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TO THE PROBLEM OF CONSTRUCTING A

POLYNOMIAL WITH SMALL DEVIATIONS ON TWO

SEGMENTS

I. BUKHNIKASHVILI

Abstract. In the present paper we consider the problem of con-
structing (approximately) a normalized Chebyshev polynomial on two
segments on one side of the origin.

The exact effective solution of the problem is well-known only in
the case of equal in length segments. Approximate solutions suggested
in the paper are found under a supplementary restriction to the length
of a smaller segment.

The tables are given which show the advantage in achieving small
modulus-maxima of polynomials against the Chebyshev ones con-
structed on the given segments after they are equalized in length.

îâäæñéâ. ûæê�éáâ��îâ ê�öîëéöæ à�êýæèñèæ� éæ�ýèëâ�æåæ ï�ýæå

øâ�æöâãæï êëîéæîâ�ñèæ ìëèæêëéæï �àâ�æï �éëù�ê� ëî éëê�çãâåäâ,

îëéèâ�æù à�êè�àâ�ñèæ �îæ�ê çëëîáæê�ðå� ï�å�ãæï âîå éý�îâ-

äâ. ��êæöêñèæ �éëù�êæï äñïðæ âòâóðñîæ �éëýïê� ùêë�æèæ� éýë-

èëá å�ê���îæ ïæàîúæï éëê�çãâåâ�æïåãæï. ê�öîëéöæ éëð�êæèæ éæ-

�ýèëâ�æåæ �éëê�ýïêâ�æ �àâ�ñèæ� á�é�ðâ�æåæ ìæîë�â�æï á�áâ�æå

éùæîâ éëê�çãâåæï ïæàîúâäâ.

ê�öîëéöæ éëùâéñèæ� ùýîæèâ�æ, îëéèæï éæýâáãæå á�ïðñîáâ-

�� �àâ�ñèæ ìëèæêëéâ�æï ñìæî�ðâïë�� éùæîâ éëáñè-é�óïæéñéâ�æï

éæ�ûâãæï åã�ï�äîæïæå, öâá�îâ�æå æé ìëèæêëéâ�å�ê, îëéèâ�æù

�æàâ�� éëùâéñè éëê�çãâåâ�äâ ïæàîúâöæ à�ðëèâ�æï öâéáâà.

The goal of the present paper is to construct a polynomial with small
deviations from zero on two unequal in length segments on one side of
the origin. Unlike the generally accepted method aimed to make segments
equal in length and then to construct a polynomial of the least deviation
from zero (or briefly, PLDZ) on two equal segments (see [1]), we suggest the
scheme in which the use is made of the third additional segment to achieve
desired symmetry. In this case, under certain supplementary conditions, by
means of transformations we reduce these three segments to one and then
construct on the latter the PLDZ. It turns out that if the smaller segment
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is sufficiently small (see inequality (5)), then the modulus-maximum on the
preassigned segments of the polynomial will be less than that of the PLDZ
on two equal in length segments.

The second approximate scheme of constructing a polynomial shows
weakening of the condition on the sufficient smallness of the smaller seg-
ment, however at the expense of additional calculations.

The tables presented in the paper display that the polynomials, suggested
by the author (in achieving a small module-maxima) are more advantageous
than those suggested in [1]. The above-said gives us all grounds to prefer in
some separate cases the first over the second ones in solving such computa-
tional problems as, for example, finding of eigen-numbers of a matrix by the
method proposed by Gavurin ([2]), or solving a system of linear algebraic
equations by the method due to Richardson ([3], p. 253).

1. Statement of the Problem

On the real numerical axis we consider the segments

[m1, M1] (1)

[m2, M2]. (2)

Assume that the inequalities

0 < m1 < M1 < m2 < M2 (3)

are fulfilled.
We try to construct on the segments (1) and (2) the n-th degree polyno-

mial Pn(x) normalized by the condition

Pn(0) = 1 (4)

such that it competes successfully in achieving small modulus-maxima with
the PLDZ, constructed on the segments (1) and (2) by Lebedev’s scheme
([1]) after they are equalized in length and written in the form convenient
for calculations and allowing one to find zeros and modulus-maxima of the
polynomial. To be more precise, the method of construction suggested by us
and the necessary for that conditions depend considerably on the fact which
of the segments (larger, or smaller) is closer to the point of normalization
x = 0; for example, if the smaller segment is closer (see inequality (3)), then
it is necessary that the condition

M1 <
M2 + m2

2
−

√
(M2 − m1)(m2 − m1) (5)

is fulfilled (see remark to formula (18)).
Since the value in the right-hand side of inequality (5) is comparatively

small, a number of possible practical cases for application of the method
is limited. Therefore along with the method described above, we suggest
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another way of constructing (see Remark to Table 1) under which the re-
strictive condition (5) can to a certain extent be weakened.

To solve the above-stated problem, we use special scheme of construct-
ing which allows one to apply additional restrictions to the length of the
smaller segment and hence to avoid general methods of constructing the
PLDZ on two segments. These methods elaborated by N. Achiezer ([4]) re-
quire introducing into consideration special functions given in a complicated
parametric form which makes it difficult to find zeros and modulus-maxima.
For the same reason we gave up the methods of construction described by
A. Bogatyrev in [5].

2. Description and Comparison of Numerical Schemes

Resolving the Above-Stated Problem

Depending on the location of the smallest of the segments (1) and (2)
from the normalization point x = 0 (see condition (4)), we distinguish two
cases.

Case 1. The condition

M2 − m2 > M1 − m1

is fulfilled, or to be more precise, the smaller segment is closer to the point

of normalization than the larger one (see inequality (3)).

Following the general scheme of constructing suggested by V. Lebedev
([1]) for n segments, it is necessary in a particular case of two segments that
the segments (1) ans (2) be equal in length taking the segment

[m1, M2 − m2 + m1] (6)

and then, under the condition

2m2 − M2 − m1 > 0 (7)

for the segments (6) and (2) to be nonconfluent, to construct on them the
PLDZ of even n. Towards this end, we substitute

y = x − M2 + m1

2
, z = y2 (8)

and transform the segments (6) and (2) into the segment
[ (2m2 − M2 − m1)

2

4
,

(M2 − m1)
2

4

]

on which we construct the n
2 -th degree polynomial of smallest deviations

from zero with respect to the variable z and write it (see [3], p. 253) as
follows:

cos
n

2
arccos

8z − (M2 − m1)
2 − (2m2 − M2 − m1)

2

(M2 − m1)2 − (2m2 − M2 − m1)2
. (9)
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The normalizing value (see the condition (4)) of the polynomial (9) by which
the latter is divided looks as

cos
n

2
arccos

8z0 − (M2 − m1)
2 − (2m2 − M2 − m1)

2

(M2 − m1)2 − (2m2 − M2 − m1)2
, (10)

where z0 is the abscissa of the point x = 0 obtained after transformations
(8). Representing in (10) the expression under the sign arccos in the form
of the ratio of sums and differences of the same values, after calculations
(see [3], p. 253), we obtain the following formula:

cos
n

2
arccos

4z0 − (2m2 − M2 − m1)
2 + 4z0 − (M2 − m1)

2

4z0 − (2m2 − M2 − m1)2 − [4z0 − (M2 − m1)2]
=

=
1

2

(
P n

2 +
1

P n

2

)
, (11)

where

P =

√
4z0 − (2m2 − M2 − m1)2 +

√
4z0 − (M2 − m1)2√

4z0 − (2m2 − M2 − m1)2 −
√

4z0 − (M2 − m1)2
.

Taking into account formulas (9), (10) and (11) and substitutions (8),
the unknown PLDZ on the segments (6) and (2), satisfying the condition
(4) (see the text after formula (9)), can be written in the form

Tn(x) =
2

P n

2 + 1

P
n

2

×

× cos
n

2
arccos

8(x − M2+m1

2 )2 − (M2 − m1)
2 − (2m2 − M2 − m1)

2

(M2 − m1)2 − (2m2 − M2 − m1)2
. (12)

It is clear that the modulus-maximum of the polynomial (12) on the
segments (6) and (2) is calculated by the formula

max |Tn(x)| =
2

P n

2 + 1

P
n

2

. (13)

Now, instead of the segment (6) which is obtained as a result of lengthening
of the segment (1) up to the whole length of the segment (2), we take the
segment

[m1, M1] (14)

and choose abscissas of its right end M1 such that after transformations

y = x − M2 + m2

2
, z = y2 (15)

the segments (14) and (2) transformed into the segments

[ (M2 + m2 − 2M1)
2

4
,

(M2 + m2 − 2m1)
2

4

]
∪

[
0,

(M2 − m2)
2

4

]
, (16)
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are equal in length. The latter condition results in the quadratic equation
with respect to M1 from which we choose the least root,

M1 =
M2 + m2

2
−

√
(M2 − m1)(m2 − m1), (17)

and write the segment (14) as follows:

[
m1,

M2 + m2

2
−

√
(M2 − m1)(m2 − m1)

]
. (18)

It is clear that the above scheme of constructing is possible if and only if
the segment (1) is smaller than the segment (18). Moreover, after transfor-
mations (15) in reverse order and getting back to the variable x, the left of
the segments (16) is divided into two (symmetric with respect to the point
x = 1

2 (M2 + m2)) segments: the segment (17) and the segment

[M2 + m2

2
+

√
(M2 − m1)(m2 − m1), M2 + m2 − m1

]
, (19)

while the right segment transfers into the segment (2), coming open on both
sides of the point of symmetry.

Having obtained the equal in length segments (16), thanks to our choice
of M1 by formula (17), by means of substitutions

ξ = z − (M2 + m2 − 2m1)
2

8
, η = ξ2 (20)

we can transform the above-mentioned segments into the segment

[ [4(M2 − m1)(m2 − m1) − (M2 − m2)
2]2

64
,

(M2 + m2 − 2m1)
4

64

]
. (21)

Further, to complete the construction, we can use general methods devel-
oped by V. Lebedev ([1]).

To simplify our writing of the subsequent calculations, we introduce brief
designation and write the expression for the segment (21) in the form

[A, B]. (22)

Taking as the initial on the segment (22) the first degree Chebyshev poly-
nomial

T1(η) =
2η − B − A

B − A
(22)

with modulus-maxima equal to unity, we construct the corresponding Cheby-

shev polynomial of degree
n

4
, assuming n to be divisible by 4 (see, for e.g.,

[6]) and using the superposition of the functions,

T n

4
(T1(η)) = cos

n

4
arccos

2η − B − A

B − A
. (23)
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Taking now into account the transformations (15) and (20), we can write
(23) as the n-th degree polynomial of the variable x:

cos
n

4
arccos

2
[

(2x−M2−m2)
2

4 −
√

B
]2

− B − A

B − A
. (24)

The normalizing value (see the condition (4)) of the polynomial (24) by
which this latter should be divided is

cos
n

4
arccos

2η0 − B − A

B − A
, (25)

where η0 is the abscissa of the point into which the point x = 0 transfers
after the transformations (15) and (20). Next, performing calculations,
analogous to those we have used for obtaining formula (11), we can write

cos
n

4
arccos

η0 − A + η0 − B

η0 − A − (η0 − B)
=

1

2

(
P

n

4

1 +
1

P
n

4

1

)
, (26)

where

P1 =

√
η0 − A +

√
η0 − B√

η0 − A −√
η0 − B

.

Taking into account formulas (24), (25) and (26), the unknown PLDZ on
the segments (2), (18) and (19) can be written as follows:

Pn(x) =
2

P
n

4

1 + 1

P

n

4

1

cos
n

4
arccos

2
[

(2x−M2−m2)
2

4 −
√

B
]2

− B − A

B − A
. (27)

It is clear that the modulus-maximum of the polynomial (27) on the seg-
ments (2), (18) and (19) is calculated by the formula

max |Pn(x)| =
2

P
n

4

1 + 1

P

n

4

1

. (28)

Equating the expression (24) to zero, we obtain the relations:

arccos
2
[

(2x−M2−m2)
2

4 −
√

B
]2

− B − A

B − A
=

2(2k − 1)π

n
, k = 1, . . . ,

n

4
,

from which to find zeros of the polynomial (27) we get the formulas:

xkij = (29)

=
M2 + m2

2
+ (−1)i

√
√

B + (−1)j
1√
2

√
B + A + (B − A) cos

2(2k − 1)π

n
,

k = 1, . . . ,
n

4
, i = 1, 2, j = 1, 2.
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It is not difficult to see that all zeros obtained by formula (29) are real.
Below we present the table. The first column reproduces the values of the

modulus-maxima (13) of the polynomial (12); the second column provides
us with the values of the modulus-maxima (28) of the polynomial (27); the
third and the fourth columns of Table 1 represent abscissas of the ends of
the segments (18) and (2), respectively; the fifth column shows order of
degrees of the polynomials (12) and (27), which is the same for the both
polynomials.

Table 1

max |Tn(x)| max |Pn(x)| [m1, M1] [m2, M2] n

10−5 5 · 10−16 1; 2 300,350 80

7 · 10−6 7 · 10−14 1; 2,4 200,250 80

5 · 10−6 4 · 10−13 1; 2,6 170,220 80

4 · 10−6 10−12 1; 2,8 150,200 80

4 · 10−6 3 · 10−12 1; 2,9 140,190 80

2 · 10−6 5 · 10−11 1; 3,5 100,150 80

10−6 10−10 1; 3,7 90,140 80

7 · 10−7 6 · 10−10 1; 4,4 70,120 80

4 · 10−7 10−9 1; 4,8 60,110 80

2 · 10−7 3 · 10−9 1; 5,2 51,101 80

As is seen from the table (see the third and the fourth columns), the
segments (18) are small compared to the segments (2), hence a number of
practical cases for application of polynomials (27) are limited. Taking this
fact into account, below we present the scheme of constructing a polyno-
mial for which, unlike the polynomial (27), we do not introduce the third
additional segment, and distribute all zeros on the segments (1) and (2).
This allows one to achieve improvement in two directions: to obtain small
modulus-maxima and to elongate the segment, but at the expense of addi-
tional calculations.

To construct the above-mentioned polynomial, we substitute

y = x − M2 + m2

2
, z =

2y

M2 − m2
(30)

and transform the segments (1) and (2), respectively, into the segments

[z1, z2] ∪ [−1, 1], (31)

where

z1 = −M2 + m2 − 2m1

M2 − m2
. (32)
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It is not necessary to write out the right end abscissa z2 of the first of the
segments (31), because in the sequel the construction of this segment will
be ”accomplished” accordingly to the right (see the condition (54)).

We write the initial basis polynomial ([42]) in the form

P3(z) = δ(1 + αz + βz2 + γz3) (33)

and require that the conditions

P3(−1) = P3(1) = 0, (34)

P3(z0) = P3(z1) (35)

are fulfilled, and the normalizing condition

P3(zN
) = 1. (36)

In equality (35) we assume that

P ′

3(z0) = 0 (37)

and

|z0| < 1. (38)

It is clear that all zeros of the polynomial (33) having hitherto two real zeros
(see equality (34)), are real ones.

It should also be noted that the point z
N

, appearing in equality (36) and
obtained from the point x = 0 by transformations (30), is equal to

z
N

= −M2 + m2

M2 − m2
. (39)

On the basis of the conditions (34), we can write the relations P3(−1) −
P3(1) = 0 and P3(−1)+P3(1) = 0 which result, respectively, in the equalities
α = −γ and β = −1. The polynomial (33) can now be rewritten as follows:

P3(z) = δ(1 − γz − z2 + γz3) = δ(z2 − 1)(γz − 1), (40)

and equality (37) in the form

3γz2
0 − 2z0 − γ = 0. (41)

From equality (41) we obtain the formula

γ =
2z0

3z2
0 − 1

. (42)

Considering equality (41) with respect to z0, resolving it and writing the
radical with the sign − (see inequality (38)), we find that

z0 =
1 −

√
1 + 3γ2

3γ
. (43)

In addition, we assume that γ < 0, because otherwise, the abscissa of the
extremum point of the polynomial (40) with the largest in absolute value
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abscissa will be positive, but this is impossible by virtue of our choice of the
new coordinate system (see substitutions (30)).

Taking the above-said into account, from formula (43) we obtain the
inequalities

0 < z0 <
1√
3
. (44)

Bearing formula (42) in mind, the condition (35) results in the following
cubic equation with respect to z0,

z3
0 + z1z

2
0 − (2z2

1 − 1)z0 − z1 = 0, (45)

where z1 is taken by formula (32).
It can be easily verified that one of the roots of equation (45) is separated

by inequalities (44), but we can find it by, for example, the method of
bisection of the segment (see [7], p. 118). Next, by formula (42) we can find
γ and then, using equality (36), we can write for δ the following formula:

δ =
1

(z2
N
− 1)(γz

N
− 1)

,

where z
N

is taken by formula (39).
Thus, taking the above-said and formula (40) into account, we can write

P3(z) =
(z2 − 1)(γz − 1)

(z2
N
− 1)(γz

N
− 1)

(46)

and regard that

max |P3(z)| = P3(z1) =
(z2

1 − 1)(γz1 − 1)

(z2
N
− 1)(γz

N
− 1)

. (47)

To pass from the polynomial (46) to the corresponding n-th degree polyno-
mial, we have to take the relation

P3(z)

P3(z1)
= θ (48)

in which |θ| < 1 (see formulas (46) and (47)) and, assuming n as a number
divisible by 3, we construct by means of superposition the polynomial of
the form

Pn(z) =
cos n

3 arccos P3(z)
P3(z1)

cos n
3 arccos 1

P3(z1)

(49)

with n
3 Chebyshev zeros with respect to the variable θ (see formula (48))

which are defined from the equation cos n
3 arccos θ = 0 by the formulas

θk = cos
3(2k − 1)π

n
, k = 1, . . . ,

n

3
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and with n zeros with respect to the variable zx (see formula (48)) which
are defined from n

3 cubic equations of the type

P3(z)

P3(z1)
= cos

3(2k − 1)π

n
, k = 1, . . . ,

n

3
. (50)

Clearly, the polynomial (49) satisfies the normalization condition (36).
It can be easily verified that all n roots of equations (50) are real because

in the left-hand side of each of the equations there appear the polynomial
with simple zeros and the modulus-maxima equal to unity, while in the
right-hand side of the equation there appears a free term which is less than,
or equal to unity in an absolute value.

For the sake of convenience, in the denominator of formula (49) we intro-
duce the notation ω = 1

P3(z1)
, and reasoning analogously as when deducing

formulas (11) and (26), we can write the following relations:

cos
n

3
arccosω = cos

n

3
arccos

(ω + 1) + (ω − 1)

(ω + 1) − (ω − 1)
=

1

2

(
P

n

3

2 +
1

P
n

3

2

)
, (51)

where

P2 =

√
ω + 1 +

√
ω − 1√

ω + 1 −
√

ω − 1
.

Taking into account the relations (51), we can rewrite the polynomial (49)
in the form

Pn(z) =
2

P
n

3

2 + 1

P

n

3

2

cos
n

3
arccos

P3(z)

P3(z1)
, (52)

and calculate its modulus-maximum by the formula

max |Pn(z)| =
2

P
n

3

2 + 1

P

n

3

2

.

Applying now transformations (30) to the polynomial (46) in reverse
order, we can get both the third degree polynomial P 3(x) of the variable x

and the corresponding n-th degree polynomial

Pn(x). (53)

Now all formulas, starting from (47) to (52) inclusive, can be written by
means of the variable x. But we do not consider it necessary. We only
notice that the polynomial P 3(x) has zeros at the points x = m2, x =
M2 and two equal modulus-maxima at the points x = m1 and x = x0

(P
′

3(x0) = 0, m2 < x0 < M2). The third point at which we achieve the

same modulus-maximum can be obtained after finding the point x = M̂1 at
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which P 3(m1) = −P 3(M̃1) and introducing into consideration the segment

[m̃1, M̂1]; in addition, the condition

M1 < M̃1 (54)

should be fulfilled.
Here we present the table, analogous to Table 1.

Table 2

max |Tn(x)| max |Pn(x)| [m1, M̃1] [m2, M2] n

3 · 10−6 10−15 [1; 3,7] [450,500] 90

3 · 10−8 9 · 10−20 [1; 4] [400,450] 120

2 · 10−6 3 · 10−13 [1; 4,9] [300,350] 90

10−6 3 · 10−11 [1; 6,7] [200,250] 90

8 · 10−7 4 · 10−10 [1; 8,6] [150,200] 90

5 · 10−9 5 · 10−13 [1; 9,1] [140,190] 120

5 · 10−7 2 · 10−9 [1; 10,4] [120,170] 90

3 · 10−7 7 · 10−9 [1; 12,3] [100,150] 90

2 · 10−7 10−8 [1; 13,7] [90,140] 90

6 · 10−8 9 · 10−8 [1; 25,2] [60,110] 90

Case 2. The condition

M2 − m2 < M1 − m1 (55)

is fulfilled.

Calculations performed show that if we construct the polynomial under
the condition (55) similarly to (27), but making the segment (2) longer than
(1) and using the substitutions, we do not obtain in most practical cases
any noticeable improvement, but the polynomials of type (53) obtained by
superposition from the corresponding third degree polynomial turned out
to be more competitive.

Here we present the scheme of constructing the above-mentioned poly-
nomial of type (53). First, by the substitutions

y = x − M1 + m1

2
, z =

2y

M1 − m1
(56)

we transform the segments (1) and (2) into the segments

[−1, 1] ∪ [z1, z2],

where

z1 =
2m2 − M1 − m1

M1 − m1
, (57)
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but we do not write out the abscissa z2, because the latter will be chosen
later on (see the condition (68)).

The initial basis polynomial for the unknown one is sought just as in
the previous case, i.e. in the form of the polynomial (33), but under the
requirement that the conditions

P̃3(−1) = P̃3(1) = P̃3(z1) (58)

and

P̃3(1) = −P̃3(z0), (59)

are fulfilled; the relation (37) and inequality (38) remain valid. The nor-
malization condition (36) remains likewise valid, however for

z
N

= −M1 + m1

M1 − m1
. (60)

Remark 1. In the last of equalities (58) we have taken P̃3(z1) instead of

−P̃3(z2), and hence gave the consideration of the well-known B. Samokish
problem ([8]) up, whose resolution (even in our case of the third degree
polynomial) is connected with cumbersome calculations, however allows one
to obtain comparatively better results in achieving small modulus-maxima.

Remark 2. The third degree polynomial (33) in the case under con-
sideration has real zeros. This automatically follows from the scheme of
construction, with alternation of positive and negative modulus-maxima:

P̃3(−1) = −P̃3(z0) = P̃3(1) (see equalities (58) and (59) and inequality
(38)), which in its turn indicates the existence of two real zeros.

From equalities (58) we can get the relations α = −γ and β = −z1γ.
Then the polynomial (33) and equality (37) can, respectively, be written as
follows:

P̃3(z) = δ(1 − γz − z1γz2 + γz3) (61)

and

3z2
0 − 2z1z0 − 1 = 0. (62)

Regarding equality (62) as the equation with respect to z0, resolving it and
taking the radical with the sign − (see inequality (38)), we obtain for z0 the
formula

z0 =
z1 −

√
z2
1 + 3

3
,

in which z1 is taken by formula (57).
From equation (59) we obtain the formula which allows one to find γ:

γ =
2

z1 + z0 + z1z
2
0 − z3

0

. (63)
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Finally, from the normalization condition (36) we find δ by means of the
formula

δ =
1

1 − γz
N
− z1γz2

N
+ γz3

N

, (64)

where z
N

is taken by formula (60).
Taking into account formula (64), we can write the polynomial (61) in

the form

P̃3(z) =
1 − γz − z1γz2 + γz3

1 − γz
N
− z1γz2

N
+ γz3

N

, (65)

where γ is taken by formula (63).
For the modulus-maximum of the polynomial (65) we write the formula

max |P̃3(z)| = P̃3(1) =
1 − z1γ

1 − γz
N
− z1γz2

N
+ γz3

N

. (66)

Further reasoning and calculations, starting from formulas (48) to (52),
inclusive, are the same as above. Therefore we restrict ourselves and deduce
the resultant formula for the unknown polynomial:

P̃n(z) =
2

P3
n

3 + 1

P

n

3

3

cos
n

3
arccos

P̃3(z)

P̃3(z1)
. (67)

When calculating P3, it should be mentioned that unlike the previous case,

there takes place the equality ω =
1

P̃3(1)
(see formulas (51), (52) and (66)).

In addition to the above-said, the initial basis polynomial P̃3(x) for the
unknown one, obtained from the polynomial (65) by the passage from the
variable z to x and substitutions (56), has four equal modulus-maxima at

the points x = m1, x = M1, x = m2, x = x0 (P̂3
′(x0) = 0, m1 < x0 < M1);

the fifth point at which we achieve the same modulus-maximum is obtained

only if the point x = M̂2, at which P̂3(m2) = −P̂3(M2), is found, the

segments [m2, M̃2] are introduced into consideration and the condition

M2 < M̃2 (68)

is fulfilled.
Further (see Table 3), by P̂n(x) we denote the unknown polynomial which

is obtained from (67) by returning to the initial variable x and substitutions
(56).

The table below is analogous to Tables 1 and 2.
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Table 3

max |Tn(x)| max |P̂n(x)| [m1, M1] [m2, M2] n

3 · 10−13 9 · 10−17 [1; 60,3] [397,5;400] 210

10−7 9 · 10−10 [1; 60,3] [397,5;400] 120

−10−13 6 · 10−17 [1; 60,6] [296,7;300] 210

6 · 10−8 7 · 10−10 [1; 60,6] [296,7;300] 120

3 · 10−8 5 · 10−10 [1; 61,2] [215,2;220] 120

2 · 10−8 4 · 10−10 [1; 61,5] [194,5;200] 120

7 · 10−9 3 · 10−10 [1; 62,1] [163,2;170] 120

10−13 3 · 10−15 [1; 62,8] [141,8;150] 180

3 · 10−9 3 · 10−10 [1; 62,8] [141,8;150] 120

2 · 10−11 9 · 10−13 [1; 62,8] [141,8;150] 150

Remark 3. It should be noted that the values of the polynomial Tn(x)
in the first column of the table are taken under the most possible favor-
able conditions allowing one to achieve small modulus-maxima when the
right end of the smallest equalizable segment is at the point x = m2, and
equalization occurs to the left of the above-mentioned point by the value
M1 − m1.

Remark 4. In all the above tables, the condition (7) is fulfilled for the
segments (1) and (2) to be equal in length.
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