint diagram

B, (9.1.4)

|7

A, xI ——=C,. x1I
qxI

is also commutative, ¢ x I according to (1) is a trivial cofibration, hence there exists a diagonal

F:C, x I — E,, rendering (9.1.4) commutative. So the adjoint F:C, —E/isa diagonal for
(9.1.3). The remaining part of 2) follows, e.g., by replacing trivial cofibrations in the previous proof
by arbitrary ones. O

We include an algebraic proof of the following assertion.

Lemma 9.1.5. Let p: A, xI — cone A, be the projection; then there exists a o : cone A, — A, x T
satisfying

po =1, (9.1.5)
gr+op=1 (9.1.6)
with A, LA* x I —= A, , r(a,,an_1,a,) = ap' + ay,.
Proof. Recall that cone A, is defined in dimension n as

{(an—laan) | A € Am}a (A* X I)n = {(an/aan—laan)}§
then we set
U(an—laan) = (_anyan—lyan)
and realize that o € €h(cone A, A, x I) satisfies (9.1.5) and (9.1.6). O

From this, we deduce immediately

Corollary 9.1.6. pg :K*I — K, is a trivial fibration.
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Proof. pg is by construction a weak equivalence. There is a section s : K, — K W ,po s =1. Let

K- K, (9.1.7)

be a commutative square; then
F = fr+sFop
is a diagonal, rendering (9.1.7) commutative. Applying Lemma 9.1.3 p is a fibration. U

There exists in €h a canonical suspension YA, (resp. loop object QA,); XA, is the cokernel of the
mapping

A*@A*%A* x [ —= YA, ,
while QA, is the kernel of the projection

OA, AT A A, .

As in all categories with Z-graded objects, we have another kind of suspension (resp. loop construction)
(EA*)n = An—h
(ﬁA*)n = An+1-

Lemma 9.1.7. Suspension and loop functor are in the homotopy category €hy, inverses of each other.

Proof. This is simply the content of [6, Lemma 8.1, Theorem 8.2]. O

According to [6] the category of chain functors with the above given classes of weak equivalences,
cofibrations and fibrations satisfies Quillen’s axioms CM2) — CM5), also by Corollary 6.2 (resp. Corol-
lary 7.2), the decompositions in the decomposition axiom CM5) for €h are canonical.

Furthermore €h belongs to the class of categories where the whole model structure, i.e., the class of
fibrations, cofibrations, and weak equivalences, is entirely determined by the concept of a homotopy
H:K,xI— L, (resp. by its adjoint G : K, — L*I), i.e., by the cylinder construction and its dual.
This follows from the fact that weak equivalences are homotopy equivalences and from Lemma 9.1.2(3)
(resp. Lemma 9.1.3).

9.2. The Chain Functor Property of a Special Pushout

Since the category €h does not have arbitrary (co-)limits, we are obliged to investigate separately
in each case whether a kernel or cokernel exists. In the present section we prove that for a regular
injection ¢ : A, — B, the pushout B, Ucone A, = P, carries the structure of a chain functor. Since
P, is also a cokernel, this is a special case of the existence of a cokernel (Theorem 9.3.1 in the next
section). This and some other results will be deduced from Theorem 9.2.1. Therefore we present a
detailed proof of Theorem 9.2.1. The axioms for a chain functor CH1) — CHT) are recorded in Sec. 9.7.

Let ¢:A,“—— B, be an inclusion in €h; then we form the pushout

P, =B, Uy, cone A,

Theorem 9.2.1. P, is a chain functor.
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Proof. We verify properties CH1) — CH7) and begin by defining
P! = B, U cone A,

with natural inclusions [ : P, C P,, ¢ : P,(U) C P.(X,U). Since by assumption s, ¢ and the related
homotopies ¢r ~ 1, jup ~ 1 in A, are the restrictions of the associated items in B,, we obtain all
this for P,. We have ki = /. All inclusions k : (X,U) C (Y, B) induce monomorphisms for A, and
B, hence also for P,, and P,(X, X) is clearly acyclic.

This confirms CH1) and CH2).

Ad CH3): Any cycle z € P.(X,U) is of the form ¢ — z,Z € cone Ay, c € B,(X,U), with dc = dz =
z € Ay —— cone A, (interpreting the injection A, — cone A,, as always, as an inclusion). We
apply Lemma 9.7.5 and detect

(1) a2’ € AL(X,U), a1 € A«(U,U) such that 2’ 4+ gpai1 ~ 2z, ¢ : (U,U) C (X,U) in A, (X,U);

(2) ac € B,(X,U) such that I +quas = c+dw, az € B,(U,U), w € B.(X,U), all (/\) € cone A,.
We have

c—zZ=c—(IZ' +qpa2) + dv =1(d —Z') + qu(az — a2) + d(v — w).

This confirms CH3) for P,.

Ad CH4): Kervy C Kerd :

Suppose I2' + gpa =dw in Py, 2’ = zp+7',a =ap+a, w=wp+w, (---)p € By, (/\) € cone A,;
then dz’ = egp+e € P.(U), ep € B.(U), € € cone A, (U). We have
lZ/B + quap — dwp = —(l/Z\/ +qua) +dw = Z114,

and deduce that 2} € A,(X,U). Since dz} € A.(X,U) N (cone A.(U)), we conclude dz} € A.(U).
Hence we obtain an @ € A,(U,U) such that z4 = 2z} + ¢4a is a cycle in A,(X,U), which according to
CH3) for A,, implies that

ZA = lzf4 + q#a% + dwy,
125 + q#(ap + @) — dwp = za
and
(2 — 24) + qulap — @ — dy) = dvp.
According to CH4) for B, we obtain

d(zp — 24) =14 dup, wup € B.(U)

and
d2y =i ug =14 dua, wua € Ai(U), 4 € cone A (U).
As a result
dzly =1 d(ug — Ua)
and

d2 = d2y +dZ =i dlup — ua +7),
i'dz = dz.
This confirms the first part of CH4) for P,.
Ker j, C Ker py Ky :

Suppose juz = dw, z = zp + 2z, w = wp + wW. We are required to find a u € P,(U), 2’ € P.(X,U)
such that k2 = i’ u+ da’. This will be accomplished by changing z several times in its homology class
in P,.
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1) We want to change z such that dzp is not only contained in A,(X) but in Imiy.
To this end we observe that dzp € A,(X), hence jyzp € A.(X,U), and conclude t = dwp — jyzp €
A (X,U) and dwp € A(X,U). So dt = judzp and according to CH4) for A, we obtain

kdzp =i ua +dx'y, wa € AL(U), 24 € A(X,U).

Application of ¢ yields
dzp =ipus +dya, yac€ AL (X).

As a result there exists an Z such that
zp—ya+x=zZgp~z in P,

but now with dzp € Imix.
So we can from now on assume without loss of generality that dzp € Imiy and that Z is the cone
over d zg in cone A..

2) We calculate
J#z —dwp = jyzp —dwp + jpz = dw = juZ + e,

e € A(X,U), de € Imiy. Property CH3) for A, allows us to assume that e € A, (X, U) hence we can
apply ¢ and obtain a € € A,(X), such that jx(zp —€) — dwip = 0, with suitable wip € B,(X,U). So
zp — € € By(X) is a cycle that is in P, (not in B,) homologous to z: z — (zp —€) = Z+ € is a cycle
in cone A, hence bounding in P,.
Property CH4) for B, yields a up € B,(U) and a 2/ € B} (X, U) such that k(zp —€) =i’ up+da's.
This confirms the second part of CH4) for P,.

Ad CHS5): Is obvious.

Ad CH6): Suppose p: (X,U) — (Y, V), as an excision map, is an isomorphism in the homology
of B, and A,. Let € € B,(X,U) be a cycle such that pye = dw, w € B,(Y,V). Then we find a
W € By(X,U), such that € = dw, pyW = w + dz.

If on the other hand, e € B.(Y,V) is a cycle, then there exists a cycle € € B,(X,U), such that
py€ = e + dx. The same is true for A,

Let z = zp + 2z € Py(X,U) be a cycle; then dzp = —dz € A,(X,U). Assume now that pyz is
bounding, hence that pyz = dwp + dw. There exists a t € A, (Y, V) such that pyzp —t is a bounding
cycle. Hence there exists a ¢t € A,(X,U) such that zp —t is a bounding cycle. This is equivalent to
z ~ 0. So p, for P, is monic.

Let z = zp + Z be a cycle in P,(Y,V); then we find a Zp € B,(X,U), such that py dzZp ~ dzp, i.e.,
an s € A, (X,U) with ds = pydzZp — dzp and a x € B,(X,U), such that dz = pyZp — zp — s.

This confirms that p, for P, is epic.

Ad CHT): Is obvious by construction of the cone A, and P,.
This completes the proof of Theorem 9.2.1. O

There are of course other colimits that exist trivially in €h:

Lemma 9.2.2. Any family of chain functors {A%, ¢+ € J} has a direct sum @A in €h. This is
eJ
simply the direct sum of the chain complexes involved, and the other ingredients of a chain functor are

taken for each summand.
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9.3. Cokernels of Cofibrations
In this section we deduce the existence of a cokernel B, /A, for a cofibration ¢: A,“— B, .

Theorem 9.3.1. Let q: A.“—— B, be a cofibration in Ch; then the chain complex functor B, /A,
can be equipped with the structure of a chain functor, so that r : B, — B, /A, is a cokernel.

Proof. We apply Theorem 9.2.1 ensuring that P, = B, U cone A, is a chain functor and observe that
s: P, — B,/A, induces an isomorphism of homology groups. Since ¢ is a cofibration, there exists,
due to Lemma 9.1.2, a splitting B, = A,, ® A,, for each n, which is not a splitting of chain complexes.
Setting da = @, + a1, a1 € A,_1, @1 € Ay, d[@) = [@1], we endow B, /A, with the structure of a free
chain functor functorially. Assume that
(B./A.) = {[/]| ¥ € BL}.

Since ¢, k and the chain homotopies ¢x ~ 1, ju ¢ ~ [ are preserved by ¢, we obtain induced mappings
0 (Bye/A)(X,U) — (By/A)«(X), k: (By/AL)«(X) — (By/A,),(X,U), chain homotopies ¢k =~
1, jup ~1: (By/A,) C (By/A,) as well as a natural i’ : (By/A.)«(U) — (By/AL)L(X,U) satisfying
ki = 1. This confirms property CH1).

Ad CH2): An inclusion k : (X,U) C (Y, V) induces a monomorphism for B, and A, hence for A,.
Suppose

k‘#al = k‘#EQ +a, a€ Ay
then a = ky (@1 — @) = 0, hence @, = a.

Suppose [c] € (By/A)«(X,X) is a cycle, hence dc € A,; then there exists an a € A, such that
da = dec. So z = c¢—ais a cycle in (By/A.)«(X,X), hence bounding, confirming that [¢] ~ 0 in
(B./A). (X, X).

Ad CH3): Let [z] € (B«/AL)«(X,U) be a cycle; then dz = z4 € A,,_1, hence by the acyclicity of
cone A, we obtain a T4 € cone A, with dz4 = z4. So z— T4 is a cycle in P,. Condition CH3) for P,
provides us with chains

z2—Ta~1Z +qub=12+qub+7,

—_~

(--+) € Ps, ¢ € cone Ay. So we conclude
2]~ L) + ag B,
confirming CH3) for (B./A.).
Ad CH4): Suppose | 2 4+ gy b = dw + a, a € A,. Since da = 0, there exists 7, € cone A, with

dz, = a, hence | 2 + g4 b = d(w + Z,). Due to CH4) for P,, we obtain a u € P,(U), such that
dz' = du = d(u+¢), ¢ € cone A,. This confirms

Ker 9 C Ker 0

for (B./A.).

Suppose jg [c] = d[w], j : X C (X,U), da € A,. Then there exists a @ € cone A,, such that
da = dc. On the other hand jy ¢ = dw + ay, hence ju zZ = ju ¢ — ju @ = dw + a1 — jx a, hence
J# Z = dw + a, Z a cycle in P,. Since a is a cycle, there exists a ay € cone A,, such that das = a.
Application of CH4) to P, furnishes

kz=7iu+dy,
v e P(X,U),ue P(U),u=u+0,y =y +7. As a result
k(c) =i u+dy +e, e€ coneA,
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confirming
Ker j, C Ker p, K«
for (B./A.).
Ad CHS5): Is obvious.
Ad CHG6): Holds for P,, hence for (B, /A,) because s, is an isomorphism of homology groups.

CHT): Follows, as already mentioned, from the natural splitting of B, on each level n. O

The following assertion confirms the existence of a certain pushout. It will become crucial for the
verification of the Quillen axiom SM7 for the model structure under discussion [8].

Theorem 9.3.2. Let 1 : Ax — By, q2 : A — C be cofibrations in €h; then B, Uy, Cyx = D, is a
chain functor.

Proof. K, = {(a,—a) | a € Ay} C B, ® C, can immediately be equipped with the structure of a
chain functor. We assert:
(1) The inclusion o : K, C A, ® Ay is a cofibration.

Proof. We must display a natural retraction of K, C A, @& A, on each level n € Z, which respects
Al: Each (a1,a2) € A, ® A, can be written as (a1,a2) = (a1, —a1) + (0,a2 + a1). This defines the
splitting, having all required properties.

The inclusion ¢ ® q2 : A, ® A, C B, ® C, is a cofibration, because g1, go are. Therefore:

(2) The inclusion i : K, C B, ® C, is a cofibration.

Thus we can apply Theorem 9.3.1 to the result that (B, @ C,)/K, = Coker i is a chain functor

(hence contained in €h). However, (B, & C.)/K,. = B, Uy, C.. O
Corollary 9.3.3. Let q1, g2 be as in Theorem 9.3.2; then (B, ® C.) Uk, cone K, is an object of €h.
Proof. Follows from (2) and Theorem 9.2.1. O

We call a pair of functors C, C into the category of chain complexes with inclusion [ : Cl, C C,
having all ingredients of a chain functor (without knowing that they fulfill CH1) — CH7) of Sec. 9.7)
a chain complex functor.

Corollary 9.3.4. Let A., B, A, ® B, be three chain complex functors. If two of them are chain
functors, so is the third.

Proof. Follows from Lemma 9.2.2 and Theorem 9.3.1. O

9.4. Existence of a Particular Pullback

We will call a mapping p € €h(E,, B,) a regular fibration if it is a regular mapping (see Sec. 9.1)
and a fibration.
Let W, be the pullback in the following diagram.

W* —H> B*I
cl lpo . (9.4.1)
E,——B,

p

We have W, = {(e;p(e),b1,2)} = {(e,w) | w(0) =p(e)}, of course with e € E,,, (b,b1,2) € B,, ® B, ®
By, +1, where w is considered as a path with endpoints w(0) = b, w(1) = by (cf. [6, § 1 (7)] concerning
the description of path objects).
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Theorem 9.4.1. Let p € €h be a regular mapping of chain functors; then W, carries the structure
of a chain functor.

Proof. Since p commutes with x, ¢ and the relevant chain homotopies, we have all these items also
for W,. Moreover, W', I, and ¢’ are obvious. All inclusions induce monomorphisms, and W, (X, X)
is acyclic: Let (e;p(e), by, x) € Wi(X, X) be a cycle; then e = de, by = dby, dz = (—1)"*(p(e) — by),
hence
=2+ (~1)"(p(e) — by)

is a cycle in B, (X, X), hence bounding. So there exists a T with dT = z, implying

d(e;p(€), b1, T) = (e;p(e), by, x).
This confirms CH1) and CH2).

Let z = (e;p(e),b1,x) € Wy be a cycle; then de = 0, dby = 0, dv = (—1)"(p(e) — b1). We have
e~lée+qyap, bt ~1b0 +qu a1, dw+ 2z =12+ g4 a, the last according to Lemma 9.7.5. So we
obtain

z~1(e;p(e), by, 2") + qu (ap;p(ar),ar,a) + d(0;0,0,w).
This confirms CH3).
We come to the two parts of CH4):
Ker 9 C Ker 0

Suppose
d(e;p(e),b1,T) = 1(e';p(e), b, 2") + g (am;plar), ap,a)
then de =1 ¢ + gy ag, dby =1 V] + q4 ap,
dz — (=1)"(by —p(@)) =12’ + g4 a = z + dw.
Therefore, de’ = dea, ea € Ey(U), db} = dby, by € By (U). According to Lemma 9.7.5, 1 & + g4 @ =
€+ dwe, db, + qu ap = by + dw,
dF —w) =2+ (—=1)"(p@) = b1) =12’ + ()" (p(E) = ))) + g b, b€ BV, V),
hence there exists a y € B,(U) satisfying
dy = da’ + (=1)"(p(¢’) — b)),
d(ea;plea),bu,y) = d(e'sp(€'), b, ).
This confirms the first part of CH4),
Ker j. C Ker py k..

Suppose

J# (e;p(e), by, x) = d(@; p(€), u, w).
First we observe that we have an embedding W, () C (B, @ B.1)(-). Let a = (e;b,b1,2) € (E.®B.1)(")
be any element; then we can write

a=(e;pe),br,x) + (0;b—p(e),0,0) =a + ag, @€ W,.

We know that (E, © B! ) is a chain functor, hence the derived homology sequence is exact. So, if
j# z = dw in W, we find elements @ € (E. @ B.").(U), T € (E. ® B,!).(X) satisfying z =i u + d7 =
s U+ dx +iu ug + dxg. So

Z = (ez§p(ez)ablmmz)a u = (eu§p(eu)ab1uaxu)a dr = (ez§p(ez)7blzav:c)
Setting z — iy v — dr = p = iy up + dzg = (0;¢,0,0) gives

€; — iy €y — ep = 0;
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but
ple; +iy ey —ey) =c=0.
Therefore z = i4 u + dx. By applying x we obtain
kz =1 u+ dkx

which was the assertion. This confirms CH4).
All remaining properties of a chain functor are left to the reader, because their proofs are either
technical or they are immediate. O

We will need another pullback, which is dual to B, U cone A,. To this end define A*(I 0) At
consisting of those paths with fixed endpoint 0, i.e., 4,79 = {w | w(0) =0} = {(0,¢,2)} = Ker po,
(0,¢,2) € A, @ A, @ Ayt using the terminology of [6, § 1]. We have a mapping 7 : ALY A,
by taking the endpoint of a path, i.e., 7(0,¢,2) = c¢. This is immediately seen to be a mapping of
chain functors. The fact that A*(I 0) carries the structure of a chain functor is left to the reader. All
structural maps are inherited from A,”. We obtain again a pullback diagram

W, L>B* 1,0)
cl lw . (9.4.2)
E. B,

P

and realize that
W, = {(e:0,p(e),2)} = {(e;) | w(0) =0, w(1) = p(e) }.

We claim:

Theorem 9.4.2. Let p € Ch be a regular mapping of chain functors; the pullback W, in (9.4.2)
carries the structure of a chain functor.

Proof. The proof consists in a precise repetition of the proof of Theorem 9.4.1 in this new situation,
where an element has now the form (e; 0, p(e), z). That makes the steps even simpler than in the proof
of Theorem 9.4.1. O

We need more informations about B*(I 0).

Lemma 9.4.3. B*(I’O) is acyclic.
Proof. There are natural chain homotopies 0 ~ 1 : B, (10— B,(L0) that are standard for chain
complexes, carrying over immediately to the structure of a chain functor, i.e., they commute with [

and 7. O

There is another description of W, in Theorem 9.4.2. We know already that W, is a chain functor
and that B9 is a chain functor; we do not know yet that Ker p for a regular fibration p is a chain
functor, although we are able to define

(Ker p) =Ker pNnE,, [:(Ker p)(X,U)C (Ker p)(X,U), i :(Ker p)(U)C (Ker p)(X,U)

as well as k, ¢, and the associated chain homotopies, which are inherited from FEi.
Therefore we formulate the following lemma for chain complex functors:

Lemma 9.4.4. Let W, be the pullback in the diagram (9.4.2), where p is a regular fibration. There
is an isomorphism of chain complex functors

W, —= Ker p® B0, (9.4.3)
B
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These mappings o and 3 commute with | and i (i.e., they are candidates for mappings of chain
functors).

Proof. Instead of a purely categorical proof, using the general properties of chain complex functors,
we present a direct proof that describes the relevant mappings explicitly. We have a commutative
diagram

OT Tw , (9.4.4)

B*O B*(I,O)
q

where BY = 0 denotes simply the zero path in B, and q is a trivial cofibration (observe that, according
to Lemma 9.4.3, B9 ig contractible). So there exists a lifting 7 : B9 _ B, rendering (9.4.4)
commutative. We set T(w) = e, p(e,) = m(w) and observe that de, = €4y, €w,+ws = €w;, + €wy, and
that for f: (X,U) — (Y, B), f4 ew = €f,0-

Now we are able to define

ale,w) = (e —€y,w), Pla,w) = (T +ey,w).
It is easy to verify that «, § display the compatibility properties mentioned in the assertion and that
B a=1, a B =1. This completes the proof of the lemma. O

9.5. Kernels of Regular Fibrations

The kernel of any regular fibration can be endowed with the structure of a chain functor. Hence:

Theorem 9.5.1. FEwvery regular fibration p has a kernel
Ker p——F, P B, .

Proof. We have already equipped Ker p with the structural ingredients of a chain functor (cf. Lemma
9.4.4). The assertion now follows from Corollary 9.3.4, Theorem 9.4.2, and Lemma 9.4.4. ]

The following theorem is the perfect dual to Lemma 9.1.2 for regular fibrations.

Theorem 9.5.2. The following properties of a reqular mapping p : B, — B, are equivalent:
1) p is a regular fibration.

2) Each commutative square

E.—2 - B,
fT TF ., K,eccn (9.5.1)

20

admits a diagonal F : K, x I — E, rendering the square commutative.

3) Let W, be the pullback of Theorem 9.4.1, j : E.) — W, j(v) = (1(0),p’ (v)); then there exists
as: W, —>E*I, with j s = 1.

4) p induces a levelwise isomorphism E,, ~ B, © By, which is natural and commutes with | and i’

(i.e., B/, = B}, @ E;L); thus p is surjective and has a natural levelwise section which commutes
with | and .
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Proof. The equivalence of 1) and 2) (even for non-regular p) is the subject of Lemma 9.1.3.
1) = 3) : Observe firstly that j (as originating from a pullback diagram for W) is completely
determined by po = € j, po: EL — E,, 11 j = p’. Now consider the commutative diagram

E,— B, (9.5.2)

CT Tﬁ

W*%W* x I
io

which has a lifting s : W, x I — E,, hence the adjoint s : W, — E.'. Since ps = 1 we deduce
p! s = p. Since 59 = pg s we deduce py s =, po : Ei — E,. So (js =(, ujs = u, implying js = 1.
3) = 1) : Suppose that

E.—Y -B,
fT TF . C.ec¢h (9.5.3)
0

is commutative. We want to deduce the existence of a diagonal F : C, x I — E, from the existence of
an s : W, — E,! with js = 1. Let F:C, — B! be a mapping of chain functors adjoint to F. The
pair (f, FV) defines a unique mapping h : C, — W, with uh = F,Ch=f. Let F=sh:C.,xI — E,
be the adjoint of sh : C, — EL. We must show that pF' = F, Fig = f. From the naturality of the
adjunction isomorphism

Hom(C, x I,E,) ~ Hom(C,.El),

it follows that p sh = F is equivalent to p! sh = F ﬂvhich holds because p! s = pand p h = F. On
the other hand, the adjunction isomorphism yields sh i = p{’ sh, implying

Fig=shig=pb sh=_jsh=Ch=f.
3) = 4) : Recall that
Wy, = {(e;p(e),b,y)}

and that there is a projection p : W,, — BT, so that nj = p!. We want to construct a t,, : By, — F,
such that p, t, = 1. So we define o, : B,, — W, by

an(bn) = (0;0,bn,0),
which is functorial, compatible with [, but not with boundaries. Set

tn(bn) = p1 Sn an(by)
It is now immediate to verify that p, ¢, = 1 and that ¢, has the same compatibility properties like
an;I) =—> 3) : Suppose we have a t, : B, — E,, as before, then we construct s : W, — E." with
js =1 by setting

sn(en;pen), bn, bpt1) =
= (en,en — tn Pulen) + (= 1) [d(tni1 (bng1)) — tn d(bpi1)] + ta(bp), tng1 (bns))-

It turns out that 1) s € Ch(W,,E.') and 2) js = ly,. The calculations asserting this fact are
straightforward. O

Corollary 9.5.3.
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1) Let p: E, — B, be a regular mapping, admitting a section s : B, — E,, ps = 1; then p is a

fibration.
2) Let q : A, — B, be a regular mapping and r : B, — A, be such that rq = 1; then q is a
cofibration.
Proof. Follows from 9.5.2. 4) resp. 9.1.2. 3). O

We have, concerning j in Theorem 9.5.2. 3),
Corollary 9.5.4. If p is a reqular fibration, then the mapping j is a regqular fibration.
Proof. Follows because if p is a fibration, j has a section. The regularity of j is immediate. O
Theorem 9.3.2 has of course a dual:
Theorem 9.5.5. Let 7; : E; . — By, i = 1,2 be reqular fibrations, then there exists in €h a pullback
P, —— FE;.
s 059

Bz =~ B.

Proof. The proof is completely dual to that of Theorem 9.3.2: One has to realize that P, is the kernel
of a regular fibration

172

P*—>E1*@E2* B*@B*T—>B*7
with r(bl, b2) = b1 — bg. |

9.6. Exact Sequences in ¢h
Definition 9.6.1. We call a sequence

A,—.B .0 (9.6.1)
in €h ezxact whenever the following two sequences of chain complexes:

A —-B 2o, (9.6.2)

Ny e (9.6.3)

are exact.
As a result of the characterizations of cofibrations and regular fibrations, we have:

Lemma 9.6.2. Suppose that

0—A, B, .0, ——~0 (9.6.4)

is ezxact (i.e., exact in the sense of Definition 9.6.1 at A, B, and C.); then:

1) « is a cofibration, if and only if B is a regular fibration.
2) C. is the cokernel of a and A, is the kernel of 3.

Proof. 1) is a consequence of the characterization of (co-)fibrations in Lemma 9.1.2 3) (resp. Theo-
rem 9.5.2 4). Assertion 2) is straightforward. O
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Definition 9.6.3. The exact sequence (9.6.4) splits whenever there exists an isomorphism
f:B,—>A,®C, , such that f a = ia, : Ar — A, ®C,, f =ic, B, where iy, ic, : C. —
A, ® C, are coproduct injections.
Proposition 9.6.4. The following properties of the exact sequence (9.6.4) are equivalent:

1) There exists a retraction X\ : B, — Ay satisfying Aa = 1.

2) There ezists a section s : C, — B, satisfying fs = 1.

3) The sequence (9.6.4) is splitting.
Proof. The proof follows entirely the pattern of the classical proof in homological algebra (cf. [86]). O
Proposition 9.6.5. Let q : A, — B, be a cofibration; then there exists an isomorphism of chain

functors
cone A, @ Coker q ~ B, Uy, cone A,.

Proof. We consider the exact sequence in €h
0 —— cone A, . B, Uy, cone A, _P. B./A,.——0, (9.6.5)

with cofibration i (cf. Lemma 9.6.2 2)) which splits:
The commutative square with trivial fibration on the top

cone A, 0 (9.6.6)

| |

cone A, — B, Uy, cone A,
(3

has a diagonal g : B, Uya, cone A, — cone A,. The result follows from Definition 9.6.3 and Proposi-
tion 9.6.4 3). O

9.7. Chain Functors and Associated Homology Theories

In this appendix we present for the convenience of the reader some material about the definition
and the motivation of chain functors without proofs. Concerning details as well as further references,
we refer to [4].

It would be advantageous to define a homology theory h.( ) as the derived homology of a functor

Cy: B — ch;

R = the category on which h, is defined. For us this will be always either a subcategory of the category
of all pairs of topological spaces, or of pairs of spectra or of pairs of CW spaces, of CW spectra, or
their simplicial counterparts. ch denotes the category of chain complexes (i.e., Cx = {C,, d,, n €
Z, d*> =0} € ch).

Let (X, A) € 8 be a pair; then one would like to have an exact sequence (writing C,(X) instead of
C.(X, 2))

i J#
0—Ci(A) ——Cu(X) —=Ci(X,A) —=0 (9.7.1)

such that the associated boundary 0 : H, (Cy(X,A)) — H,_1(C4(A)) induces the boundary O :
hn(X,A) — hyp—1(A) of the homology theory h.( ).

In accordance with [5] we call a homology with this property flat. Due to a result of R. O. Burdick,
P. E. Conner, and E. E. Floyd (see [4] or [3] for further reference) this implies, for & = category of CW

925



pairs, that h,( ) is a sum of ordinary homology theories, i.e., of those satisfying a dimension axiom,
although not necessarily in dimension 0.

We call a functor C, equipped with a short exact sequence (9.7.1), which determines the boundary
operator, a chain theory for h,. The non-existence of such a chain theory gives rise to the theory of
chain functors.

A chain functor C, = {C,,C.,1,i,k,p} is a pair of functors Cy, C, : & — ch, natural inclusions
i': Cu(A) C CL(X,A), L: CL(X,A) C Ci(X,A), and non-natural chain mappings

o1 CLX, A) — Cu(X),
k:Cu(X) — CL(X, A),

satisfying conditions CH1) — CHT) below:

CH1) There ezist (of course in general non-natural) chain homotopies k ~ 1, ju @ ~1 (j :
X C (X, A)), as well as an identity

kig=1i, 1: ACX.

CH2) All inclusions k : (X, A) C (Y,B) are assumed to induce monomorphisms on C,. All
Ci(X, X) are acyclic.

It should be observed that the chain complexes C, (X, A) appearing in (9.7.1) are not identical with
the chain complexes C, (X, A) appearing in a chain functor. The latter have the property that for all
pairs (X, A) one has inclusions Cy(X) = Ci(X,0) C Ci(X,A) C Cu(X, X). These groups cannot be
members of a short exact sequence (9.7.1).

Needless to say, we have that C., as well as ¢, k are not determined by the functor Cy(--- ,---)
but are additional ingredients of the structure of a chain functor.

Instead of the exact sequence (9.7.1), which we have for chain theories in the case of a chain
functors, we are dealing with the sequence

0 —— Cu(A) - O1(X, A) —2 C'(X, A) Jimn i —— 0 (9.7.2)
and there exists a homomorphism

¥ H(CLX, A)/Imi') —= H.(C.(X, A)) (9.7.3)
() [I(') + 44 (@) -

where 2/ € CL(X,A), d2 € im ', q: (A, A) C (X, A), a e C.(A,A), da = —dz'. By this assignment,
1 is readily defined.

CH3) It is assumed that v is epic.

Since C\ (A, A) is acyclic and dz’ € im i, there exists an @ with ¢ (@) = —dI(2’), and [I(2") + ¢4 (a)]
turns out to become independent of the choice of a@.

This assumption implies that each cycle z € Ci (X, A) is homologous to a cycle of the form I(z') +
q4(a), with 2’ being a relative cycle, the analogue of a classical relative cycle z € C\(X) with dz €
im iy, whenever (9.7.1) holds, i.e., whenever we are dealing with a chain theory.

Suppose 0 : H,(CL(X,A)/im i') — H,_1(Cs(A)) is the boundary induced by the exact sequence
(9.7.2).

CH4) We assume
Ker ¢ C Ker 0, (9.7.4)

526



Moreover,
Ker j. C Ker py Ky, (9.7.5)

with ks denoting the homomorphism induced by k for the homology groups; j. and ps have an
analogous meaning.

CHS5) Homotopies H : (X, A) x I — (Y, B) induce chain homotopies D(H) : Ci(X,A) —
Cy11(Y, B) naturally and are compatible with i’ and l.

The derived (or associated) homology of a chain functor
ho(X,A) = H,(Ci(X, A)),

resp. for the induced mappings, is endowed with a boundary operator 0 : H,(Cy(X,A)) —
H,_1(C,(A)), determined by 0:

Given ¢ € H,(C«(X,A)), we choose a lift 2/, which exists by CH3), and a representative 1(z’) +
g4 (@) € ¢, and set

o¢=0[|=['"1d~.

This turns out to be independent of the choices involved.

This h.( ) satisfies all properties of a homology theory eventually with the exception of an excision.
Let us assume that in £ there are some mappings p : (X, A) — (X', A’) serving as excision maps (of
some kind, e.g., p: (X, A) — (X/A,x)). Then it is convenient to add:

CHG) Let p be an excision map; then p, = H,(Cy(p)) is required to be an isomorphism.

This H,(C«( )) = h«( ) turns out to be a homology theory. Moreover, under very general conditions
on K, every homology theory h,( ) is isomorphic to the derived homology of some chain functor (see
[4] for further references).

Let A : C, — Ly, X : C. — L be natural transformations, where C, L, are chain functors,
compatible with i’, [ and the natural homotopies of CH5); then we call X\ : C« — L, a mapping
or a transformation of chain functors. Such a transformation induces obviously a transformation
A ¢ Hyo(Cy) — H,(Lx) of the derived homology. This furnishes a category €h of chain functors. A
weak equivalence in €h is a A : Cy — L, which has a homotopy inverse.

Furthermore, we can introduce the homotopy category €h; with chain homotopy classes of trans-
formations of chain functors as morphisms.

In order to establish all this, it becomes necessary sometimes to assume that a chain functor C,
satisfies:

CHT) All chain complexes Cy (X, A) are free (i.e., all Cn(X, A) are free abelian groups) with natural
basis b.

However, this is not a severe restriction as the following lemma ensures:

Lemma 9.7.1 ([6, Lemma 9.1]). To any chain functor Cy (satisfying CH1)- CHG6)) there exists a
canonically defined chain functor L, and a transformation of chain functors A : Ly — C, compatible
with ¢ and Kk, inducing an isomorphism of homology, such that:

L1) All L.(X,A) have a natural basis b in all dimensions;

L2) beb=dbeb; bcb—=—1i(b) €b, I(b) € b, whenever this is defined and makes sense;

L3) For every homology class ¢ € H,(Cy(X,A)) there exists a basic (with respect to the basis in
L1)) z € (\) "¢

Lemma 9.7.2. Suppose {C,,CL.i',1,p, Kk} satisfies all properties of a chain functor eventually without
CH3), CH4), CH6). Assume that there exists a chain functor L, € €h, q : L, C C, such that q
preserves all structure and induces an isomorphism of homology; then Cy is a chain functor.
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Proof. Follows immediately by checking the properties of a chain functor. O

A chain functor K, is called flat whenever ¢, £ and the chain homotopies px ~ 1, ju ¢ ~ [ are
natural. In the beginning we introduced the concept of a flat homology theory.

Theorem 9.7.3 ([3, Theorem 3.3]). The following conditions for a homology theory are equivalent:
1) hy is flat;

2) there exists a flat chain functor associated with h.

Corollary 9.7.4 ([3, Corollary 3.4]). For a homology theory defined on the category of CW spaces,
conditions 1), 2) are equivalent to 3), and h, is the direct sum of ordinary homology theories.

Lemma 9.7.5. Let C, be any chain functor, d ¢ = z, in C, (X,U); then there exist: 2',¢ € CL(X,U),
a; € C,(U,U), i=1,2, az € C,(U) such that

12 4+ qu a1 ~ z, dz € Imi/
ld +qyar=c+dw, weC, (X,U) (9.7.6)
2414 ag=dc.

This is Lemma 1.1 of [5] with £ =1. O
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