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AsTRACT. — We investigate three-dimensional transmission problems related to the interaction
of metallic and piezoelectric ceramic bodies with regard to thermal effects. We give a mathematical
formulation of the physical problem when the metallic and ceramic sub-domains are bonded along
some proper parts of their boundaries. The corresponding nonclassical mixed boundary-transmis-
sion problem is reduced by potential methods to an equivalent strongly elliptic system of
pseudodifferential equations on manifolds with boundary. We investigate the solvability of this
system in different function spaces. On the basis of these results we prove uniqueness and existence
theorems for the original boundary-transmission problem. We study also the regularity of the
electrical and thermomechanical fields near the curves where the boundary conditions change or
where the interfaces intersect the exterior boundary. The electrical and thermomechanical fields can
be decomposed into singular and more regular terms near these curves. A power of the distance
from a reference point to the corresponding edge-curves occurs in the singular terms and describes
the regularity explicitly. We compute these complex-valued exponents and demonstrate their
dependence on the material parameters.

1. - INTRODUCTION

The paper deals with mixed type boundary transmission problems arising in the
modelling of complex composites consisting of piezoelectric matrix with metallic
inclusions (electrodes) when thermal effects are taken into consideration. Modern
industrial and technological processes apply widely such type composite materials. The
phenomenon of piezoelectricity is essentially used in measuring and controlling devices,
electro-mechanical converters (transducers) and in the so-called “smart materials”

(*) Inditizzo dell’Autore: Department of Mathematics, Georgian Technical University, 77 M.
Kostava st., Thilisi 0175, Georgia; e-mail: natrosh@hotmail.com

(**) Indirizzo degli Autori: A, Razmadze Mathematical Institute, Georgian Academy of Sciences,
1 M. Aleksidze st., Thilisi 0193, Georgia.
(***) 2000 Mathematics Subject Classification: 35J55, 74F15, 74B05.




— 160 —

transforming mechanical loadings into electric effects and vice versa. In particular, stack
actuators are used in injectors for common-rail engines as vaporizers and valves.
Therefore investigation of the mathematical models for such composite materials and
analysis of the corresponding mechanical, thermal and electric fields became very actual
and important for both fundamental research and practical applications. We remark here
that during last years more then 1000 scientific works have been published annually (see.
e.g., [Lall).

W. Voigt [Vol] was the first who constructed a linear mathematical model of an
elastic medium taking the interaction of electric and mechanical fields into account and
derived the corresponding system of differential equations. In their works R. Toupin, R.
Mindlin, L. Knopoff, S. Kaliski and J. Petikiewicz suggested new, more refined models of
an elastic medium, where a polarization vector and its gradient occur [To1], (Mi2], [Mi3]
(see also [No1], [Pall, [Qil]).

In this paper we study the following problem: Giver is a three-dimensional composite
consisting of a piezoelectric (ceramic) matrix with metallic inclusions (electrodes). Derive a
linear model for the interaction of the elastic and electrical fields with regard to thermal
effects and perform a vigorous mathematical analysis by potential methods.

Similar problems of the classical theory of elasticity have been studied by G.Fichera in
[Fi1] with the help of functional variational methods.

Here we apply the Voigt’s linear model with regard to thermal effects in the
piezoelectric part and the usual classical model of thermoelasticity in the metallic part
to write the corresponding coupled systems of governing partial differential equations. As
a result, in the piezoceramic part the unknown field is represented by a 5-component
vector (three components of the displacement vector, the temperature distribution and
the electric potential function), while in the metallic part the unknown field is described
by a 4-component vector (three components of the displacement vector and the
temperature distribution).

Therefore, the situation becomes complicated since we have to find boundary and
transmission conditions for the physical fields possessing different dimensions in adjacent
domains. The main difficulty in modelling was to find appropriate boundary and
transmission conditions for the composed body and to formulate them in an efficient
way. Mathematical theory of such a general boundary-transmission problems is far from
being complete.

Note also, that crystal structures with central symmetry, in particular isotropic
structures, do not reveal the piezoelectric properties in Voight’s model [Voll.
Therefore the piezoelectric problems should be investigated for anisotropic media.
This also complicates the investigation. Thus, we have to take into account the composed
anisotropic structure and the diversity of the fields in the ceramic and metallic parts.

In this paper we apply potential methods which lead to boundary integral (pseudo-
differential) equations. The solutions will be constructed with the help of an indirect
boundary integral equations method, writing them as layer potentials in the ceramic and
metallic parts with unknown densities. The densities are to be determined in such a way,
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:at the transmission and boundary conditions are satisfied. The solvability and regularity
< the resulting boundary-integral equations are analyzed in Sobolev-Slobodetski (W),
>essel potential (H,), and Besov (B;,) spaces. The results for the original problem follow
“zom the representation of the solution by boundary integrals. Due to stress singularities
~ear curves where the boundary conditions change or the interfaces intersect the exterior
coundary there are restrictions to s and p. These restrictions are written explicitly in terms
ot the eigenvalues of the principal symbol matrices of the corresponding pseudo-
Zitferential boundary operators.

The paper is organized as follows. In section 2 we collect the field equations of the
Anear theory of thermoelasticity and thermopiezoelasticity, introduce the corresponding
matrix partial differential operators and the generalized matrix boundary stress operators
cenerated by the field equations, and derive a boundary-transmission problem in
appropriate function spaces for the composed body consisting of metallic and
piezoelectric ceramic parts. In section 3 we summarize some known properties on
potential operators and prove the invertibility of pseudo-differential operators acting
on the boundaries of the metallic and ceramic sub-domains. Section 4 is the main part of
this paper. Here the original transmission problem is reduced to the system of
pseudodifferential equations involving boundary operators acting on the interface "
and the Dirichlet part I of the exterior boundary. Their principal homogeneous symbol
matrices yield information on the existence and regularity of the solution fields. In
particular, in Theorem 4.3, the global (%-regularity results are shown with some

1 . .
ae (0, E) depending on the eigenvalues of these symbol matrices. Note, that these

eigenvalues depend on the material parameters and actually they define the stress
singularity exponents. We compute these complex-valued exponents and demonstrate
their dependence on the material parameters.

2. - FEp EQUATIONS. FORMULATION OF THE BOUNDARY-TRANSMISSION PROBLEM

2.0 List of Notation

R _ k-dimensional space of real numbers;
C* - k-dimensional space of complex numbers;

a-b= fja,Z, - the scalar product of two vectors g — {ay, -+, ap),
=1

b=y, by e O

Q - domain occupied by a piezoceramic material;

Q" _ domain occupied by a metallic material;

'™ = 9Q" 1 8Q - contact interface subsurface between metallic and piezoceramic
parts;

n = (n1,13,n3) - unit outward normal vector to §Q:

v = (11, 02,03) - unit outward normal vector to o\,
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0= 0, = (01,02,05),0; = 0/ x; - partial derivatives with respect to the spatial variables:

0y = 0/0¢ - partial derivative with respect to the time variable;
p, p™ - mass densities;

Citkl» c[,](k”? - elastic constants; 4 (’”), 1™ - Lamé constants;

ew; - piezoelectric constants;

&, € - dielectric (permittivity) constants;

Vi }’k(;"ﬂ)’ »") _ thermal strain constants;

Ky, Kk(;Z), k) _ thermal conductivity constants;

Z, " - specific heat per unit mass;

T, TO(”’) - initial reference temperature, that is the temperature in the natural state in
the absence of deformation and electromagnetic fields;

a:=pé a :=p" " _ thermal material constants;
g (¢ =1,2,3) - constants characterizing the relation between thermodynamic processes
and piezoelectric effect (pyroelectric constants);

X=0X,X,X)", X" = (Xl(’”),XZ(’”),X;’”))T - mass force densities;

X, X4(’”) - heat source densities;

Xs - charge density;

u=(uy,up,u3), u™ = (ul(’”), uz('”), u3('”))T - mechanical displacement vectors;

¢ - electric potential;

E := —grad ¢ - electric field vector;

D - electric displacement vector;

=TTy, 0" =T _ TO(’”) - relative temperature (temperature increment);

g=\{q1,q2,93), g™ = (ql(’”),qz(’”),qé’”)) - heat flux vector;

Sgy = Spiet) := 2 (O 45+ Oy uy), s = xéj',”)(u )y = 1 (0, uj(’”) +0; ué’”)) - strain tensors;

ak(’,”) = akf/',”)(u () 0" - mechanical stress tensor in the theory of thermoelasticity;

/

0y = 04i(u, 0, ) - mechanical stress tensor in the theory of thermoelectroelasticity;
S, 8 _ entropy densities;

Um .= (ul(’”), uz(’”), uém), ué’”))T with u}’”) =",

T
U= (uy,uz, 03,14, u5) with uy = 0 and us = ¢.

2.1. Thermoelastic field equations

Here we collect the field equations of the linear theory of thermoelasticity and
introduce the corresponding matrix partial differential operators (see [No2], [KGBB1]).
We will treat the general anisotropic case.

The basic governing equations of the classical thermoelasticity read as follows (see the
list of notation):

Constitutive relations:

() _ m) _ (m) (m) (m) nm) __ _(m) (1m) J(m) p(m)
(2.1) ‘7;';"” _a/;” —C;‘/‘Z sy —yl]-’” 0 —cl.].}z Opuy”™ —}ij’” 0"

(22) S(m) _ yl;m) Si]('m) + a(m) [To(m) ]—1 O(m);

)
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“ourier Law:

23) q/(m) — _Kj(lm) alT(m);

Equations of motion:

2.4) (91'0,](’”) + Xj(’”) =p Qzu;m);

Equation of the entropy balance:
2.5) T 5,8 = —quj(’”) + X,

The physical sense of the material parameters and mechanical characteristics involved in
these relations are determined and specified in the list of notation. All these characteristics
are expressed by means of the displacement vector # = (ul(’”),uz('”),u3(”’))T and the
relative temperature (temperature increment) 0. Here and throughout the paper the
superscript T denotes transposition.

Constants involved in the above equations satisfy the symmetry conditions:

26) e =c =, y =g, K =kl gkl =1,2,3.

We assume that there are positive constants ¢y and ¢; such that
)
(2.7) C,;Z; EiSur > a0 & &, K;M)fifj' >a &

forall & =¢&;,& € R, 4,7 =1,2,3.
In particular, the first inequality implies that the density of potential energy
corresponding to the displacement vector »”,
(m) (,, o) () __ A} (m} ()
E™(u"™,u"™) = Stk S Stk
is positive definite with respect to the symmetric components of the strain tensor
(m} _ H~1 () ()
S”:z) =2 (a[ ukm + ak ulm ).
Substituting (2.1) into (2.4) leads to the equation:

(2.8) i) B O u™ — 300" + X7 = p & ™, j=1,2,3.

Taking into account the Fourier law (2.3) and relation (2.2) from the equation of the
entropy balance (2.5) after linearization we obtain the heat transfer equation

(29> K;'([m)ai alo(m) —a™ a[O(M) _ Totm) y;'([m) ata/ui(m) ‘|‘X‘§m) —0.

Simultaneous equations (2.8) and (2.9) represent the basic system of dynamics of the
theory of thermoelasticity. If all the functions involved in these equations are harmonic
time dependent, that is they represent a product of a function of the spatial variables
(x1,%2,%3) and the multiplier exp{t¢}, where t = 0 + 7w is a complex parameter, we
have the pseudo-oscillation equations of the theory of thermoelasticity. Note that the
pseudo-oscillation equations can be obtained from the corresponding dynamical
equations by the Laplace transform. If t = 7w is a pure imaginary number, with the so
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called frequency parameter w € R, we obtain the steady state oscillation equations.

Finally, if t = 0 we get the equations of statics.
In this paper we will mainly consider the system of pseudo-oscillations
(2.10) v%a@%M Ut — (M30 M=0, j=123
=Ty v O™ + k™ 88,0 0 K ¢l
In matrix form these equations can be rewritten as

m)( ’L') U m)( )+X(7n)(x) =0,

where U .= (u ) T i the sought vector, X ™) = (Xl(’”),XZ(’”),X;’”),XJ’”))T,XW’ =
= (X", X, X7
A, T) is the nonselfadjoint matrix differential operator generated by equations (2.10).
AP0,1) = LA 0,0) s, APNO,T) = 0,0, — p' 2 3,
A0, 0 =Ty 0, AP0, = -, AQ’:)(& 0 =x"0,8-a"1
where 7, & = 1,2,3, and 6y is the Kronecker delta.
By A ’”)*(8 7) we denote the 4 x 4 matrix differential operator formally adjoint to

A9, 1), that is A*(d,7) := [A"( = 9,7)]7, where the over-bar denotes the complex
conjugation.

Components of the mechanical thermostress vector acting on a surface element with a
normal v = (v, 02, 03) read as follows

O'I;m)v = z/lk l),aguk _yl] 010( )’ j=1,23,

while the normal component of the heat flux vector (with opposite sign) has the form
—qi(”’) v; = IC[ ' v; 0,07

We introduce the following generalized thermostress operator

(211) T(”Z)(aa U) - [ T/(/:l)(aa U) ]4><4a

where (for/, £=1,2,3)

T (a v)=c, () v; 0,

ik T00=y" v, TE0,0=0, T 0)=x{"v,0.

For a four-vector U™ = (™ 0”7 we have
(2.12) TPU = (g v, a0, a0, =g 0:)T.

We introduce also the boundary operator associated with the adjoint operator
A"*(9, 1) which appears in Green’s formulae,

T M)(87 v, T) = [/Z;k”Z)(a7 v, T) ]4><4a
where (for 7, £ =1,2,3)
7;(771)(& 0,T) = Z/(;Z) v; 9, 7’;4(m)(& b,7) = ?T(m) yZ;m)
T,7(0,0,7) = 0, T0(0,0,7) = 7 v, 0.

7y

is a given mass force density, X\ is a given heat source density.
g Y, Ay g 3
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2.2, Thermopiezoelastic field equations

In this subsection we collect the field equations of the linear theory of
thermopiezoelasticity for a general anisotropic case and introduce the corresponding
matrix partial differential operators (cf. [Nol], [Qil]).

In the thermopiezoelasticity we have the following governing equations (see the list of
notation):

Constitutive relations:
(2.13) gy =05 = cirrSw — eiEr — v 0 = cjp Oy + € 01 — 0, 1.7 =1,2,3,
(2.14)  S=y;sy+gE+alT]l™0,

(2.15) Dj = ey Sp T & E, —}—g/'O = e Ojuy — &y (9/45 + g 0, 7=1,2,3.

Fourier Law:

(2.16) gi=—k;9T, =123
Equations of motion:

(2.17) 0o+ X; =p Ouyy j=1,2,3.
Equation of the entropy balance:

(2.18) T0,8=—0;q; + Xs.
Equation of static electric field:

(2.19) 9D, — X5 =0.

From the relations (2.13)-(2.19) we derive the linear system of pseudo-oscillations of the
theory of thermopiezoelasticity:

Ciilk 0; Oruy — pTZ U — Yy 0,0 + el 8,8,—4: + Xj =0, 7=1,2,3,
(2.20) —tToyy Owi; + Ky 0; 0,0 —tal+7 Togi 0,6+ X4 =0,
— eip) 0iOpuy, — g 0,0 + €3 0,019 + X5 = 0,

or in matrix form
(2.21) AB,DUKX) +X(x) =0 in &,

where U := (», 0, ¢)T,X = (X1, X5, X3, X4, X5)", X = (X1, X2, X3)" is a given mass force
density, X, is a given heat source density, X is a given charge density, A(9, 7) is the matrix
differential operator generated by equations (2.20)

AB,7) = [Aw0,1)]5 5, Awld,7) = cjue 0,0 — PO,

Aig(0,7) = —y;0;,  Aj5(0,0) = €000, Agl0,7) = —t Toy O,
Ap(0,7) = k40,01 —at, Ass0,71) =1tTog 0, Aspld 1) = —ep 0,01,
Asy(0,7) = —g;0;, Ass(0,7) =¢;0:0;, j k=123,

(2.22)
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Clearly, from (2.20)-(2.22) we obtain the equations and operators of statics if T = 0.
Constants involved in these equations satisfy the symmetry conditions:

Cikl = Gikl = Chiiiy Cje = Cifjs &5 =&y Vi = Vi, Ky =Ky, 1,7,k 0 =1,2,3.

Moreover, from the physical considerations it follows that (see, e.g., [Noll): ‘
(223)  Guéiu>ad;; forall & =& e R, |
@24)  emom = alnf, wpmn > ol forall 4= Gpy,m,m) € R,

where ¢y, ¢1, and ¢, are positive constants. In addition, we require that (sce, e.g., [No 1])
a

(225) &in 7 +o |CF =2R(Lg7) = (|2 + |p?) forall {€C and neC’
0

with a positive constant ¢;. A sufficient condition for (2.25) to be satisfied reads as follows
acy

3T & > 0, where g = max {lg1],1g2], g3} and ¢; is the constant involved in (2.24).
0

By A*(9,1) we denote the operator formally adjoint to A(d, 1), that is A*(9,7) :=

=[A(-9,0]".
In the theory of thermopiezoelasticity the components of the three-dimensional

mechanical stress vector acting on a surface element with a normal 7 — (n1, 2, 173) have
the form

O i = Cyi 1; Oy, + ey Oy — yini 0 for j =123,

while the normal components of the electric displacement vector and the heat flux vector
(with opposite sign) read as

—Dini = —ejyyn; Qup + ey n 09— gim; 0, —gin; = 1y 1; 9,0.

Let us introduce the following matrix differential operator
(2.26) T(0,n) = [Ty(0,n) |
where (for j, £ =1,2,3)

5x57

L0, n) = cyun; 0, TigO,m) = —y, 1, Tis(B,m) = ey n; 0y,
(2.27) Tou0,n) =0, Taaldm) = kym; 8, Tus(,) = 0,

Tsk(O,m) = —eiy 10y, T54(0,m) = —giniy Ts5(0, 1) = ey 1; 0.
For a vector U = (#,,0)" we have
(2.28) TO,mMU = (a,1n;, ain;, 051, —gini, —Din;)".

In Green’s formulas there appear also the following boundary operator associated
with the differential operator A*(8, 7),

f(a,l’l,f) = [7776(6711’ T) ]Sxi’

where (forj, b =1,2.31
’1776(0, n,T) = Cye i O
Tl0,n,7) =0, To v

%k(aa n, T) = € i o

2.3. Mathematical mode. ¢~ 7z :

problem

Let 2" and Q be o,
Euclidean space R® with € *-s:
let 9Q and 9" have : nor
QNI = T mess I
surface. Throughout the piper
and on 9Q " respective.- v

We set S =00~ I
open, nonempty, proper so-

following decomposition =7 ==z

9™ 9Q. oy T

Let Q be filled by ar zm:soes
and 2 be occupied by i :sox
inclusion). These rwo bod:es =z

domain Q' we have a fous-dm
(r1) -, -

vectoru ™ = (" 1~
domain 2 we have a five: Zme

u = (uy,u0,u3)", the TempeTEn.
The physical interact:>= 2

systems of linear par:i 2

piezoelastic domains wiz= 20z

on ™ v § and I

Solutions to this king —uaz
electrical characteristics 327~
which the type of bounczr. o
the exterior boundary o7 5e .

solvability of the mixed oz
and analyse regularity proper

the stress singularity exponan:
dependence is quite non:=ial




167 —

mere (forj. b =1.2.3)
Tol0, ) = i O, T, 1,7) =T Tovg i T5(0,n,7) = ey i O,
Tp0,n,0) =0, Taa(B,1,7) = K 1 O Tis(0, 1,0 = 0,
Top(0, 1, 7) = €t i O T54(0,n,7) = =T To g i, Tos(@,n,7) = &4 7 O

~ 3. Mathematical model of the physical problem: Formulation of the boundary-transmission
problem

Let QY and Q be bounded non-intersecting domains of the three-dimensional
Euclidean space R® with C*°-smooth boundaries €2 and 0Q"  respectively. Moreover,

‘ot 9Q and 0Q have a nonempty intersection " with a positive measure, ie.,

90N o™ = '™ meas '™ > 0. From now on I will be referred to as an interface
surface. Throughout the paper # and v stand for the outward unit normal vectors on 9£2
and on 9Q™, respectively. Ezi_@emly, nix) = —v(i)_f_or xeI™.

We set S = Q) \ ' and §* := 02\ I Further, we denote by I some
open, nonempty, proper sub-manifold of §* and let § =8\ T. Thus, we have the
following decomposition of the boundary surfaces

90 =™ USUT, 0Q" = Ty,

Throughout the paper, for simplicity, we assume that

a0 8Q, oS\, or'™, oI, 05 € c®, and 9Q"NT =0.

Let 2 be filled by an anisotropic homogeneous piezoelectric medium (ceramic matrix)
and Q% be occupied by an isotropic or anisotropic homogeneous elastic medium (metallic
inclusion). These two bodies interact to cach other along the interface I’ ) In the “metallic”
domain Q" wehavea four-dimensional thermoelastic field described by the displacement
vectoru™ = (", uy”, uy” NT and the temperature ul" ) .= 0" whileinthe piezoelectric
domain Q we have a five-dimensional physical field described by the displacement vector
u = (u1, 42, u;)T , the temperature #y := 0 and by the electric potential #s := $.

The physical interaction problem under consideration is described by strongly elliptic
systems of linear partial differential equations in the corresponding elastic and
piezoelastic domains with appropriate mixed type boundary and transmission conditions
on ), r S and I'.

Solutions to this kind mixed boundary value problems and related mechanical and
electrical characteristics usually have singularities in a neighbourhood of curves across
which the type of boundary conditions change (e.g., 0T or where the interface intersects
the exterior boundary of the composite body (e.g., ar™ ). Our goal is t0 study the
solvability of the mixed boundary transmission problem in appropriate function spaces
and analyse regularity properties of solutions. In particular, we describe dependence of
the stress singularity exponents on the material parameters. As we will see below this
dependence is quite nontrivial.
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Throughout the paper the symbol { - }* denotes the interior one-sided limit on HQ
(respectively 92 ™) from Q (respectlvely Qm), Similarly, { -}~ denotes the exterlor one-
sided limit on 9Q (respectlvely Q" ) from the exterior of Q (respectively Q). We will
use also the notation { - } 5, and { - }& 20 for the trace operators on 8 and Q"

By L,, W;, H,, and B} (with»>0,5€ R, 1 < p < oo, 1<q<oo)wedenotethe
well-known Lebesgue Sobolev Slobodetski, Bessel potential, and Besov function spaces,
respectlvely (see, e.g., [Tr1]). Recall that Hy = W; = By, H;=B,, W, =B, and
Hk k forany r >0, for any 5 € R, for any positive and non-integer t and for any
non negatlve integer k.

Let My be a smooth surface without boundary. For a smooth sub-manifold M ¢ M,

we denote by H‘ (M) and B‘ M) the subspaces of H;(Mo) and B;’ q(Mo), respectively,
Hy(M) = {g: g € Hy(Mo), supp g M}, B (M) = {g: g € B (M), supp g C 7)),

while H; (M) and B;, ,(M) denote the spaces of restrictions on M of functions from
H,(Mo) and B; (M), respectively,

HyM) = {r, f: f € H(Mo)}, By (M) ={r, f : f € B (M)},

where #,, is the restriction operator on M.

Now, we come back to our boundary-transmission problem, restricting the fields to
the metallic and ceramic sub-domains, denoted by U™ — (4 ) u4('”))T and
U = (u,u4,u5)" . Moreover, we assume that the initial reference temperatures T, and
To( in the adjacent domains 2 and Q" are the same: T = T/ The mathematical
problem reads:

Find vector-functions

U™ = (”1(”2)’”2(’”)7”3('”)»”5’”))T : QW S and U = (uy, 0,0, u4,u5)7 2 Q@ — O

belonging to the spaces [W/l( "11* and [W/pl(Q)]5 with 1 < p < o0, respectively, and
satisfying

(i) the systems of partial differential equations:

(2.29) [A™(d,, ) U™ J,=X"" in Q"™ ;=1234,
(2.30) [AG, U], =X, in Q, £=1,2,34,5,

(i) the boundary conditions:
(2.31) R {LT @0 U™} = Q" on §™, j=1,2,3,4,
(2.32) lTOMULY =Q; on S, j=1,2,3,4,
(2.33) r{lTO,mUIsY +f{us}T =Qs on S,
(2.34) r{w)t = on I, £=1,2,3,4,5,
(2.35) few s} =" on I

(iii) the transmission croiz::

(2.36)
237) r f[TOmU. -
wherew=—von '™ . 53z

88, and from now on throuzno
on S, that is

(2.38)
and
Xj(m) e L;(Q T

239) QeeBTS.
Qe

Note that the functions 77

compatibility conditions. Nz

fromS(’”) OntOSlm! = -z
ontoSUT'" UT, the'*':‘-‘

(2.40) F"' —{r 7

In the classical (continuouzs
compatibility ~ conditions  F

7=12734
We set
Q = ’Q:~Q.
f=:r
(2.41) Fo=
Q“"; — 4;,7‘7 ]
F*=r"

A pair (U™ U= 37!
boundary-transmissior 70
The Dirichlet-tvpe concns
values of the vectors 1”7 =
Neumann-type conditicns 23
values of the vectors T~

.
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(ili) the transmission conditions:
(2.36) m){u/-} ,um{” } =f" onr, ;=T,
(2.37) 7’1,(,,,){[7'(8, n)Ul,'}++r ” {[T(’”) B,0U" 7; } = F]-(’”) on ' ; =174,

P

where # = —v on I'"™ B is a sufficiently smooth, real valued, nonnegative function on
9Q, and from now on throughout the paper we assume that # does not vanish identically
on S, that is

(2.38) f£0, >0 on S,

and

X" e L(@"), j=1,2,3,4, Xi€L(Q), £=1,2,3,4,5,

239)  QuEBPO), fieBI(I), £ e BYP(I™), k=1,2,3,4,5,
1 1
() -1/ () (m) -1/ () P [l D
Q™ e B /ME™), FE™eB, /I(I'™), j=1234, Sits= L.

Note that the functions F ', Q;, and Q(’” (/=1,2,3,4) have to satisfy some
compatibility conditions. Namely, for any extension Q ”’) € B_l/ r (S(’” Uy of Q(’”l
from S onto S0 U T and for any extension Q] €B, 1/p(S U™ yT)of Q, from §
onto SU T ™ U T, the following inclusions have to be fulﬁlled

@40) B, O e, Q1 €, BT, S=1,2,3,4

In the classical (continuous) setting these inclusions correspond to the natural
compatibility  conditions F/-(’”)(x)~[Q]-(’”) —|—Q] x)1=0 for all xedr™,

] 7=123,4
We set
! Q=(01,0:.05.04,05) € [B,,””(5) P,
f: (flaf27f37f:hf5) S [Bl/p ( )]5,
(2.41) fi = (fl"”%fz"”’,f;””-,/ﬂ'””,fs“’”) c[B U,

Q(m) — (Q(lm)’Qém), (3”1)’ i) 6 [B l/p(S ) )] ’
Flm) — (Fl(m)7F2(m)’F3(m),F;m)) c [B;_;/p(l""”’) ]4.

A pair (U™, U) € IWHQ")]* x [WH@T will be called a solution to the
boundary-transmission problem (2.29)-(2.37).

The Dirichlet-type conditions (2.34), (2.35), and (2.36) involving boundary limiting
values of the vectors U" and U are understood in the usual trace sense, while the
Neumann-type conditions (2.31), (2.32), (2.33), and (2.37) involving boundary limiting
values of the vectors 7 " U and T'U are understood in the functional sense defined by
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the relations related to Green’s formulas

(T O0U DY (Vg e J AP U™ V0 gy
o
+ [E(m)(u(m),m)_‘_p(m)rzu(m).v(m)+Kl;m)aju;m)alv$_m)
o

(

+ Ta(m) ué’”) Uzgm)+y](.[m) ( Tém)aj‘%}’”) 1)4’”) _ugm) aﬂ)yﬂ))] dx,

({TOmUY*, {V}),, = JA(&, DUV dx +J [Ewo) +pu-v

Q
+ 9 (2 To Qo4 53— s Opvy )+ 1y Ojats Sya+ ey (Dyus Byw; — Biat; Oyos )

+Tau4ﬂ—gl(TToazﬂsm+u4%;)+8,‘131‘ﬂ5%] dsx,

where V) = (v(’”),vj’”))T € [\Wpl,(Q(’”))]4 and V= (v,04,05) € [\«Vpl,(.Q)]5 are

arbitrary vector-functions, v = (", v{”, N7, 0 = (v, 02,03)7, E™ (0™, p0m) =

= cl,](,}z) Biu/»(’”) Blvk(’”) and E(u,?) = ¢y O;u; Oy Here (-, Vagu (respectively (-, +)50)
denotes the duality between the function spaces.

By standard arguments it can easily be shown that the functionals, “generalized traces”
{T70,0U} € [B,,7(0Q")]* and {T(0,mU}* € [B,/2(0Q)) are correctly
determined by the above relations, provided that A" (8, 7) U™ ¢ [LP(Q(’”))]4 and
A@ DU e [L@].

We have the following uniqueness theorem for p = 2. The similar uniqueness theorem
for p # 2 will be proved later in Section 4 (see Theorem 4.2).

Tueorem 2.1: Let t = o + iw and either 6 > 0 or © = 0. The homogeneous boundary-
transmission problem (2.29)-(2.37) (X/(”’):O, X, =0, Q],(’”):(), Qp=0, fk('”)zo, fo=0,
F/(M) =0, j=1,4, k=T1,5) has only the trivial solution in the space [W) QM) x
x[WHQ)Y, provided meas I" > 0.

Proor: It follows from the corresponding Green’s formulas. O

3. - PROPERTIES OF POTENTIALS AND LAYER POTENTIALS

Here, we establish basic properties of the layer potentials and certain boundary
integral (pseudodifferential) operators generated by them. We recall also some necessary
information concerning the theory of pseudo-differential equations on manifolds with
boundary. These results are crucial to develop the potential method to the boundary-
transmission problem (2.29)-(2.37) and prove the corresponding existence and regularity
results for solutions in different function spaces.

3.1. Layer potentials

Denote by % (- .=+ = _t_'}’r'
matrix-functions of the dirmeren
details, see [BCN1] and rererenc

A(’”)(ax,r)?""’ ot

where (- ) denotes Dirac’s 2z=
Note that, if by ¥'™ " - 7 =
A9, 1), we have ther tme =

P ) = [P P

Similarly, the matrix ¥* = <
adjoint operator A*(9. 7. inZ ¥
Let us introduce the sinz'e 2=
A™ (9, 1) and A(D. 7
VB~ [ e
a0

-

Wi = |7

Q"

W (h)(x) = J “Foo e e
a2

where b7 = (h" b7 T -
potentials.
For the readers convenizz:
potentials and the correspon s
We recall that 9Q2. ¢Q 7 =

TueorEM 3.1: Ler 1 < = <
v
Wo-
1P
W

are contintous.
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3.1. Layer potentials

Denote by ¥ (-, 7) = [Y’g’)(- ,r)]4x4 and ¥(-, 1) = [Py (- ,1’)]SXS the fundamental
matrix-functions of the differential operators A(8,,1) and A(d,, 1), respectively (for
details, see [BCN1] and references therein),

AP @ O P —9,7) =0 — N, A, D¥(x—y,7) = dx— s,

where d( - ) denotes Dirac’s delta function.
Note that, if by % "*(-, 1) we denote the fundamental matrix of the adjoint operator
A*(9,7), we have then the evident equalities,

(I/(m)*(x) 7) = {g/(m)(x’?)]'r’ g/(m)( _x’?) — 5[/(772)(967 ‘L'), ‘P(’”)(x, 7) = [q/(m)*( —x T)]T.

Similarly, the matrix ¥*(x, 7) :== [¥(x,7) 17 represents the fundamental matrix of the
adjoint operator A*(9,7), and ¥ (x,7) = [¥*(—x, r)]T, since (—x,7) = ¥ix, 7).
Let us introduce the single and double layer potentials corresponding to the operators

A (9, 7) and A9, 7):
VI () () = j WOy 1) B ,S, Vilb)x) = J Wix— y,7) ) d,S,
LIk oQ

W(m)(/?(m))(x) _ J [ f(M)(a},,v(y),f)[yl(m)(x N y,T)]T]T b(m)(y) dyS,

T

o0 {m)

Wb = [ [ T, D= 090717 40D S
Ere)
where /9(’”):(bl(M),bz(’m,/?}(’”),bi’”))T and b= (hy, by, b3, hs, bs)" are densities of the
potentials.
For the readers convenience, here we collect some results concerning these layer

potentials and the corresponding boundary operators needed in subsequent analysis.
We recall that 8Q, 0Q" ¢ C>.

Theorem 3.1: Let 1 <p < x, 1 <t < x, and s € R. The operators

v L (Bee Tt — BT
w o [Bee] — BT
v, o [Be@) — BIT@r
w, o [By0@] — B’

are continuous.
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Proor: For regular densities the proof for the potentials V" and W can be found
in [KGBBL1], in the isotropic case, and in [JN1] in the anisotropic case, while for the
potentials V; and W, the proof is given in (BG1], [BCNS1].

Note that the main ideas for generalization to the scale of Bessel potential and Besov
spaces are based on the duality and interpolation technique and is described in the

reference [Sel] using the theory of pseudodifferential operators on smooth manifolds
without boundary. O

For the boundary integral (pseudodifferential) operators generated by the layer
potentials we will employ the following notation:

H (b)) (x) = J ¥ —y,0) BP0 S, x e o0

OQ(W
KGN = | [T @y, o) (5 — y, D] 6"0)d,S,  xe o™,

aQ(m)
S 0 () = (m) =\ [ () T 2w ()
Ko (") (x) = [T By, ), DY " (x — 3, 7)] | »dS, xeoQ™,

fe/el)

L:T(m)(/?(m))(x) - {T('”)(ax, v(x))W(’”)(/a(’”))(x) }i, xe aQ(m)’

H b)) (x) = J Y(x—y,70b)d,S, xecoQ,

oR

Keh)ox) = J [T n)P (e~ 5,0)] bo)d,S, x € o0
aQ

K (b)) = [ [ 70y, n0), D (x — 3,917 bly) 4, xe€oQ,

90
LB)x) = { T 0, nWoB)) } . x € 0.

The layer boundary operators H™ M, and L

) L, are pseudodifferential operators
of order —1 and 1, respectively,

while the operators K™, K™= i, and + are singular
integral operators (pseudodifferential operators of order 0) (for details see [[N1], [BG1])

THEOREM 3.2: Let 1 <p<oo 1<t< oo

b e [BloR") ], ¢ e (B aam)), be[BHoa], ge B o).

Then

(TOmV.+ ~ =

{W,(g)}: = :::_

where I, stands for the v + = u=
Proor: It can be tound = Z

The operators £.”7 zn2
proposition.

Lemma 3.3: Let 1 < 2 <o X

('3

Then
{TW(O. LT AT
and )
{ T i A

Proor: We prove the secon
Let W(x) := W.i7r = e '.
By the integral represenzinoa =
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Then

w e

{V,(’”)(/o(’”’)}+ = (V) = H B on 0Q™,
(T™@ VBN = [ F 270+ K] ™ on 0@,
(W (gVE = [127 0+ K] g on 9,
(Vi)Y = {Velh)}™ =H. b on 02,

(TOWV.D} =[F27'5+K:] b, on 02,

{W/,(g)}i = [j:Z—lls +IC~:] g on 0Q,

where I, stands for the k X k unit matrix.

Proor: It can be found in [DNS1], [JN1]. O

The operators [,1(’”) and £, are well defined in accordance with the following
proposition.

LemMa 33: Let 1 <p<oc, 1 <t <o, and

B e (B 0@, be (B 02)).
Then
(T"@,0W ")} = {T"@,0W B} on 9™
and

{(TO.mWh } ={TOmnW(h)} on Q.
Proor: We prove the second relation.
Let W(x) := W,(h)(x) be a double laver potential with sufficiently smooth density 5.
By the integral representation formulas in the domains £ and R*\ 2 we have:

J [ T(0,,n), D¥(x — 3. 017 | {WG)}T4,S

o0
Wix), x& Q,

_ J P(x— 5,7 { T (8, nly)Wiy) }+dyS :{ 0 cR\D
s X & .8 s

02

_ [ [ T(0,,n(), DP(x — 3,017 ] (W) d,S
a0
0. xcQ.

+ J Y(x—v,1) {T((?y,ﬂ(y))W()’) } d,§ :{ W), xeR\Q

o2
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By adding termwise these equalities and applying the jump relations for the double layer
potential W(x) := W,(h)(x) we get

Wix) = J P(x—,0 [{TO,,ny)W(y)}™ — (T, #))W(y)} ]
o0

" J [ T@n6), AP T(c — 5,017 ] T h)dS, xe QUIR\ T,

oQ

Since W(x) := W, (h)(x), we conclude that

J ik y,0) [{ T(D), v(v)

Q2

»(v) }+ —{T(B,, v(0))g(v) }’] 60X =0, ycQU[R’ \ 31,

which  shows that the single layer potential V,(g) with the density
g:={T @), nOHW) }" —{T(,,7(y»))W ()}~ vanishes in Q and R> \ Q. Therefore
{TV.(}" = 0and {7V.(g)}~ = 0. Then due to the jump relation for the single layer
potential (see Theorem 3.2) it follows that {TV,(g)}* — {TV.(g)}™ = g = 0. Thus the
theorem holds for smooth densities.

By standard limiting and duality arguments this result can be extended to the Bessel
potential and Besov spaces. O

The following mapping properties of the above introduced boundary

pseudodifferential operators are well known (see, e.g., [Sell, [DNS1], [JN1], [BG1],
[BCNS1]).

THEOREM 3.4: Ler1 <p < o0, 1 <1< 00, 5s€ R The operators

HT(”?) ;[B;,t(ag(m))]‘i N [B;ﬁl(ag(m))]4’

K (m)’ ’e{m)

T BS (8[2 m) ] [B;’t(ag(m))]zi?

T

L (m) .

|
o] (3,00
M. :[B (09)]) — B0,
5 [By(02)] — [B 0],
(B 02)]) — [B,007,

are continyous.

The operators H!™, —271], + K" and H, possess the following invertibility
properties,

TueoreM 3.5: The operizie:

27 =T

are invertible for all 1 < 0 < X

Proor: The proof for t=e 5:3:'
papers [JN1] while for the o7
the reference [BCNS11.

TueoreM 3.6: The orerzi= -
with zero index for all 1 < = < X

Proor: It follows from T mzoT

3.2, Auxiliary problenis 572 w27

Here we assume that #7 = =
needed for our further purmoses

3.2.1. Auxlhar\ p.O:.f,’
us’”))T . (7 which neoe

; ' o and el
differential equation and >runs

(3.1)
(3.2)

(rr: -,

where ¥ = (" 727
formulae it can easily be st
possesses only the triviz. so.ame
Recall that on 92 7 :m=2 =
From Theorem 3.5 anZ 122 2
immediately follows

Lemma  3.7: Let "~‘._t =
U e [WHR T = 52 2
the single layer poten:ii.

(3.3) U™ o ="

where the density veczor s~ i
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Tueorem 3.5: The operators

H(m) :{B;‘t(ag(m))]“ R [B;j;l(ag(m))r’

U L+ K [ B 02 ]~ (B 02T,
M. :[B,0Q)]) — B 0],
are invertible for all 1 <p < 00, 1 <1 < o0, and s € R

Proor: The proof for the operators H™ and =271 14 + K™ can be found in the
papers [JN1] while for the operator H. it is word for word of the proof of Theorem 3.6 in
the reference [BCNS1]. O

Tueorem 3.6: The operator —27'I5 + K. : [B;,_t(é).Q)]5 — [B;;J((').Q)}5 is Fredbolm
with zero index forall 1 < p < oo, 1 €1 < X, and s € R.

Proor: It follows from Theorems 3.6 and 3.7 in the reference [BCNS1]. O

3.2. Auxiliary problems and representation formulae for solutions

Here we assume that R 7 = ¢ > 0 and consider two auxiliary boundary value problems
needed for our further purposes.

3.2.1. Auxiliary problem I: Find a vector function U™ = (ul(”’), uz(’”), uém),
ui”’))T . @™ _, 4 which belongs to the space [ W3 Q") 1* and satisfies the following
differential equation and boundary conditions:

(3.1) AP@. U™ =0 in Q"
(32) (T U =" on 90",

where 7 = (4" 757 P )T e [H;%(GQ('”))r. With the help of Green’s
formulae it can easily be shown that the homogeneous version of this auxiliary BVP
possesses only the trivial solution.

Recall that on 82" the normal vector v is directed outward.

From Theorem 3.5 and the above mentioned uniqueness result for the BVP (3.1)-(3.2)
immediately follows

Lemva 37:Let Rt=0>0 and 1<p<oo. An arbitrary solution
U™ ¢ [W[} Q)14 to the homogeneous equation (3.1) can be uniquely represented by
the single layer potential

(3.3) U(m)(x) _ V‘c(m)( [_ >-1 I+ IC(IM)]_IZ(”Z))(X), xc Q7

1
where the density vector y ™ satisfies the relation 727 ={ Tyt ¢ [B,,_};(@.Q(’”)) ]4.
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3.2.2. Auxiliary problem II: Find a vector function U= ( -

Q — 7’ which belongs to the space [WHQ)T and satisfies the following conditions:

(3.4) ABDU=0 in Q,
(3.5) {[TU],-}+=,“{/ on 9Q, ;=1,4,
(3.6) {[TUL} +{Us}" =5 on o0,

where y, € H; %(89) for j =1,5. Here f is a nonnegative smooth real valued scalar
function which does not vanish identically on 9Q (see (2.38))

-1 5
Denote y := (11,Zza)(3yl47}{5)T € [sz(ag)] .
By the same arguments as in the proof of Theorem 2.1 we can easily show that the

homogeneous version of this boundary value problem possesses only the trivial solution in
the space [W}(2) .

We look for a solution to the auxiliary BVP II as_a single layer potential,
Ulx) = Vi()(x), where f = (£, f5, By )T € [Hz_f(aﬂ)]s is a sought density.
The boundary conditions (3.5) and (3.6) lead then 1o the system of equations:

[(—2_115+Kr)f]].:)(/ on 9Q, ;j=14,
\ [(—2‘115+K,)f]5+/f[7{rf]5:;(5 on 9Q.

Denote the operator generated by the left hand side ex
and rewrite the system as P, f = xon 92, where

[( —27 L + ’Cf)jk]4x5

[( —~271 L + ’Cf)sk]us +f [(Hf)sk]us
with Z(#) = diag{0, 0, 0, 0,5}

pressions of these equations by P,

(3.7) P,:= =-2"L+ K, +Z(B) H,

Lemma 3.8: Let Rt = 0 > 0. The operators
68 P [H02)] — [H o) 1B, 02] - (B 0@ ],

are invertible for all 1 < p < oo, 1 <t< o0 ands € R,

Proor: From the uniqueness result for the auxiliary BVP IT it follows that the operator
(3.8) is injective for s = — 1,0 =t = 2. The operator H.: [Hy2(0Q) ]5 — [H,%(6Q) ]5 s
compact. By Theorem 3.6 we then conclude that the index of the op
zero. Since P is an injective singular integral operator of normal t
follows that it is surjective. Thus the operator (3.8) is invertible.

The invertibility of the operator (3.8) for all 1 < P <00, 1 <¢t<00,ands e R then

follows by standard duality and interpolation arguments for the C *°—regular surface HQ
(see, e.g., [Agll, [Sell). O

erator (3.8) equals to
ype with zero index it

As a consequence we have the following

Uy, Uy, U3, Uy, ts)

Lemma3.9: Let Rt =7 > ¢
the homogeneous equatior: > =
x€Q U=V (P

x={[TUL}". -

3.3, Some results for psewi i

In this subsection we s~z
elliptic pseudodifferential =gz
Besov spaces which are :me
boundary-transmission 7
investigation we need somz
differential operators on z o
[Esk1], [Grb1], [Shl..

Let M€ C* be a com:
boundary OM € C* arc e .
operator of order v € R o %
matrix of the operator .4 = so

Let A1(x), --.ixix e 2

[0.4("‘" .

and introduce the noTEnae
branch in the logarith=iz -
—r<argl{<m j=1. .
inequality —1/2 < d.1x < 1 .
on the choice of the loczl ¢
case when g 4(x. &) is a oo
have d;(x) = 0 for ; ="
numbers for any x £ AL

The Fredholm propermes
characterized by the tolouins

Tueorem 3.10: Ler @ = :
pseudodifferential operiice
Roax, - (> 07 ma s

(39)  A:[HaMT —

are Fredholm operatcr: -:1 =
1
10 R
R
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Lenva3.9: Let Rt =0 > 0and 1 < p < 0o. An arbitrary solution U € [W[} @7 to

“< fomogeneous equation (3.4) can be uniquely represented by the single layer potential for
2Q:Ux) =V, ('P;1 X ) (x), where

r={ITUL}Y, - {(ITULY, {LTULY +8 {019 € [Bh09)],

* 3. Some results for pseudodifferential equations on manifolds with boundary

In this subsection we shall present some principal results from the theory of strongly
<liptic pseudodifferential equations on manifolds with boundary in Bessel potential and
3esov spaces which are the main tools for proving existence theorems for mixed
coundary-transmission problems by the potential method. In particular, in our
~vestigation we need some results describing the Fredholm properties of pseudo-
Zitferential operators on a compact manifold with boundary. They can be found in
‘Esk1], [Grb1], [Sh1].

Let M € C® be a compact, #-dimensional, nonselfintersecting manifold with
coundary OM € C*™ and let A be a strongly elliptic N x N matrix pseudodifferential
~perator of order v € R on M. Denote by o 4(x, &) the principal homogeneous symbol
matrix of the operator A in some local coordinate system (x € M, & € R”\ {0}).

Let 21(x), - -, An(x) be the eigenvalues of the matrix

[o4(x,0,--,0,+1D) 1 [04(x,0,---.0,=1)]. x€ M,

and introduce the notation &;(x) =R [27) 'In’(x)]. j=1.---.N. Here the
branch in the logarithmic function In{ is chosen with regard to the inequality
-n<arg{ <m, j=1,---.N. Due to the strong ellipticitv of A we have the strong
inequality —1/2 < d;(x) < 1/2 for x € M. Note that the numbers J;(x) do not depend
on the choice of the local coordinate system. Moreover, remark that in the particular
case when 04(x, &) is a positive definite matrix for every x € M and ¢ € R”\ {0} we
have d;(x) = 0 for j = 1,---, N, since all the eigenvalues ;(x) (; = 1,N) are positive
numbers for any x € M.

The Fredholm properties of strongly elliptic pseudo-differential operators are
characterized by the following theorem.

TheoREM 3.10: Ler s € R, 1 <p < oc. 1< g < o0, and let A be a strongly elliptic
pseudodifferential operator of order v € R, that is, there is a positive constant ¢y such that
R oale, - > |l forx e M, &€ R with |€] = 1, and { € CN. Then

~.Y N s—b N ~S N §—0 N
69 A:[Hw)" = [Hr00]Y ([B,u]" — (o],
are Fredholm operators with index zero if

1 1
(3.10) —-—1+ sup  J;(x) <s—2<—+ inf
P x€dM, 1< <N 2 P xedM,1<i<N

8;(x).
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Moreover, the null-spaces and indices of the operators (3.9)
the parameter q € [1,+00)) provided p and s satisfy the inequality (3.10).

4. - ExISTENCE AND REGULARITY RESULTS

4.1. Reduction to boundary equations

Let us return to the boundary-transmission problem (2.29)-(2.37) and derive the
equivalent boundary integral formulation of this problem. To this end from now on
without loss of generality we assume that the mass force densities, heat source densities
and charge density vanish in the corresponding regions, that is,

X" =0in Q" for k=T34, X;=0in Qfor j =T,5.
Otherwise we can write particular solutions to the differential equations (2.29)-(2.30)

explicitly in the form of volume Newtonian potentials:

U = J Yk~ 3, 0 X dy, x € ),
Q(m)

Uplx) := [‘P(x -9,0XH)dy, x€Q,
Q

and introduce the new unknown fields U " — Us™ and U — Uy in order to reduce the
nonhomogeneous equations (2.29)-(2.30) to the homogeneous ones.

Keeping in mind (2.41), let
m 7 m Y3 w — ¥/ 73 4
(4.1) Q)" = Q5" Qi QY™ Q) € [ By (6@ )]

be some fixed extension of the vector-function Q(”’)) =(Q", ..., Q;'”))T €
¢ [B; (s “)]* onto 8. Note that 9@ =" UT". 1t is evident that an
arbitrary extension of Q" onto 82" has the form Q" = Q™ + h™  where

(4‘2) b(m) — (bl(m)7b2(m)’b;m),b;m))‘r e [E[:;/p(r(m))]4

is introduced as an unknown vector-function. Analogously, let

(4.3) Qo = (Qo1, Qo2, Qo3, Qo, Qos) " € [B;;/p(af))]s

be some fixed extension of the vector-function Q=(01,0,,05,04,05)" € [B,. ;/ 2(8) ]5

onto OQ. Note that 02 = S U T" UT. It is evident that every extension of Q onto 9Q
can be represented then as Q = Qo + v + b, where

@a) =) € (B, b=(hy, - hs) € [BYr(ren),

are introduced as unknown vector-functions.

are the same (for all values of

Note that there should be sz
(2.32), 2.37))

7o [Q.W' -

We develop here the so~:z:fe
for a solution pair (U™ . L o
with X7 =0 and X = (= the

4s) U

46) U=(@Uy, . Us =7

(4.2) and (4.4). We recall =nx: ':

the physical meaning in accorcs
Let us remark that the oz

X = 0) are satisfied automzmoz

The remaining bounl:im
equations for the unknown =
4.7) re ['HT'P:" v - -
(4.8) - [Hr PO
(4.9) 7 o [H' /P-_ M7 f

(4.10) 7, B =F7 -~
where

@11)  fo=fior =T
@12)  fme=rT -
@13)  fe=rT -

(4.14) :

(4.15) A=H.PI. &




179 —

Note that there should be satisfied the following compatibility conditions (see (2.31),
(2.32), 2.37))

o [Q + Ql1-F"er,, B Ve, j=T14.

We develop here the so-called indirect boundary integral equation method. We look
for a solution pair (U, U) of the mixed boundary-transmission problem 2.29)-(2.37)
with X™ = 0 and X = 0 in the form of the corresponding single layer potentials

T

4.6) U= (Uy,---,Us)" = V(P [Q+w+h]) in 2

(45) U(m):(Ul(m)’__.,U‘;m))T:V(m)([_z—lL‘+’C;m)]—l[Q(gm)+b(m)]) in Q(m)’

We have to find the unknown vector-functions ", 5 and y satisfying the inclusions
(4.2) and (4.4). We recall that these unknown densities QP + b and Q, + y + b have
the physical meaning in accordance with Lemmas 3.7 and 3.9.

Let us remark that the homogeneous differential equations (2.29)-(2.30) (X =0,
X = 0) are satisfied automatically as well as the boundary conditions (2.31)-(2.33).

The remaining boundary and transmission conditions (2.34)-(2.37) lead to the
equations for the unknown vector-functions , » and b 1)

47D o [P y+b]=feon D, k=T5
(4.8) 7 o [H: P v+ b ]52}[;(’”) on '™
49)  ro [HP w b)) -, [H;m [—27 L+ (b

’\.

*+

_ Tim) () -
—/‘;- on """, j=1.

*+

(4.10) r . b = Em — 7 by OD r'. j=1.

rim =7 J

where

@11)  fo=fo—n R P Qle € BN, k=15,

@12) B i=p < [ HPT Qi€ By (),

@13 f=f" 4, [Hj”” 27+ k) Q(()”’)L

(4.14) [H P7 Qo € B (™), j = T4,
Em=F" ., Qv O e B, j =T,

The last inclusion follows from the compatibility condition (2.40).
Let us introduce the notation

m) [ 9—1 (m)]—1
4.15) A =H, P, BY ::{Wr [-27 L+ K] o [0]4“} .
5%5

[O]1><4 [Ohxl
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We can rewrite the equations (4.7)-(4.10) as

(4.16) Ay +b]=Fon,

(4.17) 7o A W+ bl +r., B = 7" o

1

5
~
g

(418) rr(m) bf + rl'(m) })/(”7) = F‘]'(m) on F(M)1 /. = —’—4)
Where
(4.19) f=th, )T e BLYADP,
(4.20) g =@, g ¢ (By Yo (r P,

. Flm) . _ (Fm 7 (m - |
(4.21) FY s (F, - BT e (B V(o
with |

~(m) ._ [ (m) ~
(422) 5 = [ [0 [0 K ) T, g e

r =
7

Now, our goal is to show that the s i
~ Now, ystem of pseudodifferential equati -
is uniquely solvable in appropriate function spaces. uatins (1161418

4.2. Existence theorems and regularity of solutions

Let us put
7 A rr A 7 [0]5.4 10000 5
N, =
e Ae 7 [A. +B™1] 7o [0T5x4 s Lgysi= 8 (1) (1) 8 8 |
7o L0Jaxs 7 Laxs AT 0001 0

Moreover, let

X, := 1B, (T x [, (5" x By (™),
Yy = [BLHDIY x [BEH I ™)) x (B (1)),
X,0 = B, (D) x (B, (") x [B: (r)*,
Yy = IBD)Y x BN TP x (B (1)),

Evidently, we have the following mapping properties

(4.23 X, Y, (X "

) Ne i X =Y (X, Y],

for s e Ril<p<ooand1<:s < 00, due to Theorems 3.4-3.6 and Lemma 3.8
Evidently, we can rewrite the system (4.16)-(4.18) as -
(4.24) N.b=7,

where @ := (, b, h)T ¢ X isa 7, F
. n unknown vector and Y := (£, 7" Flm)\T i
a glven vector. ! = e e Y; °

As we will see below the opera:
a < s < b of invertibilitv depens ¢
determined by the eigenvalues - s
homogeneous symbol matrices >7 =2
the numbers y and /' define s
original boundary transmissics ~ooe
(see Theorem 4.3 and Remarx = <

TirorREM 4.1: Let the coniii-=:

(4.25) l<p<x. 1<

be satisfied with v’ and =" o~
(4.26) A X

are invertible.

Proor: We prove the thecrem =
are Fredholm with zero indzx 222 |
spaces are trivial.

Step 1. First of all let us memzre

A BT =2
are compact.
Further we establish :=:: 22 oo

r A [H (0P — Hi-

are strongly elliptic pseudod:=z ez
that the principal homogenzsr s w7

For an arbitrarv soluzom U7 2

A, 1)U = 0 in Q with the ==
standard manipulations we ze
(4.27) RAUIT 7T
Substitute here U=1. 7. =

=P,HH{U}" we have .
constant ¢*. Therefore. by 1=z s

R (P w), > v
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As we will see below the operator (4.24) is not invertible for all s € R. The interval
+ <'s < b of invertibility depends on » and on some parameters ¥ and y" which are
determined by the eigenvalues of special matrices constructed by means of the principal
homogeneous symbol matrices of the operators A, and A, + B (see (4.15)). Note that
the numbers ¥ and ¥’ define also the smoothness exponents for the solutions to the
original boundary transmission problem in a neighbourhood of the curves 81" ™ and &I
:see Theorem 4.3 and Remark 4.4 below).

We start with the following theorem.

TueoreM 4.1: Let the conditions

1 1 1 1
(4.25) I<p<oo, 1<¢< 00, ;_§+y,l<x<;+§+yl

be satisfied with y' and y" given by (4.29), (4.30), and (4.31). Then the operators (4.23),
(4.26) N, X, —Y, [X;J — Y;J] ,

are invertible.

Proor: We prove the theorem in several steps. First we show that the operators (4.26)
are Fredholm with zero index and afterwards we establish that the corresponding null-
spaces are trivial.

Step 1. First of all let us remark that the operators

A BT = BRI, 7, A (BT — (BN )P,
are compact.

Further we establish that the operators

rAc HADP = (0P, 7 LA+ B < (H 20y - [H)>(r )P

are strongly elliptic pseudodifferential operators of order —1 with index zero. We remark
that the principal homogeneous symbol matrices of these operators are strongly elliptic.

For an arbitrary solution U € [H}(Q)]’ = [W3(Q)7 to the homogeneous equation
A9, YU = 0 in Q with the help of Green’s formula and Korn’s inequality [Fil] and by
standard manipulations we get

(4.27) R(UV, [TUTY)  >a U ||§H§(Q)]s —o||U ||§Hg(g)]s .

Substitute here U = V(P ly) with v ¢ (H, 2(0Q)7. Due to the equality y =

- 2 . ) "
=P/H;Y{U}" we have Hl//H[Hzl/sz)]; <c | {U}y* Hsz,lz(OQ)]; with some positive
constant ¢*. Therefore, by the trace theorem from (4.27) we easily obtain

RAHP ¥y 2 AW vy + 18P g — 4 VAP
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In particular, in view of Theorem 3.1 for arbitrary y € [I‘NI; (N we have

(4-28) ReHP v, > Ny ”fﬁz vy = G W sy -

From (4.28) it follows that the operator 7 Ac =7, HP7L: H (DY - (H;'2(r):
is a strongly elliptic pseudodifferential Fredholm operator with index zero.

Then it follows that the same is true for the operator A. 4+ B since the principai
homogeneous symbol matrix of the operator Br(’”) is nonnegative,

Therefore, the operator (4.26) is Fredholm with index zero for s = —1/2, p = 2 and
t=2.

Step 2. With the help of the uniqueness Theorem 2.1 via representation formulas (45
and (4.6) with Q" = 0 and (o = 0 we can easily show that the operator (4.26) is
injective for 5 = —~1/2, p =2 and ¢ = 2. Since its index is zero, we conclude that it is
sutjective. Thus the operator (4.26) is invertible for s — — ] /2,p=2and ¢ =2,

Step 3. To complete the proof for the general case we proceed as follows. We see that
the following upper triangular operator

rrAf 7r[0]5><5 7,~[0]5><4
0)
N = 7 [0T5s 1o A+ BT 7 10154
?im [0 1axs 7o daxs 7 14

14x14

is a compact perturbation of the operator A’ «. Therefore we have to investigate Fredholm
properties of the operators

r,*.Ar : [E;,z(FP — [B;;l(r)]s, Y o [A, + Br(m)] . [E;)t(r(m))]i = [B;;l(l“(’”))]s,

Let 61(x, &1, &) == a(A,)(x, &1, &) be the principal symbol matrix of the operator A,
and ﬂy-(l)(x) (/ =1,5) be the eigenvalues of the matrix [61(x,0,+1)17* &(x,0, —1) for
x € OI (for details see [BCN1]).

Similarly, let G5 (x, ¢, &,) = o(A, + BT(”’) ), &1, E,) be the principal symbol matrix of
the operator A, + B/ and /1/(2)(96) (/ =1,5) be the eigenvalues of the corresponding
matrix [G2(x, 0, +1)17! G,(x, 0, —1) for x € 9" ™

Further, we set

1 1
4.29 1= inf —arg AV(w), 9, = — arg 2V (x),
(429) N eotlcjes 20 AW 1 xef)ls‘,ulI;/SE 27 8% )

. 1 1
(4.30) Vzl = (glf 7 arg /1/(2) (x), ¥, "._ sup L arg /1/(2) ).
wOrT SO xedl'™ 1< j<s

Note that 3/ and 7/ (j =1,2) depend on the material parameters, in general, and belong

11
. (-1 1y
to the interva < 3 2) We put

(4.31) yii=min{y], 93}, y" = max {37, ¥}

From Theorem 3.10 we conclude that if the parameters s,y € R, 1 < p < oo,

1<t<o0, satisfy the cor

11 .
" S 4y then e
+})2 <S<p+2 2

rpAc s MDY — 5D T
ro LA B (H T T

Therefore, if the condizicns -
with zero index. Conseque::}.. -
invertible due to the resuizs ooz

Now we are in the position =
the boundary-transmissior. proc

THEOREM 4.2: Let the ooz
(4.32)

Then the boundary-trans»::::::n
represented by formulas

(4.33) U=V(P." 0 -
(4.34) um=v.~ -z

iy e T

where the densitiesy, 1o, ini~
the system (4.16)-(4.18 .

Proor: The existence ¢: z &

satisfying (4.32) follows o -

1 ’ " 1 A e
- = < - e R )
2<y Sy <2 w

solvability for p = 2 is a conses
To show the uniqueness =
proceed as follows. Let a pur

(4.35) g

with p satisfying (4.32 =< &

.-

problem. _
Then, it is evident thas 1mem
{u'=}" = =
(4.36) o .
{r"U~ "=




— 183 —

. .. 11 1 1 1 1
1 <t<oo, satisfy the conditions Z—)—§+y{'<r<l—7+5+y{ and 1—7—5—1—

1 1
—p<s< ;—F 3 + 73, then the operators

rAc s THZUOP = TP (B 0P = B,(07),
1 LA+ BT TP — TP (B )P — (83, ()|
are Fredholm operators with index zero.
Therefore, if the conditions (4.25) are satisfied then the above operators are Fredholm

with zero index. Consequently, the operators (4.26) are Fredholm with zero index and are
invertible due to the results obtained in Step 2. O

Now we are in the position to formulate the basic existence and uniqueness results for
the boundary-transmission problem under consideration.

TuroreM 4.2: Let the inclusions (2.39) and compatibility condition (2.40) hold and let

(4.32) <p<

3-2y7
Then the boundary-transmission problem (2.29)-(2.37) has a unique solution which can be
represented by formulas

(4.33) U=V(P'[Qy+w+h]) in &
(434) U(m) — Vr(m)([ ‘2—1 14 + ’C;m)] -1 [Qém) + b(m)]) in Q(m)’

1—2y""

where the densities y, b, and b are to be determined from the system (4.7)-(4.10) (or from
the system (4.16)-(4.18)).

Proor: The existence of a solution pair (U™ Uye [WZ} Q"N x [WI} Q)P with P
satisfying (4.32) follows from Theorem 4.1 with s =1 —p~'. Due to the inequalities
4 4

3 =2y 1 =2y
solvability for p = 2 is a consequence of Theorem 2.1.

1 1
~3 <y <y" < 5 we have p=2¢ < ) Therefore the unique

To show the uniqueness result for all other values of p from the interval (4.32) we
proceed as follows. Let a pair

(4.35) (U™, U) € (WHQ"]) x [WHQ)Y

with p satisfying (4.32) be a solution to the homogeneous boundary-transmission
problem.
Then, it is evident that there exist the traces

Ut e B 0Q ")), UV e BT,
PaP Pl

(4.36) - R
{T"U™ " e B0, {TU} € [B. (07 .
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and the vectors U and U in 2 and @ respectively are represented in the form (cf.
(4.33)-(4.34), with Q™ = 0 and Q, = 0),

(4.37) [ — Vz(m)([ _2—114 + Kz(m)]—lb(m)) in QM
(438) U=V, (P;'[h+¥y]) in &
due to Lemmas 3.7 and 3.9.

By the same arguments as above we arrive at the homogeneous system A, @ = 0.

where @ := (y, b, h™)7 € X, X . Due to Theorem 4.1, & = 0 and we conclude that
U’”)—OmQ’”)andU Oln.Q O

Finally, we can prove the following regularity result for the solution of the boundary-
transmission problem.

TurorReM 4.3: Let the inclusions (2.39) and compatibility condition (2.40) hold and let
(4.39)

1 1 1 1
<p< I<r<oo, 1 <t<o0, ——=+yp" <s< =+ =+7y.

4
3 - 2p" 1-2y" ) r2

Further, let U™ ¢ [W;(.Q "N and U € [W/pl(_Q)]i be a unigue solution pair of the

boundary-transmission problem (2.29)-(2.37) with X]v('”) =0,/=1,4 and X, =0,
k=1,5.
Then the following hold:

i
Q c Bs—l(S)’ fk c B f c Bs )’ Q(m) c Bx~1(S(m)), F_(m) c Bx—l(]*(m))7
13 r,r k 7 rr

and the compatibility colﬂdz'tz’on F -l Q m) 4 o Q/] SES- Bj;l(F ) is sa-
tisfied, then U™ € [H,"(Q") 1 and U ¢ [H‘+ Q7
i) 4f

Qi € Bi7(S), fe € By (D), ) € B (™), Q™ € B,Y(S™), F™ e B, ™),

and the compatibility condition F/-('”) 7., Qj-(’”) +7 o Oler B’;f,l(r )

s sa-
( I3 rim
tisfied, then

(4.40) U™ e [BFQ™) T, UelBHQ)7P;

ili) &f @ > 0 is not integer and

Qk EBgol fk e CY( F) fk e CMr m)) Q(m) Ba—l (S(’”)), F](m) GB;;’(F('”))

and the compatibility condition F] [, Q o 7 om Qj] €7 Bl (ry, s
satisfied, then

U™ e m [C‘WW)]“, Ue ﬂ [CY(R)T, where K = min {a, l4—;}'}.

a'<r a'<k

b

Proor: The proof of items - .
To prove the item iil' we use

(441) CM)=B =

where ¢ is an arbitrary smil o
(k=2,3) smooth manio.Z
a—e—k/r>0,anda—: -«

From iii) and the embeiinz
Bearing in mind (4.35 272 =
put

(4.42) s=a—:
and

1 1 ,
(4.43) se (;*;"'

By (4.40) for the solutior vec

-

with s+i=a—e~z 1 <42

(4.43) holds. In the last case =
either

tyy

A
or

T - 2T
U T e

in accordance with the i:‘ec;;.-.;

U~ z.C

or

implying U™ e [Cm 27
Since 7 is sufficiently lzzze
the proof.

Remark 4.4: More detzled
(see [CD1], [CD2]! she-
data say) the principal simzas
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Proor: The proof of items i) and ii) easily follows from Theorems 4.1, 4.2 and 3.1.
To prove the item iii) we use the following embedding relations (see, e.g., [Tr1])

(4.41)  CYM) = BY (M) C BL{M) C BIM) C B IM) C ok,

where ¢ is an arbitrary small positive number, M C R’ is a compact 4-dimensional
(kb =2,3) smooth manifold with smooth boundary, 1<f<o0, 1<r<oo,
a—¢—k/r>0,and a — ¢ — k/r are not integers.
From iii) and the embedding (4.41) the condition (4.40) follows with any s < a —&.
Bearing in mind (4.39) and taking 7 sufficiently large and e sufficiently small, we can
put

I U U 11,
(4.42) s=a-¢ if - 2+, <a 8<r+2+)},
and

11 .1 1 11 ‘
(4.43) Se<7—5+} T if — 5ty <a—é

By (4.40) for the solution vectors we have U™ € [Bij;%(!)(”’)) *and U € [B‘:;%(Q) P

. . 1 2 1 2 1 .
with s+1=a —¢e+1if (4.42) holds, and with s+-¢€ <-—§+y",—+§+y’) if
r ¥ r
1 2 1
(4.43) holds. In the last case we can take s+—=—+ 5 +y' —&. Therefore, we have
either rr
U e :B(:;&';,(.Qlm))]47 Ue [BZ:S-F%(_Q)]S’
or

¢
U e (B

'

] Ue [BTT@)

in accordance with the inequalities (4.42) and (4.43). The last embedding in (4.41) (with
k = 3) yields then that either

U e (R, Ue ¢ @7,
or

U e [CEe @), Uelcr (@7,

o — 1
implying U™ € [Cre=HQ" ). Ue [C*3Q)), where k=minja. 5+ ',"}.
Since 7 is sufficiently large and ¢ is sufficiently small, these inclusions complete
the proof. O

Remark 4.4: More detailed analysis based on the asymptotic expansions of solutions
(see [CD1], [CD2]) shows that for sufficiently smooth boundary data (e.g., C*-smooth
data say) the principal singular terms of the solution vectors U and U near the curves
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Or'"™ and AT can be represented as a product of a“good” vector-function and a singular
factor of the form [In p(x) 177 p(x) 1% Here p(x) is the distance from a reference
point x to the curves dI' ™ or &I'. Therefore, near these curves the dominant singular
terms of the corresponding generalized stress vectors 7" U™ and TU are represented
as a product of a“good” vector-function and the factor [ 1n p(x) 17771 p(x) 171F% % The
numbers f3; are different from zero, in general, and describe the oscillating character of
the stress singularities.

The exponents a; + 7 f§; are related to the corresponding eigenvalues by the equalities

Yy In |4
%=t BT
Here 4 € {A{V(») D)} for x€dl, and A€ {(2P), - ,2,5(2)(9«)} for
x € '™ In the above expressions the parameter #z; denotes the multiplicity of the
eigenvalue 4.

It is evident that at the curves "™ and 8I” the components of the generalized stress
vector behave like O ([Inp(x) ]’”O_l[p(x)]*;—*"/ ), where 72, denotes the maximal
multiplicity of the eigenvalues. This is a global singularity effect for the first order
derivatives of the vectors U™ and U. In contrast to the classical pure elasticity case
(where y’ = »” = 0), here y” and 7" depend on the material parameters and are different
from zero, in general (see the example below). This is related to the fact that our
transmission problem and, consequently, the corresponding strongly elliptic system of
pseudodifferential equations are not selfadjoint. This implies that the eigenvalues /1]@
complex numbers, in general.

1 arg 4

Remark 4.5: It can be shown that the eigenvalues A 1)(x) =1 for all x € 8I" and
a2 (x) =1 for all x € &', Moreover, the elgenvalues {/1 )} for x € ' and
{) L } for x € L™ do not depend on the thermal constants. However they de-
pend on the elastic and piezoelectric material parameters, in general.
If y, <0and y] >0, k= 1,2, (see (4.29) and (4.30)) then the smoothness and the
smgularlty exponents are actually defined only by the elgenvalues {)(1 (x)}4 ! and
{1(2) }] 1> since arg AV(x) = 0 for all x € I and arg 42(x) = 0 for all x€ OF

ExampLE

Here we apply our approach to practical examples to show the dependence of the
characteristics yé and yz (k= 1,2) on the material parameters.

To compute the smoothness and the singularity exponents mentioned in Theorem 4.3
and Remark 4.4, we have to find the eigenvalues ) and /1 j=1,5.

We assume that the domain 2 is occupied by the i 1sotrop1c metallic material silver-
palladium alloy with Lamé constants 4 = 1.0 - 10" Pa and u = 3.17 - 1010 Pa, whereas
the domain @ is occupied by different piezoelectric media. We consider the
piezoelectric materials BaTiO; (with the crystal symmetry of the class 4mm ), PZT-4
and PZT-5A (with the crystal symmetry of the class 6mm). Their material constants are

given in the tables below:

Cn(Pa) [ Pz

BaTiO; 27510 1.7°

PZT-4 1.39-10% T80

PZT-5A 120-10' 732
6151C m” 3
BaTiO; 21.30 -
PZT-4 12.70 -
PZT-5A 12.29 -

We remark that the comszanz

where
FA1) =1, f22)=2.7 33 =3

Moreover, for the above piezoes

G = GCiky C11 = €22- -7 =
ey =e€5, &1 = F

&1 = &p, €12 =<2 =i

Global regularity resa
global regularity property o7 7%
Hoélder smoothness exponens -

. 1
number ¥ = min {a. 5

The calculations have smow
depend on the reference poimt
above mentioned piezocieme
(A% and A say) are muzoiis

k e

A =expi-::
another two eigenvalues :re &3
y,e<0y,€>02md —.

The computed \alue\ o
follows

ryd

(4.44) = -

Therefore, for 3" 1= miz -~

et
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given in the tables below:
ci1(Pa) ¢12(Pa) c13(Pa) c33(Pa) c44(Pa) ces(Pa)
BaTiOs 275 - 10! 17910 1.52-10% 1.69- 10! 5.43.10 1.13-10!
PZT-4 1.39.10" 7.80-10° 7.40- 1090 1.15-10% 2.56-101 3.05- 10%
PZT-5A 1.20-10% 7.52- 101 7.51-10% 1.11-10%t 2.11- 1010 2.26-10%

e15(C/m?) €31 (C/m?) e3(C/m?)  en(F/m)  &3(F/m)

BaTiO; 21.30 —2.69 3.65 1.75-10"% 9.89-107%
PZT-4 1270 —5.20 15.10 6.50-10~° 5.60 1077
PZT-5A 1229 -5.35 15.78 8.14-107° 7.32-107°

We remark that the constants ¢, €, and g, €pq are related by the following rule:
P kly = Cigkly  Cifel) = Cikl>
where
fan=1, f22)=2, 133)=3, f(23)=f(32)=4, f(13)=fB1) =5, f12)=f21=6.
Moreover, for the above piezoelectric materials there hold:
Chj = Gty €11 = 22, €13 = (23, (44 = €55, Cjf = Ofori#jandi,;j =4,5,6

ey = €15, €31 =632, €1, = €2 = 63k = 0for: #5, 7 7é 4, k> 3
e =&, &2 =2¢3 =2¢3=0.

Global regularity result. Here we give the numerical results concerning the
global regularity property of the solution vectors U and U™ Due to Theorem 4.3 the
Holder smoothness exponent in the closed domains 0 and Q" is calculated by the

. r
number ¥ = min {a, §+ y }

The calculations have shown that arg i}”(x) and arg /IJ-(Z)(x) (j =1,2,3,4) do not
depend on the reference point x. Moreover, the computations have shown that for the
above mentioned piezoelectric materials BaTiOs, PZT-4, and PZT-5A two eigenvalues
(i(lk) and JV(ZM say) are mutually inverse complex numbers:

MW = exp {—10®}, AP =exp{i0¥}, 09 >0, k=12

another two eigenvalues are equal to 1: ),(3/6) = lik) = 1. Recall that /ls(k) = 1. Therefore,
y, < 0,7, >0, and 3 = =y, k = 1,2 (see (4.29)-(4.30)).

The computed values of y, and y, corresponding to the considered three cases are as
follows

BaTiO; PZT-4 PZT-5A
(4.44) ) -0.12 -0.12 —0.13
¥ —0.06 —0.08 —0.09.

Therefore, for y’ := min {y;, 7o} we have (sec (4.31))
BaTiO; PZT-4 PZT-5A
y —0.12 ~0.12 ~0.13.
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Consequently, if the boundary data of the transmission problem under consideration are

sufficiently smooth (e.g., a > 0.5, see Theorem 4.3), then for the Hélder smoothness
exponent k we derive

BaTiO; PZT-4 PZT-5A
K 0.38 0.38 0.37.

Thus, in the closed domains the solution vectors have C<~%-smoothness , where 6 > 0is

an arbitrarily small number. This shows that the smoothness exponent depends on the
material parameters.

Local singularity effects at different edges. Here we compare the dominant
stress singularity exponents calculated for the curves dI" and OI" ™. Note that the factors
of type [In p(x) 11 p(x) 1'% appear in the singular edge terms of the stress fields (see
Remark 4.4). Recall that p(x) is the distance from a reference point x to the curves &I" ™
or OI'. The exponents 4; + 7 b, are related to the eigenvalues by the equalities
1 arg A In {4/

Y= w0 T T T
where 4 € {4{"(x),---, 4"} for x€dl, and 4 e {42, -, 220} for
x € OI'™. The number 7z denotes the multiplicity of the eigenvalue ;.

As it has been mentioned above the calculations have shown that the arguments of the

complex eigenvalues, arg Z}”(x) and arg ),].(2)(x) (7 =1,2,3,4,) do not depend on the

reference point x. Keep in mind that /15(1) = /15(2 ) = 1 for all values of the material parameters.

Moreover, the calculations have shown that for the above mentioned piezoelectric
materials BaTiO3, PZT-4, and PZT-5A the parameters b;,j = 1,4, (characterizing the so-
called oscillating singularity effects) vanish, which means that the modules of the

cigenvalues equal to 1. Moreover, two of them (1% and A say) are mutually inverse
complex numbers:

WP =exp{—i0%}, P —exp{i®}, 0¥ >0, k=1,2;
another two eigenvalues are equal to 1: /ng) = /lgk) = 1. Therefore, y, < 0, 7, >0, and
Ve = =7 & =1,2 (see (4.29)-(4.30)). It is evident that the complex eigenvalues A
and },(12) with the negative arguments 8 and 6% correspond to the dominant stress
singularity terms at OI" and OI" "™, respectively.

Thus we have two simple complex eigenvalues, igk) = exp {—76*} and lék) =
=exp {7 O(k)}, and one eigenvalue of multiplicity 3, lgk) = /L(f) = )é/e) =1.

Therefore, near the curves OI" and OI"™ at the edge singular terms there appear the
factors of type [lnp(x) P[p(x)1~? which correspond to the eigenvalues A =
T by

Moreover, near the curve where the type of boundary conditions change (the curve
Or') in the singular terms there appears the factor of type [ plx) Eagt corresponding to
the eigenvalue A\, while the factor of type [ p(x) 172% 72, corresponding to the eigenvalue

A2 appears near the curve where the interface intersects the exterior boundary (the
curve o).

It is easy to see that the om

defined by the factors [ pix 77

The computed values ¢z * z
presented in table (4.44). wrirn
near the curves I and I ~

Stress singularity exponen:

boundary.
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It is easy to see that the dominant stress smgulamnes near the curves I” and I'"”
defined by the factors [ p(x) 1~ g and [plx) 1™ 372 respectively.

The computed values of ¥, and 7, corresponding to the considered three cases are
presented in table (4.44), which gives the following principal stress singularity exponents
near the curves I” and I

BaTiO; PZT-4 PZT-5A
Stress singularity exponent at I —0.62 —-0.62 —0.63
Stress singularity exponent at I ) —0.56 —-0.58 —0.59.

Note that the stress singularities at the curve " where the type of boundary conditions
change are higher than near the curve dI'"” where the interface intersects the exterior
boundary.
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