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Left-right noncommutative Poisson algebras

Dedicated to the memory of J.-L. Loday
1. Introduction

In [4] there are defined and studied noncommutative Leibniz–Poisson algebras, denoted as NLP-algebras. These are
associative algebras P, generally noncommutative, over a ring K with unit, with bracket operation, according to which
they are Leibniz algebras over K and for which the Poisson identity

[a ·b, c] = a · [b, c] + [a, c] ·b (1)

holds for all a, b, c ∈ P. In this paper this identity will be called the left Poisson identity, and the above defined
algebra a left noncommutative Poisson algebra, shortly a left NP-algebra or NPl-algebra. It is natural to consider right
NP-algebras over a ring K (NPr in what follows), which are defined in an analogous way replacing the left Poisson
identity with the right one:

[a, b ·c] = b · [a, c] + [a, b] ·c, a, b, c ∈ P. (2)
A left-right NP-algebra (NPlr) over a ring K is an algebra, which is an associative and Leibniz algebra and satisfies
both (1) and (2); it is a noncommutative analogue of the classical Poisson algebra. In the same way, an algebra with
bracket AWB defined in [9], see below Definition 2.1, is a left AWB, which will be denoted by AWBl. Obviously, we can
define an in analogous ways AWBr and AWBlr. Thus we obtain the following commutative diagram of the corresponding
categories and inclusion functors:

AWBr AWBlr? _o o � � // AWBl

NPr?�

O O

NPlr? _oo
?�

OO

� � / / NPl.?
�

OO

The purpose of this paper is to study properties of the above defined algebras, including the construction of appropriate
complexes for the definition of cohomology, to investigate and to establish relations between them and with the properties
of the underlying associative and Leibniz algebras and the corresponding Hochschild [16], Quillen [32] and Leibniz
cohomologies [26]. We will see that left-right AWB do not inherit all the properties of left or right AWB. But nevertheless
due to the specific way of construction of cohomology complexes, they have interesting intersections and relations with
each other. An analogous picture we have for left-right NP-algebras.
In Section 2 we present definitions of new algebras and examples. For convenience of the reader we include the definition
of category of interest and some examples as well. In Section 3 we construct free AWBr. The construction of free AWBl
was given in [9], our approach is different, which gives the construction of free AWBl as well. The properties of free
objects are investigated, in particular, it is proved that if P is a free AWBr, then the underlying associative algebra of P
is free as well. We prove that analogous results for AWBlr and NPlr-algebras are not true in general. In Section 4
we describe action conditions, we present definitions of derivation, extension, crossed module and representation in the
categories of the new algebras. All these are special cases of the well-known definitions in categories of groups with
operations. It turned out that the category of NPlr-algebras is a category of interest, from which, applying the general
result of [29], we conclude that this category is action accessible in the sense of [3]. We construct the universal strict
general actor USGA(A) of an NPlr-algebra A, defined in [6] in a category of interest; we describe center and define actor
of NPlr-algebras and, as a special case of the result in [6], we obtain the necessary and sufficient conditions for the
existence of an actor of A in terms of USGA(A). We plan to consider the problem of the existence of an actor in NPlr, or to
find individual objects in this category with actor. According to [2] this problem in categories of interest is equivalent to
the amalgamation property for protosplit monomorphisms. Here in NPlr we determine the full subcategory of commutative
von Neumann regular rings with trivial bracket operations; by the result of [2] we have that in this category there always
exists an actor for any algebra, and moreover, on the base of the result of the same paper and [10] we conclude that in NPlr
there exists a subcategory which satisfies the amalgamation property. This result can be applied to the characterization
of effective codescent morphisms in this subcategory. In Section 5 we construct complexes and define the corresponding
cohomologies Hn

NPlr (P,M), Hn
AWBlr (P,M), where P ∈ NPlr (P ∈ AWBlr, respectively), and M denotes the corresponding

representations of P. In what follows under NP-algebras we will mean NPr-, NPl- and NPlr-algebras, and under AWB
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we will mean AWBl, AWBr and AWBlr. We investigate the relation of the second cohomology with extensions. Like
in the case of AWBl [9], we obtain the isomorphism Hn+1AWBr (P,M) ≈ HnQ(P,M) with the Quillen cohomology. From the
constructions of the cohomology complexes we detect short exact sequences, from which there follow long exact sequences
involving cohomologies, relating NP, AWB, Hochschild and Leibniz cohomologies with each other. The special cases,
where P is a free AWBr, the Leibniz cohomological dimension or/and the Hochschild cohomological dimension of P is
n/≤n give interesting results, in particular, in these cases we can represent the new cohomologies by means of the
well-known ones and estimate cohomological dimensions of the corresponding AWB and NP-algebras. Note that an
operadic approach to similar kind of investigations would be interesting, see e.g. [12, 14, 17, 28]. The cohomology of
classical Poisson algebras was defined and studied by Huebschmann [18]. Different types of noncommutative Poisson
algebras were studied in [20, 21, 33, 34].

2. Preliminary definitions and examples

Let K be a commutative ring with unit. We recall that a Leibniz algebra [22, 23] A over K is a K-module equipped with
a K-module homomorphism [−,−] : A⊗A→ A, called a square bracket, satisfying the Leibniz identity

[a, [b, c]] = [[a, b], c]− [[a, c], b],

for all a, b, c ∈ A. Here and in what follows ⊗ means ⊗K.

Definition 2.1.
(i) A left (resp. right) algebra with bracket over K, for short, AWBl (resp. AWBr), is an associative algebra equipped

with a K-module homomorphism [−,−] : A⊗A→ A, such that (1) (resp. (2)) holds.
(ii) A left-right algebra with bracket over K (for short, AWBlr) is an associative algebra A equipped with a K-module

homomorphism [−,−] : A⊗A→ A, such that (1) and (2) hold.

As we have noted in the introduction, AWBl is the same as the algebra with bracket AWB defined in [9], and the
NPl-algebra is the NLP-algebra defined in [4]. Morphisms between the above defined algebras are K-module homo-
morphisms preserving the dot and bracket operations. The corresponding categories will be denoted by NPl, NPr, NPlr,
AWBl, AWBr and AWBlr. The sign “·” of the dot operation will be often omitted, when it is clear from the context, which
operation is meant between the elements, e.g. a ·b will be written as ab.

Example 2.2.
(a) Every Poisson algebra is an NPlr-algebra.
(b) Any Leibniz algebra A is an NPlr-algebra with trivial dot operation, i.e. ab = 0, a, b ∈ A.
(c) Any associative algebra A is an NPlr-algebra with the usual bracket [a, b] = ab− ba, a, b ∈ A.
(d) Let A be an associative algebra and let D : A → A be a square zero derivation, i.e. D2 = 0 and D(ab) =

(Da)b+ a(Db). Define the bracket operation by [a, b] = a(Db)− (Db)a. It is easy to check that with this bracket
operation A is an NPl-algebra, but not NPr-algebra.

(e) Let A be an associative algebra from the case (d), where the bracket operation is defined by [a, b] = (Da)b−b(Da).
Then A is an NPr-algebra, but not NPl-algebra.

(f ) Let A be an associative algebra with the property that abc = bac = acb, for any a, b, c ∈ A, and let D : A→ A be
a square zero derivation. Then A is an NPlr-algebra with respect to the rule [a, b] = a(Db)− (Db)a.

(g) Every NP-algebra is an AWB.
(h) The following algebra is AWBr (resp. AWBl), but not an NPr-algebra (resp. NPl-algebra). Let A be an associative

algebra with a linear application D : A→ A. Then A is AWBr (resp. AWBl) where the bracket operation is defined
by [a, b] = (Da)b− b(Da) (resp. by [a, b] = a(Db)− (Db)a); for the left AWB this example was given in [9].
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(i) Let A be an associative algebra with a linear application D : A → A, satisfying the condition (Da)b − b(Da) =
a(Db)− (Db)a, for any a, b ∈ A. Then the algebra defined in the case (h) is an AWBlr.

(j) If the linear application D : A → A from the case (i) is a square zero derivation like in case (d), then the algebra
with respect to the square bracket [a, b] = (Da)b− b(Da) is an NPlr-algebra.

(k) Any associative dialgebra [25] with respect to the operations ab = a ` b, [a, b] = a ` b− b a a (resp. [a, b] = a a
b− b ` a) is an AWBr (resp. AWBl), but not an AWBl (resp. AWBr).

(l) The algebras defined in the case (k) generally are not NPr and NPl-algebras, respectively. The greatest quotient
of these algebras by the congruence relation generated by the relation [a, [b, c]] ∼ [[a, b], c] − [[a, c], b], for any
a, b, c ∈ A, gives examples of NPr- and NPl-algebras, respectively. For NPl-algebras this example was given in [4].

(m) The algebra defined in the case (k), under the additional condition a ` b− b a a = a a b− b ` a, for any a, b ∈ A,
is an NPlr-algebra.

(n) For an example of a graded version of NPl-algebra coming from physics see [19].
(o) See Section 3 for the constructions of free AWBr and AWBl.

Definition 2.3.
Let P ∈ NPlr. A subalgebra of P is an associative and Leibniz subalgebra of P. A subalgebra R of P is called a
two-sided ideal if a · r, r ·a, [a, r], [r, a] ∈ R , for all a ∈ P, r ∈ R .

The inclusion functor inc : Poiss→ NP from the category of Poisson algebras to the category of NP-algebras, i.e. left,
right or left-right noncommutative Poisson algebras, respectively, has a left adjoint (−)Poiss : NP→ Poiss. This functor
assigns to an NP-algebra P the quotient algebra of P with the smallest two-sided ideal spanned by the elements [x, x]
and xy− yx, for all x, y ∈ P.

Lemma 2.4.
For a set S any word with the elements from S, brackets and dots as formal operations, which have a sense, can be
rewritten in a unique way under the relations of associativity and (2) (resp. (1)) for the dot operation and the bracket
and the dot operations, respectively.

Proof. It is sufficient to note that two different decompositions of the words of the type [a, b ·c ·d] (resp. [a ·b ·c, d]) in
any AWBr (resp. AWBl) corresponding to the words [a, b · (c ·d)] and [a, (b ·c) ·d] (resp. [a · (b ·c), d] and [(a ·b) ·c, d])
give the same expression

b ·c · [a, d] + b · [a, c] ·d+ [a, b] ·c ·d
(resp. a ·b · [c, d] + a · [b, d] ·c + [a, d] ·b ·c).
Consider the elements [a, [b, c ·d]], [a, [b ·c, d]], [a ·b, [c, d]] and [a ·b, c ·d] in the category of NPlr-algebras. The two
different decompositions of the first and the fourth elements give the identities

[a, c] · [b, d] + [a, c] · [d, b] + [b, c] · [a, d] + [c, b] · [a, d] = 0, (3)
a ·c · [b, d] + [a, c] ·d ·b = c ·a · [b, d] + [a, c] ·b ·d. (4)

The last identity is true in the category of AWBlr as well.
The two different decompositions of the second and the third elements do not give identities. Analogously, considering
two different decompositions of the first element in the category of NPr-algebras, and the second element in the category
of NPl-algebras we obtain, respectively, the identities

[[a, c] ·d, b] = [[a, c], b] ·d− [a, c] · [b, d]− [b, c] · [a, d] + c ·[[a, d], b]− [c · [a, d], b], (5)[a, b · [c, d]]+ [a, [b, d] ·c] = [[a, b ·c], d]− [[a, d], b ·c].
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In the categories AWBlr and NPlr-algebras we have the following identity as well:
[a ·b, c]− [a, c ·b] + [b ·c, a]− [b, a ·c] + [c ·a, b]− [c, b ·a] = 0. (6)

By decomposition of all summands except the first one in the right side of (5) according to the identity (2) we obtain
the following:
[[a, c ·d], b] = −[b, [a, c] ·d]+ [[b, a], c] ·d− [[b, c], a] ·d− [a, [b, c] ·d]+ [[a, b], c] ·d+ [[a, d], c ·b]− [[a, d], c] ·b.

These identities will be applied in the next section and in the construction of free objects in the new categories.
Recall that an action (a derived action in the sense of [30]) of P on M for associative algebras is given by two K-module
homomorphisms −·− : P⊗M → M, −·− : M⊗P → M with the conditions

p · (m1 ·m2) = (p ·m1) ·m2, m1 · (p ·m2) = (m1 ·p) ·m2, (m1 ·m2) ·p = m1 · (m2 ·p),
p1 · (p2 ·m) = (p1 ·p2) ·m, p1 · (m ·p2) = (p1 ·m) ·p2, m · (p1 ·p2) = (m ·p1) ·p2.

An action of P on M for Leibniz algebras is given by two K-module homomorphisms [−,−] : P⊗M → M,
[−,−] : M⊗P → M with the conditions

[p, [m1, m2]] = [[p,m1], m2
]− [[p,m2], m1

], [p1, [p2, m]] = [[p1, p2], m]− [[p1, m], p2
],[m1, [p,m2]] = [[m1, p], m2

]− [[m1, m2], p], [p1, [m, p2]] = [[p1, m], p2
]− [[p1, p2], m],[m1, [m2, p]] = [[m1, m2], p]− [[m1, p], m2

], [m, [p1, p2]] = [[m, p1], p2
]− [[m, p2], p1

].
Here we recall the definition of category of interest. Let C be a category of groups with a set of operations Ω and with
a set of identities E, such that E includes the group identities and the following conditions hold. If Ωi is the set of i-ary
operations in Ω, then
(a) Ω = Ω0 ∪Ω1 ∪Ω2;
(b) the group operations (written additively: (0,−,+)) are elements of Ω0,Ω1 and Ω2 respectively. Let Ω′2 = Ω2 \ {+},

Ω′1 = Ω1 \ {−} and assume that if ∗ ∈ Ω2, then Ω′2 contains ∗◦ defined by x ∗◦y = y ∗ x. Assume further that
Ω0 = {0};

(c) for each ∗ ∈ Ω′2, E includes the identity x ∗ (y+ z) = x ∗ y+ x ∗ z;
(d) for each ω ∈ Ω′1 and ∗ ∈ Ω′2, E includes the identities ω(x+y) = ω(x) + ω(y) and ω(x) ∗ y = ω(x ∗y).
Note that the group operation is denoted additively, but it is not commutative in general. A category C defined above
is called a category of groups with operations. The idea of the definition comes from [15] and the axioms are from [30]
and [31]. We formulate two more axioms on C [30, Axioms (7) & (8)].
If C is an object of C and x1, x2, x3 ∈ C then:
Axiom 1. x1 + (x2 ∗x3) = (x2 ∗x3) + x1 for each ∗ ∈ Ω′2.
Axiom 2. For each ordered pair (∗, ∗) ∈ Ω′2×Ω′2 there is a word W such that

(x1∗x2)∗x3 = W (x1(x2x3), x1(x3x2), (x2x3)x1, (x3x2)x1, x2(x1x3), x2(x3x1), (x1x3)x2, (x3x1)x2
),

where each juxtaposition represents an operation in Ω′2.
A category of groups with operations satisfying Axioms 1 and 2 is called a category of interest in [30].
Denote by EG the subset of identities of E which includes the group laws and the identities (c) and (d). We denote
by CG the corresponding category of groups with operations. Thus we have EG ↪→ E, C = (Ω,E), CG = (Ω,EG) and
there is a full inclusion functor C ↪→ CG . The category CG is called a general category of groups with operations of a
category of interest C (see [6, 8]).
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Example 2.5 (categories of interest).
The categories of groups, modules over a ring, associative algebras, associative commutative algebras, Lie algebras,
Leibniz algebras are categories of interest. In the example of groups Ω′2 = ∅. In the case of associative algebras with
multiplication represented by ∗, we have Ω′2 = {∗, ∗◦}. For Lie algebras take Ω′2 = {[ · , · ], [ · , · ]◦} (where [a, b]◦ = [b, a] =
−[a, b]). For Leibniz algebras, take Ω′2 = {[ · , · ], [ · , · ]◦} (here [a, b]◦ = [b, a]). The category of alternative algebras is
a category of interest as well [30] (see also [7]). The categories of crossed modules and precrossed modules in the
category of groups, respectively, are equivalent to categories of interests (see e.g. [5, 6]). According to [2] the category
of commutative von Neumann regular rings is isomorphic to a category of interest. In [29] there are given new examples
of categories of interest, these are associative dialgebras and associative trialgebras. Dialgebras and trialgebras were
defined by Loday [24, 25, 27]. As it is noted in [30], Jordan algebras do not satisfy Axiom 2. It is easy to see that NPlr
is a category of interest; while the categories AWBlr, AWBr, AWBl, NPr and NPl are not categories of interest, they
do not satisfy Axiom 2 of the definition.

3. Free objects in AWB

For any set X we shall build a free AWBr over a ring K. Denote by W (X ) the set, which contains X and all formal
combinations (words) of two operations ( · , [−,−]) with the elements from X , which have a sense, and which do not
contain elements of the form [a, b ·c], where a, b, c are from X or are combinations of elements of X and dot and bracket
operations. Let Wn(X ) be the subset of those words of W (X ), which contain n elements of X , i.e. the number of both
operations together is n − 1, n ≥ 1; we say that this word is of length n. Obviously, W (X ) = ⋃

n≥1 Wn(X ). We define
the following maps:

σn,m, τn,m : Wn(X )×Wm(X )→ Wn+m(X ).
The map σn,m is defined for any pair (a, b) ∈ Wn(X )×Wm(X ) by σn,m(a, b) = a ·b, where the right side denotes the
word from Wn+m(X ), which is defined uniquely. The map τn,m is defined only on those pairs (a, b), for which the word
[a, b] ∈ Wn+m(X ), and by definition τn,m(a, b) = [a, b]. In the case [a, b] /∈ Wn+m(X ), τn,m is not defined. Let F (W (X ))
be the free K-module generated by the set W (X ). Define the dot operation on F (W (X )) as a linear extension of σn,m on
the whole F (W (X )). For those words of F (W (X )) on which τn,m is defined, we define the bracket operation as a linear
extension on F (W (X )) of τn,m. If the element [a, b] /∈ Wn+m(X ), for a ∈ Wn(X ), b ∈ Wm(X ), then we decompose [a, b]
according to the identity (2) and K-linearity of the bracket operation, until we obtain the sum of the words, which contain
bracket operations only on those pairs of words, on which the bracket is already defined. Therefore we will obtain the
sum c1 + · · ·+ ck , with ci ∈ Wn+m(X ), i = 1, . . . , k , and by definition [a, b] = c1 + · · ·+ ck . By Lemma 2.4 it follows that
the results of the bracket operations are defined uniquely. By construction F (W (X )) has a structure of AWBr.
Let i : X → F (W (X )) be the natural injection of sets.

Proposition 3.1.
For any B ∈ AWBr and a map φ : X → B, there exists a unique homomorphism φ : F (W (X ))→ B such that the following
diagram commutes:

X i //

φ
��

F (W (X ))
φ

{{B
Therefore F (W (X )) is a free AWBr on the set X .

Proof. For any word Q(x1, . . . , xk ) ∈ W (X ) define a map φ′ : W (X ) → B by φ′(Q(x1, . . . , xk )) = Q(φ(x1), . . . , φ(xk )).
The map φ is defined as a K-linear extension of φ′ to F (W (X )). By construction of F (W (X )) and by application of
Lemma 2.4 any element a ∈ F (W (X )) is expressed in a unique way as a K-linear combination of the words from W (X ).
From this it follows that φ is defined correctly. By the definition it is a homomorphism of AWBr and it is a unique
homomorphism with the property that the diagram commutes.
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The construction of a free AWBl is similar to the construction given above; in this case we take all formal combinations
(words) of two operations ( · , [−,−]) with the elements from X , which have a sense, and do not contain the elements of
the form [a ·b, c] (cf. with the construction given in [9]). The constructions of free objects in other new defined categories
are much more complicated; we plan to consider them in a separate paper.
It is easy to see that the given construction defines a functor F from the category Set of sets to AWBr, where F(X ) =
F (W (X )), which is a left adjoint to the underlying functor

Set
F // AWBr.
U

oo

Analogously, for left AWB.
Let V lrA : NPlr → Ass, V lrL : NPlr → Leib and T lrA : AWBlr → Ass be the forgetful functors, where Ass and Leib denote
the categories of associative and Leibniz algebras, respectively. The analogous meaning will have the symbols V rA, V lA,V rL , V lL, T rA, T lA.

Proposition 3.2.
If P is a free AWBr, then T rA(P) is a free associative algebra.

Proof. Let P be a free AWBr on the set X . Denote by X ′ the set of all kind of those words of the type [. . . , . . . ],
which do not contain the words of the form [a, b ·c]. Let X1 = X ∪ X ′. Applying Lemma 2.4 it is easy to see that every
element of P is decomposed in a unique way as a linear combination of the words constructed from the elements of X1
and the dot operation. From this fact, in a similar way as it is in the proof of Proposition 3.1, it follows that T rA(P) is a
free associative algebra on the set X1.
An analogous statement for AWBl is proved in [9].

Proposition 3.3.
If P is a free NPlr-algebra (resp. AWBlr), then V lrA (P) (resp. T lrA (P)) is not a free associative algebra and V lrL (P) is not
a free Leibniz algebra.

Proof. Let P be the free NPlr-algebra on the set X . A basis for V lrA (P) must contain all elements from X , and all
elements of the form [a, b], where a, b ∈ X . From identity (3) or (4) it follows that V lrA (P) is not a free associative
algebra. Analogously, from identity (4) we see that T lrA (P) is not a free associative algebra. In the case of the Leibniz
algebra V lrL (P), its basis must contain all elements from X and all kind of elements of the form a1 · . . . ·an, where
a1, . . . , an ∈ X , n ≥ 1. The identity (6) proves that V lrL (P) is not a free Leibniz algebra.

4. Actions, representations and crossed modules in NP and AWB

Under action we will mean a set of actions derived from the corresponding split extension, i.e. a derived action in the
sense of [30]. An action for NPl-algebras is defined in [4] in the following way.

Definition 4.1 ([4]).
Let M,P ∈ NPl. We say that P acts on M if we have an action of P on M as associative and Leibniz algebras given
respectively by the K-module homomorphisms

−·− : P⊗M → M, −·− : M⊗P → M, (7)
[−,−] : P⊗M → M, [−,−] : M⊗P → M, (8)
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and the following conditions hold:

[p1 ·p2, m] = p1 · [p2, m] + [p1, m] ·p2, [p1 ·m, p2] = p1 · [m, p2] + [p1, p2] ·m,
[m ·p1, p2] = m · [p1, p2] + [m, p2] ·p1, [m1 ·m2, p] = m1 · [m2, p] + [m1, p] ·m2,
[m1 ·p,m2] = m1 · [p,m2] + [m1, m2] ·p, [p ·m1, m2] = p · [m1, m2] + [p,m2] ·m1,

for all m,m1, m2 ∈ M, p, p1, p2 ∈ P.

Definition 4.2.
Let M,P ∈ NPr. We say that P acts on M if we have an action of P on M as associative and Leibniz algebras given
by the K-module homomorphisms (7) and (8), respectively, and the following conditions hold:

[m, p1 ·p2] = p1 · [m, p2] + [m, p1] ·p2, [p1, p2 ·m] = p2 · [p1, m] + [p1, p2] ·m,
[p1, m ·p2] = m · [p1, p2] + [p1, m] ·p2, [p,m1 ·m2] = m1 · [p,m2] + [p,m1] ·m2,
[m1, m2 ·p] = m2 · [m1, p] + [m1, m2] ·p, [m1, p ·m2] = p · [m1, m2] + [m1, p] ·m2,

for all m,m1, m2 ∈ M and p, p1, p2 ∈ P.

Definition 4.3.
Let M,P ∈ NPlr. We say that P acts on M if we have an action of P on M as left and right NP-algebras.

Actions in the categories AWBl, AWBr and AWBlr are defined in similar ways as in the previous definitions, but
obviously, the Leibniz algebra action conditions are not required. If an NP-algebra P acts on M, and M is singular,
or equivalently abelian, i.e. M ·M = [M,M] = 0, then M will be called a representation of P. Representation in the
category AWB (for AWBl see [9]) is defined in a similar way. These definitions coincide with the special cases of
the general definition of module given in categories of groups with operations in [30]. If M is a representation of P
in NP, then M is a P-P-bimodule, P considered as the underlying associative algebra; analogously, M is an AWB
representation of P and a Leibniz representation of P defined in [26]. In the case of Poisson algebras we obtain the
representation defined in [13].
A homomorphism between two representations over P is a linear map f : M → M ′ satisfying

f (p ·m) = p · f(m), f (m ·p) = f(m) ·p, f [p,m] = [p, f(m)], f [m, p] = [f(m), p],

for all p ∈ P and m ∈ M.

Definition 4.4.
Let P ∈ NP and M be a representation of P. A derivation from P to M is a linear map d : P → M satisfying the
conditions

d(p1 ·p2) = d(p1) ·p2 + p1 ·d(p2), d[p1, p2] = [d(p1), p2] + [p1, d(p2)].
(We can give the analogous definition for AWB.)

Denote by DerNP(P,M) the K-module of such derivations; analogously we will use the notation DerAWB(P,M). Any
NP-algebra P is a representation of P acting on itself by the operations in P (see [4, Example 2.3.2]). For p ∈ P, the
application adp : P → P defined by adp(p′) = −[p′, p] is an example of derivation. The following definition is a special
case of the definitions given in [30, 31].
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Definition 4.5.
Let P,M ∈ NP. An abelian extension of P by M is a short exact sequence

E : 0 −→ M i−→ Q j−→ P −→ 0,
where Q ∈ NP and M is abelian.

Any abelian extension defines on M a unique representation of P in such a way that

i(j(q) ·m) = q · i(m), i(m · j(q)) = i(m) ·q, i[j(q), m] = [q, i(m)], i([m, j(q)]) = [i(m), q],

for any m ∈ M,q ∈ Q. Two abelian extensions E and E ′ of P by M are called equivalent if there exists a homomorphism
of NP-algebras f : Q → Q′ inducing the identity morphisms on M and P. Note that in this case f is an isomorphism.
Let M be any representation of P. Denote by ExtNP(P,M) the set of all equivalence classes of those abelian extensions
of P by M, which induce the given representation M of P.

Definition 4.6.
Let M,P ∈ NP with an action of P on M. A crossed module is a morphism µ : M → P in NP satisfying the following
axioms:

µ(p ·m) = p ·µ(m), µ(m ·p) = µ(m) ·p,
µ[p,m] = [p, µ(m)], µ[m, p] = [µ(m), p],

µ(m) ·m′ = m ·m′ = m ·µ(m′), [µ(m), m′] = [m,m′] = [m, µ(m′)].
A homomorphism of crossed modules is a pair (φ,ψ) : (M,P, µ)→ (M ′, P ′, µ′) where φ,ψ are morphisms in NP such that
ψµ = µ′φ and φ(p ·m) = ψ(p) ·φ(m); φ(m ·p) = φ(m) ·ψ(p);φ[p,m] = [ψ(p), φ(m)]; φ[m, p] = [φ(m), ψ(p)], for all p ∈ P,
m ∈ M.

Examples of representations and crossed modules and the construction of semi-direct products in the category of
NP-algebras and AWB are analogous to those given for NPl-algebras and AWBl, therefore for these subjects we
refer the reader to [4] and [9], respectively.
It is proved in [29] that every category of interest is action accessible in the sense of [3]. Since NPlr is a category of
interest (see Section 2) we obtain

Theorem 4.7.
The category NPlr is action accessible.

In [6] for any category of interest C and for any object A ∈ C there is defined and constructed the universal strict
general actor USGA(A) of A, which is generally an object of CG . Here we give this construction for the category NPlr.
In this case we have three binary operations: the addition, denoted by “+”, the dot and the (square) bracket operations.
Ω′2 from the definition of category of interest is a set with three elements Ω′2 = { · , [−,−], [−,−]◦}. Since the addition
is commutative, the action corresponding to this operation is trivial. Thus we will deal only with actions, which are
defined by dot and bracket operations; the actions of b on a will be denoted as a ·b, b ·a, [b, a] and [a, b]. Below under
∗ operation we will mean either dot or bracket operations. Let A ∈ NPlr; consider all split extensions of A,

Ej : 0 −→ A ij−→ Cj pj−→ Bj −→ 0, j ∈ J.

Let {bj∗ : bj ∈ Bj , ∗ ∈ Ω′2} be the corresponding set of derived actions for j ∈ J. For any element bj ∈ Bj denote
bj = {bj∗ : ∗ ∈ Ω′2}. Let B = {bj : bj ∈ Bj , j ∈ J}. Thus each element bj ∈ B, j ∈ J, is the special type of a function
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bj : Ω′2 −→ Maps (A→A), bj (∗) = bj ∗ − : A → A. According to Axiom 2 of the definition of a category of interest, we
define ∗ operation, bi ∗ bk , ∗ ∈ Ω′2, for the elements of B by the equalities

(bi ∗bk ) ∗ (a) = W (bi, bk ;a; ∗, ∗).

We define

(bi +bk ) ∗ (a) = bi ∗a+ bk ∗a, (−bk ) ∗ (a) = −(bk ∗a),
(−b) ∗ (a) = −(b ∗ (a)), −(b1 + · · ·+ bn) = −bn − · · · − b1,

where ∗ ∈ Ω′2, b, b1, . . . , bn are certain combinations of the dot and the bracket operations on the elements of B, i.e.
the elements of the type bi1 ∗1 · · · ∗n−1 bin , where n > 1. We do not know if the new functions defined by us are again
in B. Denote by B(A) the set of functions (Ω′2 −→ Maps (A→A)) obtained by performing all kinds of the above defined
operations on elements of B and the new obtained elements as results of operations. Let b ∼ b′ in B(A) if b ∗a = b′∗a,
for any a ∈ A, ∗ ∈ Ω′2. It is an equivalence relation; denote by USGA(A) be the corresponding quotient algebra. Let
NPlrG be a general category of groups with operations of the category of interest NPlr.
By direct checking of identities one can prove the following proposition.

Proposition 4.8.
USGA(A) is an object in NPlrG .

As above, we will write for simplicity b ∗ (a) instead of (b(∗))(a), for b ∈ USGA(A) and a ∈ A. Define a set of
actions of USGA(A) on A in the following natural way. For b ∈ USGA(A) we define b ∗a = b ∗ (a), ∗ ∈ Ω′2. Thus if
b = bi1 ∗1 · · · ∗n−1 bin , where we mean certain round brackets, we have

b ∗a = (bi1 ∗1 · · · ∗n−1 bin ) ∗ (a).

The right side of the equality is defined inductively according to Axiom 2. For bk ∈ Bk , k ∈ J, we have

bk ∗a = bk ∗ (a) = bk ∗a.

Also
(b1 + b2 + · · ·+ bn) ∗ a = b1 ∗ (a) + · · ·+ bn ∗ (a).

Proposition 4.9.
The set of actions of USGA(A) on A is an action in the category NPlrG .

Proof. It is a special case of the proof of the general statement for categories of interest given in [6]. The checking
shows that the set of actions of USGA(A) on A satisfies conditions of [11, Proposition 1.1], which proves that it is an
action in NPlrG .
Note that this is an action in NPlrG , which in general does not satisfy the action conditions in NPlr. Define a map
d : A→ USGA(A) by d(a) = a, where a = {a · , a ∗ , ∗ ∈ Ω′2}. Thus we have by definition

d(a) ∗a′ = a ∗a′, a, a′ ∈ A, ∗ ∈ Ω′2.

Proofs of the following two statements are special cases of those given in [6].
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Lemma 4.10.
The map d is a homomorphism in NPlrG .

Proposition 4.11.
The map d : A→ USGA(A) is a crossed module in NPlrG .

According to the general definition of center [30] (cf. with the definition in [6]) we describe the center of an object in NPlr
as follows.

Definition 4.12.
The center of P ∈ NPlr is Z (P) = {z ∈ P : z ·p = p ·z = [z, p] = [p, z] = 0, p ∈ P}.

It is easy to see that Z (P) = Kerd. Next we give the definition of an actor in NPlr (for the case of a category of interest
see [6]).

Definition 4.13.
For any object A in NPlr an actor of A is an object Act(A) ∈ NPlr, which has an action on A in the same category (i.e.
satisfying the conditions of Definition 4.3), such that for any object C in NPlr with an action on A, there is a unique
morphism φ : C → Act(A) with

c ·a = φ(c) ·a, a ·c = a ·φ(c), [c, a] = [φ(c), a], [a, c] = [a, φ(c)],

for any a ∈ A and c ∈ C .

According to the same paper, an actor of A is a split extension classifier for A in the sense of [1]. From the results of [6]
we obtain.

Theorem 4.14.
For any element A ∈ NPlr there exists an actor of A if and only if the semidirect product USGA(A)nA ∈ NPlr. If it is
the case, then Actor(A) = USGA(A).

At the end of this section we give an example of a subcategory in NPlr, which satisfies the amalgamation property. This
result can be applied to the description of effective codescent morphisms in the corresponding subcategory. For the
definition of amalgamation property one can see [2].
Recall that a ring R (generally without a unit) is von Neumann regular if for any r ∈ R there exists an element r′ ∈ R
such that rr′r = r.

Proposition 4.15.
In the category of NPlr-algebras there exists a subcategory, which satisfies the amalgamation property.

Proof. Consider the full subcategory in NPlr, whose objects are commutative von Neumann regular rings with trivial
bracket operations. Now it remains to apply the result from [2], where it is proved that the category of (not necessarily
unital) commutative von Neumann regular rings satisfies the amalgamation property.
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5. Cohomology

We recall the constructions of complexes for Hochschild and Leibniz cohomologies, for cohomologies of left algebras with
bracket and left NP-algebras, i.e. AWBl and NPl-algebras according to [4, 9], respectively. Below for P ∈ NP instead
of underlying associative and Leibniz algebras VA(P), VL(P) and underlying AWB we will write for simplicity just P and
will note what kind of algebras we mean, similarly for P ∈ AWB and TA(P), TL(P).
Let P be a left NP-algebra over a field K and M a representation of P. In particular, P is an associative algebra and
M is a P-P-bimodule and, on the other hand, P is a Leibniz algebra and M is a representation of P in the category of
Leibniz algebras. Let (C ∗H (P,M), ∂nH) be the Hochschild complex and (C ∗L (P,M), ∂nL) be the Leibniz complex. We recall
that for n ≥ 0,

CnH (P,M) = CnL (P,M) = Hom(P⊗n, M)
and coboundary maps ∂nH and ∂nL are given by

∂nH (f)(p1, . . . , pn+1) = (−1)n+1
{
p1f (p2, . . . , pn+1) +

n∑
i=1

(−1)if (p1, . . . , pipi+1, . . . , pn+1) + (−1)n+1f (p1, . . . , pn)pn+1
}
,

∂nL (f)(p1, . . . , pn+1) = [p1, f (p2, . . . , pn+1)]+
n+1∑
i=2

(−1)i[f(p1, . . . , p̂i, . . . , pn+1), pi]

+ ∑
1≤i<j≤n+1

(−1)j+1f(p1, . . . , pi−1, [pi, pj ], pi+1, . . . , p̂j , . . . , pn+1
).

Thus CnH (P,M) and CnL (P,M) are complexes of K-vector spaces. We will need below the P-P-bimodule Me, defined by
Me = Hom(P,M) as a K-vector space, and a bimodule structure on Me given by (p1 · f)(p2) = p1 · f(p2), (f ·p1)(p2) =
f(p2) ·p1. We have an isomorphism of K-vector spaces θn : Cn+1H (P,M)→ CnH (P,Me), n ≥ 1, defined in an obvious way
θn(f)(p1, . . . , pn)(p) = f (p1, . . . , pn, p). Denote the coboundary maps of the complex C ∗H (P,Me) by ∂e,∗H . Let

C ∗H (P,M) = (CnH (P,M), ∂nH : n ≥ 1), C ∗H (P,Me) = (CnH (P,Me), ∂e,nH , n ≥ 1), C ∗L(P,M) = (CnL (P,M), ∂nL : n ≥ 1)

Consider the following homomorphisms of cochain complexes, defined in [4, 9], respectively:

α∗ : C ∗H (P,M)→ C ∗H (P,Me), β∗ : C ∗L(P,M)→ C ∗H (P,Me)

and given by
α1(f)(p1)(p2) = [p1, f(p2)] + [f(p1), p2]− f([p1, p2]),

and for n > 1,

αn(f)(p1, . . . , pn)(pn+1) = [f (p1, . . . , pn), pn+1
]− f ([p1, pn+1], p2, . . . , pn)− f (p1, [p2, pn+1], . . . , pn)

− · · · − f (p1, . . . , pn−1, [pn, pn+1]),
β2k+1 = θ2k+1∂2k+1L , k ≥ 0, β2k = ∂e,2k−1

H θ2k−1, k ≥ 1.

Note that α1 = β1. α∗ and β∗ are homomorphisms of complexes (see resp. [4, 9]). Let cone α∗ and cone(−β∗) be the
mapping cones and C ∗(P,M) = coneα∗⊔(i1,i2) cone(−β∗) the pushout, where i1 and i2 are the following injections of
complexes:

cone α∗ i1←− C ∗−1H (P,Me) i2−→ cone(−β∗).
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Define C 0
NPl (P,M) = 0, C 1

NPl (P,M) = Hom(P,M), Cn
NPl (P,M) = Cn(P,M), n ≥ 2; ∂0

NPl = 0, ∂1
NPl = (∂1H , 0, ∂1L),∂nNPl = ∂n, n ≥ 2. We have ∂n+1

NPl ∂nNPl = 0, n ≥ 0, so {Cn
NPl (P,M), ∂nNPl : n ≥ 0} is a complex which has the form

0

��Hom(P,M)
−∂1H

w w
0
��

−∂1L

' 'C 2H (P,M)
−∂2H
� �

α2

((

⊕ C 1H (P,Me)
∂e,1H
��

⊕ C 2L (P,M)
−β2

vv
−∂2L
��

C 3H (P,M)
−∂3H
��

α3

&&

⊕ C 2H (P,Me)
∂e,2H��

⊕ C 3L (P,M)
−β3

x x

−∂3L
� �... ... ... ... ...

The cohomology vector spaces Hn
NPl (P,M), n ≥ 0, of an NPl-algebra P with coefficients in a representation M of P are

defined by
Hn

NPl (P,M) = Hn(C ∗NPl (P,M), ∂nNPl
), n ≥ 0.

According to [9] the cohomology of AWB is defined by Hn−1AWB(P,M) = Hn(cone α∗), for n ≥ 1, where P ∈ AWB. Note
that in cone α∗ the zero term cone(α∗)0 is zero, and the first one is C 1H (P,M)⊕C 0H (P,Me). In this paper the cohomology
of AWBl are defined as H0

AWBl (P,M) = 0 and Hn
AWBl (P,M) = Hn(cone α∗), for n ≥ 1.

Now we shall define the cohomology vector spaces of NPr- and NPlr-algebras. Let θ′n : Cn+1H (P,M) → CnH (P,Me), for
n ≥ 1, be the homomorphism defined by θ′1(f)(p1)(p2) = f (p2, p1) and θ′n(f)(p1, p2, . . . , pn)(pn+1) = f (pn+1, p1, . . . , pn),
n > 1. It is easy to see that θ′n is an isomorphism for each n ≥ 1. Define the homomorphisms

α ′∗ : C ∗H (P,M)→ C ∗H (P,Me), β′∗ : C ∗L(P,M)→ C ∗H (P,Me),

by
α ′1(f)(p1)(p2) = [f(p2), p1] + [p2, f(p1)]− f ([p2, p1])

and for n > 1 by

α ′n(f)(p1, . . . , pn)(pn+1) = [pn+1, f (p1, . . . , pn)]− f ([pn+1, p1], p2, . . . , pn)− f (p1, [pn+1, p2], . . . , pn)
− · · · − f (p1, . . . , pn−1, [pn+1, pn]),

β′2k+1 = θ′2k∂2k+1L , k ≥ 0, β′2k = ∂e,2k−1
H θ′2k−1, k ≥ 1.

We have α ′1 = β′1. Easy checking shows that α ′∗ and β′∗ are homomorphisms of complexes.
By taking the pushout C ′∗(P,M) = coneα ′∗ t(i′1,i′2) cone(−β′∗), where i′1 and i′2 are the following injections of complexes:

cone α ′∗ i′1←− C ∗−1H (P,Me) i′2−→ cone(−β′∗),
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we construct the complex analogous to {Cn
NPl (P,M), ∂nNPl : n ≥ 0}, which will be denoted by {CnNPr (P,M), ∂nNPr : n ≥ 0}.

The complex has the form
0

��Hom(P,M)
−∂1H

w w
0
��

−∂1L

' 'C 2H (P,M)
−∂2H
� �

α ′2

((

⊕ C 1H (P,Me)
∂e,1H
��

⊕ C 2L (P,M)
−β′2

vv
−∂2L
��

C 3H (P,M)
−∂3H
� �

α ′3

((

⊕ C 2H (P,Me)
∂e,2H
��

⊕ C 3L (P,M)
−β′3

vv
−∂3L
��

C 4H (P,M)
−∂4H
��

α ′4

&&

⊕ C 3H (P,Me)
∂e,3H��

⊕ C 4L (P,M)
−β′4

xx

−∂4L
� �... ... ... ... ...

The cohomology vector spaces of an NPr-algebra P with coefficients in a representation M of P are defined as the
cohomologies of this complex and denoted as HnNPr (P,M), n ≥ 0.
Now we construct the complex for the cohomology of an NPlr-algebra P. Consider the following pairs of homomorphisms
of complexes:

(α∗, α ′∗) : C ∗H (P,M)→ C ∗H (P,Me)⊕C ∗H (P,Me), (β∗, β′∗) : C ∗L(P,M)→ C ∗H (P,Me)⊕C ∗H (P,Me).

From these homomorphisms we obtain two cones: cone(α∗, α ′∗) and cone(β∗, β′∗). We have the following homomorphisms
of complexes:

cone(α∗, α ′∗) j1←− C ∗−1H (P,Me)⊕C ∗−1H (P,Me) j2−→ cone(−β∗,−β′∗).
The pushout of the pair (j1, j2) gives the desired complex. In particular, we take C 0

NPlr (P,M) = 0, C 1
NPlr (P,M) =

Hom(P,M), Cn
NPlr (P,M) = CnH (P,M)⊕CnH (P,Me)⊕CnH (P,Me)⊕CnL (P,M), for n ≥ 2, moreover ∂0

NPlr = 0, ∂1
NPlr =(−∂1H , 0, 0,−∂1L

), ∂nNPlr is induced by αn, α ′n, ∂e,n−1
H , ∂e,n−1

H , βn, β′n, for n ≥ 2.
We have ∂n+1

NPlr ∂nNPlr = 0, n ≥ 0, therefore {Cn
NPlr (P,M), ∂nNPlr : n ≥ 0} is a complex; it has the following form:

The cohomology vector spaces of an NPlr-algebra P with coefficients in a representation M of P are defined as the
cohomologies of this complex and denoted as Hn

NPlr (P,M), n ≥ 0.
As in the case of NPl-algebras in [4], we define restricted second cohomology of NPlr-algebras. We have the natural
injection C 2H (P,M)⊕C 2L (P,M) −→ C 2

NPlr (P,M) on to the first and the fourth summands; the image of this injection will
be denoted again by the sum C 2H (P,M)⊕C 2L (P,M). Consider the restriction

d2
NPlr = ∂2

NPlr�C2H ( )⊕C2L ( ).

We define the 2-dimensional restricted cohomology of the NPlr-algebra P with coefficients in M by

H2
NPlr (P,M) = Kerd2

NPlr / Im ∂1
NPlr .
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0

Hom(P,M)

C 2H(P,M) ⊕ C 1H(P,Me) ⊕ C 1H(P,Me) ⊕ C 2L (P,M)

C 3H(P,M) ⊕ C 2H(P,Me) ⊕ C 2H(P,Me) ⊕ C 3L (P,M)

C 4H(P,M) ⊕ C 3H(P,Me) ⊕ C 3H(P,Me) ⊕ C 4L (P,M)

−∂1H 0 0 −∂1L

−∂2H ∂ e,1
H ∂ e,1

H
−∂2L

−∂3H ∂ e,2
H ∂ e,2

H
−∂3L

... ... ... ...

α2
α ′2 −β2

−β ′2

α3
α ′3 −β3

−β ′3

−β ′4
−β4−α ′4

α4

1

The obvious injection κ : Kerd2
NPlr → Ker ∂2

NPlr induces the injection of the corresponding cohomologies

χ : H2
NPlr (P,M)→ H2

NPlr (P,M).

H2NPr (P,M) is defined in analogous way as for NPl-algebras. The cohomologies of AWBr and AWBlr are defined by

H∗AWBr (P,M) = H∗(cone α ′∗), H∗AWBlr (P,M) = H∗(cone(α∗, α ′∗)).

From the definitions we obtain

Lemma 5.1.
(i) For P ∈ NP, H0NP(P,M) = 0 and H1NP(P,M) = DerNP(P,M).
(ii) For P ∈ AWB, H0AWB(P,M) = 0, H1AWB(P,M) = DerAWB(P,M), and H2AWB(P,M) ∼= ExtAWB(P,M).

Proof. (i) The proof follows directly from the fact that C 0NP(P,M) = 0, from the definition of ∂1NP and the definition
of a derivation.
(ii) Since the zero term in the corresponding cone complex is zero, the first equality follows from the definition of
the cohomology. The proofs of other two equalities of (ii) for AWBr and AWBlr are similar to the proofs given in [9]
for AWBl.
Recall that the Hochschild cohomological dimension c.dimH P of an associative algebra P is defined as the greatest
natural number n, for which there exists a P-P-bimodule S with HnH (P,S) 6= 0. The analogous meaning will have the
Leibniz cohomological dimension of a Leibniz algebra P, AWB cohomological dimension of an algebra P ∈ AWB and
NP cohomological dimension of an NP-algebra P, denoted as c.dimL P, c.dimAWB P and c.dimNP P, respectively.
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Theorem 5.2.
H2NP(P,M) ∼= ExtNP(P,M).

The proof is similar to the one for NPl-algebras presented in [4], and therefore omitted.

Corollary 5.3.(i) If P is a free NP-algebra, then H2NP(P,M) = 0 for any representation M of P.
(ii) If P is an NPl-algebra with c.dimH V lA(P) ≤ n and c.dimL V lL(P) ≤ n (resp. NPr-algebra with c.dimH V rA(P) ≤ n

and c.dimL V rL (P) ≤ n), then for k > n and any representation M,
Hk+1

NPl (P,M) = 0 (resp. Hk+1NPr (P,M) = 0).

Proof. (i) Since for a free NP-algebra P every extension 0 → M i−→ Q j−→ P → 0 splits, the fact follows from
Theorem 5.2.
(ii) From the facts that α∗ and β∗ (resp. α ′∗ and β′∗) are homomorphisms of cochain complexes, by diagram chasing we
obtain that C ∗NPl (P,M) (resp. C ∗NPr (P,M)) is exact in dimensions ≥ k+1, where k > n, from which the result follows.

Lemma 5.4.
If P is a free AWBr, then HnAWBr (P,M) = 0, for n ≥ 2 (according to the notation in [9], n ≥ 1) and any representation M
of P.

The demonstration is analogous to the proof of this fact for AWBl given in [9] and therefore it is omitted.
In [9] it is proved that if P is AWBl, then its cohomologies are isomorphic to Quillen cohomologies. In a similar way,
applying Lemma 5.4 we have

Theorem 5.5.
Hn+1AWBr (P,M) ≈ HnQ(P,M).

From the constructions of the cohomology complexes we obtain the following short exact sequences of complexes:
0 −→ cone α∗ −→ C ∗NPl (P,M) −→ C ∗L (P,M) −→ 0, ∗ ≥ 3, (a1)
0 −→ cone α ′∗ −→ C ∗NPr (P,M) −→ C ∗L (P,M) −→ 0, ∗ ≥ 3, (a2)
0 −→ cone(α∗, α ′∗) −→ C ∗NPlr (P,M) −→ C ∗L (P,M) −→ 0, ∗ ≥ 3, (a)
0 −→ cone(−β∗) −→ C ∗NPl (P,M) −→ C ∗H (P,M) −→ 0, ∗ ≥ 3, (b1)
0 −→ cone(−β′∗) −→ C ∗NPr (P,M) −→ C ∗H (P,M) −→ 0, ∗ ≥ 3, (b2)
0 −→ cone(−β∗,−β′∗) −→ C ∗NPlr (P,M) −→ C ∗H (P,M) −→ 0, ∗ ≥ 1, (b)
0 −→ C ∗−1H (P,Me) −→ C ∗AWBl (P,M) −→ C ∗H (P,M) −→ 0, ∗ ≥ 1, (c1)
0 −→ C ∗−1H (P,Me) −→ C ∗AWBr (P,M) −→ C ∗H (P,M) −→ 0, ∗ ≥ 1, (c2)
0 −→ C ∗−1H (P,Me) i3−→ C ∗AWBlr (P,M) −→ C ∗AWBl (P,M) −→ 0, ∗ ≥ 1, (c)
0 −→ C ∗−1H (P,Me) i2−→ C ∗AWBlr (P,M) −→ C ∗AWBr (P,M) −→ 0, ∗ ≥ 1, (c′)
0 −→ C ∗−1H (P,Me) −→ C ∗NPl (P,M) −→ C ∗H (P,M)⊕C ∗L (P,M) −→ 0, ∗ ≥ 3, (d1)
0 −→ C ∗−1H (P,Me) −→ C ∗NPr (P,M) −→ C ∗H (P,M)⊕C ∗L (P,M) −→ 0, ∗ ≥ 3, (d2)
0 −→ C ∗−1H (P,Me) i3−→ C ∗NPlr (P,M) −→ C ∗NPl (P,M) −→ 0, ∗ ≥ 3, (d)
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0 −→ C ∗−1H (P,Me) i2−→ C ∗NPlr (P,M) −→ C ∗NPr (P,M) −→ 0, ∗ ≥ 3, (d′)
0 −→ C ∗−1H (P,Me)⊕C ∗−1H (P,Me) −→ C ∗AWBlr (P,M) −→ C ∗H (P,M) −→ 0, ∗ ≥ 3, (e)
0 −→ C ∗−1H (P,Me)⊕C ∗−1H (P,Me) −→ C ∗NPlr (P,M) −→ C ∗H (P,M)⊕C ∗L (P,M) −→ 0, (f)
0 −→ C ∗−1H (P,Me) (i2,−i3)−−−−→ cone α∗⊕ cone(−β∗) −→ C ∗NPl (P,M) −→ 0, ∗ ≥ 3, (g1)
0 −→ C ∗−1H (P,Me) (i2,−i3)−−−−→ cone α ′∗⊕ cone(−β′∗) −→ C ∗NPr (P,M) −→ 0, ∗ ≥ 3, (g2)
0 −→ C ∗−1H (P,Me)⊕C ∗−1H (P,Me) ((i2,i3),(−i4,−i5))−−−−−−−−−→ cone(α∗, α ′∗)⊕ cone(−β∗,−β′∗) −→ C ∗NPlr (P,M) −→ 0, (g)
0 −→ C ∗−1H (P,Me) −→ cone(−β∗) −→ C ∗L (P,M) −→ 0, ∗ ≥ 3, (h1)
0 −→ C ∗−1H (P,Me) −→ cone(−β′∗) −→ C ∗L (P,M) −→ 0, ∗ ≥ 3, (h2)
0 −→ C ∗−1H (P,Me)⊕C ∗−1H (P,Me) −→ cone(−β∗,−β′∗) −→ C ∗L (P,M) −→ 0, ∗ ≥ 3. (h)

In these sequences i2, i3, i4 and i5 denote the injections on the corresponding summands, respectively. These exact
sequences are obtained directly from the constructions of the cohomology complexes of the corresponding types of
algebras.

Theorem 5.6.
We have the following exact sequences of cohomology vector spaces:

H2
AWBl (P,M) // H2

NPl (P,M) / / H2L (P,M)

// H3
AWBl (P,M) / / H3

NPl (P,M) / / H3L (P,M) // · · ·
(A1)

where P is an NPl-algebra and M a representation of P.

H2AWBr (P,M) / / H2NPr (P,M) / / H2L (P,M)

// H3AWBr (P,M) // H3NPr (P,M) / / H3L (P,M) / / · · ·
(A2)

where P is an NPr-algebra and M a representation of P.

H2
AWBlr (P,M) // H2

NPlr (P,M) / / H2L (P,M)

// H3
AWBlr (P,M) / / H3

NPlr (P,M) / / H3L (P,M) // · · ·
(A)

where P is an NPlr-algebra and M a representation of P.

H3(cone(−β∗)) // H3
NPl (P,M) / / H3H (P,M)

// H4(cone(−β∗)) // H4
NPl (P,M) / / H4H (P,M) // · · ·

(B1)

where P is an NPl-algebra and M a representation of P.
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H3(cone(−β′∗)) / / H3NPr (P,M) / / H3H (P,M)

// H4(cone(−β′∗)) / / H4NPr (P,M) / / H4H (P,M) / / · · ·
(B2)

where P is an NPr-algebra and M a representation of P.

H3(cone(−β∗,−β′∗)) // H3
NPlr (P,M) / / H3H (P,M)

// H4(cone(−β∗,−β′∗)) / / H4
NPlr (P,M) / / H4H (P,M) / / · · ·

(B)

where P is an NPlr-algebra and M a representation of P.
H2H (P,Me) // H3AWBr (P,M) // H3H (P,M)

// H3H (P,Me) // H4AWBr (P,M) // H4H (P,M) / / · · ·
(C1,2)

where P is an AWBr and M a representation of P. Analogous exact sequence we have for HAWBl (P,M).

H2H (P,Me) // H3
AWBlr (P,M) // H3AWBr (P,M)

// H3H (P,Me) // H4
AWBlr (P,M) // H4AWBr (P,M) / / · · ·

(C,C′)

where P is an AWBlr and M a representation of P. Analogous exact sequence we have, where HAWBr (P,M) is replaced
by HAWBl (P,M).

H2H (P,Me) // H3NPr (P,M) / / H3H (P,M)⊕H3L (P,M)

// H3H (P,Me) // H4NPr (P,M) / / H4H (P,M)⊕H4L (P,M) // · · ·
(D1,2)

where P is an NPr-algebra and M a representation of P. Analogously for HNPl (P,M).

H2H (P,Me) // H3
NPlr (P,M) / / H3NPr (P,M)

// H3H (P,Me) // H4
NPlr (P,M) / / H4NPr (P,M) / / · · ·

(D,D′)

where P is an NPlr-algebra and M a representation of P. Analogous exact sequence we have when HNPr (P,M) is
replaced by HNPl (P,M).

H2H (P,Me)⊕H2H (P,Me) / / H3
AWBlr (P,M) / / H3H (P,M)

// H3H (P,Me)⊕H3H (P,Me) // H4
AWBlr (P,M) / / H4H (P,M) / / · · ·

(E)
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where P is an AWBlr and M a representation of P.

H2H (P,Me)⊕H2H (P,Me) // H3
NPlr (P,M) / / H3H (P,M)⊕H3L (P,M)

// H3H (P,Me)⊕H3H (P,Me) // H4
NPlr (P,M) / / H4H (P,M)⊕H4L (P,M) / / · · ·

(F)

where P is an NPlr-algebra and M a representation of P.

H2H (P,Me) // H3
AWBl (P,M)⊕H3(cone(−β∗)) // H3

NPl (P,M)

// H3H (P,Me) // H4
AWBl (P,M)⊕H4(cone(−β∗)) // H4

NPl (P,M) // · · ·
(G1)

where P is an NPl-algebra and M a representation of P.

H2H (P,Me) / / H3AWBr (P,M)⊕H3(cone(−β′∗)) / / H3NPr (P,M)

// H3H (P,Me) // H4AWBr (P,M)⊕H4(cone(−β′∗)) / / H4NPr (P,M) / / · · ·
(G2)

where P is an NPr-algebra and M a representation of P.

H2H (P,Me)⊕H2H (P,Me) // H3
AWBlr (P,M)⊕H3(cone(−β∗,−β′∗)) // H3

NPlr (P,M)

// H3H (P,Me)⊕H3H (P,Me) // H4
AWBlr (P,M)⊕H4(cone(−β∗,−β′∗)) // H4

NPlr (P,M) / / · · ·
(G)

where P is an NPlr-algebra and M a representation of P.

H2H (P,Me) // H3(cone(−β∗)) // H3L (P,M)

// H3H (P,Me) // H4(cone(−β∗)) // H4L (P,M) // · · ·
(H1,2)

where P is an NPl-algebra and M a representation of P. Analogous exact sequence we have for the cohomologies of
the cone(−β′∗) and for an NPr-algebra P.

H2H (P,Me)⊕H2H (P,Me) // H3(cone(−β∗,−β′∗)) // H3L (P,M)

// H3H (P,Me)⊕H3H (P,Me) // H4(cone(−β∗,−β′∗)) // H4L (P,M) // · · ·
(H)

for any NPlr-algebra P and a representation M of P.
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These exact sequences are obtained directly from the corresponding short exact sequences of the cohomology complexes.

Corollary 5.7.
Let P be an NPr-algebra with c.dimH V rA(P) ≤ n and c.dimL V rL (P) ≤ n (resp. an NPl-algebra with c.dimH V lA(P) ≤ n
and c.dimL V lL(P) ≤ n), n ≥ 2, and M be a representation of P. Then we have:

(i) Hk+1AWBr (P,M) = 0, k > n (resp. Hk+1
AWBl (P,M) = 0, k > n), where P is the underlying AWBr (resp. AWBl) of the

given algebra P;
(ii) Hk+1(cone(−β′∗)) = 0 (resp. Hk+1(cone(−β∗)) = 0), k > n.

Proof. (i) By Corollary 5.3 (ii), Hk+1NPr (P,M) = 0, k > n. Since M is a representation of P in the category of
NPr-algebras, it follows that it is a representation of V rL (P) in Leib as well, i.e., P considered as the underlying Leibniz
algebra. Now applying the condition c.dimL V rL (P) ≤ n the result follows from long exact sequence (A2) in Theorem 5.6.
For P ∈ NPl by the same Corollary 5.3 (ii), Hk+1

NPl (P,M) = 0, k > n. Now it is sufficient to apply the condition on
cohomological dimension and (A1).
(ii) The result follows from the statement (i) of this corollary and the exact sequence (G2). Analogously we obtain the
equality Hn(cone(−β∗)) = 0, where we apply the exact sequence (G1) in Theorem 5.6.

Corollary 5.8.
Let P be an AWB. If c.dimH P ≤ n, n ≥ 1, where P is the corresponding underlying associative algebra, then

c.dimAWB P ≤ n+ 1.

Proof. Let P be an AWBr or an AWBl. The results follow from the exact sequences (C1,2) in Theorem 5.6. Let P be a
left-right AWB. Applying the result for AWBr (or AWBl) for the underlying algebra P as an AWBr (resp. as an AWBl),
the result follows from the exact sequences (C,C′) in Theorem 5.6.

Corollary 5.9.
Let P be an NPlr-algebra and c.dimH V lrA (P) ≤ n, n ≥ 2. If M is a representation of P, then we have:

(i) Hk+1
NPlr (P,M) ≈ Hk+1(cone(−β∗,−β′∗)), Hk+1

NPl (P,M) ≈ Hk+1(cone(−β∗)), Hk+1NPr (P,M) ≈ Hk+1(cone(−β′∗)), k > n,
where in the last two isomorphisms P denotes the underlying NPl and NPr-algebras of the given NPlr-algebra P,
respectively;

(ii) Hk+1
NPlr (P,M) ≈ Hk+1NPr (P,M) ≈ Hk+1

NPl (P,M), k > n, where P in the last two right terms denotes the underlying NPl
and NPr-algebras of the given algebra P, respectively;

(iii) Hk+1
NPlr (P,M) ≈ Hk+1L (P,M), k > n, where on the right side P denotes the underlying Leibniz algebra of the given

algebra P.

Proof. (i) follows from exact sequences (B1), (B2) and (B) in Theorem 5.6. Analogously, for the proofs of (ii) and (iii) we
apply exact sequences (D,D′) and (F), respectively. Note that (iii) can be obtained as well by application of statement (i)
of this corollary and the exact sequence (H).
The below stated corollaries are proved by analogous arguments, therefore the proofs are left to the reader.

Corollary 5.10.
Let P be an NP-algebra and M be a representation of P. If c.dimH P ≤ n and c.dimL P ≤ n, n ≥ 2, where P denotes
the underlying associative and Leibniz algebras, respectively, then we have:

(i) c.dimNP P ≤ n+ 1;
(ii) Hk+1(cone(−β∗)) = Hk+1(cone(−β′∗)) = Hk+1(cone(−β ∗,−β′∗)) = 0, k > n.
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Corollary 5.11.
Let P be an NP-algebra and M be a representation of P. If c.dimL P ≤ n, where P is the underlying Leibniz algebra,
then we have:

(i) Hk+1NP (P,M) ≈ Hk+1AWB(P,M), k > n;
(ii) Hk+1(cone(−β∗)) ≈ Hk+1(cone(−β′∗)) ≈ Hk+1(cone(−β∗,−β′∗)) ≈ HkH (P,Me), k > n.
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