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Abstract

In the categoryCh of chain functors one can introduce fibrations (Section 3), cofibrations and
weak equivalences (Section 4), satisfying all the properties of a closed model category as defined
by D. Quillen except for the existence of finite limits and colimits. Nevertheless we show that there
exists a canonically defined suspension—as well as a loop functor, which are invertible, turning the
homotopy categorghy, into a stable category (Section 8).
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0. Introduction

A chain functor is a paiC,, C C, of functors from a topological or simplicial category
into the category of chain complexes, together with some additional data (see Section 9
or [1] for further references). They are used to calculate homology groups of a given
homology theory:, () by means of chains, cycles and boundaries (i.e., by means of chain
complexes) as in the case of ordinary singular, simplicial or cellular homology. On the
other hand each spectrumgives rise to a homology theo#®..( ) (the homology theory

* Corresponding author.
E-mail addressed:w.bauer@mathematik.uni-frankfurt.de (F.W. Bauer), tamar@rmi.acnet.ge
(T. Datuashvili).

0166-8641/02/$ — see front mattér 2002 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0166-8641(02)00295-X



102 F.W. Bauer, T. Datuashvili / Topology and its Applications 131 (2003) 101-128

with coefficients inE), which in turn determines functorially a chain functb¢E) whose
associated homology theorys, (). So the categorgh of chain functors constitutes some
model of a stable category in which one can perform stable homotopy theory. In particular
the question comes up wheth&k can be equipped with the structure o€lased model
categoryor atriangulated category

Closed model categories were introduced by Quillen [8]. We follow the exposition given
in [5]:

A category? is aclosed model categomyhenever there are three distinguished classes
of mappings (1) weak equivalences, (2) fibrations and (3) cofibrations, such that the
following five conditions are fulfilled:

CM1: Finite limits and colimits exist ire.

CM2: If f, g € € are morphisms such thay is defined, and two of the three mafis
or gf are weak equivalences, then so is the third.

CM3: Ifamapf is aretract of a mapg, and if g is either a fibration, a cofibration or a
weak equivalence, then so js

CM4: Given a commutative square

E—"'>B

I

AT>C

with fibration p and cofibratiory. Then (1) has &fting (i.e., a diagonaF : C —
E, rendering everything commutative) whenever eitfés a trivial cofibration
(i.e., a cofibration and a weak equivalence)yds a trivial fibration (i.e., a fibra-
tion and a weak equivalence).

CM5:  Every morphismf € € can be factored ag = pq in two ways: (1) is a cofibra-
tion andp is a trivial fibration; (2)g is a trivial cofibration ang a fibration.

In Sections 3 and 4 we introduce fibrations, cofibrations and weak equivalentesim
present for the first two concepts several equivalent definitions. So we have, for example,
Kan- and Hurewicz-fibrations, which turn out to be equivalent. Weak equivalences are
simply chain homotopy equivalences between chain functors. The closed model structures
are developed and described in such a way that the close analogy with the topological case
becomes obvious.

In Section 5 we verify CM4 forch, while in Sections 6 and 7 we deal with CM5.
It turns out that for€h the condition CM1 is not fulfilled. Althouglfh has finite sums
and products, there are apparently in general no kernels and cokernels. All these results
are summarized in Section 8, where, in addition, the suspension and the loop functor
are introduced. The necessary kernels and cokernels for this purpose are available. Since
suspensions and loop functors are invertible and, up to an isomorphism, inverses to each
other,&hj;, becomes atablecategory (i.e., it allows not only suspensions but also arbitrary
desuspensions).

Moreover we briefly refer tdbasic model structuresespectivelyThomason model
categoriesn the sense of Weibel [11].
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In Section 1 we describe a canonically defined cylinder and a dual cylinder functor,
(K x 1), andKi forgivenK , € €h. Theinclusionk , LN (K x I, serves as the standard
example of a trivial cofibration, while the projectid 0 K. is the standard example
of a trivial fibration.

In Section 2 we develop some auxiliary concepts needed for the concept of a Kan
fibration (Definition 3.1(2)). We need these different concepts and their equivalence for
settling the problems in Sections 5-7.

Concerning details about chain functors (definitions and motivations) the reader is

referred to [1]. For convenience there is a short introduction to chain functors given in
Section 9.

1. Thecylinder construction and its dual

To each chain functoK , we associate a new chain func{d x I),, two morphisms
ij:Kye— (K x 1), j=0,1, as well as a morphism: (K x I), — K, such that
rio=1k,,ior =~ Lk x1),- In other wordsK . appears as a deformation retract Kfx I).,.

We set

(K x Dn(X,A)=Kn(X,A) ® Kp-1(X,A) ® Kn(X, A), (X,A)eR (1)
and

(KxI),(X,A)=K(X,A) ® K,/z_l(X, A)B K, (X,A), (X,A) ek (2)
The boundary operator is defined by

d(a,b,c)=(da+b,—db,dc —b). (3)
Let f € R((X, A), (Y, B)) be a mapping, themi; is defined componentwise

fula, b, c) = (fula), fa(b), fu(0)).

These are the usual mapping cylinders (see [11]). This yields a fugictarl).. : 8 — ch,
with subfunctor: (K x I), C (K x I), and natural inclusion

i"(K x Dy (A) —> (K x I) (X, A).

We will henceforth writex., ¢, ¢ instead of respectively0, ¢, 0), (0,0, ¢), (¢, 0,0). The
“geometric” picture we have in mind is that we add to the original elements, 0k, A)
new elements,, dimx, =n+1, ¢, dim¢ = n, associated with givene K, (X, A), where
x. is the “cylinder over”, ¢, (¢) the “bottom” (the “top”) of this cylinder over.

Using this notation we obtain:

(1) dc, c € Kp+1(X, A), as defined irnk,
(2) dxc+x4c=c—¢,
(3) dé¢ =dec.
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Chain mapping®, « are defined by:

(1) ¢ | K4 as already given,
) ‘p(xc)jxtpc,
(3) ¢c =gpc.

Respectively fok. In K, there exist chain homotopies ~ 1, i.e., to eacl € K, a D(c)
satisfying

dD(c)+ D(dc) = gpkc —c.

In order to detect a chain homotopy (w) ~ w, w € (K X 1)y, i.e., au(w) € (K X I)4y1
satisfying

du(w) +u(dw) = px(w) —w 4)

we set:

(1) u(c) =D(c),c € Ky,
(2) u(xe) = XD(c)s
(3) u@) = D(c).

This provides us with a chain homotopy (4). The chain homotgagy~ [ is established
similarly.

The verification of the remaining properties of a chain functor(®rx 1), is routine
(apply Lemma 9.2). So follows, for example, the excision property from the simple
observation, thak , and(K x I), have isomorphic homology.

By settingio(c) = c, i1(c) = ¢, ¢ € K4, we obtain morphism i€h, i;: K. — (K x
D+, j=0,1, compatible withy andx.

We definer(c) = ¢, r(¢) = ¢, r(x.) =0, c € K, obtaining a morphism: (K x I), —

K .. (compatible withp andk), satisfying

rio=1g,.
We have

ior(c) =c, ior(¢) =c, ior(xc.) =0.
Therefore

D(c)=0, ceK,, D(¢) =x,, D(x.)=0

furnishes a chain homotopy
D: ior >~ Lk xr),-

Leti: K, — L, be a morphism between chain functors, then there exists a
AX1(KxI)y— (Lx1I)y

commuting withi; andr.
We summarize:
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Proposition 1.1. To each chain functok , there exists a canonically defined cylinder
(K x I, which containsK , as a deformation retract.

Let fo, f1: K« — L, be two morphisms id#, then fo >~ f; if and only if there exists a
H:(K x I)y — Ly suchthatHi; = f;, j=0,1.

Proof. Only the last assertion needs proof. Suppbsefy >~ f1 is a chain homotopy, then
we defineH by

H(c) = folo), H(c) = fi(c), H(xc) = D(c).
Reading this proof backwards furnishes the other direction of the assertion.

Remark. Our intention is to be with our terminology and our notations (concerning
definitions, assertions, proofs) as close as possible to the topological case. So we prefer to
write, e.g.,(A x I)UB, i: Ax0= A € Bwheneverwe mean algebraically x ) ®; B.

This is, what is meant by “gluingA x 0) and B together atdA x 0”.

Supposeg: A, C B, isaninclusion irgh, theng respects the entire structure of a chain
functor (includingy andk). This allows us to defind.. U (A x I), = By U, (A x I)s by
simply repeating the construction @B x 7). but now only adding new,, a, fora € A,
and not for allb € B... Application of Lemma 9.2 yields:

Corollary 1.2. B, U (A x I), is a chain functor with inclusiong: B, U (A x I)4 S
(B x I)y,i:B.—=> B.U(A x I), and retraction : B, U (A x ), — B..

There is a dual construction, associating with each chain futaon a functorial way
(asin 1.1) a chain functak . together with three morphisms of chain functors

Kl %k, 5K, j=01, 5)
such that
pos =1, spo~ 1. (6)

Two morphismsfy, f1: A, — K, are chain homotopic whenever there exists a morphism
H: A, — K satisfyingp, H = f;.

We can easily establish a model Kf. by giving a straightforward construction as we
did for (K x I),:

KX, A) = Ky(X, A) ® Ky (X, A) ® Ky 11(X, A) ©)
with boundary
d(c,c1,x) = (de,dey, dx + (=1)" (e — &)).

Settingpo(c, c1, x) = ¢, pi(c,c1,x) =c1,s(c) = (¢, ¢, 0), we obtainpgs =1, D: spo~1,
with chain homotopy

D(c,c1,x)=(=1)"(0, x, 0).
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This model ofK ! is functorial and can be equipped with the structure of a chain functor
as we did this fo K x I)..

However we prefer to present also a conceptual existence prod foiTo this end
we employ (1) tensor products between chain functors, even if one partneirisganar
chain functor (a concept which was introduced by the first author, see [1,2] concerning
details); and (2) an irregular chain functdg (see [2, 83]) having the property that

K.®Z.~K,, KcCh.

We form(Z x I), and confirm very easily:

Lemma 1.3. There exists &with respect taK ,) natural isomorphism

(K x Dy~ Ky ®(Z x )y

We need a very special case of an internal Hom funct@insatisfying
Hom(Z., K.) ~ K.,  Hom((Z x I),,K,) =K.

where the assignmeiit, — K ! is adjoint to the assignmei, — (K x I),. Concerning
the definition of Hong , -) for chain complexes see [4, p. 18]. Like for tensor products we
set

Kl(X,A) = Hom((Z x Do(X), Kx(X, A))

observing that induced mappings for fac R((X, A), (¥, B)) are well-defined, since
fa(Z x D)j(X) = (Z x I);(Y) is always the identity(j = 0, 1). As functors intock,
(8) and (7) are isomorphic. We equip (8) with the structure of an (irregular) chain functor
(in the same way as this was done for the tensor product in [2, 81, §3]) such that the result
is equivalent to the regular chain funct&t. defined in (7).

Moreover one obtains to the mappingsZ, — (Z x )y j =0,1,r:(Z x Iy = Z,
the corresponding; = Hom(i;, K ) :Hom(Z x I),, K,) — Hom(Z,, K ), respectively
s = Hom(r, K ) :Hom(Z,., K,) — Hom((Z x I)., K ), exhibiting the previously men-
tioned properties (6). So we can summarize:

Proposition 1.4. To eachK , there exists in a natural way a chain functéi!, together
with mappingy; : KL — K., j=0,1,s: K. — K! such thatpos = 1, spo ~ 1.

Two mappingso, f1: A« — K. are chain homotopic whenever there exigtsA, —
K!, satisfyingf; = p,;H.

Remarks.

(1) The existence of cylinders and dual cylinders is usually deduced from property CM5 of
a closed model category (see [5]). In our case we employ the existenaaatically
defined cylinder and dual cylinder functors for establishing the properties of a closed
model category.
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(2) Cylinder and dual cylinder functors for chain complexes are of course well known in
the literature (see [4,11]). However since chain functors have a much more involved
structure than mere functors into a category of chain complexes and because explicit
constructions are needed, we felt it necessary to describe everything in detail, not only
referring to the literature.

2. Hornsand their fillings

In simplicial homotopy theory (see [7]) one deals witbrns (or funnels, in German:
Trichter) and theiffillings: A horn is a sequence of-simplexess/’, i =0,..., k,....n,
which behave like the collection af faces (all with the exception of thgh) of ann + 1
simplexo”*1. A filling of this horn consists of thign + 1)-simplex together with the
remainingz-simplexo}’, i.e., one has

Since we would like to have the same concepts available for chain functors, we must try to
imitate all this algebraically:

Definition 2.1.

(1) Let K, be achain functok a collection of elements in sonfé, (X, A), satisfying
cecNK(X,A), fef((X,A),(Y,B) = fulc)ecNK(Y,B). (%)

Thenc is called gprehornin K.
If dim ¢ =n Vc € ¢, then we set dim =n.

(2) A hornis a natural mapping:e — K., K. € €h, e C L, € €h a prehorn, such that
there exists a chain functdd,, e c M, C L, and ax € Ch(M,, L,) with 1 | e = A.

Remarksand examples.

(1) The O-prehori® consists only of the zero elemen&, (X, A) for each(X, A) € R.

(2) K,(-)(C K«()), fixedn, is a prehorn; 1K, — K, is a horn.

(3) Let a natural basi# of C,(-) (for all n, see Lemma 9.1) and € ¢h(C,, K,), be
given, thenf | b:b — K, is a horn.

(4) Letc C b denote all bounding cycles thef| ¢ is a horn.

(5) Letr:e— K. beahornf e €h(K,, L), then fi is a horn, in particulay itself is
a horn.

(6) Lete Cc M, be a prehorn,theax I C (M x I), is a prehorn (defined a1 x I).
but now only establishing, x., ¢, for e € e); x4, exists IN(M x I),. If L:e > K,
is a horn, them. x I':e x I — (K x I)y is a horn in(K x I); if e = M, then
ex I =M x1I),.

(7) If A:e — K, isahorn, therli:de — K, is a horn.
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Definition 2.2.

(1) Letx, x:e — K, be two horns inK,. A chain homotopyD: A ~ i is a mapping
Aex I — K, (i.e., to which there existgl : N, — Ky, e x I C (M x I), C N4
satisfyingA | e x I = A) such thatA |e =1, A | & = ». We setD(e) = A(x,) =
A(x.), D(de) = A(xqe), therefore we concludeéD(e) + D(de) = A(e) — A(e).

(2) Afilling A = (A, %) of ahornx in K, is a chain homotopy: A ~ i with D(de) =
0, ece.

Remarksand examples.

(1) Every hornm.:e — K, has a trivial fillingA = (A, A).
Proof: Take

Atex 124 (K x 1), -5 K,

wherer is the retraction (see Section 1).

(2) Let A be a horninK,, A = (A, «) a filling of the hornda, i.e., A:de x I — K,
satisfyingd A(xz.) = d\(e) — a(e), theny :e — K, y(e) = A(e) — A(xqe) iS @ horn.
Let I" = (I', 1) be afilling of y, then we calculate

dT (xe) = 1(e) — A(xae) — Ae).
In the same way we obtain:

Lemma 2.3. Let
D: A (1)

be a chain homotopy, then by settifigx,) = D(e), A(xqe) = D(de) we obtain a2-stage
filling of the hornsdA and y .

Moreover we observe:
Lemma2.4.

(1) Let f € €h(K4, L) be a morphismj a horn in K, D: A ~ i a chain homotopy,
then f(D): fi~ fXis a chain homotopy between the images.

(2) Supposefo, f1 € €h(K 4, Ly), then fo >~ f1, whenever there exists a chain homotopy
D: fo(K,) >~ f1(K,) between the horng (K.) C L, i =0, 1.

Letc C K, be a prehorn, thean K, (-) = ¢, is a prehorn; we have=J, ., c,-

Let e C L, be a prehorn, then we defirreC L, as the smallest natural sub-chain
complex of L., containinge, which is closed under the application@f «, i’, I and the
chain homotopiesx (-) >~ (-), jap(-) >~ 1(-). Thise is not necessarily a chain functor, but,
according to Lemma 9.2, foranyC M, C Ly, P, =M, U, (e xI),q: eCexlisa
chain functor, because the inclusidh, C P, is a homotopy equivalence.

We have:
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Lemma 2.5.

(1) To each commutative diagram,

E**p>B*

AT TA @

eTexI

wheree is a prehorn, with obvious inclusiag: e — e x I, there exists a commutative
diagram

E. L B.

I

eC M, suchthath =X |e, A|ex [ = A.
(2) LetK, € Ch andb C K, be a natural basigin all dimensions, see Lemn3al)then
b=K.andK,.U b x )= (K x ).

Proof. We havee C e C M., *:M, — E, such that\ | e = %, so that we can extend

) overe, obtaining ax:e — E.. On the other hand there exists N. — B, e x [ C

e x I C N,, extendingA. So we detectA: M, U (e x I) — B, by setting
AlexI=Alex]I, A M, =pai.

The second part of 2.5 is immediatex

We deduce from Definition 2.2 of a homotopy and of a filling:
Lemma2.6.Letp: E, — B, be amappingi ahorninE,:

(1) a chain homotopy: pA ~ n amounts to the existence of a commutative diagiam
(as a restriction of a diagran(3)).
(2) A= (A, 1) isafilling of pA, whenever we have

A(xae) =0,  dA(xo) = p(r(e)) — Ale).

3. Fibrations

We will define two different concepts of a fibration, titurewicz and theKan-
fibrations. Hurewicz fibrations are modelled after the topological example, while Kan
fibrations (see [7]) are defined as in the simplicial case by requiring that certain fillings
can be lifted. Both concepts are needed in the course of the development of a closed model
structure in¢h. Fortunately both concepts turn out to equivalent. he¥, — B, be a
morphism of chain functors.



110 F.W. Bauer, T. Datuashvili / Topology and its Applications 131 (2003) 101-128

Definition 3.1.

(1) pis a Hurewicz fibration whenever each commutative diagra@hin

E*—p>B*

f F (1)
K. —%=(K x I,
admits a diagonakF : (K x )y — E, suchthatFip= f andpF = F.

(2) p is a Kan fibration whenever to each harin E*~with given filling A of pA (in B,)
there exists a fillingA of A in E, such thaippA = A.

Lemma3.2. p is a Kan fibration whenever to each hatrin E, and homotopyl: pi ~ i
there exists a homotopy: A ~ y such thatpA = A, py = i.

Proof. =: Apply 2.3.
«: Follows because every filling of a horn is a special case of a chain homotopy (the
first step in this 2-stage process is trivial)d

Lemma3.3. p is a Kan fibration whenever for any hoinn E ., and commutative diagram
(see Sectio(2))

E*$B*

AT TA @

0
e——ex 1

there exists a diagonal : e x I — E,, rendering(2) commutative.
Proof. This is according to Lemma 2.6 just a reformulation of Lemma 3.2.

For the next assertion we need some arguments about cofibrations which are verified in
the next section without using this present result:

Theorem 3.4. p is a Kan fibration if and only ifp is a Hurewicz fibration.

Proof. =: Assume thaip is a Kan fibration and let (1) be a commutative diagram. For
any horni in K, Lemma 3.3 guarantees the existence of a Iiftﬁ]ge x I — E,in(2).

We apply this to the horry: K, — E,. Since p is Kan fibration we find a diagonal
F:(K xI)— E,.
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<: Let a commutative diagram (2) be given, and assumepths Hurewicz fibration,
then there exists a chain functkr, (containinge) and a commutative square

E*%B*

XT TZ eCK,

K,——=K.,U@x]I)

admitting a lifting F: K, U (¢ x I) — E. i is obviously a trivial cofibration, hence the
“=" proof of Theorem 5.1 (which does not use the present arguments) guarantees the
existence ofF. The restriction ofF to e x I furnishes a diagonal of (2).0

In the future we will mostly talk about fibration whenever we mean a Hurewicz or a
Kan fibration.

Examples.

(1) Let A, B, € €h be given, theM, & B, = E, is a chain functor and the projection
p:E,— B, is afibration.
(2) Suppose . is a chain functor, then

Lemma 3.5.

po: Ki — K, 3)
is atrivial fibration, i.e., a fibration which is at the same time a weak equivalérca
chain homotopy equivalence, see Definidon).

Proof. pg is by construction a weak equivalence. It is easy to see that the proof that
po:K! — K, is a fibration reduces to the following question: Leté € K, (-), y. €
K,+1(-) be given such thaty, = ¢ — ¢ and take a prescribed= (c, ¢1, x1) € K/ (-) such
that po(y) = c. We seek & = (yc. ¢1.X1) € K, 1 (1), 7 = (a. b, e) € K] (-), satisfying

poy =ye,  dy=y—V.
This is accomplished by setting

a=7¢, =0, b=2¢1, ¥1=0, e=(—1"y.4+x1. O

4. Cofibrationsand weak equivalences
Letqg € Ch(Ay, B,), L. € €h be given.

Definition 4.1. g is a cofibration, if it is an inclusion of chain functors and if the following
condition is fulfilled

SupposeL, € ¢h is any chain functor and lef: B, — L., fia:A« — L, be
mappings in¢x, with given chain homotopy: fq >~ fi4 € €h(A, L,). Then there
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exists a chain homotop®: f =~ f; for somef; € Ch(B., L) (extendingfi4 overB.),
suchthatD | A, = D(g x 1) = Dag.

Remark. This is the translation of the topologicabmotopy extension propertyhich
describes cofibrations for topological spaces. Since we are trying to be as close as possible
to the topological case, we pronounce this as the definition of a cofibration.

There are some equivalent conditions describing a cofibration:

Lemma 4.2. g is a cofibration, if and only if every commutative diagram

Po
LI —=>1L,

i

A*?B*

has a diagonalG : B, — L., rendering both triangles commutative.

Proof. Take the adjointd : (A x I), — L, of g, then the commutativity of (1) describes
the basic situation of 4.1: There exists a homot&hyGq ~ G14; sincegq is a cofibration,
there exists an extensidi: (B x 1), — L. of H, H: G ~ G;. The adjointG : B, — L.
of H is the required diagonal of (1).
If on the other hand each diagram (1) has a diagonal, then this proof can be read
backwards, ensuring thatis a cofibration. O

Remark. We observed already in Section 1 thatifis an inclusion of chain functors
(implying thatg is compatible not only with andi’, but also withg, « and the chain
homotopiespx ~ 1, jup ~1) Sy = B, U, (A x I), is not only a functor into the category
of free chain complexes, but carries the structure of a chain functor. One can Sgfine
either as we did in Section 1 or by gluiny, C B, to the basis ofA x I), (see remark
following Proposition 1.1). This can be easily verified.

Lemma 4.3. Suppose is an inclusion of chain functorg is a cofibration if and only if
B, U, (Ax1I)yisaretract of(B x I),, i.e.,ifthere exists a: (B x I), — By U, (A x I),
satisfyingrj =1, j: By Uy (A x )y — (B x I)4.

Proof. =: If ¢ is a cofibration, then we set in Definition 4L, = B, U, (A x I), and

notice thatD : (A x I), S L., f:B, S L. can be put together, giving the identity
1:B. Uy (A x D)y = By Uy (A x I),. According to Definition 4.1 this identity can be
extendedtoa: (B x )y = By Uy (A X Iy, rj=1.

<: Suppose there are givedy, f as in Definition 4.1, then they determine a mapping
h:ByU; (Ax 1), — Ly, Ly € €h (= an arbitrary chain functor), and vice-versa. Then the
existence of a retraction: (B x 1), — B, U, (A x I), yields ah=hr:(B xI),— L,
guaranteeing that is a cofibration. O
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Lemma4.4. An inclusiong: A, C B, is a cofibration if and only if for alk each functor
A, (+) is a direct summand of the functay, (-).

Proof. =: Supposey is a cofibration, then we have according to Lemma 4.3 a retraction
r:(BxI)y,— B,U(A x I),. We have:

r(b) = xa +a+b1, b,b1e Bi(-), ac Ax(),

and seta,(b) = @ and B,(b) = a. Since r(a) = a, we deducep,(a) = a, hence
Bn: By(-) — A,() is a retraction, which is not necessarily compatible with boundaries.
The existence of a direct sum decomposition

Bn(') ~ An() @ Cn() (2)

follows.
<: Supposeg; is an inclusion allowing a direct sum decomposition (2) forralthen
we define a retraction: (B x I), — B, U (A x I), in the following way:

r(b)=>b, be B.(-).
Suppose = a + ¢ according to (2), then we set
r(xp) = Xq,
r(E) =a+c—r(xq).
Letdc = a1 + c1 be the representation at:, then
db=a1+da+é
and
r(xgc) =r(xay) +r(xey) = xay.
Thisr is compatible with boundaries(db) = dr(b) = b, b € B,(-);
dr(15) =da+dc—dx, =da+dc+ x4 —a1+aa,
r(db) =r(ai1+da+¢1) = a1 +da + c1 + Xday,
since
—Xdey = Xday -
Hence
dr(l;) = r(dl;),
dr(xp) =dxq = —Xqa +a —a,
r(dxp) :r(—xdb—i—b—l;) =—Xg —Xdat+a+c—a—c+Xxqy=—X4a+a—a.
As a result we have
dr(xp) =r(dxp).

Sincer is compatible with all structures of a chain functor, natural and additive, it is a
morphism of chain functors. Moreovet B, U (A x I), = 1. This completes the proof of
the lemma. O
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Corollary 4.5. An inclusiong is a cofibration if and only if there exists a retraction as
in 4.3such thatr(x,) = x, for all b € B, and suitablez € A,.

Proof. The retraction constructed in tke part of the proof of Lemma 4.4 is of that kind.
The other direction follows from 4.3.0

Corollary 4.6. Suppose we have mappingsB. — Ly, Da: fq >~ fa1 € €h(A,, L) as
in Definition4.1, assume furthermore, that there exists a natural subconflex L, (not
necessarily a sub-chain funcjmsuch thatD4 (-) € K. (-). If ¢ is a cofibration, we detect a
homotopyD extendingD4 such thatD(-) C K,(-).

Proof. Take a retractiom as in 4.5, then the mappirig= hr: (B x I), — L, in the<
part of the proof of Lemma 4.3 has the required property.

Example. Let K. be any chain functor, then
io: Ky — (K x I (3)

is a cofibration. This is of course dual to the corresponding result in Section 3, Example 2.
The following definition has already been used:

Definition 4.7.

(1) A morphismw € Ch(A, B,) is a weak equivalence, whenever there exisis a
Ch(B,, A,) and chain homotopiesw ~ 1p_, ww ~ 14,.

(2) A trivial cofibration (fibration) is av € €h (A, B.) which is a weak equivalence and
a cofibration (respectively a fibration).

Example. (3) is a trivial cofibration.

Lemma4.8. Letq: A, — B, be atrivial cofibrationg : B, — A, a homotopy inverse of
q,then there exists &~ g such thaijq = 14,. Moreover the homotop®: gg ~ 1p, can
be assumed to be stationary dn, i.e., one ha?®D(g x 1) =0.

Proof. The first assertion is proved as in the topological case. Assume that already
gq =14, and letD: gg ~ 1p, be a given homotopy. According to 4.4, A, =B, U

(A x 1)y UB, C (B x I), is a cofibration. We detect a mappifg (A x 1y — (B x 1)y

which is eitherD or an inclusion and or(,, zero. This homotopy can be extended to a
F:(BxI)xI)y— (BxI),andFii:(B xI), — (B x I), reveals itself as a homotopy

D: gg ~ 1 which is stationary om,. O

Dually we have:
Lemma4.9.Letp: E, — B, be atrivial fibration,p : B, — E, the homotopy inverse of

p, then there exists @ ~ p such thatpp = 1g, and a homotopys: pp ~ 1 such that
G Ckerp.
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Proof. The existence op is dual to that ofg in 4.8. Suppose thakl: pp ~ 1 is any
homotopy, therppH: pp ~ pp andG = ppH — H: pp ~ 1 satisfiespG = 0, hence it
is a homotopy in kep. O

5. Relations between fibrations and cofibrations

Let

E.—’>B,

T

be a commutative square.
The following theorem establishes the cofibration half of axiom CM4:

Theorem 5.1. p is a fibration if and only if every commutative squétg with ¢ being a
trivial cofibration admits a diagonat : C, — E, rendering the diagram commutative.

Proof. =: Assumep is a Hurewicz fibration ang a trivial cofibration. According to 4.8
we can assume that there exists a homotopy invgrgeg, such thagg = 14, and that
the homotopyD: gg ~ 1c,, D: (C x 1), — C, has the property thad | A, is stationary,
i.e.,thatD(g x I) =0.

Settingf = fG:Cx — Es, F = FD, we obtain a commutative diagram

E*4P>B*

fT Tﬁ

which admits a diagona¥ : (C x I)x — E,. We defineF = Gi1 and deduce F = Fii =
FDii=F.
On the other hand (g x I) is a homotopyG (g x I): G(g x I)ig~ G(g x I)i1. Since

G(q x Dio=Giog = fq=f,  G(q x Di1=Giig = Fq,

GgxI): f~ fq is @ homotopy, satisfyingG(q x I) = FD(q x I) =0. Sinceg is a

cofibration, we can apply Corollary 4.6 to the result that we detect a homaéfogy~ F,

suchthatFg = f, H(-) C kerp, hence we have alspF = F. So (1) has a diagonal.
< If every diagram (1) admits a diagonal, then in particular each commutative

E*4P>B*

T
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has this property, ensuring that according to Definition 3.1p1)s a Hurewicz fibra-
tion. O

The following theorem establishes the fibration half of axiom CM4:

Theorem 5.2. ¢ is a cofibration if and only if each commutative squétg p a trivial
fibration, admits a diagonak : C. — E . rendering the diagram commutative.

Proof. =: Supposey is a cofibration,p a trivial (Hurewicz-) fibration andpp = 1,
G: pp~1 with G in kerp (see Lemma 4.9). We defineF = F C, — E, so that
pF F. Sincepp >~ 1inkerp, we concludq;Fq_Fq pf, pqu ppf. Therefore
we detect a chain homotopiyq ~ f in kerp. Sincegq is a cofibration, this yields a
chain homotopyH: F ~ F such that according to Corollary 4%H: pF = pF = F
andFq = f.

< Follows because of Lemma 4.20

6. Decompositions of mappings (1)
Let f € Ch(K, L,) be a morphism, then we have:

Theorem 6.1. There exists a trivial cofibration : K. — M ¢ and a fibrationp : M y, —
L. such that

f=nrq.

Proof. Our objective is to converf into a fibration. What keepg from being a fibration?
There are eventually horriisin K ., having fillingsA of A which cannot be lifted t& ,.

According to Lemma 2.6 the existencejofvith filling A of fA yields a commutative
diagram, where c C., for someC, € €h:

f

K.,———1L,

AT I M

eT(eX I)

We enlargeK. (X, A) by (1) new free generators(i, A, e), e € e, dimx(A, A,e) =
dimi(e) + 1, A afilling of fAin L, (2) new free generatosgi, A, e), dimy(r, A, e) =
dima(e), satisfying

dx(h, A,e) =A(e) — y(r, A, e). 2)
We assume that for anye K((X, A), (Y, B)) one has

gi(x (A, A,0)) =x(x, A, gale)), (3)
respectively fory (- - ).
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This defines naturally a chain comple?(l*(X, A). Now we enlargeﬁl*(X, A) again
such that the large¥* _ carries the structure of a chain functor. We define
x(L A e),y(h, A, e) e MY,
whenevek is contained inC’,, implying that alsoA (x,) is contained inL/,. We set
i'(x(h, A,0)) =x(1, A,i'(e)) (4)
respectively fory (- - -), whenever this is defined (see Section 9 concerijnlow we deal
with ¢, k., i’ and the chain homotopies
h(): or () = (), h(): jap() = 1(-)
and form wordsw = wy, ..., wi, where eithemw; is one of the symbols, «, h, h, i’
or a map induced by g € R(-, -). Here we have to assume that(-) and w;_jw; is
only defined whenever this makes sense, eug(;) = ¢(-) only if (-) € M/f%k respectively
Wi—1=¢, W; =K.

Detectinng*(X, A), we define in addition to the chaing---), y(---) new chains
wx(--+), wy(---) as new free generators alfl}*(X, A), where we have to take into
account (3) forw = g4 and (4) for w = i’. Concerning the boundary we have
h(x(x, A, e)) € M}(Hz)(X) satisfying

dh(x(k, A,e)) +h(x(dk,dA,de)) = (pK(x(A, A, e)) —x(A, A e),

while h(x(x, A, e)) € M}(n+2)(x, A) satisfies

dh(x(r, A, e)) +h(x(dr,dA,de)) = jsp(x(r, A, e)) —Ix(A, A, e),
wheneven(---) € M}(HD (X, A), respectively fory (- - -).

The verification that this ne\M}* (= K. together with the complex generated by all
thesew(-)’s) becomes a chain functor, is now an easy routine (see, e.g., Lemma 9.2).
So the excision property, for example, holds M}* because we can assert that the
inclusiong®: K, c M}* is a homotopy equivalence (therefore inducing an isomorphism
of homology groups) and& ,. is by assumption a chain functor:

There exists a deformation retractioh: M}* — K, by mapping all neww(x(---))
into zero andw(y(---)) into w(i(e)). Since K, is a direct summand oM}n, gt

according to Lemma 4.6, a cofibration, hence a trivial cofibration.
We definep: ML — L, by setting

is,

POy =), ceKuX,A),  px(h A €)= Ax),
Py, A, 0) = A@) = Airle),  pHw()) =wp(),

whenever this is defined. Thjs: commutes with boundaries; sinpé is compatible witH
andi’, itis a transformation of chain functors. Observe thhis in general, as an extension
of f, notcompatible withyp, ¥ and the relevant chain homotopies.

Suppose. isahornink , C M}*, such thatf A has afilling inL (i.e., such that there
exists a commutative diagram (1)), then we establish a diagonatx 7 — Ml* by:

Axe) =x(, A, e), A@) =y, A,e)
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to the effect thatd is a filling of A in M}*, satisfying
pr(A)=A.

If » extends over Som€, € ¢h, thenA extends oveC, Ué x I (see 2.5) andi can be
seen to extend over the same chain functor.
However it happens that we have new hoing M}*, with fillings of p in L,
which cannot be lifted. So we must iterate the preceding process, constructing an increasing
sequence

"'DMk*D"'DM}*DK*
and form the union
o0
k
My =M,
k=1
which carries again the structure of a chain functor and comes together with morphisms

q: Ky C My, p:Myg, — L.

We havepq = f and confirm thay is still a trivial cofibration. Since each hoinin M ¢,
can be split into horns which are contained in some sepM@I,g we conclude that every
filling of pA can be lifted, assuring us thatis a fibration. O

The previous construction immediately implies:

Corollary 6.2. The decompositiofi = pq in Theoren®.1is canonicallf « = (a, b) : f —
f
f

K.,——1L,

| b

K*4~>l~4*

is a commutative diagrar(i.e., a morphism between morphigmthen there exists an
induced mapping : M s, — Mf* rendering the corresponding diagram

S
*
S A
M,
a &\L b
Mf*
f ~

K. L.
commutative.

K L,
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7. Decompositions of mappings (I1)
Let f € Ch(K, L,) be a morphism, then we have:

Theorem 7.1. There exists a cofibratiop: K. — N y, and a trivial fibrationp : Ny, —
L, suchthatf = pq.

Proof. In a first step we consider the chain functir, & L. which is enlarged by
new chains in dimension + 1 (i.e., by new free generators), the “connecting chains”,
w(k), ke K, (X, A) satisfying

dw(k) +w(dk) =k — f (k). Q)
with relations
gu(wk) =w(gek)), g€ R((X,A), (Y, B)).

These new chaing (k) are assumed to be containedNi, (X, A), hence in particular in
N« (X, 9) if A=0, butnever inN}*(X, A) norin Nz, (X) wheneverA # .

The idea is that we never have to define(k) norkw(k), unlessA = @. More precisely
we are erecting the cone over the subcom@exc K. @ L., generated by all chains of
the formk — f(k), k € K.

We define:

N £4(-) = K4 (-) ® Ly (-) UconeB,(-). (2

Fork € K., [ € L, we takeyp, « as defined in these chain functors. We defftjdo be the
subcomplex generated by &ll- 1 (k) for k € K, and

Nt (X, A) = K (X, A) @ Li(X, A) U B,(X, A) UN}.(X, %)
with
"1 (X, 0) = K (X) ® L,(X) UconeB,(X).

For A = ¢ we definexw(k) = w(k), k € B,(X) and gkw(k) = w(k). In particular no
w(k) € coneBy(-) are contained inV’,_(-), unlessA = #. Now it is easy to verify all
properties of a chain functor fay ¢..
There exists @ : N s, — L, which is defined by
pk) = f(k), keK,, p)=1, lelL,, p | coneB, =0.

Let 1 be ahorninV ¢, andA = (A, y) afilling of pi, then we have to determine a filling
A of A such thatp A = A, hence a diagonal in Section 6(1).
We can do this for three different cases separately:

(1) Suppose. is a horninL, C N 74, then we setl=Ain L, C N 7.
(2) Suppose. is ahorninK, C N ¢, we set

Alxe) = w(M() + Alxe),

X(xde) =0.
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Hence

dA(xe) = M(e) — (w(dnr(e) + 7 (o), F(e) = Aix(e))
where

dA(xe) = f(r(e)) — 7 (o).
So

(A.7). P(e)=w(dr(e)) + 7 (e)

is a filling of A satisfyingp A = A.

(3) Suppose. is a horn in cone,, then
pr =0,
the 0-horninL,.

Leta(c), c € coneB, be the natural cone overin coneB,, i.e., one has
da(c)+a(dc)=c,

and let(A, y) be afilling of pA =0in L, i.e., one hag A(x,) = 0— y(e). We set
Axe) =a(r(e) + Alxe),
A(xae) =0,
dA(xe) = M(e) —a(dr(e)) — 7 (o)

sothat(4, p), P (e) = a(dAr(e)) + 7 (e) is a filling of 1 with pA = 4.

In all casesA extends over some chain funciBr U e x I as in the proof of 6.1.

(4) Every horninN g, splits into horns of the form = A1, 12, A3, wherea;, i =1, 2,3,
are horns of the form (1), (2) or (3).

This follows from the construction.

As aresultp turns out to be a fibration. The inclusion L, C N . is easily recognized
to be a homotopy inverse gf, so thatp becomes a trivial fibration.

The inclusiong: K. C Ny, q(k) =k is a cofibration, because for eagh K, (-) is
naturally a direct summand d¥¢,(-) (see Lemma 4.6). Sinc¢ = pq, this yields the
desired decomposition of into a cofibration and a trivial fibration, thereby completing
the proof of Theorem 7.1. O

We deduce immediately:

Corollary 7.2. The decomposition of in Theorem7.1 is (in the same sense as the
decomposition in Corollarg.1)canonical.
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8. Theremaining propertiesof a closed model category for €h and the suspension
functor

Following [5, p. 12], see also Section O of the present paper, we are dealing with the
following axioms of a closed model category:

CM 1. Finite limits and colimits exist.

This is not true forCk. There exist finite products and sumgih, however iff : K, —
L, is a morphism in¢k, then kerf is not necessarily a chain functor: Withe ker f
we cannot be sure that(c), «(c) € ker f (provided this makes sense, i.es K, (X, A),
respectivelyr € K, (X)), unless we require thgt commutes withp and«. However even
under this condition we do not know that for a cyele (ker f),(X, A) one detects a
1(z") + gga ~ z in ker f (see Section 9(3)). There are similar problems with cokernels: If
f is aninclusion, therl., Uy conek , is a chain functor, but not the categorical cokernel
of f. However we will soon encounter interesting cases where kernels and cokernels exist.

CM2. If f,g are maps andgf is defined, then, if two of these three maps are weak
equivalences, then so is the third.

This is obvious.

CM3. Let f be a retract ofg and g is (1) a fibration, (2) a weak equivalence, or
(3) a fibration, thenf has the same property.

Proof. Ad(1): We use Definition 3.1(1) and have to ensure that for &jyye ¢k and
commutative diagram

f

E,———B,

T

there exists a diagond! : (K x I), — E,. We have

K., m E, r s E,

E.
iol lf ig lf (2)
B,

(K x Iy i B, F B B,

with commutative squares and = 1, 57 = 1. Sinceg is a fibration we find a diagonal
M: (K x 1), — E, satisfyinggM =FM, Mio=rm. We setM = s M and calculate:

fM=fsM=5gM=5M=M,

Mio=sMig=srm =m.
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Ad(2): If g: B.— E.isa homotopy inverse of, thensg7 = f is a homotopy inverse
of f.

Ad(3): Use Lemma 4.2 as a characterization of a cofibration, then the proof tisa
cofibration is entirely dual to that of (1).0

CM4 is the objective of Section 5, Theorems 5.1, 5.2.
CM5 is settled by Theorems 6.1 and 7.1.

Remark. The decompositions of a mapping in Theorems 6.1, and in 7.1 are according to
Corollary 6.2, respectively 7.2 canonical. This is more than it was required in CM5.

Although not every morphism ik has a kernel or a cokernel, there are significant
cases, where kernels and cokernels exist:
The morphismig®iy: K, ® K. — (K x I), has a cokernel, the suspensiorof (see
[8]):
K. @K, (K x ), % (TK),.

On the other hand the morphispp ® p1: KL — K. @ K, has a kerne{2K).. (see [8])

QK,— K™K, oK,
Define a functox : ¢h — €h by (¥ K)(X, A) = K,_1(X, A), then we deduce:

Lemma 8.1. There exist natural isomorphisms

YK.~XK,, 3
SK.~K.®XZ,, 4)
(2K)«(X,A) =K, 11(X, A). (5)

Proof. Supposeo(x.) = y., ¢ € Ky, thendy. = —y4.. Therefore the assignment—
(=1)9imey, . yields an isomorphism (3).

The existence of an isomorphis@K, ~ K, ® X Z, is obvious (see [2] for the
definition of the tensor product). The existence of an isomorphism (4) follows now
from (3).

(5) follows immediately from the description &/ in Section 1(7). O

We summarize:
Theorem 8.2.
(1) ¥ (£2) are the suspensiofloop) functors, associated with the given closed model
structure(see[8]).

(2) They are invertible and, up to an isomorphism, inverses to each other, tu¢ainmto
a stable categoryji.e., one, allowing arbitrary desuspensigns
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Proof. (1) is obvious; (2) follows, becausg is invertible, from Lemma 8.1. O

Remarks.

(1) Using the notatiork\’ = Hom((-), K,) (see Section 1 concerning the dual cylinder)
and (5), we can express the relationship betweenand 2 by the following
commutative diagram:

2K, Kl —"° K oK,

bW/ (ZxI) Z.0Z
K K¢ K. *Kio@il K

(2) Accordingto[9] (see also [6, 7.1.6]) the homotopy category of a closed model category
satisfying 8.2(2) inherits in a natural way the structure tfangulated categoryThe
consequences of this fact in the cas&bf, will be studied elsewhere.

Let 8 be any category with distinguished classes of fibrations, cofibrations and
weak equivalences. Apart from D. Quillen’s axioms CM1-CM5 there is R. Thomason’s
approach, to a closed model structure which is described in Weibel [10], leadirzatica
model categoryespectively & homason model category

Here axiom CML1 is replaced by a weaker statement, which deals with the existence and
special properties of pushouts (pullbacks) along cofibrations (fibrations).

We do not know if and eventually under what restrictions this axiom hold&/or

Moreover CM5 is replaced by a factorization of any map- pe (= em), with weak
equivalence, fibration p and cofibrationn.

If this factorization turns out to be functorial, this basic model structure is called a
Thomason model structuréccording to our results in Sections 6, 7, these functorial
factorizations exist (at least for special morphisms).

The concept of a@implicial closed model structugoes back to Quillen [8]. As can be
expected from our constructions@ x ), andK ! as well as the functorial factorization
in CM5, the model structure @h will be (as long as it is defined) a simplicial one. Details
will be given elsewhere.

9. Chain functorsand associated homology theories

In this appendix we present for the convenience of the reader some material about the
definition and the motivation of chain functors without proofs. Concerning details as well
as further references, we refer to [1].

It would be advantageous to define a homology théqty) as the derived homology
of a functor

Ci:R— ch,
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R = the category on which., is defined. For us this will be always either a subcategory
of the category of all pairs of topological spaces, or of pairs of spectra or of pairs of CW
spaces, of CW spectra, or their simplicial counterpattsdenotes the category of chain
complexes (i.e.C, ={Cy,d,, n€Z, d>=0}e ch).

Let (X, A) € & be a pair, then one would like to have an exact sequence (W)
instead ofC, (X, ))

0— C.(A) % C.(X) 25 Cu(X. A) > 0 (1)

such that the associated boundaryH, (C.(X, A)) — H,_1(C«(A)) induces the bound-
aryo:h,(X, A) — h,—1(A) of the homology theorj..().

In accordance with [2] we call a homology with this propéiftt. Due to a result of
Burdick, Conner and Floyd (see [1] or [3] for further reference) this impliesiet
category of CW pairs, thai,( ) is a sum of ordinary homology theories, i.e., of those
satisfying a dimension axiom, although not necessarily in dimension 0.

We call a functorC, being equipped with a short exact sequence (1), determining the
boundary operator, ehain theoryfor i,. The non-existence of such a chain theory gives
rise to the theory of chain functors.

A chain functorC,. = {C,, C,.1,i’, k, ¢} is a pair of functorLy, C, : R — ch, natural
inclusions i": C,(A) C C,(X, A),l: CL(X,A) C C«(X, A), non-natural chain mappings

@:CL(X,A) = Cu(X), k:1Cy(X) — CL(X, A),
satisfying conditions CH(1)-CH(7) below:
CH(1). There exist(of course in general non-natufathain homotopiegx ~ 1, jyp ~
[ (j: X C (X, A)), aswell as an identity

Kig=1i, i ACX.

CH(2). All inclusionsk: (X, A) C (Y, B) are supposed to induce monomorphismgn
All C.(X, X) are acyclic.

It should be observed, that the chain complegg$X, A) appearing in (1) are not
identical with the chain complex&3, (X, A) appearing in a chain functor. The latter have
the property that for all pair€X, A) one has inclusion€,(X) = C.(X, ) C C«(X, A) C
C.(X, X). These groups cannot be members of a short exact sequence (1).

Needless to say, that,, as well asp, « arenotdetermined by the functaf,(---, - --)
but are additional ingredients of the structure of a chain functor.

Instead of the exact sequence (1) ébiain theoriesve are now, in the case ofcain
functordealing with the sequence

0— C*(A)i>C>’k(X, A) L Cl(x, A)/imi’ >0 ()
and there exists a homomorphism

Vi Hy(CL(X, A)/imi’) - H.(Ci(X, A)), (3)

['1 [1(2) + qu@)],
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wherez’ € CL(X, A),dz €imi’, q: (A, A) C (X, A),a € C«(A, A),da = —d7. By this
assignment/ is readily defined.

CH(3). It is assumed that is epic.

SinceC4 (A, A) is acyclic anddz’ € imi’, there exists aa with gx(a) = —dI(z") and
[1(z") + g#(a)] turns out to become independent of the choicé.of

This assumption implies that each cyele C.(X, A) is homologous to a cycle of the
form (') + g#(a), with 7’ being arelativecycle, the analogue of a classical relative cycle
z € C«(X) with dz € imig, whenever (1) holds, i.e., whenever we are dealing with a chain
theory.

Suppose : H,(C,(X,A)/imi"y — H,_1(C«(A)) is the boundary induced by the exact
sequence (2).

CH(4). We assume

kery C kerd, (4)
Moreover
kerj. C kerpxy, (5)

with, e.g. k. denoting the mapping induced kyfor the homology groups.

CH(5). HomotopiedH : (X, A) x I — (Y, B) induce chain homotopia3(H) : C.«(X, A) —
C.+1(Y, B) naturally and compatible with' and!.
The derived (or associated) homology of a chain functor
hi(X, A) = Hi(Cu(X, A)),
respectively for the induced mappings, is endowed with a boundary operator
9: Hy(Cx(X, A)) > Hn1(Cx(A)),

determined by:
Given¢ € H,(C(X, A)) we choose a lift’, which exists by CH(3), a representative
1(z') + gu(a) € ¢ and set

3¢ =l 1=[i'ta7].

This turns out to be independent of the choices involved.

This h,( ) satisfies all properties of a homology theory eventually with the exception
of an excision. Let us assume thatfd there are some mappings (X, A) — (X', A")
serving aexcision mapgof some kind, e.gp: (X, A) — (X/A, %)). Then itis convenient
to add:

CH(6). Let p be an excision map them, = H,.(C.(p)) is required to be an isomorphism.
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This H.(C«()) = h«() turns out to be a homology theory. Moreover under very general
conditions ong, every homology theor..( ) is isomorphic to the derived homology of
some chain functor (see [1] for further references).

Let A:Cx — L4, 2 :C, — L/ be natural transformations, whe€®,, L, are chain
functors, compatible withi’, I and the natural homotopies of CH(5), then we call
Ar:C — L, atransformation of chain functor§uch a transformation induces obviously a
transformation., : H,(C,) — H.(L,) of the derived homology. This furnishes a category
¢h of chain functors. Aveak equivalencm ¢h is ax:C,. — L, which has a homotopy
inverse.

Furthermore we can introduce the homotopy categdrywith chain homotopy classes
of transformations of chain functors as morphisms (alternativ@y:= ¢h/{20}, 20 =
class of weak equivalences, i.e., a#kakequivalences are becomistrict equivalences
(hence isomorphisms) iéih;,, see [5, Theorem 6.2], in a slightly different notation).

In order to establish all this it becomes sometimes necessary to assume that a chain
functorC, satisfies:

CH(7). All chain complexe€, (X, A) are free(i.e., all C, (X, A) are free abelian groups
However this is not a severe restriction as the following lemma ensures:

Lemma 9.1. To any chain functoC, (satisfyingCH(1)-CH(6))there exists a canonically
defined chain functoL, and a transformation of chain functoés L, — C, compatible
with ¢ and«, inducing an isomorphism of homology, such that

(L1) All L.(X, A) have a natural basi# in all dimensions

(L2) be b= dbeb; beb=i'(b)eb,l(b) €b, whenever this is defined and makes
sense

(L3) For every homology classe H,(C.(X, A)) there exists a basifwith respect to the
basis in(L1)) z € (A+)"1¢.

Proof. Consider the free abelian group(C,(X, A)) generated by the elements of
C.(X, A) and convert this into a chain comple% (X, A) in an obvious way. To each

a € C,(X, A) corresponds a basice F(C, (X, A)). Leti: M, C F, be the subcomplex

generated by all elements of the fodmim,a; — Y m;a; and define

L.(X,A)=F.(X,A)U; coneM,.(X, A).

This furnishes evidently a functor into the category of chain complexes. We set
A mja;) =Y mia;, andi | M, =0.

Moreoverd m;a; € L, whenever all; € C}, respectively for the elements of cobg.
This implies that (L2) holds. One can immediately egliijpandA with the structure of a
chain functor, respectively of a transformation between chain functors.

Every cyclez € Z,,(C«(X, A)) is of the formA(z) = z, hencel, is epic. Any cycle
7€ Z,(L«(X,A)) ishomologousto &, z € Z,(C.(X, A)):
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Suppos€ = > m;a; + ¢, ¢ € coneM,, then we havé = a + c1, c1 € coneM,, hence
da = da € coneM,, implying thatda = da = 0. Soa andc; are cycles, and sincg is
bounding in cond/,., we conclude thag ~ a.

If z=dx, thenz =dx andx, is therefore monic.

This completes the proof of the lemmag

We will in the present paper without further mentioning assume, that all chain functors
have such a natural basis satisfyiliigl)—(L3) eventually with the exception of the first
property in(L2) (b € b = db € b).

The following assertion is needed at some occasions in the present paper:

Lemma 9.2. Suppose{Cy, C.,i’,1,¢,«} satisfies all properties of a chain functor
eventually withou€H(3), CH(4), CH(6) Assume that there exists a chain fundtqre ¢#,

q: L, C C, such thaty preserves all structure and induces an isomorphism of homology,
thenC, is a chain functor.

Proof. Follows immediately by checking the properties of a chain functar.

Finally we repeat the definition of dmregular chain functor(see [1]) Definition 4.1 for
more details or [2, Section 3] for an exampl&J.,, C., ¢, k,i’, 1} satisfies all conditions
of a chain functor, but we do no longer require (a) that all inclusions induce isomorphisms;
(b) nor thati’, I are necessarily monomorphisms; (c) nor any excision properties. Whenever
we talk about aegular chain functor, we mean that it is not irregular. The role of the
unnatural mappingg and«x seems at the first glance to be a little mysterious.

A chain functorK, is calledflat wheneverg, « and the chain homotopiesc ~ 1,
Ju#e >~ [ are natural. In the beginning we introduced the concept of a flat homology theory.

Theorem 9.3 [4, Theorem 3.3].The following conditions for a homology theory are
equivalent

(1) hy isflat
(2) there exists a flat chain functor associated with

Corollary 9.4 [4, Corollary 3.4].For a homology theory defined on the categoryGiV

spaces the conditionél), (2) are equivalent to(3) 4, is the direct sum of ordinary
homology theories.
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