e

533060133 ML 3aCENIGIBSOY S33RIINOL IMasa, 166, N2, 2002
BULLETIN OF THE GEORGIAN ACADEMY OF SCIENCHES, 166, Ne2, 2002

MATHEMATICS
I Bukhnikashvili

On One Variant of Richardson’s Cyclic Iterative Method
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ABSTRACT. For the corresponding iterative scheme, in the Richardson's eyelic
iterative method instead of zevos of the raised in power lic Chebyshey polynomial T_,fk (x)
we suggest to take L- and K2k-1)-multiple zeros of the special raised in power {polyne-
mial Ry (x). We achieve acceleration of the convergence in the Richardson's method,
but the cycle itself elengates, aithough in both cases number # of different zeros
remains as fixed as the gencral order of power ik of the polynomials,

Key words: modulus-maxi mum, cyelic iteration, superpositional substitution, £-mul-
tiple zero. normalized Chebyshey polvnomial, z

Consider the linear equation

Ap=f (1)
with the symmetrical matrix A. whose eigen numbers {4} are on the scgment
[m. M. M>m=>0 2)

To solve cquation (1) approximately, we can apply the Richardson's cyclic iterative
method {11 which allows one (o construct on the segment (2) the raised in power £
normalized Chebyshey polyvnomial
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with 7=(s=1,.__») -multi ple zeros k and (o apply these zeros in the licrative scheme
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Wy =0 _T(‘éqjsJ _/{1 @y =0 €
satistving the condition P 2 =1 n). Alter & iterative cyeles are completed (sec 121).
tor the ?,,, approximation to the exact solution we obtain by scheme (4) the following
inequality:
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The maximum on the right-hand side of inequality (5) is taken (ust as below in all
analogous cascs) on the segment (2).

Instead of the polvnomial (3) with k-multiplc zeros we take the polynomial considered
in [3] in the particular case with single and 2k-1-multipie zcros. In case 1 is even, we can
weie this polvnomial in terms of
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The following statement holds.
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According to the notation introduced in |3], the value 7, appearing in formula (6) is
2
cqual to the abscissa of that point which corresponds to the normalization point x=0 upon
transformation of the scgment (2) into the scgment [-1. 1] using the linear substitution

_2x—M-m
e
As for the values v and . they are chosen in such a way that all »4] modulus-maxima
of the polvnomial (6) are equal among themselves. and this ensures maximality of the
above-mentiongd modulis-maxima in the condition under consideration,
The following statement holds.
Statement 1. If for the real numbers @ and & (A=a>0) and for the natural number k=1

the incquality
Feal R
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is fulfilled. then the incquality
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will likewise be fulfilled. If the inequality opposite to (7) is fulfilled. then the inequality
opposite to (8) will likewise be fulfilled In case [a.p]c[m.A] and the conditions

Ry = [Royy (M) =Ry (X)) Rop () =0, are fulfilled. then the polynomial on the
Ieft-hand side of incquality (8) turns out to be the initial polynomial which after the corre-
sponding superposilional substitution (sce |3|) results in the polynomial (6) for n=>2. Tak-
mg the above remark into account. we can cxiend Statement 1 1o the casc. when the
scgment |a.b] is cmbedded into the segment (2), and (hen compare polynomials (3) and
(6) with respect 1o the modulus-maxima on the entire segment (2) for #=2. (It is clear that
in this casc we consider (wo subsegments on the segment (2). The abscissas of the ends
of one subsegment will be zeros of the polynomial (3). while those of the second
subsegment will be zeros of the polmomjal (6). In the casc under consideration we have
the lollowing

Statement 2. For the segment [m, Mj (Af=m>0) and for natural numbers k>1 there
exists a fumction (k) such that if the incquality
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is fulfilled, the inequality
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will likewise be fulfilled, and if the inequality opposite to (9) 1s [ulfilled. the incquality
apposite to (10) will be fulfilled as well.

Remark to Statement 2. Using the corresponding superpositional substitution, we
can extend inequality (10) to the case #=2 (sce [3]). It should be noted that unlike condi-
tion (7) we have not managed to establish the function w(k) in condition (9) explicitly. we
have succeeded only in establishing the exact lower bounds for every fixed & using the
"exhaustive" method (here. under "exhaustive” is meant variation of the value A/m and
checking the validity of inequality (10) for the fixed ).

In the Table below, for natural numbers &1 and #=2 we present values of the function
w(k)y which appears in condition (9). For every separately taken & and for the segments of
type (2). these values show the exact lower bound of the Todd number values starting
from which tnequality (10) 1s TulGlled.

max|Rﬂ. {x}| < max

Table 1
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Incquality (10) with regard for inequality (3) gives us all grounds {o prefer as iterative
parameters the zeros of the polynomial (6) to those of the polynomial (3). il itcrations arc
performed by the scheme (4) for a number of cycles inultiple to &, 1.¢.. cqual to /&, Tn the latter

case instead of inequality (10) there takes place the inequality max|Ry (0| < max‘f'{‘ (x)r,
for which for sulficiently large / one can expect essential decrcase of modulus-mmaxima in
case we take the polyvnomial (0) mstead of the polvnomial (3) and. respectively, essential
practical gain decreasmg the volume of calculations. Along with the above said. it should be

taken into account that if in scheme (4) we use zeros of the polynomial (6). the length of the
- eyvele increases & times taking kn instead of » (the number 2 of different zcros remains fixed),
and thercfore in constructing the polynotial (6) 1t is not desirable to take large £,
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The second and the third lines of Table 2 give for fixed M/m=500, n=4 and k=2 the
+ alues of modulus-maxima, respectively, of polynomials (3) and (6) raised in power 1 whose
values arc given in the first line.

The conditions in Table 3 arc the same as thosc in Table 2 with thc only exception that
instead of the condition =2 we take i=16.

Introduce into our consideration the value [4]

>l (11

where {A,} arc assumed to be uniformly distributed on the segment (2). By (11) one can
Judge lo what extent the polynomial P, (/) 1s good for the Richardson's method, since the
value (11) is by itself the error norm of the n-th approximation of equation {1} lo the exact
solution. provided the relation
F= AZV!' % Z AV
i i

is fulfilled.
Table 4 reproduces the Table 4
value 1) for RL (3 BT .
s of (11) Tor R (2) n| k|l M|k \/ZRE;U':) JZTF?IH(;[?)
and. respectively. for 74 : : _ L T
for different valucs of n, &, £, byt 30, 11()_1 5 %10,18 '}’-x10_13
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The advantage of the polynomials of type (6) over the polynomials of type (3) in
achieving small modulus-maxima is so appreciable that under additional strengthened con-
ditions we may have the inequality

21| _ (12)

mn which one have to pay special attention to the fact (hat on the Iefi-hand side there is
the polynomial of order k», while on the right-hand side the polynomial of order 7 raised
in power 2#-1, and the difference in power order for the above-mentioned polynmmals is
rather essennal ie., equal to (k-7n.

The following statement is valid.

Statement 3. If for real numbers a and » (b>a>0) and for the natural numbcer k>7 the
mequality : 1
7 i =
B [4;4k1_1k ;

4 | ey

max |R,m (x)[ = max

+1, 13).




226 1. Buklmikashwili

is fulfilled. then the incquality
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will be fulfilled likcwise, and if the inequality oppose to (13) is fulfilled. then the inequality
opposite to (14) will be fulfilled as well,

Just as above (sce Statement 2). we can compare for #=2 the polynomial of type (3) of
order 2(2k-1) with that of type (6) of order 2/ with respect 1o the modulus-maxima on the
entire segment (2), and then we shall have the following

Statement 4. For the segment [m, M] (M>m>0) and for natural numbers #>5 there
exists the function @ (k) such that if the inequality

L o) (15)

m
is fulfilied, then (he incquality

H1ax

Ry (x)[ £ 1nax

.;,;zzk—q (I)L (16)
will be fulfilled likewise, and if the inequality opposite to (15) is fulfilled, then the inequal-
1ty opposite to (16) will be fulfilled as well.

Remark to Statement 4. Using (he corresponding superpositional substitution, we
can cxtend inequality (16) (o the case 12 {see [3]).
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