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Abstract. In the present work we present new results connected with
the construction and analysis of difference schemes for:

(a) the second order elliptic equation (the Dirichlet problem, mixed
boundary value problem, nonlocal problems);

(b) general systems of elliptic second order equations (the Dirichlet
problem);

(c) systems of equations of the statical theory of elasticity (the first
mixed, the third boundary-value, the nonlocal problems with integral re-
striction);

(d) the fourth order elliptic equation (the first boundary-vale problem);

(e) the problem of bending of an orthotropic plate freely supported over
the contour;

For the construction of difference schemes the Steklov averaging oper-
ators are used. The correctness is investigated by the energy method. The
estimate of the rate of convergence is based on the corresponding a priori
estimates and on the generalized Bramble-Hilbert lemma. Investigation of
the solvability of nonlocal problems for the second order elliptic equation is
based on the Lax-Milgram lemma.
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Introduction

The method of finite differences is one of the most widespread and
universal methods of numerical solution of boundary value problems for
differential equations, in particular, those of elliptic type.

In approximate methods as well as in practice the main attention is
paid to the issue of accuracy. When a solution of the initial problem is
sufficiently smooth, for example, belongs to a class of continuously differen-
tiable functions C*, we can find in the theory of the finite-difference method
a great deal of fundamental investigations devoted to the estimation of ac-
curacy and convergence rate. However, it is worth mentioning that the
input data in a number of practical problems are not always smooth, so one
have to consider them in other, more general spaces. In this respect, the
most suitable ones are the Sobolev classes W]f. Development and validation
of difference schemes with coefficients and solutions of problems from the
Sobolev space became very topical.

During the last twenty years, methods of constructing and analysis of
difference schemes with convergence rate consistent with the smoothness
of the sought for solution have arisen. In this respect we mention the
works due to A. A. Samarskii, R. D. Lazarov, V. L. Makarov, W. Weinelt,
S. A. Voitsekhovskii, I. P. Gavrilyuk, B. S. Jovanovié¢, P. P. Matus,
M. N. Moskal’kov, V. G. Prikazchikov, etc. Later on, such kind of es-
timates were called consistent ([71]). For elliptic problems they have the
form
m>s >0,

Hy - u||w25(w) < C|h|mis||u||wén(n)a

where u is a solution of the original differential problem, y is an approximate
solution, s and m are real numbers, || - ng(w) and || - ||Wéﬂm> are Sobolev
norms on a set of functions of discrete and continuous argument.

The aim of the present paper is to construct and analyze different
schemes which approximate some classical and nonlocal problems for ellip-
tic equations and systems, as well as to obtain a scale of a priori estimates
of the convergence rate, depending on the smoothness of the solution of the
initial problem.

Of the obtained results, the following ones are worth mentioning;:

(a) A method of averaging the coefficients which preserves ellipticity at
the discrete level and is efficient for boundary value problems with rapidly
changing or unbounded coefficients.

(b) For the problems with derivatives in the boundary conditions, the
convergence rate is, as a rule, reduced by half. The reason of such a reduc-
tion is shown, and a way of its elimination is suggested.

(c) A difference analogue of the second principal inequality for the solu-
tion of the Dirichlet problem for the second order elliptic equation, without
restriction to the mesh step.
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(d) In difference schemes for fourth order equations, the values of the
approximate solution are defined at outer nods as well. Therefore when
investigating the error, there arises the need to extend the exact solution
outside of the domain of integration, preserving the smoothness. We suggest
a method of estimation of the convergence rate which does not require such
an extension.

(e) A new effective method of decomposition of the problem of bending
of the orthotropic plate.

(f) Solvability of some nonlocal boundary value problems in weighted
Sobolev spaces, validation of the corresponding difference schemes by means
of the energy method.



CHAPTER 1

Difference Schemes for Elliptic Equations
of Second Order

In this chapter we suggest a method of averaging the coefficients of
the differential operator which on the discrete level does not violate the
condition of ellipticity. An estimate of the inner product of mesh function
traces on the boundary is obtained which allows one to establish a consistent
estimate of the convergence rate in the case of the mixed type boundary
value problem. Without restriction to the mesh step, the difference analogue
of the second principal inequality of the solution of the Dirichlet problem is
proved.

In Section 1 we introduce notation and some preliminaries which will
be used in the sequel. In Sections 2-4 we study difference schemes for the
Dirichlet problem and in Section 5 for the problem with mixed boundary
conditions. The energy method allows us to investigate these schemes in
Sobolev lattice spaces. The obtained consistent estimates of the convergence
rate are based on a generalization of the Bramble—Hilbert lemma.

1. Notation, Auxiliary Results

In this section we introduce notation and indicate the results which we
will need in our subsequent discussion. These problems have been consid-
ered in detail in [30], [57], [58], [71] and [75].

In what follows, by €2 we denote a rectangular domain in the two-di-
mensional Euclidean space R? with the boundary I':

Q={z=(21,22): 0<zo<ly, =12}, T=0Q, Q=QnT.

For {1 = ly = { we write Q = Q) = (0;0)%. Let Toq = {z €T : x4 =
(1+1)06/2, 0<x3_0 <l3-q}, a=1,2. Let
- Y  pk.— 8_k 5. &
dr, ¢ Ok’ Or{ 032’
where s = (81, 82) is the multiindex, s, s3 > 0 are integers, |s| = s1 + so.
As usual, by WIZ”(Q) we denote Sobolev-Slobodetski’s spaces. For in-
tegers m > 0, the norm in W"(€2) is given by the formula

m 1/p
ol = (Dot )
k=0

5
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Here
wk(m - ( Z 1D ull? (m)
|s|=Fk

is the higher semi-norm in the space W;"(€2).
If m = m+ A\, m is the integer part of m, and 0 < A < 1, then

1/p
HuHW;n(sz) = (”’U’Hgvf(g) + |u|€V;n(Q)) ) Where

|Ds — D3%u ()lp 1/p
| WM(Q): ( Z // |2+)\p dz dt .

For p = 2, we denote ||u||W%n(m = ||u|lm.q-

Let S be an interval in R. The Sobolev-Slobodetski’s space W3 (S)
with the real positive index m = m—+\, where 77 is an integer and 0 < A < 1,
is defined as the set of all those functions u(z) € W2"(.S) for which the norm

1/2
[ullm,s = (lullzs + ulz, s) "5 where

|ul™ () — ul™ (y)[?
|’U/|mS_// |l’*y|1+2)‘ d.]?dy
S
is finite.

Theorem 1.1 ([57], p. 332). W21/2(S) is a Banach space.

By L2(2, ) we denote the weighted space consisting of all real functions
u(x), defined on 2, with the norm

lullo, = ( [ r(@)|u(@)? dz 1/27
([ remor )

where r(z) is the weight function, i.e. r(x) is a measurable and almost
everywhere (a.e.) positive on Q.

The weighted Sobolev space W¥(€2,7) is usually defined as the linear
space of the given on 2 functions u(z) whose derivatives (in a general sense)
D*u of order |s| < k belong to the space Lo(€2, 7). This space will become
a linear normed space if we introduce the norm

il = (Duum) :

where [ulfq . = 3 [ID*ull}, ., [ulo.o.r = [ula.-

|s|=1
By C*(Q) we denote the set of real-valued functions u(z) defined on
Q such that the derivatives D%u can be continuously extended to € for all
multiindices s. The following theorem is valid (see, e.g., [56], p. 10; [65],
Theorem 3.1).
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Theorem 1.2. Ifr € L1 1oc(2) and 1= € L1,10.(2), then WE(Q, 1),k =
0,1,2,..., is a Banach space and C> () is dense in it.

By ¢, c1,c9,. .., and so on, we denote constants which may be different
in different formulas.

Under the belonging of a vector-function (or a matrix) to the space
W¥ we mean that every component of the vector (element of the matrix)
belongs to that space.

The imbedding theorems are of great importance in the theory of So-
bolev spaces.

Theorem 1.3. Let Q be an open domain in R? with the Lipschitz-
continuous boundary. Then the following imbeddings hold:

(a) W;’Z}?(Q) C Wp"l“(Q) for0<my <mg <00, 1<py <p; <o and
2/pa —ma <2/p1 — mi;

(b) W (Q) C C*(Q) for mp > 2, where k is the least integer larger
than or equal to (m — 2).

Let mr), = {P(:c) : Plx)= > cs:cfl:n;?} denote the set of polynomials
|s|<k

of two variables x1, xo of degree < k.

The obtained by us estimates of the convergence rate of the difference
solution are based mainly on the following facts.

First of all, we present here the result which follows from the Dupont—
Scott approximation theorem ([38]) and is generalization of the Bramble—
Hilbert lemma ([33]).

Theorem 1.4 (The Bramble—Hilbert lemma). Let E be an open
convex bounded domain in R? with piecewise smooth boundary, and let a
linear functional £(u) be bounded in W, (E), where m > 0, m =m + A,
m is an integer and 0 < A < 1. If {(u) vanishes in 7w, then there exists
a constant ¢ > 0, depending on E but independent of u(x), such that the
estimate |n(u)| < c|u| holds.

W (E)

In the sequel, we will need the inequality that provides an estimate for
the Lo-norm of a function in a strip near the boundary in terms of the
W3-norm in the domain €2 (see [66], p. 20; [71], p. 26).

Theorem 1.5. Let the boundary I' of the domain S belong to the class
CL. Then for every function u(z) € Wi (Q), the estimate

||u||L2(Q§) < ClC((S)||u||W2m(m
is valid, where

5™, 0<m<1/2
c1 =const >0, ¢(0) =< 6Y?|Ind|, m=1/2,
512, 1/2<m<1
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A defined on Q function g is said to be a pointwise multiplicator (or
simply, a multiplicator) for the space W, (), if gu € W3"(Q) for all u €
W, (Q); the set of all multiplicators for W (€2) is denoted by M (W,*(9)).

Lemma 1.1. Let u, v € W3*(Q), m > 1. Then
el < cllullmgllolmo (1)
where the constant ¢ > 0 does not depend on u(x), v(x).
The inequality (1.1) is an obvious consequence of Peetre’s lemma ([67]).
Lemma 1.2. Let u € W3 (Q), v € Wi (Q), 0 < m < 1. Then
fvllmer < clltlm a0t (1.2)
where the constant ¢ > 0 does not depend on u(x), v(x).
Proof. Taking into account the imbedding W2(Q) C C(Q), we can see that
vl < (lul o + 21 D1l o + 21 Dauld o) 0] 5, + 211,

that is,
luv]]? o < exllulli ollvll o + 211, (1.3)
where
L = /u2(x)(|Dlv|2 + | Dyv|?) dx
Q
Using Hoélder’s inequality and the imbedding W (2) C L4(Q), we ob-
tain I; < 2||u||L4(Q (||D1U||L4(Q + ||D2U||L4 Q)) < e2|lulli ollvl3,; which
together with (1.3) proves the estimate (1.2) for m = 1.
Let now 0 < m < 1. Then it is easy to show that

luvllFo < ullg @lloll. g + 21(w,v) +21(v,u) <
< C3Hu||m,(2||v||m+1,ﬂ + 21(“7 U)7 (14)

u(@)]*v(z) — v(y)|?
// Iﬂc*ylmm e dy.

We estimate this 1ntegral by using Hélder’s inequality

Ju(@)a-m 1-m

0= ([ [ o)
‘2/m m
(//|x |(2+2m 26)/m dajdy) :

Let the parameter € be chosen from the interval max(0;1 —2m) < e <
1 —m. Then

Iwo) el o

where

[of?

Wi < dlullfallvlfe (15
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since W3"(Q) C Laj1—m)(Q), W51 (Q2) € W, 5(Q).
Thus the inequalities (1.4) and (1.5) complete the proof of the lemma.
O

Lemma 1.3. Let u € W3(Q) and a € W3, _(Q), where e > 0 is an

arbitrary number. Then |laul1,o < c||a||W21+E(Q) lull1,0, where ¢ > 0 does

not depend on u(zx), a(x).
Proof. We have
lau]|? o = llaul|f o + 1Dy (aw)[§ o + | D2(aw) |5 . (1.6)

But ||Di(au)l[§ o < [[1Diall,, o + lull,,,
where p = (¢ +2)/2, ¢ = (e + 2)/e.
By the imbedding theorem, W3 (£2) C Loy (2) for ¢ < co. Consequently,

(«) + ”a”c(ﬁ)HDiUHO,Qv i =12

1P1(av)llo.e < cllallyy g, llullie,
which together with (1.6) proves the lemma. O
Lemma 1.4. Ifa, u € W5 (2), 0 < A < 1, then au € L,(Q), 1 <p <
1/(1=X). If a, u € W3 (Q), then au € L,(Q), 1 < p < oo.
Here we introduce the mesh domains w, = {:L'a = iqha 1 g =
0,1,...,Na, ha = la/Na}, wa =waN(0,4y), D=W1 XWa, w=w N,

y=w\w, wl=w,N(0,4,], w; =WaN[0,4s), wE = wli wai, W(1) = w1 X Wy,

W) = W1 X Wy, Wiy) = wii_ X Wy, Wey) = Wi X w;_7 Yo = '+a N,
Wita) =wUYta, _—{ —hy,x2), (l1+h1,22), (1, —h2), (x1,l2+hs) : 21 €
wi, T3 €wa}, fia =ha,Ta EWa; Ao = ha/2, o =0,La, |h| = (h} + h3)1/2,
a=1,2.

A function y = y(z) of the discrete argument is called a mesh function.
The value of the mesh function y(x) at the nod (ih1, jhe) is denoted by v,
ie. y(ih1,jh2) = yij. In the cases where the nod number (ij) is not of
importance, it will be omitted.

Denote by H = H(w) the set of mesh functions defined on @ and in-
troduce on it the inner product and the norm (y,v) = > hihoyv, |yl =

(y,y)*/?, transforming thus H into a finite-dimensional Hilbert space of
mesh functions.
Let for the mesh functions

(ya (o) — Z halis— ayv, “y”(a) - (yay)(a)a a=1,2,

W(a)

sy = > hahs—av®, (y,v Zhthyv lylle = (.9)>

W(at)

p ~ —
||y||Lp(£1) = (Zh1h2|y|p) , p>1l, wCw
w
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For the mesh functions and difference ratios we will use the following
notation:

yFO (@) = y(ay £ 0.5h1,22), yE) (@) = y(ar, 22 £ 0.5ho),
y ) (@) =y () =y (e £ h,as), y&12 (@) =Ly (e) =y(er, 22 £ h),

Yoo = () — ) /hay vz, = (y =y 1))/ ha,
ys = (1) =y 1))/ (2ha), a=1,2.

The second difference derivative in the direction of x,, is defined by the
formula yz_ ., = (y(~1e) — 2y +yHe))/h2 o =1,2.
Here we introduce the Sobolev mesh spaces W¥(w), k = 1,2, in which

the norm is defined by the formulas where ||y||3v1( = |y|3v1( T lyll%
2w 2 (@

WIEs, = Wl + I, s where [y5, = 1IVyl* = llyz iy, +

lymalltesys [l ) = 1ARYIZ = lyzia 1) + lymaea [Fy) + 2lymza 15+

In different problems, depending on the boundary conditions, a type of
the mesh inner product as well as of the norm can be defined concretely.
Thus, for example, in the case of homogeneous Dirichlet conditions we have

(yav)zzhlhﬂﬂ)a 2, = Z hiha(yz,)? + Z hiha(yz,)?,
w + +

w3 ()
wq Xwo w1 ><(/.)2
|y|%/v22(w) = Z hihe ((Yz120)* + (Yrazs)?) + 22 hiha(yz,z,)*.
w w+

Let S, be the averaging Steklov’s operator in the direction of x, (o =
1,2):

z1+h1/2 zo+ha/2
1 1
Slu(x) = h_l / u(fl,xg) d&l, SQU(JJ) = h_g / u($1,§2) d€2
117h1/2 I27h2/2

The classical averaging Steklov’s operator in R? is defined by the equal-
ity S = 5152.
We will also need the following averaging operators:
z1 z1+h1

1 1
Syu(z) = n / u(ér, w2) dér, Sy u(x) = n / u(&r, w2) dé,
xr1—h, T
T z1+h1/2
. 2 ~ 2
Siu(z) = — u(é1,x2) déy, Siu(z) = — u(&1, 2) dé,

hi hy

117h1/2 1

and the operator
z14+h1(1-561)

(h1 — |z — &) u(&r, z2) déq,
z1—h1(1—d0)

1460+

Tru(z)
1 h%
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introduced in [71] (pp. 58 and 156), where 6y = 6(0,21), 01 = 6(l1,21),
d(-,-) is the Kronecker symbol.

Let
Ty u(r) = 2 / (h1 — 21 4+ &)u(&r, @2) déy,
1
d?lfhl
9 r1+h
Ti u(x) = 2 / (h1 4+ x1 — &1)u(br, z2) d&a.
1

1

The operators SQi, S, §2, T2i and T» are defined analogously.
It can be easily verified that for the averaging operators T7 and Tb,

T, o =0,
T,=582=85S, =8,5F, To=205T; +TF), a € wa,
T, To = La.
We denote
St T =0,
Sa=1405(SH+85.), 2o Cwa, a=12.
Sy, Ta =Va,

2. The Dirichlet Problem. Convergence in the Norm W}

History of the matter. Results of Section 2 have been published in
[7]. The estimate (2.23) has been obtained: in [83] for the constants a;; and
the variable ag € Loo(2); in [52] and [53] for a;; € W2~1(Q), a;j = aj,;,
ap € W2=2(Q); in [55] for a;; € W3 (), ap € W3 2().

19, Statement of the problem. Difference scheme. We consider the
difference approximation of the boundary value problem

2
_ 0 Ju B B

7,7=1
The conditions of uniform ellipticity

2
Z aij(r)&& > v +€3), 0<v=const, = €Q, (2.2)

i,j=1
are assumed to be fulfilled. Let there exist a unique solution u(z) € Wi*(Q),

2 < m < 3, of the problem (2.1) and the conditions
aij(z) € W5"7H(Q), 4,j=1,2, 0<ao(z) € W3"*(9), (2.3)
flz) e Wam2(Q), 2<m <3, '

be fulfilled.
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We approximate the problem (2.1) by the difference scheme
Ay =op(z), p(x) =515f zcw, yl)=0, z€v, (2.4)

where
2

Ay = 1 Z ((aijyz, )a: + (@ijYs,)z,) +ay, a(x) = S1S2a0(z). (2.5)

2 £
i,j=1
Let H be the space of mesh functions defined on @ and equal to zero on
«v, with the inner product (y,v) = (y,v), and with the norm |ly|| = ||yllw-
The notation | - ||(o) takes the form
||’U||(21+) = Z h1h2U2, ||U||(22+) = Z h1h2U2.
wf’ Xwo wi Xw;

The operator A is positive definite in the space H ([70], p. 262), and
hence there exists the unique solution of the problem (2.5).

20, A priori estimate of error of the method. In this subsection we
investigate the convergence rate of the difference scheme (2.4). For the error
z =y — u we obtain the problem
Az=1, T€w, z(z)=0, z €, (2.6)
where ¢ = p — Au = 515, f — Au.
Taking into account the properties of the operators S; and Ss:
g ou ( hy ) s ou ( hg)
— =AUy, |1 — —, — = Uy, (X1, T2 — —
1 aﬂ:l x1 1 2 y L2 | 28%2 T2 1,42 2 3
from the equation (2.1) we find that

S152f = =52 ((111 %)ml (931*ﬁ,ﬂ?2> =S (1112ﬁ>zl ($1*E, Iﬂz)*

a]}l 2 8$2 2
ou hg ou h2
=51 (a21 6—331)12<:E1’ xo— 7) =51 <a22 3—372)12(931’ To— ?) +51S2(aou).
Therefore the expression for the error ¢ can be reduced to the form
= (m1+m2)e; + (21 + 1M22) 20 + 1, (2.7)
where
1 Ju h
=5 (allufl + (@11, ) (21 — h1,$2)) — 52 ((111 0—301) (931 - 71,932),
1 Ju h
me = (a12uz, + (a12ug,) (21 — hi,32)) — S2 (a12 6—302) <x1 - 71,932),
1

M21 = §(a21u§1 + (az21ug, ) (21, 72 — h2)) -5 (a21 %) (301,562 - hQ),
)( )

1 ou
22 = 5 (GQQUEQ + (agoue,)(T1, 22 — h2)) -5 (a22—

n = S152(apu) — S1S2a0u.
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Using the equality (2.7), from (2.6) we find that

(Az,2) = (¢, 2) = ((7711 +m2)e, + (22 +121)2y + 7772) <
< llm +mellan V2l + Im22 + m21ll @ IV + Il 2] (2.8)

On the basis of (2.2), we arrive at the inequality
v||Vz|? < (Az, 2). (2.9)

Using the estimate (2.9) and the difference analogue of Friedrichs in-
equality ([70], p. 309)

¢
lyll < JIyll, fo = max(ba; ), (2.10)
from (2.8) we obtain
4o
V[ V22 < 1Vl (Ini +mallas + Inee +mtlles) + Ll )

that is,

12l ycy <

1 Lo
< = (Imallas + Imallas + Inetl s + lnealles + L lall).— 2:11)

3°. Estimation of the convergence rate. Estimation of functionals 111
and n22. We rewrite the expression 711 in the form

1
mi(z) = — = (an1 + ans(z1 — hy, 22)) 057 (u)+

2
Ou ha 2 3 ou
+ 0—301 <x1 - ?,xz)ﬁgl)(au) + Zgl) <a11 0—301)’ (2.12)
where
e(U(u) — ou ($1 _ ﬂ mQ) e
11 o 5 71
1 1

fﬁ)(a) = 5 (a(x) + a/(xl - hl,Ig)) — a(ml — 5 hl,IQ),

(3 () = (E = So)v(xy — 0.5h1,35), Eu=u.

Let e = e(z) = {§ = (£&1,%) : o — 2ol < hoy, a = 1,2} N Q.
By @(t) we denote the function obtained from w(§) by the substitution of
variables £, = %o + taha, @ = 1,2, which maps the domain e(z) into
e={t=(t1,t2) : |ta] <1, a=1,2}.

Since u(&) = u(xy + t1h1, 2 + taha) = u(t), a11(§) = a11(t), therefore

ou(t)  ou(f)

at. ~ ot, e 9
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Using the imbedding W3 C C™ for m > n + 1, we obtain

1 /0u(=0.5:0) _ B
|€§11)(U)| = ‘h_l (% —u(0;0) +u(—1;0)>‘ <
[ [
< gl < 5 Nl m > 2.

Taking into account the fact that the expression under consideration
(as a functional of @) vanishes on 72, by the Bramble—Hilbert lemma we

have |€§11)(u)| < 5 laf 2 < m < 3, or, getting back to our previous

win(e)?
variables,
M clh|™
1037 (u)] < Tl U0y TEW, 2<m <3, (2.13)
Analogously,

|£§21) (a11)| = |0.5 (a11(0;0) + @11(—1;0)) — @11 (—0.5;0)| <
< 0”611”0(5) < C||511||Wg<g>, a>1
Since Eﬁ) vanishes on 7y, by the Bramble-Hilbert lemma we obtain

|€(121)(a11)| < clay] 1 < a < 2, or, passing again to the previous

wg(e))
variables,
2 c|h[*
|€§1) (a11)] < W |a11|Wg(e>’ l<a<2. (2.14)
Next,
3) _ c|h|®
|£11 (a11D1U)|: |(E - S2)”| < W |’U|W20L(€)7 v:auDlu, l<a<?2,
that is,
|65 (a1 D1u)| < an Dyul,g ), 1<a<2. (2.15)

By means of the estimates (2.13)—(2.15), from (2.12) we get

g Ly (SR VI T N
Mmil = (h1ha) /2 Uillc@ Mwp e T 10 mo1 , [F1%]lc @)
+|a11D1u|Wm71( )), 2<m<3, € wf X Wy. (2.16)
—

For the estimate 192 we analogously obtain

el < T sl oo [, + lasel, s Do+
122 = (hih2)'/2 @22llc@) MHwpr e T 19221 mo1 ) 1F2%]c @)

+|a22D2u|Wm71( )), 2<m<3, r€w Xwy. (2.17)
m-l
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Estimation of the functionals 112 and 121. We represent the expression
712 in the form

h
mz = 01 (a12Dau) + ZQ 013 (a12)S182(D3u) + 0.5a12 €5 (u)+

+ 5%) (u) + ﬂg) + 0.5a12(z1 — h1, 22) Egg) (), (2.18)
where
E90) = 05(0-+ v(ax i 22)) — Sau(ar — 050, 73)
03 (a) = h18182(Dra) — a+ a(w1 — hy, 22),

h
0 (1) = uz, — Dou+ 72 5155(D3w),

hih
645 (w) = "2 (819, (Drar2 D3u) — $15:(D1a12) $182(D3u) ).
hih
6(152) =- 14 2 $195(D1arz D3u),

h
E(lg) (u) = ug,(x1 — h1,22) — Dou(z1 — h1,22) — ?2 Sng(Dgu).

To estimate the summands of the equality (2.18), we apply the same
. . 1 _
meNthod as we have used for the estimation (2.16), \652)(U)| < vl <
c||v||W;(€), a>1.
Since 412) (v) vanishes on 71, using the Bramble-Hilbert lemma, we
obtain

(1) ~ clh]
161y (V)] < cfol g < N Ve 1<a<2,
that is,
c|h|®
‘ﬁglg)(auDQu)‘ < \/% ||a12D2u||Wg<e), l<a<2.
Next,
12 12
(2) dars ~ ~
1635 (a12)] = ot dty dta — a12(0,0) 4+ a12(—1,0)| <
1
—1/2-1/2
< C||512||W§(5), a> 1.

. 2 . .
Since Zg;(alg) vanishes on 71, we obtain

l<a<2.

2 - clh|*
1032 (a12)] < cfanal g, < T 12hug o
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It can be easily seen that

1/2 1/2

62 ()| < 4 [3(0.0)~(0,1) - gtz (0,0)+3 / / 82;;) dty dts| <
—1/2-1/2
< h_ ||u||W%ﬂ,(g>, m > 2,
and hence
m—1
163 ()| < h—CQ gy < C\|Z|ll_h2 fulygis 2<m <3,
Using Cauchy—Buniakowski’s inequality, we get
433 ()] < AD112ly o 1Dl <
< el g 1D < 5 12l [Ty 70 2
and since €§42) (u) vanishes on u € 7o, therefore
m—1
1063 ()] < 5 arel g g [l ooy < \'Zl—h lare g o g ey 2<m<3.

Applying Holder’s inequality with p = 2/(m — 2), ¢ = 2/(4 — m), we

obtain
1 /p dars 0 u 1a
O < = /1Pd /‘ ! <
1< 7 ([ 17de 5 5l ) <
,'}F'm |52 2% s 3|
hihs 0y 83?2 L 2 (e)

Finally, for ;2 we obtain the estimate

, 2<m < 3.

m—1
In12| < b
(hih2)'/2

+ llall s, )|u|W2m(e)), 2<m<3, TEw xws (2.19)

(|a12D2u| mot, + ||D1ar2D3ul|, +

2 (e)

Similarly,

c|h|m—1

D E—
Il < G gy +

(|a21D1U|W;n71(e) + ||D2a21DfU||L4%(e>

+ ||a21||wm71(m|u|W§,L(€)), 2<m<3, TEw xwi. (2.20)
2

Estimation of the functional n(x). Let RW(v) = S1S2((& — x;)v),
R(i+2) (’U) = —0. 55152((51 ’L) )7 1= ]-a 27 R(S)(U) = 75152((51 *xl)(€2 -
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x2)v). To estimate the expression 7(x), we represent it in the form n =
R+ @, where

2
A= 3[R0 (o0 ) + 2 (00 58] B9 (m 5800

? 7

Q = Sng(aou) — Sngaou — R.

Using the above-mentioned transformation of variables, we obtain

RO©)I = [t [650) ] < ol i =12,

e

and since R, i = 1,2, vanishes for v € o,

(i) ~ clh™?
|RY (v)] < chilv] .., < I
Wyt T(@® hiho Wao T(e)

. 2<m<3, i=1,2.

Using Holder’s inequality with p = 2/(m — 2), ¢ = 2/(4 — m), we obtain

(i+2) 1 2p 1/p . 1/q
|RY T (v)] < s & — x| d€ ()] d§ <
e e
c|h|m71 )
N T loll, , s 2<m<3, i=12
4—m
Further,
c|h|m—1
|IR®) (v)| < NS ||v||L4%(e), 2<m<3.
Finally, for R we obtain the estimate
R < P (laoDul o, + laoDal -+
= Vhihy V0T ez THOOTR e
HlaoDiDaull, , +laoD3ull, , o +laoDiull, , ), 2<m<3.
4—m 4—m 4—m

We now proceed to obtaining an estimate for (). First of all, it should
be noted that @ = Q(u) vanishes on u € wy. We will have to estimate anew
the summands of the functional R so that the norm of the function u(x)
would emerge. We have

. ou 1 ou 1 ou
(%) — | = e - < | = - <
‘R (ao 9&)‘ ‘2 /tlao(t) ot dt‘ ‘ /ao(t) ot dt‘

e e

<! (/|ao<t>|2)1/2<f\g—z th>”2

1 N\ 1/2 O 12 1/27
4v/hihy (/|a0(t)|) (/‘a_tz dt> a
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18
1 ou c -
= ity o 3t e = g 1l g #2102
Next,
. o%u 1
1 G < i [ -
“oez)l = max(& — )" 7o 0 gz | %=
hl 8 u
S d ’
4h2/ 852‘ < 4h2 H OHL?(E) 852 La(e)
hy 0%u 0%*u .
= ” O||L2(Q) a¢2 ” 0||L2(S2) ac2 i=1,2.
4h 8{ Ls(e) \/h1h2 8{ Lz(e
R(5)(a0 56 65 ) is estimated analogously, and as a result, we obtain
c ~
|R| < N ||a0||L2<m||U||W22@-
Now we estimate the remaining summands of the functional Q). We
have

15182000 < [l 77 / 01 dE <~ [Tl a0, <

< \/m ||a0||L2(Q) HUHW?z(g); |5152a0u| < \/ﬁ Hu”wg(é)'
Finally, we obtain |Q] < T llaoll ., ) ||ﬂ||w§(€). Consequently, using
the Bramble-Hilbert lemma, we obtain
C|h|m 1

|Q| \/l_h ||a0||L2(Q)||u||Wm(e)’

2<m<3.

Finally,
C| h | m—1

<
Il <~ 7

Jr|030D2U| wn=2(e) Jr+”CLODIDQU”L 5 (e)+

4—m

(|u|w5"(e) + |a0D1u|W2m72(e) +

L +llaoD3ul, | (e)), 2<m<3  (221)

I—m I—m
Estimate several summands in the right-hand side of the inequality
(2.11). By (2.16), we have
Imillfiy = D hiholmuf* <
waquJQ

+ |a11D1u|3Vm ), 2<m <3 (2.22)

m=l()

+llao Diull,

§ C|h|2m72(|

-

Note that by virtue of Lemma 1.1,

|a11D1u| wl@) = C||a11||wgnfl(m ”u”wé"(m’ 2<m<3.
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Therefore form (2.22) it follows that [911]|14) < c|h|m_1||u||wén(m, 2 <
m < 3.

The rest of the summands in the right-hand side of (2.11) are esti-
mated analogously. Note that upon summation of the summands of the
type |v], | (., by virtue of the fact (see [48], p. 43, Theorem 22) that

4—m

t
STt < (Z%) ,Vbe >0, t> 1, we write

. 4—m , 4—m
ST < </|v|4mdx> g<z/|v|4mdx) <fol? | .-
w I=m w e (.Ue

4—m 4—m

Using now Cauchy-Buniakowski’s inequality |avl|, = o <

4—m

and the imbedding W32 C L_s_, we can see that

—m

lall, , vl , @
m 4

— —m

the inequalities

”aODiDjuHL 2 () < C”a()”wzm_?(n)Hu” 2<m<3, i,j=12,

Wi ()

I—m
HDiam_iDg_iuHL , (Q)§c||ai73_i|\ 2<m<3, 1=1,2,
=

SN 1 P

are valid. Consequently, form (2.21) we finally obtain the estimate

lly —ull < clh|™ = u]

wi(w) —

2 <m<3. (2.23)

Wi (Q)?
Thus we have proved the following

Theorem 2.1. Let the solution of the problem (2.1) u € W (Q),
2 < m < 3, and let the conditions (2.2) and (2.3) be fulfilled. Then the
convergence of the difference scheme in the norm Wy (w) is characterized by
the estimate (2.23).

3. Difference Schemes with Averaged Coefficients

History of the matter. The results of this section have been pub-
lished in [12]. The estimate (3.7) has been obtained in [76] for a;2 = ag; = 0,
ai; € WL(Q), ap € Loo(Q); in [79] for a; € WL(Q), a12 = a2 = 0,
ao € Loo(Q); in [52], [53] for a;; € WL (), a2 = a21, ap € Loo(2); in [55]
for ajj € W21+6(Q), o> 0, aj2 = a9y, ag € L2+5(Q), e > 0.

1°. Statement of the problem. Difference scheme. In this subsection
we consider difference schemes which approximate the problem (2.1),(2.2),
where the functions f, a;;, aop satisfy the following restrictions:

f(@)ELAQ), ay; €War (Q), i,7=1,2, 0<ao(z)€L2(Q), Ve>0. (3.1)

As is known [58], there exists a unique generalized solution u(z) € W3 ()
of the problem (2.1), (2.2), (3.1) for which the estimate ||u||W22(m§c||f||L2(m
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is valid. We approximate the problem (2.1) by the difference scheme

2
1 _
Ay=—= > [(@fsvas)z. + (ans¥s,)en] +ay =@, o €w,
2 ol (3.2)

where azﬁ(x) =51 S ks, a;B(:v) = ajﬁ(xl —h1, 29 — h2), a(z) = T1Tsay,
(p(.]?) = Tngf.
H is assumed to be the space of mesh functions defined on @ and equal to

zero on v, with the inner product (y,v) = (y,v). and the norm [|y|| = ||y||w-
The notation || - [|(44) takes the form Hv||(21+) = Z hyhav?, ||v||(2+)
wl Xwa
S>> hihgv?. Using the formulas of summation by parts, it is not difficult
w1 XUJ;

to show that

Aya Zhth( Z aaﬁyzaym5+ Z aagyxayzg)

a,f=1 a,B=1

+ 5 Z hihs (a;_2y§2 (xlv 0) + a2_2y%2 (xla 62))+

w1
1 _
+3 > haha(afiyz (0,22) + ayyy2, (4, 2)).
w2

Taking here into account implications from the ellipticity condition (2.2)

NE

ats(2)als > V(E + &), 1w,

a 1

B
a’ii_l (vaQ) > v, al_l(gla:L'Q) > Vv, Tz € wa,
a3y (21,0) > v, agy(w1,462) > v, 21 € wi,

we obtain

(Ay,y) Zhlhz o, s, F R +ys,)+

14
+§Zh1h2 (y2, (21,0)+y2, (z1,02))+ 5;h1h2 Y2, (0,22)+y2 (£1,22)),

w1

so (Ay,y) > v||Vy||?, Vy € H. This estimate together with the difference
analogue of the Friedrichs inequality ([70], p. 309)

8 8\, o )
— 4 — < .
<€§ + E%)Ilyll < |IVyll (3.3)
yields
1 203
<-(1+—2_)(4 H. 4
IIyIIWw <7 ( + S(E%JFE%))( y,y), Vye€ (3.4)
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Thus the operator A is positive definite in H, and hence the problem
(3.2) is uniquely solvable.

Remark 3.1. For a2 = as1, the operator A is self-adjoint in H.

2°. A priori estimate of error. The error z = y — u of the scheme (3.2)
is a solution of the problem

Az=1, zew, z2(z)=0, z€n, (3.5)
where the approximation error ¢ = T1T5 f — Au can be reduced to the form
Y = (P11 + V12), + (Y21 + Ya2)z, + Yo,

Yo = T Ta(aou) — T1Toaou, Yaa = Sy Sptacuz, — S5 13 (aaa STU)’

ou
- -g- , - gt (-1a)] _ g— el
Vap 0.5[51 Sy aapuz, + 5555 Uaply, ] S, Tg (aag 6(6)’
f=3—a a=1,2

Using Holder’s inequality and the imbedding of L,(w), p > 1, in W3 (w),
we find that

1 1
o) < ol 12lyr STl oy (5)+(5) =1 0>

Consequently, on the basis of (3.4), for the solution of the problem (3.5)
we obtain an a priori estimate

[E (Z lasll@n + Itol,,), Ya>1.  (36)
a,f=1

30, Estimation of the convergence rate. In this subsection we will
investigate the convergence rate of the difference scheme (3.2). Towards
this end, it suffices to estimate the summands in the right-hand side of the
inequality (3.6). The operators S §, S., T, are assumed to act with respect
to the variable (,, and let ¢ = ((1,¢2). Let eq = eq(x) = (21 —h1, 21+ (a—
].)hl)X(CEQ*hQ, 1‘24*(2704)}12), a= 1, 2, e = 6(3]) = (1’1 — hl, xr1+ hl) X (CEQ —
ha, 9 + ha), |h|? = h? + h%. We rewrite the mesh functions 1,3, ¥ in the
form

2 3 2 3
Yoo =150 + 02, Yas =150 +050) +150, o =n5" + 0 +u§Y,

where

77&10)4 = Sojgﬁ (aaa %) — S5, 1p (aaa %)a

12 = 555 (t0a(Cuz, (2) — aual %)

du(C)
% )

1
n =5 Sty (@ap(Quzy(2) = aas (©)
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ou
)

) = S;Eg(aaﬁ %) — 8Ty (aag (%), B=3—a, a=1,2,

]' — —
13 = 5 5255 (as(Cu, (@) — as(0)

W = T (ao«)u(o ~ ao(Qyu(z)-

—ao(¢) agéo (&1 — 1) —ap(€) 8;@(}() (¢ — 3?2))7

0 =TTy (ao(C) aéo (G — ))

8;25) (G2 — 582))

To estimate each group of summands, we apply the well-known method of
investigation [83] which uses the Bramble-Hilbert lemma. As a result, we
obtain

Y =TTy (ao(C )

clhl™”

| | W |aaaDau W;"fl(ey 1<m < 3,
C|h|m71
|77aa| (h1h2)1/2 ||aaa||Lm(Q)|u|W2m(e)ﬂ ]- < m S 2,

The functions 77((1 B)’ n((X ﬁ,) are estimated analogously to n&?,ﬁ, and the function

77( B) is estimated analogously to 7)( )

For 7761)7 776 ) we obtain

|(a)|_h /‘ 0 €.

For the estimation of n(()?’), we note that it vanishes for u(z) €. More-
over,

_ Il
dg — ( 2)1/(] ||(ZODQU||L

q(e)’

g=3/2, a=1,2.

T\ Tyaou| < TyTaaolil .., < (hih2) ™" 9|aol,

ol

T T2(aou)| < ThTaaolul. ., < (h1h2)71/q||a0||Lq<e>||a||w22(g)v

ou
‘Tsz(GO(f) o€ (€ xa))‘ <
«
1 ou
< ~ < (hyhy) ™4 H
~ hz_q ”aO”Lq(e) 0zq ‘ Ly(e) (h1ho) ||a0||Lq(e) Ly@)’
and hence
In$| <

C ~ C ~
Trha) laoll, o l1ullys ) < Traha) laoll, e [@lyz ey <
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c|h|
> W ||a0||Lq<e) |U|W22(m-

The expressions u and € are of the same sense as in Section 2.
Relying on the above inequalities, we can see that the following lemma
is valid.

Lemma 3.1. For the functionals ¥ag, o, B = 1,2, and 1o the estimates
clh|
W (||aa6||Lm<m|U|W§(ea) + |aaﬁDﬁU|W%(ea)), a,3=1,2,

2

clh|

ol < Grgie (90l el + D laoDatl, e ) a1,
a=1

|wa5| <

hold.
Using Lemma 3.1, from (3.6) it follows

Lemma 3.2. For the solution of the problem (3.5) the estimate

2
2l o, < c|h|(( > Naaslly oo + laollyio ) 1]z +
a,B=1

2 2
+ Z |a/a/6D/6u|W2l(Q) + Z ||aODau||Lq(Q))7 q> 17
a,B=1 a=1

is valid.

In this subsection we have so far assumed that ¢ > 1 was an arbitrary
number. Now we will choose it from the interval (1,2). Let ¢ = 3/2. We
can show that

(a0Dptlyy oy < laslyy ol

a0 D]y < €lltoll, i 0l Y& >0, 6= 1,2

W3 () w3(@)’
These inequalities together with Lemma 3.2 prove the following

Theorem 3.1. Let the assumptions (2.2) and (3.1) be fulfilled. Then
the difference scheme (3.2) converges in the mesh norm Wi (w). Moreover,
the estimate

ly—ully., < elbl 1l (3.7)
is valid.
The following statement holds.
Theorem 3.2. Let the condition (2.2) be fulfilled,

aap € Wolo(Q)a a,=1,2, ao € W21+E(Q)a Ve>0, fe€ LQ(Q)a
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and the corresponding coefficients of the scheme (3.2) be calculated by the
formulas
h h
aiﬁ(x) = Qap (1'1 + 71;1'2 + 72); O‘aﬂ =12, CL(Q?) = ao(l’),
p(x) = T T»f.

Then the difference scheme (3.2) converges in the mesh norm, and the esti-
mate (3.7) is valid.

Proof. If in (3.2) we choose a = ag, then the corresponding summand g in
the approximation error has the form

Yo = TiTa(agu) — apu = ag(x)(T1Tou — u) + T1 T2 (u({) (a0 (¢) — ao(x))),

whence
c|h| c|h|
[Yo] < Tnha) /2 Ha0||c<9>|u|w22(e) + OS] Hu||C(m|GO|W5+E(e)a
1ol < c|h] ||U||W22(m ||GOHW%+E(Q)7

which proves a part of the theorem dealing with the coefficient a.
The validity of the theorem regarding to the coefficients afﬁ is proved
analogously [76]. O

4. The Dirichlet Problem. Convergence in the Norm W}

History of the matter. The questions of stability of the difference
solution of the Dirichlet problem for elliptic equations in the mesh metric
W3 were investigated by many authors. An analogue of the estimate (4.9)
has been obtained in [64] for the elliptic nondivergent operator containing
no lowest terms; in [4], [37] and [39] this estimate is obtained only for
sufficiently small h.

In this section, the estimate (4.9) is proved without restriction to the
mesh step. A consistent estimate of the convergence rate (4.17) is obtained.
The results of the present section have been published in [6] for the equa-
tion containing no lowest terms, and also in [13]. Analogous results have
been obtained in [52], where relying on [37] a consistent estimate has been
obtained in case a;; € Wr=tay e W2 a; = as = 0.

1°. Consider in a rectangle ) the boundary value problem
Lu=f, 2€Q, u(x)=0, z€T, (4.1)

where
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The condition of uniform ellipticity
2
Z Qop(T)Eabs > V(EE +€3), v =rconst >0, = €Q, (4.2)
a,B=1
is assumed to be fulfilled. Let, moreover,

1 €C(Q), a=0,1,2, anz €W HQ), fFEWT2(Q), me(3,4],

oo < o, aﬁ‘gﬂla p2 <ag < us, |aa|§,u'47 a,=1,2,

Oa

.
where pg > 0, po > 0, @ = 1,2, 3,4, are constants.

The problem (4.1)—(4.3) is assumed to be uniquely solvable in the class
Wi (Q), 3 < m < 4. We approximate the problem (4.1) by the difference
scheme [70]

Ay:f7 T € w, y(fﬂ):O, TEY, (44)
where
2
A=A+ B, By= Zaayga,
a=1
2

1
Ay=—3 [(aapyzs)ea + (Gapyey)z.] + aoy.
a,f=1
By H we denote the space of mesh functions defined on @ and equal to
7, with the inner product (y,v) = (y,v), and the norm ||y|| = ||y||.-

In the space H, the notations | - ||(q+) and || - [|(q) take the form

1l = Z hhoo?, Jolfyyy = D hihat®, ol = |o]-

wl Xwa w1><w2

20, Find sufficient conditions for which the operator A is positive definite,
and hence the problem (4.4) is uniquely solvable. Let

EZ |G —Zia|2,
Q :

where the independent of z,, functions @, = a4 (23-4) are chosen in such a
way that the value @ is minimal. If it is difficult to find such a,, we can use
anyone with the property (conf. [37], p. 116)

2 2
magz lae — Ea|2 < magcz ai.
zeh a=1 €L a=1

It is not difficult to notice that

3 hlhzaay;ay\ =

TEW

= |3 hha(an — )y y| < S s,

(4.5)

2sc
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where € > 0 is an arbitrary number, and ¢; is the constant from Friedrich’s
inequality
lyll < calVyll, e = (¢1t2)/2/4. (4.6)

Taking into account [lys || < [|lyz,[/(a+), from (4.5) we obtain

a
B < 2 Ty — 2
By, y)| < (eer/NVull™ + 5 Iyl

and since on the basis of (4.2), we have (Ay, y) > v||Vy||?+u2||y||?, therefore

a Cc1€
(Ay,y) > v — 1) [Vyl2 + (2 — 5o ) Il> + = [ Wy
2501 2

Applying the inequality (4.6) to the last summand, we find that

Ava) > (4 — 2 (e o+ )
(Ay,y) > (v — c1e) | Vyl|* + ( p2 2o 20, Iyl

We choose € basing on the condition that the coefficient is equal to zero.
Then

(Ay,y) = eallVyl®, 2 = v+ pa — (clpd + fa)' /2. (4.7)

If the coefficients a,, do not depend on x, then we assume that a, = a,,
and hence @ = 0 and ¢; = v > 0. In the general case, for the coefficient ¢y
to be positive, we assume

v+ Guy > (cipd + Ga)t/?. (4.8)
Thus the following lemma is valid.

Lemma 4.1. Let either the coefficients ao, o = 1,2 be independent
of xo, or the condition (4.8) be fulfilled. Then the operator A is positive
definite in H, and the estimate (4.7) is valid.

39, To estimate the convergence rate of the difference scheme (4.4) in the
mesh metric W3, we will need

Lemma 4.2. Under the conditions of Lemma 4.1 the estimate
Ylwzw) < esllAyll, Vy € H, (4.9)
is fulfilled with

(c1ps + 21 %ps + 23/2M1)01>

c3 = (2M0/V2)(1—|- o

Proof. Using the formula for differencing a product ([70], p. 255), we obtain

(a12 + a21) (Yo7 + Yz122)
2

A11Y7 2, T + a22Yzra, = F, (41())
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where

1
F(z) =ay — Ay — 3 (anxlya-l + a11z, Yz, + 0220, Yao +

+a22z, Yz, + @122, Y12 + G127, T12 + Q212,521 + a21@§21)7 (4.11)

?7046 = (y(H“))@;; gaﬁ = (y(ila))zga O‘aﬂ =12
Multiplying the equality (4.9) by Yz, /a2, we have
yflmggyiblfg +a22(y§112;y1152 )2i| _

= P (y),
@22

1 2
(% |:a11y§1x1+(a12 + a21)Yz1 0,

_ N2
where I(y) = (%) — Yz a1 Yzaws- Whence by virtue of (4.2), we
obtain - Y2 2. < 2 |Fyz,a,| + I(y). Consequently, taking into account the

estimate

2
|Fyf5111| < F + _yzlazlv

210
we find that
O 24 4.12
p o, < 5 P2 1) (112)
Let us now show that > hihoI(y) <0,Vy € H.
rEw

Indeed, this follows from
Z hihoI(y) < % Z hiho (Y2, 0, + Yorz,) — Z h1hoYz, 21 Yzaza)
TEW w w
with regard for the identities
Z hihoyz, o, = Z hihoyz, o Yzsws — Z hihoyZ .. (21,0)—

w1

- Zhlhw%@z (1, 2),

-
Wy

> hihoy? g, = Zhlhgymlylm > hihoy? g, (w1, 62)—

w w1

=Y hihoy? 4, (0,22).

wg

Summing (4.12) over the mesh w, we find that ||yz, s, | < (1o/v?)||F|-
The estimate ||yz,e, | < (1o/v?)||F | is obtained analogously. Consequently,

Hy§13«'1 +y§21‘2||2 < Q(Hyfll‘lHQ + ||y52$2||2) < (4M(2)/V4)||F||2’

that is,

2#0
1. (4.13)

Wz =
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Estimate now the right-hand side of the inequality (4.13). It follows
from (4.11) that [|F|| < psllyl| + [ Ay]| + 2w (lyz, la+) + lyzall+)) - so

IEI < sllyll + 1Ayl + 1 Byll + 22241 Yy (4.14)

On the basis of the easily verifiable estimate ||By|| < 2'/2u4||Vy|| and
the inequality (4.6), from (4.14) we get

I < [|Ayll + (c1ps + 2" 2 pa + 2%7% ) | Vy . (4.15)
From (4.6) and (4.7) we obtain the estimate ||[Vy|| < £ [[Ay||, which
together with (4.13) and (4.15) completes the proof of Lemma 4.2. O

Corollary 4.1. Note that |- |lwz(.) and |-|wz(.) are equivalent. There-
fore in the conditions of Lemma 4.2 the difference scheme (4.4) is stable in
the mesh metric W3.

4°. We now investigate the convergence rate of the difference scheme (4.4).
For the error z = y — u we have the problem

Az=1v¢, x€w, z(x)=0, z€n, (4.16)

where the approximation error v = f — Au is represented by the sum

2 2 3
k ou

U= 30 Mapt Dt M= Do fa=aa (g s ).
a=1 k=0 «

a,f=1
2 ~ .
(0) _ (u@xﬁ tUszs  O7u ) 1 _ (ua6+ua6 _ Ou )
Nap = 0ap B 91025/ Nap =%ps \ ™" 5 _aCCg ,
ou Ja E h N 3
77&23 - 0z (aaﬁga o axa:), ngﬁ) = f Gafzace (Uap = Uap)-

Lemma 4.3. Let the solution of the problem (4.1)—(4.3) belong to the
space W3 (Q). Then for the components of the approximation error the
estimate

2 2
D el + D lnall < elh™ 2 ullwy ), m € (3,4],

«,8=1,2 a=1

is valid.

Proof. Here, to estimate the values nékﬁ), No We use the well-known method

based on the Bramble—Hilbert lemma. As a result we obtain

k _ _
e | < elhl™ 2 (aha) "2 gl g ]y, k=01,

k+1 m— _
ety 1 < elhl™ 2 (haha) ™2 ull g N0l o, k=102

10 < €lh|™ 2 (hah2) "2 aall a,f=1,2, me(3,4],

c(Q) ||u||W27n—1(€)7
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where e = e(x) = (x1 — h1,21 + h1) X (2 — he, 22 + ha). Consequently,

|"7a6| < C|h|m_2(h1h2)_1/2(Hullwzm(e) + ||a/066HW;n,—1(e) ||u||W2m(Q))a

10 < €lh|™ 2 (hahz) ™2 u] me (3,4], o,f=12,

Wi (e)?
which proves our lemma. O
On the basis of Lemmas 4.2 and 4.3, from (4.16) we have the following

Theorem 4.1. Let the solution of the problem (4.1)—(4.3) belong to
the space Wi (), m € (3,4], and let the condition (4.8) be fulfilled. Then
the convergence rate of the difference scheme (4.4) is characterized by the
estimate

ly —ullyz(., < c|h[™ 2 |ull m e (3,4], (4.17)

= Wén Q)

where the constant ¢ > 0 does not depend on h and u(x).

5. The Mixed Boundary Value problem

History of the matter. The results of this section have been pub-
lished in [24]. Analogous results have been obtained in [71] for the Poisson
equation, in [10] for the elliptic equation in the case of constant coefficients,
and in [35] in case s =1, m € (2, 3].

19, Suppose that in 2 we seek for a solution of equation (2.1) satisfying the
boundary conditions

Lu=— Z % (aij(:v) g_u) +ap()u=f, z€Q,

T

ij=1 / (5.1)
0 0
an—u—l—alg—u:au—g, ze€l_1, u=0, zely, To=T\T_;.
8931 812

Let the conditions

2
Zaij (@)X, x; 2v(X*+x?2), v=const>0, ag(z),0(z2)>0, z€Q, (5.2)
i,j=1

be fulfilled, and the problem (5.1) with the right-hand side f € Wi*(Q), g €

W2m_3/2(I‘,1) is assumed to be uniquely solvable in W3 (), 1 <m <3. Con-

sequently, the coefficients of the problem must belong to the following classes

of multiplicators: a;; € M(W5~H()), ag € M(W3(Q) — W3"~2(Q)),
o€ MWy Y*(_y) — W' ¥*('_;)) for which we have the following
sufficient conditions: a;; € W3 1(Q) for 2 < m < 3, a;; € Wa, (Q) for

m=2, a; € W;}ﬁfi)(ﬂ) forl<m<2e>0,4,7=1,2,a9 € WQ’”‘Q(Q)

for 2 <m < 3, ap € Lyyz—m)(2) for 1 <m < 2,0¢€ ng_g/g(lll) for
3/2<m<3,0€Ly/2—m)(I'-1) for 1<m<3/2.
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29, Let 79 = v\ 7—1. We approximate the problem (5.1) by the difference
scheme

Ay =, r€wUr_1, y(x) =0, =€, (5.3)
where
2
A= Aj+aE+05(m)GE, Ey=y,
i=1
1 1
B (@11Y2y )z, + 5(11112/51)9:1; T Ew,
An = —
2 0 h
2 a11(0, z2) + a1 (h1, z2) o (0,29), = €71,
h1 2
1 1
B (a12y12)51 + B) (a12y§2)m1; T Eew,
Ag = —
a12(0,x az(hy,x
01200,72) | gy s @200 T e
h1 hl
(@21 )z + 3 (@219, )ans @ €
o x1)T = (a T1)x29 x wa
Ay =12 21Yz, )% 5 21Y 2
(a21y1‘1 )52) T e V-1,
~ (as2yna)aa + 5 (@229, )ans @ €
= (& T = la T HR) X w, ~
Agy = — 4 2 \122Yz2)m2 T 5 (022Um, o a=T1Tra, 5=Tso,
(a22ym2)52; T e y-1,
@ AVETS TEw, . hl’ xr €1,
plr) = i 2 Y-1) = 1
Iy Taf + I Tog, = e€v-1, 0, xd&y1.

By H we denote the space of mesh functions defined on @w and equal
to 79, with the inner product and the norm (y,v) = > hihay(x)v(z),
wi Xwa
lyll = (y,9)/2. In the space H, the notation | - [|(4+) takes the form
ol = +Z hihov?, |vlly,y = 20 +hﬂLQUQ. Denote also

wy Xwa2 Wy Xwy

10012 = 3 oo @). [l = (3 halu(?) "

Lemma 5.1. The operator A is positive definite in the space H and
the estimate

||y||2 S Cl(Ayay)a 1 = (1 + 6162/8)/1/7 vy € Ha (54)

Wi (w)
is valid.

Proof. Using the formula of summation by parts, it is not difficult to verify
that

1 1 o
(Aijy,y) = 5 > hihaaijye,ys, + 3 > hihsaijysys,, i3 =1,2.
w™ wt
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Therefore taking into account the conditions (5.2), we obtain (Ay,y) >
v||Vy||?, Vy € H, which together with the difference analogue of Friedrichs
inequality

Iyl </ 2 19y (55)

results in (5.4). O
By Lemma 5.1, a solution of the problem (5.3) exists and is unique.
Remark 5.1. For ai2(x) = az1(z), the operator A is self-adjoint in the

space H.

39, The error of the solution of the difference scheme (5.3), z = y — u, is a
solution of the problem

Az =¢(x), x EwU~v_1, z € H, (5.6)
where 1 = ¢ — Au is the approximation error.
Let
—=0.5 — 1)y _ g—T ﬂ _
Nap =Y. (aaﬁ Uzs + (aap Ugy) ) at3—al|ap 915/ o, =12,

_ h ou
7725:?1 (GQﬁ Ugy — 11 S5 (azﬁ %)), B=1,2, n=T1Ts(aou) - T1 Tzaou,

n= 5 (TfrTg(aou) — TfrTgaou), N = Ta(ou) — Taou.

It is not difficult to verify that

0 0
Tng—( u):angufnagma, T € w,

0z Gob 0z
0 ou 2
182 (a3 25) = Ay~ i, v
1 142 81‘2 azp axﬁ 23U hl n2ﬁa:2 T €Y1
0 ou 2
T, -2 ( —) — — Aigu— = (1)) =
1-°2 or1 a1p 0z 184 h1 (ms)

—ET(a ﬂ) T E
h1 2\M1p Oz ’ V-1

Therefore the approximation error can be reduced to the form

’ 77211;151 + M2y, +M214, + N224, T 1, T e w,
B h_1 ((7711 + 7712)(+11) + Moz, + Mooz, + N0 Jrﬁ)a T € v-1.

Lemma 5.2. For every mesh function n(zx) given on the mesh w™,
and for every z € H the inequality |(nz,,2)y_.| < |Vz| (|7, lovy_ +

17z ||wuv,1) is valid.
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Proof. Taking into account that z(¢1,z2) = 0, we write (9z,,2)y_, =
— > h1Y ha(nz, %)z, . Using here the formula for differencing a product, we
w+ w2

1
find that (nz,,2)y_, = — > hihonz,z,2— >, hi1hang,2s,, s0 using the for-
w W] Xwa
mula of summation by parts we obtain  (9z,, %)y, =
— > hihonz 24, — Y. hihong,z,,. This implies that

w1 Xwy Wy Xwa

1/2

2 < (30 o) (X0 mmz2)

w1 XUJ; w1 XUJ;

S ) (5 e

wi Xwa wy Xwa

1/2

Taking into account that

ZhthZi?w S Z h1h22%2 S ||VZ||2, Zhlhgzil = ZhthZg-l S ||VZ||2,

w1 Xwy wfxw; Wy Xwa wfxwg

we obtain the inequality of the lemma. O

Now we multiply scalarly both parts of (5.6) by z and apply the estimate
(5.4). Next, for the summands with 7,8,, we use both the summation by
parts and the Cauchy inequality, for the summands with 7,457, we apply
Lemma 5.2 and the Cauchy inequality, and for the summands with 7, 7,
1, we apply Holder’s inequality and imbeddings W3 (w) C Ly(w), W3 (w) C
Ly(y-1), Vg > 1. As a result, we arrive at the following statement.

Lemma 5.3. For the solution z of the problem (5.6) the estimate

Hz||w5(w) < ¢J(n) is valid, where
2
Tm) = > asllovysa + Il 0+
a,f=1
2
HAl ey el o+ Y 1apmy lloyr P>1. (5.7)

a,f=1

49, To obtain an estimate for the convergence rate, it is sufficient to estimate
the error functionals appearing in (5.7).
For n and 7,4, the estimates

1902, < clbl™ Hullwg @), 1<m <3, (5-8)
Inapllovysa < clh™ Hlullwg @), 1<m <3, (5.9)

where 1 < p <2/(3—m) for 1 <m <2, and p =2 for m > 3, are valid.
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To obtain the estimate (5.8) for 2 < m < 3, we write

1= 5T6 e, T T, (a0(€) — a0(O))(w(6) ~ u(Q))) + Ty Taao(Ty Tou — w),

where the subscripts &, and (, indicate the variable of integration in the
operators T,.
This easily results in the inequality [n| < c|h|(||ul

lal +

ct@ lwi (e

||a||c(ﬁ>|u|w2( )), which proves (5.8) for 2 < m < 3.
2 e

In case 1 < m < 2, we choose t = 2p/(2—(3—m)p) and by the Bramble-
Hilbert lemma we find that |n|<c|h|™? (hlhg)_l/p||a0||L2/(37 )(6)|u|th71(e)7

where e = e(x) = {€ = (&1,&) : & — x| < hy, j=1,2}.
Summation along with Hélder’s inequality provides us with [|n[|, ., <
_ . —1 .
clh|™ 1|\a0|\L2/(377n)(m |u|wén(m, and since W3 C W/, we arrive at (5.8).
The inequality (5.9) is proved analogously.
Estimation of the functional 77. Let us show that

7l p s < ™| 1<m<3, (5.10)

Wi ()

where 1 < p <2/(3—m) for 1 <m <2, and p =2 for m > 2.
Let

en={6=(0.8): 0<& <h, |&2 — o <ha.
h
Qh:{l‘:(l’l,l‘g)i 0<z < ?1, 0<x2<€2}.

For 1 < m < 2, just as in the foregoing case for 1, we have || <
m —1/p . .
clh|™(hihs) ||a0||L2/(3_m)(6h)|u|th_1(6’)7 from which it follows that

— m_l/p ) . . .
||77||Lp(%1) < c|h| lao]| u|th_1(Qh)7 ie. (5.1) is valid for
the case 1 <m < 2. _

Using the imbedding W3*(Q) C C'(Q), m > 2, we obtain [j] <
clh| ||a0||L2(eh)||u||W5n(Q), m > 2. Consequently, ||ﬁ||L2(7_1) < chP? x
||a0||L2(Qh)||u||W5n(m, m > 2, which means that the estimate (5.10) is valid
for 2 <'m < 5/2. For 5/2 < m < 3 we apply Theorem 1.4: [laol|,,, , <

el aoll s,

La/(3—m)(Qn)

and arrive again at (5.10).

Estimation of the functional 7,. Let us show that
1761l < P Hullygn gy 1 <m <3, (5.11)

where 2/(3—m) <p <1/(2—m) for 1 <m < 3/2, and p = 2 for m > 3/2.
7o, being a linear functional with respect to w(z), is bounded for u €
W 1), 1 < m < 2 and vanishes on 7. Hence

Y

m—17—1
e| < clh™thy VP ||o|

Ll/(2—m)(5'y)|u|WZn71(e’Y)
where t = p/(1 — (2—m)p), 2/(3—m) <p <1/(2—m), ey = ey(x2) =
{&1 162 — 22| < ha}.
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Summation together with Holder’s inequality yields |7 ||
c[h|™ ol

Lp(’Y 1)

, and since W3*(Q) < Wy~ 1/2( I'y)

W HTy) for 1 < m < 2, and W'~ 3/2(1“1) C Lyji2—m)(T'1) for 3/2
m < 2, we obtain (5.11).

Represent now 7, in the form of the sum 7, = Too (Tou—u)+ (T2(ou) —
Ty0 Tou) = 1), + 1/} The linear with respect to u(x) functional n/, vanishes
on 71 and is bounded in W3*, m > 1. Consequently,

5| < elh*?|o] < c|n]?|o]|

N

Lijc2— m)(Fl)|u| 7n—1( )

A

L2(ew)|u|w23/2(e’y) L2(57)||U'||W22(Q)'

Further, for n// we have

) < v [ [T acar /\8“” i

€y €
so, using the Cauchy inequality, we obtain

Ingl < CIhl”QIIUII |

ol <

CIhl”QIIUII

el
The above estimates result in (5.11) for m = 2.
For 2 < m < 3, the estimate (5.11) follows from

| <clhl™ %20l gl <clh™ 2o

Wm 2 ’YJ|U||WC1>O(Q)

with regard for the imbeddings W3™(2) ¢ Wa"~1(T'_y), Wi*(Q) ¢ WL (Q),
W32 ) € Loo(T_y).
Estimation of the functional 7,55, . Let us prove that

el

gz lovy—a < ™ Hlullype,, 1<m<3. (5.12)
For 1 < m < 2 we write
Mogzy o =1 +1" +0", (5.13)
where
h1 hl —1-
77/ = ? A2pB73_o Uzg, 77” = ? (a2ﬁ)( lj_a)uﬂﬁefsfaa
h1 ou
o B (g L)
”7 2 a26 a T3—a
It is not difficult to notice that
ou
" m—1
N ouy_a < clh ‘az P L
R e -
||77”||qu1 < b lazgll g [ty o) -
Let e; = e;(z) = {€ = (&1,&) 0 1 <& < withi, [E&—i—x3-i] < hs_i},

i =1,2. Using the Bramble-Hilbert lemma, we obtain

/ r4t—1 —1/2
) < el )l lazsly
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and hence [|nllouy o < elAl™*Huly, o la26lyy )

where 2/q < t <
2q/(q
m+2/q—1,(¢—2)/g<r<(¢—2)/g+efor 1 <m <2 and (¢—2)/q <
r<(g—2)/q+e/(e+2)form=2,q9¢>2,e>0.
Since in the case under consideration W3" C W;, W;/l(:;ﬁ) - qu/(qu)v

W3, C qu/(q_Q), choosing r +t = m we have

T N I R
/ (5.15)
Ity < clhllal g a2y o

From (5.13)—(5.15) it follows that the estimate (5.12) is valid for 1 <
m < 2.
For 2 <'m < 3 we write Tagz, =€ + "+ ", where

h1 ou h1 13-4 ou
El = 7 A28T3_4 (U’l‘g - @)7 e” — 7 (G/Qﬂ)( 3 )(uxg _ %>Ezia,
hy ou ou
=t e ot (),
9 \"28 0z 12z \%26 0x3/ /T30
For ¢/, ¢", 0" we obtain the analogous inequalities (5.14) and (5.15), and
hence the proof of (5.13) is complete. The inequalities (5.8)—(5.12) together
with Lemma 5.3 prove the following

Theorem 5.1. The difference scheme (5.3) converges, and the a priori
estimate
1<m<3, (5.16)

=l sy < ™ g

is valid.



CHAPTER 2

Difference Schemes for Elliptic Systems and
Equations of Higher Order

This chapter deals with the difference schemes for approximate solution
of: the Dirichlet problem for elliptic systems of general type (Section 6);
mixed type boundary value problem for a system of the statical theory of
elasticity (Section 7); the third boundary value problem of elasticity (Sec-
tions 8, 9); the first boundary value problem for the fourth order elliptic
equation (Section 10). For the construction of difference schemes we use
the Steklov averaging operators. The correctness of difference schemes in
discrete Sobolev spaces is established by means of the energy method. Con-
sistent estimates of the convergence rate are obtained.

A new approach of obtaining an a priori error estimate of the difference
scheme is suggested which does not require for the solution of the fourth
order equation to be continued outside the domain of integration.

6. The Dirichlet Problem for Systems

History of the matter. The results of the present section have been
published in [7] and [12] (1987).

In [83], for the Lamé system with constant coefficients a difference
scheme is constructed and a consistent estimate of the convergence rate
is established for s =0, m = 1,2 and s = 1, m = 2; in [78] (1987) and [77]
(1989), difference schemes are constructed for the system of equilibrium of
an inhomogeneous anisotropic elastic rigidly fixed solid body. When the
elastic coefficients belong to the spaces W1 and W5, consistent estimates
with s =1, m=2and s =1, 2 < m < 3 are respectively found.

1°. We consider a difference scheme with approximates the following prob-
lem:

0 Ju
71_;16_% (Kij 6—30]) +Kou=f, 2€Q, u(z)=0, zel. (6.1)
Here u = (u1(2),u2(2),...,un(2)), f = (fi(2), f2(2),..., fa(2)), K;; and
Ky are matrices of the n-th order with the elements Kf‘]ﬂ(m), Kgﬁ (z) (o=
1,2,...,n; 6=1,2,...,n).

36
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The conditions of strong ellipticity

2
1
EZ (Kij + Kt ti>v Y ti-t;, Voeq, (6.2)
j=1 i=1
are assumed to be fulfilled; here t; = (¢;1, o, . .., tin), © = 1,2, are arbitrary

real vectors, and v > 0 is a constant number. In what follows, the symbol
t1 -t denotes the inner product of n-dimensional vectors, i.e. Xn: t1ito;.
Let || - ||« be any norm of the function. Then by the n(;;il lv]l« of
the vector-function v we mean the value |[v||, = ( il Hva||i)1/27 and by
=

the norm ||K|. of the variable matrix K (x) we mean the value K. =

(S IK?|2).

a,B=1
On the mesh W we consider mesh vector functions, for example, y =
(y1,Y25---,Yn), where y;, i = 1,2,...,n are mesh functions defined on @.

Let there exist a unique solution w € W3*(€2), 2 < m < 3 of the problem
(6.1), and the conditions

Kij(x) e W3 1), 4,j=1,2, 0< Ko(z) € W' %(Q),
flx) e W2(Q), 2<m <3,
be fulfilled. We approximate the problem (6.1) by the difference scheme
Ay=¢p, o =515%Ff, zcw, y(x)=0, z €, (6.4)

(6.3)

2 —
where Ay = f% > ((Kijyfj)mi + (Kijymj )5) + Ky, K = 515 K(x).
i,j=1
Let H be the space of mesh vector-functions defined on @ and equal to
zero on 7y, with the inner product and the norm (y,v) = > hihoy(z)-v(x),

rew
lyll = (v, 9)"/*, y, v € H.
Define also the norms ||y||(1+)— Z hih2y-y, ||y||(2+)— > hihey-y,
u)l Xwa2 w1 XLA}2
191201 ) = 19912 = s, 214 + s, 12
The operator A is positive definite in the space H ([37], Ch. IV, § 3)
since there exists the unique solution of the problem (6.4).

29, Now we investigate the convergence rate of the difference scheme (6.4).
For the error z = y — u we obtain the problem

Az =1, v €w, z€ H. (6.5)
The approximation error ¢ = ¢p — Au can be reduced to the form
=M1+ M2)ey + (M1 + Mo2)zs + 1, (6.6)

where

M1 = (KllUfl + (Klluxl)(ml — hl, IQ)) — SQ(KHDl’u) (Il — h12,$2),

|~
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1 h
Mo =35 (Ki2uz, + (Ki2ug, ) (21 — hy, @2)) — S2(K12Dou) <5E1 - 717932),
1 h
M2 =5 (Kauz, + (Kaug, ) (21,22 — ha)) — S <K21D1U) (9317932 - ?2),
1

Moy = (K22u:52 (KgoUg, )(z1, 22 — ha)) — S1(K22Dou) (CE1, T — %),
n= Sng(Kou) — 515 Kou
Using the equality (6.6), from the equation (6.5) we obtain
(42,2) < 111 + Ml @ oIV21 + I + 701l oy IV2] + [l 1211 (6.7)
By virtue of (6.2) we arrive at the inequality
v||Vz|]? < (Az, 2). (6.8)

Using the estimate (6.8) and the difference analogue of Friedrichs in-
equality ([70], p. 309)

14
l2ll < 3 V2], fo = max(by; £2), (6.9)
from (6.7) we find that
1
12lye < 5 ( Z 551y + 2 ) (6.10)
3,j=1

3. We rewrite the expression 1,, as follows:
1
N (x) =— 3 (K11 + K (@1 — h1;$2))€§11)(u)+
h .

+ Dlu(xl — 71,$2>€§21)(K11) + ﬁﬁ) (KHDl’U,), (6.11)
where Klll), 6121), 07 ) have the same meaning as in Section 2. We will need
the estimates of the type

1Kijvllry < 1Kl oy vl Gy, 255 = 1,2, (6.12)
1Kol < 1Kl vl 65 =1,2. (6.13)

These estimates hold for any continuous vector-function v(z).
Indeed,

1Ko lfis) = Z 3 hlhg(zmﬁ )

a=1 ,+

wq Xwa
< Z Z hlhg(Zmax|K”B||Ug|)
a= 1wf><w2
<D0 5 X (g 57D Yl =l g ol
a=1,+ B=1

wq Xwa
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and hence the estimate (6.12) is valid for ¢ = 1. The estimates (6.12)
and (6.13) are proved similarly. Applying the estimates (6.12) and (6.13)
(it =7=1), from (6.11) we find that

1
il < K o 1655 () oy +
2 3
+He EKi)lap | Drullo + 67 BEnDiw)|| oy, (6.14)

Using the imbedding W3* C C™ for m > n+1, on the basis of the Bramble—
Hilbert lemma we obtain

h
16 (g |_cl | | Ualyg s TEW, 2<m<3, a=1,2,...,n, (6.15)
e ()] <
c|h|m—1 |KOP) cw 2<m<3 f=12 (6.16)
- hth 1 W277171(6)’ r Ws m=o, Q, =L 4...,n, .
| (K11 D1u)a)| <
C|h|m71
= . < =1,2,... .
S Vil |(K11D1U)Q‘Wgn_ (o TEW, 2<m<3, a=12,....n, (6.17)
where e = e(z) = {£ = (€1,6) : @1 — 1 < & <, |22 —&| < ho/2}.

By means of the estimates (6.15)—(6.17), from (6.14) we find the esti-
mate

1y < el (1K gy (2l o)+

+| K11 . Il g ) + [ K11 D1l - 1(9)) 2<m<3. (6.18)
Analogously, for 174, we obtain
1722124y < ell™ (1 K22l g [y ge 0+

+|K22| w1 (@) ||u||w2m(n) + |K22D2u| win— 1(9))a 2<m <3 (619)
We now represent 77,, in the form
h
Mg = €§12)(K12D2u) + —2 6(2)(K12)5152D§’U,+

05K 0% (u) + e“‘)( )+ 059 4 05K 5 (21 — h, 22)08) (w),

where
(4) hihy 2
612 (u) 4 [5152 (D2K12D2u) 5152D2K12 SngDQ'u] 5
h h
fgg) = — 172 Sng(DlKlgDQ'u)

and E% , 422 , 6132), E(Q are defined in Section 2. In the same manner as in
obtaining the estimate (6.18), we find that

M2l < C|h|m71(|K12D2U|W2m71(Q + || D1 K12 Diul +

L2(ﬂ)
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+ ||K12||W;n_1(m |u|w2,”(m), 2<m<3. (6.20)
Analogously,
1721124 < C|h|m_1(|K21D1u|W;n—1(m T ||D2K21D%u||L4_2 @ T
1Kl s g [l ): 2 < <3, (6:21)

Next, in the same way as is done for n in Section 2, we obtain the
estimate

-1
Il < el (Juhyg o, + | KoDrul,,

7n72(9)

+ |K0D2U|W
2

771.72(9)

+||K0D1D2U||L 5 (Q)+||K0D%u'”L 5

4—m 4—m

o+ IKoDull, , o) (6:22)

m

2<m<3.

Note that if for the elements K of a variable matrix K (z) and for
the components vg of a vector-function v(x) the inequalities || K *vg],, <
K| 0 0oy ave valid, where |||

0;, 1 =1,2,3, are some norms, then

Koo, < cl|K|lo, |l (6.23)
Indeed,
n n n 2
IKol2, = 3 (Kv)al2, = 3 | Do K| <
a=1 a=1 p=1 a1
<3 (T IE ) <3 (S IElolivplly) <
a=1 pg=1 a=1 p=1
n n n
<Y N IKNZ D Noslz, = CIK)Z, ]2,
a=1p=1 B=1
which was to be demonstrated.
Since
B B
HK;; Djuﬁuwgnfl(g) < CHK;; ||W2m,71(ﬂ)||u6||w27"(ﬂ)) 2<m <3,

DK D3 jusll, (o < CIET,
4

émf 1 )

||uﬁ||w2m(9)ﬂ 2 < m § 37

—m

1557 D:Djus,_,
4—m

Sou < (pr)t, Vb, >0, t>1,
P P

using (6.18), (6.23) and the a priori estimate (6.10), and also taking into
account the fact that |- | and || - || are equivalent, we can see that

) < AESN a Nusllgpye 2<m <3,

winm2()

wi(w)

wi(w)
the following theorem is valid.
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Theorem 6.1. Let u € WJ*(QQ), 2 < m < 3, be the solution of the
problem (6.1), and the conditions (6.2), (6.3) be fulfilled. Then the conver-
gence of the difference scheme (6.4) in the norm Wy (w) is characterized by
the estimate

ly = wllyy o, < ch™ e, 2<m <3, (6.24)

with a constant ¢ > 0 independent of h and u(z).

Consider now the first boundary value problem for the system of plane
deformation of an inhomogeneous elastic body:

0 oul Ou? 0 oul Ou?
9 (o) 229y 9 (0,0
B (( nEN) 5o T 0x2)+0x2 (“aa:2+“ax1) U 0
X
o ¢, du'  du\ 8 /. ou ou? " (6.25)
S W N WA O B
o2, (“axﬁ“a@)*am( gz, T2t )am) U
utlp = u?lp = 0.

Under the assumptions

.f = (flaf2) € LQ(Q)a oy A€ W21+E(Q)5

(6.26)
Ve>0, Ma) >0, p(x)> po = const > 0,

there exists a unique generalized solution u = (u!, u?) of the problem (6.25),
belonging to the space W (Q) ([58]).
We approximate the problem (6.25) by the difference scheme
(@ + Mz, + 30,5, + (@07 + A Jyz, +370g,),, +
F (g, it yE )m + (0 s, T TR ) = 200,
(Yo + 1 Y2, )z + (W Yz, + 1T Y2, )an

L, Ont AR+ o
+(A\ys, + (20 + )\_)y%)w2 = —20% T €w,
o =TTaf*, y'ly =y, =0,
where
pt(x) = SFSyp, AE(x) = SFSFA for A\, pe Wy, (Q),
() :u(:cli %,:cgi%), (6.28)
A (z) = )\(xl + %,xz + %) for A, p € Wy ().

Let us now establish an a priori estimate of the solution of the problem
(6.27). After some transformations we have

2W = (¢',y") + (V% 07), (6.29)

where

1, g, Lot -
Wy = §(|y11| 7M+)+w1><w2 +§ (|yfl| ' )WTX“)?—’—
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1 2912 + 1 2 12 -
+ 5 (19215 17 ) vy 5 (217 ) o +
1 1 _
7 (e F ) 7 (e T P 7)

1 1 B
o (TP A sy T (03 TP AT ) e s (6:30)

is the mesh analogue of elastic deformation energy (cf. [70], p. 329).

Omitting in (6.30) the summands involving A*, replacing u* by puo,
and using the inequality (|y, +y2 %, 1)+w1><+w + (2, +42, 1%, 1)w1+><w2+ >
2, %) + 192,12, ~ I, ) — 92,2, we can conclude that W;, >
(1o/2)IVyll?, ¥y = (y*,y?). Taking into account the Friedrichs inequality
(6.9) the latter results in

Wi allylis o o= 86303+ 16)" (6:31)
On the basis of the definition of the norm | - ||-1, we have 2W) <
ll¢ll-1llyllwz @), and hence from (6.29) and (6.31) we find that
[Yllwz ) < c2llel-1, @ =(',9%), c2=1/(2c1). (6.32)
It follows from the estimate (6.32) that the problem (6.27) is uniquely solv-
able.

Theorem 6.2. The difference scheme (6.27), (6.28) converges in the
norm W3 (w), and the estimate

ly = ully o < AL (6.33)
holds.

The proof of the above theorem does not, in fact, differ from that of
Theorems 3.1 and 3.2.

Assume now that the coefficients A\, u € Wg”fl(Q), 2 <m < 3 are
smoother, and the solution of the problem (6.25) belongs to the space
Wi (Q), 2 < m < 3. We calculate the coefficients in (6.27) by the for-
mulas

M=)\ pF=p 0% =85f a=1,2. (6.34)

Analogously to Theorem 2.1 we prove the following

Theorem 6.3. The difference scheme (6.27), (6.34) converges in the
mesh norm Wi (w), and the estimate

m—1
ly = ull gy < AR 1F ]y 2 <m <3 (6.35)
holds.

7. The Mixed Boundary Value Problem for Systems

History of the matter. In this section, for a system of statical theory
of elasticity we consider the mixed boundary value problem. The results of
Section 7 have been published in [24]. In the case of constant coefficients,
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analogous results were obtained in [10]; the difference scheme converging
with the rate O(|h|?) for u € C*(Q) is studied in [70] (1976). In the case of
variable coefficients, in [16] the difference schemes are verified and the con-
sistent estimate of the convergence rate for s = 1, m € (2, 3] is established.

Let in a rectangle 2 we are required to find a solution of the following
boundary value problem:

2

B B
) o (Kij(:c) %) ——f, e,

i,7=1 (71)
ou ou
Ki{—+Kjg — = — r = F'o=T\I_
11 921 + K2 B g, vel, u(x)=0, vely \[g,
A+2u 0 0 A 0
where K17 = ( 0 H N)’ Ky = (M 0), Koy = ()\ 5)7 Ky =

0
(b o) w= ) £ = (g = (0 a?)
Assume that the Lamé coefficients satisfy the conditions A(z) > 0,
() > po = const > 0, A\, p € Wa" " H(Q) for 2 < m < 3, A\, p € Wi, ()

form =2\ pe W;’;(—nijf)(fz) forl<m<2,i,j=12 ¢>0 and the

problem (7.1) with the right-hand side f € W3(Q), g € Wy */*(I'_y) is
uniquely solvable in W3*(Q2), 1 < m < 3. We approximate the problem
(7.1) by the difference scheme

2
Ay:ZAijych, re€wUv_y, y=0, = €. (7.2)
ij=1
where
1 1
3 (K1Y, )z, + B (K11Yz, )z 5 T Ew,

Any =— 2 Ki1(0,22) + Kui(h1, 72)

h1 2

yxl(oax2)7 T e V-1,
1

1
M 3 (K12Yy, )z, + 5 (K12Yz, ) s T € w,
12Y =~ K12(0, z2) Kia(h1,2)

A Yz, (h1,22), x €y,
1

Iy Yuo (0,22) +
1 1
2 2
(K21Y2, )7, T € -1,
1 1
2 2
(K22Y,,)zs, x € V-1,

(K219, )z, + 5 (K21Yz, )asy, T € w,

A21y = -

(Ka2y,, )z, + 5 (K22¥z,)ey, T €w,

Axpy = —
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T f, T Ew,
x) = 2
() TjT2f+h—1T2g, T €1,
P 936’77 9
5(y1)={ I '
07 xg,}/—l-

Let H be the space of mesh functions defined in Section 5.
In the space H = H x H of two-dimensional mesh vector-functions we
define the inner product and the norm (y,v) = (y%,v!) + (v%,0?), ||y =

(y. 9"/
Lemma 7.1. The operator A is self-adjoint and positive definite in H
for which the estimate HyHiVl( - c(Ay,y), c = (1+01£2/8)(2 —V/2) /o is
1w
valid.

Proof. Using the formulas of summation by parts, we find that for any
y,v € H:

(Aaay,v) =05 hiho(A+2m)ys ve +0.5>  hiha(A+ 2p)ys vo +
w™ wt

+O5Zh1h2uyﬁ v 4053 hihouyl o) . B=3-0, a=1,2, (1.3)

wt

(Aupy,v) =0.5 Z hlhg)\ygﬁvga +0.5 Z hlhg)\yfﬁvga—i—
w w—

+0.5  hahopyS v2 +05> hhguyS vl . B=3—-a, a=1,2. (74)
It follows from (7.3), (7.4) that Ane = AL, Aap = Aza, 8=3—-«
a =1,2. Consequently, A = A" in H.
Substituting v =y in (7.3), (7.4), we obtain

(Ay,y) =1L + 2 + I, (7.5)
where I; = (1, (y2,)? +(yi2)2)w++ (s (Y 2+ (W2,)%) - I = 0.5(X, (v3,
y%2)2)w+ + 05(>\ ( + y12)2)w* 2 0’ I3 = 05(‘LL, (y%2 + y%1)2)wJr

050N (ks +92)2) - > 0po(((uh, +92)21) o + (ks +92)%1) ).
Obviously,

12 250l Iy + 2, ), B2 20, (76)
IS > MO(||y%2H%2+) + ||y%1||21+ - ||y%1 ||21+ - ||y%2|‘%2+)) +pols,  (7.7)
Zhg 0 IQ +y (0 To — hg))yx2(0 .132)

+
+

since

(y%yy%l )w (yazl ) y{l}z -+ Z h2y 0 T2 — h2)y12 (O .172)

wg
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(y;y y:%l)w* = (yél ) y%Q)OJ+ + Z h2y1(05 IQ)y%Q (07 .172)-

wg

Observing the proof of Theorem 6 in [70] (p. 342), we can conclude that
for any y € H the estimate

~ 1/2 1/2
I3 <2(elyz, [ +(1/2) vz lE) " ((/)lyz, ITorytellvz, [fsy) ™ (7:8)
is valid.
Taking into account (7.8) from (7.7) it follows that
1
132(1—€)uo(||y%2I\?2+)+||y%1||fl+))—(1+g)uo(||y%1I\?1+)+||y%2||fz+))- (7.9)
Since I3 > 0, we have I3 > tI5 for any ¢ € [0, 1], and from (7.5), (7.6), (7.9)
we find that
1
(Ay.y) > o (2= t(1+ 2) ) Ik 1B + 192,172+
+ pot(1 — 5)(”?4%”%24—) + [ly3, ||%1+))-
Choosing t = 2¢/(2¢ — e + 1), ¢ = v/2 — 1, we obtain the estimate
(Ay,y) > 2_2—\/§u0||vy||2 which together with the Friedrichs inequality
lyll < /22| Vy| completes the proof of the lemma. O

On the basis of Lemma 7.1 we can conclude that the difference scheme
(7.2) is uniquely solvable.

Let z = y — u be the error of the method. Substituting y = z + v in
(7.2), we obtain for z the problem

Az=1v, tcewUy_q1, z€ H, (7.10)

where 1 = ¢ — Aw is the approximation error. By analogy with Section 5,
it can be represented as follows:

" 77211931 T N2y, T M21g, T M224,> T € w,
" (1, + N12) T + (7 +Tag)zs), T E V-1,

where the components of the vectors 1,5 = (néﬁ, 7735) and 1y = (ﬁéﬁ, ﬁgﬁ)
are defined by the equalities ni; = £11(\ + 2u, ub), 03 = €11 (p, u?), 7y, =
G, u?), iy = lia(N u), niy = lra(p,ut), oy = Li(N ut), m3y = la1 (p, 1),
m31 = ba(\u'), Ty = ba(p,u'), n3y = loa(p,ut), m3y = Loa(N+2p,u?),
M3y =Lla(A+2p,u?), Lo g(a,v) = 0.5(avz, + (avy,) "1)) — SS T3 o (aDgv),
lg(a,v) = & (av,, — TiF S5 (aDgv)).

We multiply both parts of (7.5) scalarly by z and use the estimate (7.4).
Next, for the summands involving 1,4, We use the summation by parts and
the Cauchy inequality and for those involving 7,45, we apply Lemma 5.2
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and the Cauchy inequality. Thus we see that the following a priori estimate

2
lzllwiw) <c Z (I asllwtrsa + 1T2pz,_llwuy-.a) (7.11)
a,f=1

is valid.

To obtain an estimate of the convergence rate, it is sufficient to estimate
the norms of error functionals appearing in (7.6). It should only be noted
that the estimates of £, 5(a,v), £5(a,v) differ in no way from those of 1,3,
7y from Section 5.

As a result, we arrive to the following statement.

Theorem 7.1. The difference scheme (7.2) converges in the mesh norm
Wi (w), and the estimate

lly — “”W;w < clh|™ ! ||ul 1<m<3, (7.12)

w$(Q)?

is valid with a constant ¢ > 0 independent of h and w.

8. The Third Boundary Value Problem of the Theory of
Elasticity (The Case of Constant Coefficients)

History of the matter. The aim of the present section is to inves-
tigate difference schemes approximating the third boundary value problem
of statical theory of elasticity (the problem on rigid contact) in a rectangle.
The results of this section have been published in [17].

Difference schemes for the above-mentioned problem were considered in
[5] and [60]. In [5] the convergence in the mesh norm W3 is proved with the
rate O(|h|?) to the exact solution from the class C*(Q). In [60], a consistent
estimate with s = 0 and m = 1,2 is obtained for the difference scheme
which is constructed upon introduction of different meshes for components
of an unknown vector-function. Note that in this case the original problem
should be continued outside of the domain ).

1°. Statement of the problem. In the rectangle Q we consider the
boundary value problem

2

Z(A Fur 0 (aua+%)) F(@)=0, z€9Q, B=1,2, (8.1)

= 0x,0zg # O0xo \Ox3 Oxq
3—«
u(z) = 0, M) G weT, wy =06y a=12 (8.2)
0xq

Here \, u = const, g1 > 0, A > —p are the Lamé coefficients, u = (u!, u?)
is an unknown displacement vector, and f = (f!, f?) is the given vector.

As is mentioned in [60], if f*(z) = f{*(x)+0f5' (z)/0xq, [ (x) € La(2),
a,k = 1,2, then in Wy () there exists a unique solution of the problem
(8.1),(8.2); while if f§(x) =0, a = 1,2, then this solution belongs to the
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space W3(2). We approximate the problem (8.1),(8.2) by the difference
scheme

A+ 20)A 119" + N+ p)Ar2y? + phooy' + o' =0, 2 €W\ 7,
pA1y? + (A4 p)Aoy' + A+ 20) A0y +©* =0, 2 €W\ 72, (83)
Yy (z) =0, T €74, ¢%(x)=T1Taf%x), a=1,2,

where
2 v x €
5 Vrar T € V—as s o’ V—as
«
= — =< v T € w;
Aaav Vg s T EW\ Ya, Asgv 2192 € w;
2 U_ x € .
“ha VzZos T € V4o Tals_ o’ T+a

20, Solvability of the scheme. By Hj, we denote the set of two-
dimensional mesh vector-functions whose components are defined on x € v,
«a = 1,2, and vanish on @, respectively. Let H}, be the set of two-dimensional
mesh vector-functions whose components are defined on the meshes @\ 74,
a = 1,2, respectively.

We write the difference scheme (8.3) in the operator form

Ay=¢, y€ Hy, p€ Hy, (8.4)

A+ 2u)A11 + pha (A + u)Aq2
h A= — ( — 1 ,2\T
where < A+ 1)Aq12 A1+ A+ 20)Aa0 )’ y=Wwv)

o= (o).

Define in Hj, the inner product and the norms:

(y:0) = (", 0w + (0@, Nyl = @)
Iyll2, ., = IVyll* = 1IVy' 1 + 11V,
2
IV 1P = > maha(ys) + > haha(ys,)?,
wi Xw w1 Xwd
1 2 1 2

IVe2(12 = >0 mha(u2,)° + Y haha(y3,)”,
+ +

w1 Xwy wi Xwaz
2
W1, = 3 (1™ 2y + a2y ) + 20,2, 124)-
a=1

Let us show the basic properties of the operator A.

Lemma 8.1. The operator A : Hy, — Hj is self-adjoint, positive
definite and the estimates

8
(Ay,y) > aillyll?, o = 5=, (8.5)
03+ 13

(Ay,y) > u|Vy|?, (8.6)
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1Ayl > pllyllwzw) (8.7)
are valid.

Proof. The self-conjugacy follows from the identity
(Ay,v) =
= A (i, +0R) s (k02 F02) T
F(h, + ol )+ Bk Rk ) )t

tu( Y mbayhek + D0 mhayded+

W X@o D1 Xwy
1,1 2,2
Y Mhayhub, 4 > hahayded,),
leUJ; WTXUJQ

which is verified by the summation by parts. From the above identity it
follows that the estimate (8.6) is valid.
Since y*(x) vanishes for 24 = 0, {4, therefore ([69], p. 55) > ha(y2 )? >
+

% Zwa ha(y®)?, a=1,2.
Consequently, > hiha(ys )+ > hihe(y2))* > Z%fi@ llyl|?, which

Wa

WTXDQ w1 XUJ;—
together with (8.6) proves the estimate (8.5).
y A1+ Ao 0
Let A= — .
¢ ( 0 Air + Ao
Then
(Ay, Ay) = u| Ayl + (A + ) (1 + L), (8.8)

2
where Iﬁ = Z (AﬁﬁyaaAaaya + A12y37a)(a)a ﬂ = 132
1

a=
Let us show that I, > 0, « = 1,2. Indeed, using the formulas of
summation by parts, we obtain

4(A 11y, Aoy?) ) = 4(A11y°, Aoyt (o) =
= Z h1h2 (y%lmlyélfQ + y%1£1y3152)+

TEWL Xw;

2
+ Z hihg (y%lxlya:lxg + yélwly%mcz)v

TEW1 X Twsa

4(Ag2y?, M12y") 2) = 4(Ag2y", Ar2y?) 1) =
= > (Ve Yim, T Ve Yha)t

a:war X w2

+ Z h1h2 (y%QIQyﬂl?1$2 + y%szy;152)7

rE€twy Xwa
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(A11y®, A22y™) (o) = 92 2, 12+, a=1,2.
Consequently, we can reduce 417 to the form

411 = Z h1h2 (y%ucl + y%1f2)2 + Z h1h2 (y%ll'l + y%1$2)2+

TEW1 Xw; rCEwi X Twso

+ Z hth (yéla:l + yilfg)Q + Z h1h2 (yélzl + y9231932)2+

TEW Xwy TEW1 X Twa
2 2
+2 Z hihso ((92@2 (0,22))" + (Y22, (01, 22)) ) )
CCQEOJ;

whence I; > 0. Analogously, I > 0, and from (8.8) we obtain
(Ay, Ay) > pl|Ay|*. (8.9)

o 2
Further, we have || Ay||* = a§1 ((AuyaJrAmya)Qa 1)(a) = ||y||$/v22(w)' There-
fore it follows from (8.9) that the estimate (8.7) is valid. O
Due to the fact that the operator A is positive definite, it has the

bounded inverse A~!, hence the solution of the equation (8.4) (or of the
difference scheme (8.3)) exists and is unique.

30, A priori error estimates. For the error vector z = y — u we have
the problem

Az =1, z€ Hy, ¥ =¢ — Au. (8.10)
If we denote 17, = Sy S5 u’ — 3 (uf + 0P 4 f(12) 4 g1 — 1))
rewr, nl, =Ty qu’ —ul, z €@\ v a,3=1,2, and

2
h_y:(n—;,lz)a T € Vo,
o
Ble: Yzi205 T E€Ew, a=1,2,
2

*a Yz5_0r L € V+a

then the approximation error ¢ can be represented as

Ain o 0 (0l Asa 0 (13,
=(A+2
¥ =042 ( 0 A22) (7752 M 0 Aun) \nh -
0 B2\ (2
A .
MG <B12 0 > <77%2
Lemma 8.2. For the solution of the difference problem (8.10) the a

priori estimates
2

2
2l < e2 > (D mBall) + Il ), (8.11)
a=1 pg=1

IVz| < 02(||77hf1|\w1+mz +1050m, lz, xt + 1722, [y it +
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+ ||77%151 ||w1+><¢,_J2 + ||n%29:1 le Xw2 + + ||7712:02||w+x@2) (812)
2 2
120z, < 2 30 (D2 1AsmBsllie + 1 Brzntill s ) (8.13)
a=1 p=1
are valid, where co = 2+ |A|/p,.

Proof. Sing the obtained from (8.7) inequalities [|Av|| > p||Aj;0% ), i,7 =
1,2, we obtain

HA_l (Aw ) (T’aa)H = sup |(Aaanaa: v + (Apsnge: v*) )|
Apg

0 Mg ]| 0 | Av]| -
< sup In&all ) 1 Aaav @y + 1134l 2) | A s g0 ||(2)
||v||¢o | Av||
< ; (Indally + I35l @), B=3—a, a=1,2. (8.14)

Analogously, taking into account the equalities (Bjangy,v” )3 =
(7%, ’U£152 )w_+, 8 =3—a, a=1,2, and the obtained from (8.7) inequalities
[Av]] = pllv* o+, @ = 1,2, we get

o, B s
Bia M2 llw]|5£0 [ Av| B
< 7o llwt v 2, lot + I12llwt 102, 2, ot -

vl | Av|| -

1
< u (IInallw+ + Imialle+ ) (8.15)

Finally, by virtue of (8.14),(8.15), from (8.10) it follows the inequality (8.11).
To obtain the inequality (8.12), we have to multiply scalarly both parts
of (8.10) by z and make use of the estimate (8.6) and the formulas

Mty 2y ==Y habaniiz, 22, (A, 2°) @ =— Y hihatitiz, 22,

wi x@y wi xwa

(Aamig, 2" ) (1) =— Z hihoMyoz, 22, (Aoam3a, 2%) () =— Z hasg, 72,
w1 Xwy o xwi

(Biania, 2 )y ==Y _ Mhantay, 22, (Buania, 22)@)=— Y hahanls,, 22,
w1 Xwy Wi Xws

The estimate (8.13) follows directly from (8.7). O

4%, Accuracy of the scheme. To estimate NG M2 a, = 1,2, and
their difference ratios, we use the well-known method [71] involving the
Bramble—Hilbert lemma. Here we indicate only some noteworthy points.
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In order to estimate the expression ni; = Tou'—u! at the points # € v
for w € Wi (Q2), 1 < m < 1.5, we write

h 2 h 2
I |? < 2(T2u1 —utE SlS§D2u1> + 2(52 515§D2u1> . (8.16)

Next, by Q) we denote the domain which is obtained from the rectangle )
by rounding its angles by the arcs of circumferences of radius r = hy/2
circumscribed from the centers O1(r,7),O2(¢1 — r,r), O3(l1 — r,ly — 7),
Oy(r,la—1). Let Q be the inner strip of width e = hy/4 along the boundary
of the domain €. Since the boundary of Q belongs to the class C*, for the
second summand in the right-hand side of (8.15) we can use Theorem 1.4,
while for the first one we use the Bramble-Hilbert lemma. For u € W™ (),
1.5 < m < 2, in the boundary nodes x € 42 we can write ni; = Tou! —ul4
% TyDsu'. Since Doul € W2m71'5(f‘)7 the averaging 71 Dyu' makes sense
and is equal to zero for every node = € y1o. In this case we can again apply
the Bramble-Hilbert lemma. 13, for z € v4 is estimated analogously.

To estimate 05,5 at the points z € ’Yi(g ) foru € W3 (Q2),2 <m < 3,

we can write 75,z = (T3 U —u® + ha— L ) o= 1,2. To

estimate Aqanf, at the points x € vi3_q), we represent it in the form

A, = (Tg_au —ut & Mz Dy e )7 L ue Wi (Q), 2 <m < 4.
Cala

Moreover, it should be noted that Anan3,® = (ThTe — To)D2u?~%, = €
WwUY—o UYia, B1an® = ThTe D1 Dou® — (S;FDau“);Fa, T E Viq-

It can be easily verified that Anan2, (o, 3 = 1,2) vanishes on polyno-
mials of the third degree, while Bion(; for & € ~v4, only on polynomials
of the second degree. Therefore, for example, at the points x € 1o for
u € W (Q), 3 < m < 3.5, we write

h 2 h 2
|Bianis|® < 2<31277f2 F KQ 515§FD1D§U2) + 2(32 S1S§D1D§u2)

and perform estimation analogously to 7{;.
As a result, we arrive at the following

Theorem 8.1. Let a solution u(x) of the problem (8.1),(8.2) belong
to the space W3 (2), m > 1. Then the convergence rate of the difference
scheme (8.3) in the mesh norm W3 is determined by the estimate

Hy—u||w25(w)§c|h|m_s||u|| $=0,1,2, max(1l;s)<m<s+2, (8.17)

Wi ()

where the constant ¢ > 0 is independent of h and u(x).

When u(z) € W3 (2, we compare the mesh solution y(z) with some
averaging u(x) = (u',u?) of the exact solution u(z) in the vicinity of the
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mesh nodes, for example,

0’ S 70&7
ﬂa(x) = Taua, xr e Y+ (3—a) o= ]_’2
T Thu®, x€w.

In this case there takes place the following

Theorem 8.2. Let the solution of the problem (8.1), (8.2) belong to the
space W4 (). Then the solution of the difference scheme (8.3) converges in
the mesh norm Lo(w) to the averaging w(x) of the exact solution with the
rate O(|h|), and hence the estimate ||y — | < c|h|||ul| where the

La(w) wi()’

constant h is independent of u(x), is fulfilled.

9. The Third Boundary Value Problem of the Theory of
Elasticity (the Case of Variable Coeflicients)

History of the matter. The goal of this section is to investigate
difference schemes which approximate the third boundary value problem of
the statical theory of elasticity (the problem on rigid contact) with variable
coefficients, and also to obtain consistent estimates of the convergence rate
in the mesh norm W (w). The results of Section 9 have been published in
[22], [28] and [27].

1Y. Statement of the problem. In the rectangle Q@ = Q UT we consider
the boundary value problem (here and in the sequel, 8 =3 — «)

LS u®+ Lgﬁuﬁ + Ljgu® + Lgauﬁ +f4=0, a=1,2, (9.1)

ouP (z)
“(z) =0, =2
wim) =0, 2L
where A(z), u(z) are the Lamé coefficients, u = (u',u?) is an unknown
vector of displacements, f = (f!, f2) is the given vector,
0 ou 0 ou
e (s ). e (o)
aat 0zq A+ 2u) 0zq Bt Ozxg . Ozg
0 ou 0 ou
o= 2 (w2 pgu= 0 (1 20
palt Oz H 0x4 apt 024 0z

Let the Lamé coefficients A\, u € W;“*I(Q), where ¢ = 2 for 2 < m < 3,
g>2/(m—1)for 1 <m <2, pu(x) > po = const > 0, A(z) > —pu(x).

We can show that if p(z) > po = const > 0, A(x) > —u(z), A\, p €
Loo(Q), fo(x) = f(2) + 32, f2(2) € La(Q), o,k = 1,2, then there
exists in W3 () a unique solution of the problem (9.1),(9.2); note that if
&) =0, 0 = 1,2, \, p € W3, (), Ve > 0, then the solution belongs
to the space W2(f2). Under the imbedding u € W¥ it is meant that every
component of the vector belongs to that space.

Denote vt (x) = S} S v, v™(z) = v (z1 — h1, 29 — ha).

=0, €D, 2o =0,0,, a=1,2, (9.2)
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Let H, = H,(w) be the set of mesh functions defined on @ and van-
ishing on 74, and H, = H, (W \ 7, ) be the set of mesh functions defined on

@\ Va, @ = 1,2. We introduce the spaces H = Hy x Ho, and H = Hy x Hy
of vector mesh functions and define the inner product and norms just in the
same way as in Section 8.

The problem (9.1),(9.2) is approximated by the difference scheme

Ay+o(x) =0, ye H, p € H, (9:3)
where
(Ay)* = A%, y” + AL ° + Agey® + A%, 2 €@\ 7a,
@a(x) - T1T2fa(x)7 a=12
0.5((AT + 2/[")11%)% +0.5((A + 2/1_)1)5&)%, T Ew,
Agov = (AW + 20 ), ) T E_g,
(A +207)vz,), T € V48,
0.5(u " vay )z, +0.5(0 Vz5y)ay, © €W,

1 _
AgB’U: E(ﬂ++Igﬂ )Uazga x 6775,
1 _
7%(” +Iﬁ ,LLJF)Ufga CE'E')/Jrﬁ,
, 0.5(A vz ,)z, +0.5(A vz,)a,, * € w,
Aggv = A,z T E€v_p,
()‘_Ufﬁ)xw T € Y44,
0.5 02, Yoy + 05002, )ags 7 €
1 _
AS o= EIE(M Uz,); T E€Y-p,
1 _
_%Iﬁ (N+Uxa)7 T € V4p-

20, The solvability of the scheme. As is seen, the domain of definition

and that of values of the operator A (A : H — H) do not coincide. We
define an operator A and the vector mesh function F' as follows:

(Ay)a:{—myw, €D\ T, (F)a:{w, T€0\ Y

)

0, TEYa, 0, TEYa,
We write the difference scheme in the form of the operator equation
[e]
Ay=F, y, Fc H. (9.4)

The operator A maps H onto H and is linear. Here we indicate the
basic properties of the operator A.
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Lemma 9.1. The operator A : H — H is self-adjoint, positive definite
and the estimates

810
2
(Ay,y) > ailly[l”, a = PR (9.5)
(Ay,y) > pol|Vyl? (9.6)
are valid.
Proof. By the definition of the inner product,
2
(Ay,v) Z > hahg(ALay™ + ALy” + AGey™ + AG )0 (9.7)

a= lew\'}’cx
Using the summation by parts, we can see that the equalities
(ASay™, v ) (@) = —0.5((\™ + 207 )yg, vg. ) v —
—0.5((\" +2u)ys 0D ) s
(Agﬁyﬁv Ua)(a) = _0'5(>‘_y§5 ) ’U%a )w+ - 0-5()‘+y£[,7 Uga)w*7
(AG5y" v ) (@) = —0.5(n" Y5, 03wt — 0.5(uF 5,08 -
(MGt v™) () = —05(n"y2 v2 )ur — 0.5(uT Yl v2))o-
are valid. Consequently, after some transformations, from (9.7) we have
2(Ay,v) =
= (A7 )z, +y5,), vz, +03,) o+ (AT 05 (s, +02,) g, +02,)
(1 (Y2, T uz,)s 02, Fog,) o+ (W2, ya,)s 02, F,) o
(T r —v5) vn — ) (T (e, — U)o, — L) (99)

The equality (9.8) implies that the operator A is self-adjoint.
Assuming v = y in (9.8), omitting the summands involving (AT + p%)
and replacing u® by po, we conclude that

2
m (Ay,y) > (L, (12, +y2,)%) s +
(L2, +ua,)?) -+ (L (s, —v2)) e + (L (s, —42,)%) -

Taking into account the equalities (y%l,y%2)w+ = (yalcwy?cl)w (yil7y9262)w7
= (yéz,y%)w, we obtain

Since y*(z) vanishes for z, = 0, {4, therefore ([69], p. 120)

a 8 N
D ha(Wd,)’ = 55 Y ha(y™)? a=12
w; & wa
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Consequently,
8
Z hth(y%1)2 + Z hth(y%g)Q Z EQ +€2 ||y||27
wf’xwz w1 XUJ;— 1 2
which together with (9.6) proves the estimate (9.5). O

Since the operator A is positive definite, it has its inverse A~!, and
hence the solution of the equation (9.4) (and of the difference scheme (9.3))
exists and is unique.

3Y. A priori estimate of error. Let ng = 1 for 23 = 0, ng = —1 for
xg =1L, ng =0, for 0 < zg < £3, B =1,2. First of all, we note that the
following relations are valid:

2
NTLLG0u" = ALt® = (Wa)e, + 5200, Ta €wa, o5 €T3, (9.10)
B

where

-5 _ ou® 2715
o= 2+ N —SSTs(2u+ ) =— )+ =—Lnf
aa Sasﬁ( ©+ )ula Sa ﬁ(( w+ )aa?a) + hﬁ n,

2n _
TTLLE ju” = A P — (0 ) + h—ﬁﬁxfa, To € wa, T3 €W, (9.11)

where
1—ng _ _ 14+ng _ _
Vap = —5 Sa SpAMGul, + —5 578y g~
ouP 2ng
~SoT, ()\ —) 215 8,
a+p 8:cg + hﬁ X
T L5 P = Aj u — Ball . %o € wa, T3 € T, (9.12)
T L3au® = Ajgu® — Bgthgs, To € wa, T € Wg, (9.13)
where

R e _ ouP
V=058 LS5 uly ul +0.557 S5 jufl — S5 T 1 %), T €Way TyEWS,

= o _ ou
wg‘B:SaSﬁ ,uu%B =S5 Ta (u @» To € Wa, Tg E w;,

2
h—I;“u, ZTo =0,
a
Byv= Vg s To EWo, a=12

——v, To =4V,

ha
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Depending on the smoothness of the exact solution u € Wi (), we define
concretely the functions 1°, x® appearing in (9.10) and (9.11) as follows:

s 9 ou®
LG, 2 =
F=2q12 S8 0xg ((A+2M) axa>’ m € (23]

’[7 =
0, m € (1,2],
R: _ 9 ouPN  h h 2P
B8 112
LG, — (NZ— 2
=112 0, ( axﬁ> 8055755 50 M€ (2,3];
0, m € (1,2].

To study the question on the convergence and accuracy of the scheme
(9.3), we consider the error of the method z = y — u, where y is a solution
of the problem (9.3), and w = u(z) is a solution of the problem (9.1), (9.2).

Substituting y = w + z in (9.3) and taking into account the equalities
(9.10)—(9.13), for the error z we obtain the problem

Az+Pp =0, z€ H, ¥ <€ H, (9.14)

« (07 « 2
where 9= (1, 12), ¥ = (V5o +0s)ea + Bs (W5, +155) — F2 (1P +X7)s..-
The lemma below is of importance for obtaining a needed estimate for
the error z.

Lemma 9.2. For any mesh function ¢° defined on the mesh wl xwg,
and for any z* € H, the inequalities

| hage, = < IZ VL D hagl, =
Y-8

Y+8

S gV, (9-15)

a=1,2,

are valid, where

T3 (@) =192a o H10F it s+ 7 ||g|| txwEr 059025, 059=0z,-

Proof. Let pg = (x5 — €g) /{3, p;g =x3/ls. It is not difficult to verify that
the equalities

2(2', 92 )ys = R1 — Ra, 2(2",02))ysn = Q1 — Q2 (9.16)
are valid, in which the expressions
Ry = (p3 20y, 92wy sy T (P2 2250 92, )
Ry = (23,, (p2 9% )wt + (22,5 (P2 9%)22) ot s
Q= (03 25, 92, ) + (P3 22,0 9o )
Q2 = (24, (F 0)ma)urt + (51, (3 0%)en)ot

are estimated as follows:

R1] < 2028 s 192, s s 1] < 2028, st 192
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Bol <2( S miald, ) 2 ot 2 (zh1n2|z ) 192 v

wi x@2 wl XWa
1/2 1/2
Qal<2( 3 hahalz ) 2 o s+ - ( 2 utalz | 2) gl
wfxwg wl XWwso
Therefore for o = 1, from (9.16) follows (9.15). For o = 2, the validity
of (9.15) is proved analogously. O

Remark 9.1. The estimates (9.15) are the difference analogues of the
inequalities for functions of a continuous argument

| / " o <1l + [+ 5 ). oam

where z%(z) =0 for 4 =0, o = Lo, . = 1,2.

dxg
3= =0 eg

Lemma 9.3. For the solution of the difference scheme (9.14) the esti-

mate
2

IJ’OHV'ZH S Z (HwaaH Xwﬁ + ||’l/)ﬁﬁH Xwﬁ + ||wﬁa|‘wa><w++

a=1

+||¢gﬁ”wa><w+ + Ja(nﬁ) + Ja (Xﬁ)) (918)
is valid, where Jo(9) = 2/|9eollwaxws + 2l925 lo+ + 7= 2 ”g”wa oy

Proof. We multiply both parts of (9.14) scalarly by z and use the estimate
(9.6). As a result, we obtain

po IV2? < (4, 2)]. (9.19)
Taking into account the structure of 1, we find that

(¢,2) = [Zha(nﬁ + X2z =Y haln® +xﬁ)maz“}+

a=l 7 g Tip
2
=3 ( X hahs(atvls)e. ="+ Y hahaBa(¥h+15s)2" ). (9.20)
a=1 wqXwg wa Xwg
Bearing in mind that (Bgv,2%) @) = — > hlhg’UZl , using in the
xaewa
QJBG(UB

right-hand side of (9.20) the formulas of summation by parts, the Cauchy
inequality and Lemma 9.2, we obtain
2

1@, 2 < (D (10850 + 985ty + ¥+ 8l s +

a=1

+a(n®) + Ja<xﬂ>)) V=l
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which together with (9.19) proves the unknown estimate (9.18). O

4%, Accuracy of the scheme. To find the convergence rate of the differ-
ence scheme (9.3) by means of Lemma 9.3, it is sufficient in the right-hand
side of (9.18) to estimate norms of the expressions 1, n%, x®. In this
connection, we have to group together the summands.

For example, represent 1% as the sum 72(u) = n'((A + 2p)Diu') + 7",
where 7' (v) = % (S2Dav — S1S2Dav), " = %EIEQDQ(()\ + 2p) Dyut).

1/ (v) is, in fact, a linear functional which is bounded in W5*~ ', m >
2, and vanishes for v € ;. Therefore on the basis of the Bramble-
Hilbert lemma we obtain for the above functional the estimate |n'(v)| <

m—1 m—1
A [oly1(eyy 2 <m < 3, dee [/ (A + 2p)Diut)] < S |0+

(h1h2)1/2 = (hih)1/?

2u)D1u1|Wm71( . 2 < m < 3. For the summand n” we easily get |n”| <
2 e

clh| (||D1u1||c(ﬁ) |)‘+2“|w21(e) HIA+2ul g |u|wz2(e)). The above inequalities

result in the estimate

1720 < bl (1Dxt gy A 20l 1N+ 20 ] )+

+clh[™ A+ 2p0) Daut| 2<m<3.

27n—1(9) ?

Taking here into account the imbeddings W3* ¢ C', Wi*™' < C and
Lemma 1.1, for ? we finally obtain the estimate [[n?| < c|h|™ Y|\ +
2“”W;nfl(mHUHW?(Q)’ 2 <m < 3. We now represent 95, for 2 < m < 3 at

the boundary points « € y+g as follows:

T

— — h
o =5, 53a {ua — Sgu® — nﬁ2 A Dgua} +
+ [S, Spa Sy SgDau® — S, Sg(aDau®)]+

— 2
+ {S;Sg(aDaua) — S;Tg<aDaua) + %nﬁ}, a=\+2pu,
B

1-— _ _ ho
1/)56 = 2”3 S;SﬁA [I;ugﬁ - S;SﬁDﬁUﬁ + 70( SﬁDnguB}%»

1+
2
+ [S(;?g)\S(;gnguﬁ — S(;?g()\Dguﬁ)]+

+

_ _ h _
2 5. SaA|ul, - SaFsDgu’ - = SsD1 Dy’ |+

+ [S;gg()\DguB) - S;TQ(ADBUB) + nzﬂggl)g()\l)guﬁ)]

The estimation of individual summands is performed by the well-known
method. As a result, we arrive at the following

Theorem 9.1. Let the solution u(x) of the problem (9.1),(9.2) belong
to the space W3*(2), m > 1. Then the convergence rate of the difference

scheme (9.4) in the mesh norm W3 is defined by the estimate
m € (1,3, (9.21)

s—1
Iy = ullyy o, < bl il
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where the constant ¢ does not depend on h and u(z).

Remark 9.2. The estimate (9.21) could have been obtained without ap-
plying Lemma 9.2, but only for m € (1,2.5). This could have been realized
by the method used in [71] (Ch. IV, § 2(2)) by representing the approxima-
tion error on 7 as a sum of two summands, one of which is estimated by
the Bramble-Hilbert lemma and the other one by the inequality providing
us with the estimate of a function’s Ls-norm in a strip along the boundary
through its norm W3" in the domain.

Remark 9.3. The difference scheme (2.3) is advisable to be employed in
the case of rapidly varying coefficients of the differential problem. In other
cases, since, by the assumption, the Lamé coefficients are continuous, in
the difference scheme (9.4) the averaged coefficients A*, u* can be replaced
respectively by A, p without affecting the validity of all the above results.

10. The First Boundary Value Problem for Elliptic Equation
of Fourth Order

History of the matter. Here we consider the question of obtaining a
consistent estimate of the convergence rate of the difference scheme approx-
imating the first boundary value problem for elliptic equation of the fourth
order with variable coefficients. In [59], for the equation with variable coef-
ficients the convergence of the difference scheme with the rate O(|h|™2?)
in the mesh norm W7 is proved under the condition that the exact solution
belongs to the space W3 (€2), m = 3,4. In the case of biharmonic equation,
the consistent estimate of the convergence rate for s = 2, m € (2.5,3.5)
has been obtained in [71]. In [54], the author investigated the difference
scheme for the fourth order equation with variable coefficients and proved
the convergence in W2 with the rate

O(hmin(m—2;1.5)| 1nh|1_| sgn(7n—3.5)\)’ m € (25’ 4}

Note that in the above-mentioned as well as in a number of works (see,
e.g., [40], [41]), devoted to difference schemes for problems with fourth order
equations, the solution of the difference problem y(x) is defined not only
at the mesh points @ belonging to the closed domain Q, but also at the
nodes lying beyond the contour. Therefore when investigating the error
z = y —u, there arises the need to extend the solution of the initial problem
u(r) outside the domain 2, but preserving the smoothness.

In the present section we choose another approach: the error z(z) is
assumed to be the restriction on & of some mesh function, and without
extension of the unknown solution u(x) we obtained a consistent estimate
for the convergence rate. The results of this section have been published in
[21]. Analogous results for the biharmonic equation are obtained in [15].
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1°. Statement of the problem. We consider the problem
Lu= DiM, +2D1DyMs + DiMy = f(x), = €9, (10.1)
u(x) =0, 2 €T, Dyu(z)=0, z€T1,, a=1,2. (10.2)

Here, M, = aaDiu + ang_au, a =1,2, M3 = azD1Dsu. The following
sufficient conditions of ellipticity 0 < ¢1 < aq < co, @ =1,2,3, 0 < ¢p <
1— \/% x € ), are assumed to be fulfilled. Moreover, let f € W3"~ 4(9),
ao € W23(Q), € =10,1,2,3,p=2for 3<m <4, p>-25 for 2.5<m <3.
Everywhere in this section ¢ = 2p/(p —2). We assume that the problem
(10.1), (10.2) is uniquely solvable in the class W3*(Q2), m € (2.5, 4].
For approximation of the problem (10.1), (10.2), we use the scheme [54]

Lpy =m (y)fll‘l + 2m3(y)£81£82 + mQ(y)f%h = (p(x)v T € w, (103>
y(ZC) = 07 T e, y; (:E) = 07 T E V4o, = 1327 (104)

where m1(y) = @1Yz01 + WOYgoss M2(Y) = Q0Yz 2, + G2Yzpzs, M3(Y) =
as(®)yz,z,, & = (x1 — 0.5h1,x2 — 0.5h2), w(x) = T1Tof. Omitting from

(10.3), (10.4) the values y(z) lying beyond the contour (defined on v7), we
can represent the scheme in the form

Lhy = 7%‘1 (y)flzcl + 2m3(y)1‘11‘2 + T%Q(y)f%w = (p(l‘), T € w, (105)
y(x) =0, z €7,

where
2 =0
. B Yzos Lo =V,
Ma(Y) =a0Yzs_ 250 T0alay, Aoy= yfa;a; To €Wy, a=1,2.

*E YZ o s vaKa;

Let H be the space of mesh functions defined on w U~ ~ and satisfying
the conditions (10.4), H be the space of mesh functions given on @ and
equal to zero on 7, with the inner product (y,v) = (y,v), and the norm
lyll = (y,)*/?. The norms [[Any|, [lyllwz(.) were defined in Section 1 (the
case of homogeneous Dirichlet conditions). Denote also |y|3 5 = [|yz,x, ||%2) +
[Yzawallfry, [Yl32@) = 19155 + 2llymm I3

Using the formulas of summation by parts it is not difficult to establish
that the operator Ly, in H (or the operator Lh in H) is self-conjugate and

positive definite. Consequently, the problem (10.3),(10.4) (or (10.5)) is
uniquely solvable. Note that the following lemma is valid.

Lemma 10.1. Let v € H, and y be any mesh function defined on
wU~~ and vanishing on . Then

cocrloll, o < (Lo, v), |(Lay, v)| < Vs ealylalvl

wi@) '
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Proof. The identity
(Lny,v) = Z hih2(a1yz, 2, + Q0Yzaws ) VT, 20+
w@)
+ Z hth (aoyflxl + a2y§21‘2)/u51$1 +2 Z h1h2a3y§1§21}5152 (106)
w(2) wt

is valid. Note that by the conditions of ellipticity we have |ag| < \/a1az < ca.
Therefore

1
g |(Lhyvv)| < ”Uilm||(2)(||y51951”(2) + ||y5212||(2))+
+Hvzses |1y 1Yz [l (1) + Wmaasll1)) + 2lvEzs o+ vz o

and since [|yz, 2, ||(1) =lyzya: | <Yz 24 ||(2)7 |Yzsas ||(2) =|Yzpas | < | Y2029 ||(1)7

||yilfz||i+ = (y§13515y§23«‘2) < ||y§1$1|| ||y§2$2|| < ||y§1x1||(2)||y523«'2”(1)7
2”315152”‘4.)Jr < ||y§1$1||(2) + ||y§2l‘2||(1)’ therefore
1
o [(Lry, )| < 19z L) + [1Yma22 | (1)) %
X (”’Ufll‘l ||(2) + ||vf2l‘2 H(l) + ||vflf2 Hw*) = 37 v, (107)
where 7 = (y' 4% 4", 9%, J5 ", 597, 7 = (v 0!, 0% 0% V2012 V201?),
y* = ”yfawa”@—a)a v = ”Ufama”(?)—a)a a=1,2, 0?2 = ||v§152||w+'

Estimating the inner product of the vectors

1/2

i< (22 @) 200+ 002 202)

from (10.7) we obtain the second inequality of our lemma.
Noticing now that a;t?+ast3+2aotits > aits (17\/'%)4—@15% (17\/‘%) >
c1co(t2+t2) and substituting y = v in (10.6), we obtain the first inequality

of the lemma. O

20. A priori error estimate. Consider the problem for the error z = y—u,
T €W,

Lpz=1%, x€w, z€ H. (10.8)

Here ¢ = T1T5f — Lpu is the approximation error which with regard for
the properties of the operators Ty, (o = 1,2), Ty D2u = Ayu, Ty To D1 Daou =
S1 S5 Ug,z,, can be reduced to the form

1/) = Mzyz; + 2700, + 2n3$1I2+
2 1 1
+ h_f [6(h1,21)a19(0, x2) — 6(¢1 — ha, x1)arg(f1, z2)]|+

2
+ F [(5(]12,.%2)@23(331, 0) - (5(£2 — ha, 552)0/25(.7}1762)}, (109)
2
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where 1 = 11 + 10, M2 = N22 + N20,

T3 a(aaD%u) — anAyu, T € w,
= 2 10.10
o T3*a(aaDiu) —aaAqu = h_ aaga T € V+as ( )
«
Nao = T3_o(aoD2_ u) — aotiz, 25 ., TE€WUVt, a=1,2 (10.11)
ns = S S5 (a3D1Dau) — az(4)uz,z,, © € w™, (10.12)

and an arbitrary function 3(:3) appearing in (10.9) will be assumed to be
defined in the form

2
o) = —?“TaDzu, x€w for ue W3'(Q2), 3<m <4,

0 for uw e Wir(Q), 2.5 <m < 3.

To obtain the needed a priori estimate of the function z(x), we consider
the auxiliary problems

%5138151181 + %521‘2521‘2 = 07 MRS w, %(I) = 07 T E v,

o o o (10.13)
ve () =g(z), =€ Y+a, v%g_a(x) =0, T €v4+3-a), a=1,2,
and

o 1 2
th:n171 +7’27CE +27]3:v:n 7th+’l), T € w,
o w2~ (v +0) (10.14)

13(30):0, T €7, 5; () =0, € Yiaq.

Note at once that since

Lo — Lyo = h3 §(a1, 0 — h)arg(tr, v) — h3 §(a1, h1)arg(0, z2),
2 9 2
Lpv— Lpv = h3 §(w2, b2 — h2)a2g($1,52) hs (w2, h2)a29(9€17 0),
Lhﬁ = Lh’U,

we have Lh(g + b + 12J) = ¢. Consequently, the solution z(z), © € w, of
the problem (10.8) is the restriction of the function (v + v+ 12)) defined on
wuUnT, ie.,
2(x) = 9(z) + 0(x) + v(z) for z €. (10.15)
Let A\; and pg be, respectively, eigenvalues and eigenfunctions of the
problem ([80], [1])

(:u‘k(xQ))52$2f2I2 = )‘kuk(ZQ)a T2 € wa,
1 (0) = p(€2) =0, pe (0) = pe (£2) =0,

Where Ak are positive and satisfy the relation Ag>\; >)\1 = (h— sin g;”) >

z4 , and the functions uj form orthonormal basis in the sense of the inner
2

product (u,v)y,, = >, houv.

T2 Ewsr
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Consider the following problem:

Uiz o171, (21) + Apvr(z1) =0, 21 € wy,

ve(0) = vp(61) = 0, v,5 (0) = gi(0), we (f1) = gu(tr): (10.16)

Lemma 10.2. For the solution of the problem (10.16) the estimate

V0, (0) 020 (1) < 43N (g2(0) + g2(11)), 3 = 10 + 32 is valid.

Proof. The energetic identity for the problem (10.16) has the form

Z hlvzflml + A Z hwi = gk(el)vkilxl (51) - gk(o)vkilxl (0)

w1 w1

Consequently,
> vz, + M Y b} <
w1 w1

< (g2(0) + g2(01)) " (07,0, (0) + vz, (01))

For every mesh function defined on the mesh @, the estimate

12 (10.17)

1 .
n%z?x|y|2 < el Zhly%wl + A (9\3/§+ 6) ZhlyQ, Ve >0,
wi wi

is valid ([1], formula (3.7). Using the given estimate for y = viz,, and
taking into account the obtained from (10.16) equality > h1viz » 5.0, =

w1
A2 >~ hivi, we find that
ITL&X |vk251d71 |2 S
9713 16
< C4<Z hlviﬁxl + Ak Z hlvi), Ccy = 66?)% + T . (10.18)
w1 w1

Choosing now € = £1_3)‘1:3/4 and noticing that 362)&/4 > 6, we have ¢4 <

03A11€/4. Finally, with regard for the estimate (10.17), from (10.18) it follows

1/2 1/2
that maxg, |[vkz, 2, |2 < 63A,1§/4(g,2§(0)+g,2€(€1)) / (Vi5,0,(0) + V25,4, (€1)) 2
This completes the proof of the lemma.

Theorem 10.1. For the solution of the problem (10.13), the a priori
estimates |0|am < C5(H§m”wuw+a + ||3§BH(§)), B=3—a, a =1,2, where
2 = (104 3D (1 + V2 +8)/v/2, £ = max({y/lz;€2/¢1), are valid.

. 1 1 1 1 1
PTOOf. Since (’U51£C1f1£817/u) = ||/U511‘1 ||%2) + Zh2vf1$1(0ax2)g(0ax2) -
w2

1 1 1 1 2
Zh205111(£1a1’2)g(€1am2)a (05293252952’”) - ||U||?1), from (1013) (a - 1)

w2
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it follows that

1 1 1 1 1
035 = hovs,a, (b1, 22)g (6, w2) = D havz,z, (0,22)g(0,72).  (10.19)

w2 w2

We expand 111(30) and 5(30) with respect to the eigenfunctions {py, }:

No—1 Ny—1
o(@) = Y welen)pr(ea), g@) =Y gele)pn(e2),  (10.20)
k=1 k=1

Then from (10.19) we obtain

Ny—1

s =D [os(0)vhme, (02) — gk(0)vkz,2, (0] <
k=1

< (30 W R0 + o)

- 1/2
< (D0 A 0k, (0) + v, (1)) (10.21)
k=1

Substituting the expansions (10.20) in (10.13) (o = 1) and taking into ac-
count orthonormality {ux}, we can see that vg(z1) is a solution of the prob-
lem (10.16). Therefore by virtue of Lemma 10.2, from (10.21) we find that

1 Ny—1

e < 2es o A/ (92(0) + g3(61)). But ([70], p. 290) g3(0) + g3 (1) <
k=1

€k Zh1gkx1 + (l + %) thgz, Ve > 0, and hence

€k
1 No—1 No—1
2 1/4
[vf2.5 < 2¢3 ; Ek)\ Zhlgkl + 2¢3 Z ( 31) Zhlg
Choosing here g5, = (% + e% + )‘119/2))‘1:1/2a we obtain
1 1
No—1

1
s <2e5 Y qb()\k)(Zhlg,Q@ VS ﬁlg,i),
k=1 w1+ w1

where ¢(A;) = (ﬁ + 1/62 + )\1/2)>\;1/4' Since ¢(A;) is decreasing and
2
i > 64/03, therefore ¢(A\y) < (f—f + (%) +8)273/2. Consequently,

N21 N21

|’U|2w Scs(th Z Gz, +Z7i1 Z )\1/2 2)
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1
and finally we have |v|2w < c5(||gzl||ww+l + ||g52||?2+)). Thus we have
proved the first estimate of Theorem 10.1. The second estimate is obtained
analogously. |

Theorem 10.2. For the solution of the problem (10.14), the estimate
o 1 2 1
Plwz@) < co(lmll@ + Im2ll@) + 2nsllo+ + VEcalv + 0l2m), 6= o
is valid.

Proof. Indeed, it follows from (10.14) that

th v Z Z hohs— anavm 2o + 2Zh1h2n3v1112 — (Lh(zl) + 12)),13),

a=1w()
after which using Lemma 10.1 we obtain the required statement. O

Theorem 10.3. For the solution of the problem (10.8), the a priori
estimate

ARzl < es[lmll) + 2l 1y + 2lmsllo+] + (VB2 + V2coer) x

1 1 2 2
x5 (1197, llourer + 19z, 2 + 192, la+) + 197, lwuyso] (10.22)

18 valid.

Proof. From the equality (10.15) it follows ||Apz|| < [|An0| + ||Ah11)|| +
| ARD] < [1ARD]+V2([0]2,5+]D]2.5). Using the obvious inequality [|A] <
|’?)|W2(U) and Theorems 10.1 and 10.2, we obtain the estimate (10.22). O

3%. Estimation of the convergence rate. Let e(z) = {& = (£,&) -
|Za — & € ha, a =1,2}NQ, 2 € w. By u(x) we denote the function
obtained from u(&) by the change of the variables £, = zo +toha, @ = 1,2,
which maps the domain e(x) into €.

To obtain estimates of the convergence rate of the difference scheme
(10.7), it is sufficient to estimate the summands in the right-hand side of
(10.22). We will consider two separate cases.

(a) u e Wi (), 3 <m < 4. We reduce 1o, a = 1,2, to the form

=1l a)( a) +aa 0= a)(DQ ) — aof(a)(Dg_(XU), T EW.), a=1,2
13 = 3 (asD1Dau) — ag()0® (D1 Dou), z € wt,
where
6(6—0‘)(@) _ v — Ty, T Ew,

he
v—"TovF ? TaDava T € Vta,

(W) =Tz qv—v, a=1,2, (B(v)=57S7v—uv(E).

It can be easily verified that the linear functionals £(®)(v), & = 1,2,...,5,
are bounded for v € W3" ?(Q) and vanish on ;. Taking this fact into
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account and using the generalized Bramble-Hilbert lemma, after simple
calculations we obtain

10l a—a) < b2 (1Mal p s ) + 00l IPEUL s +
ol 1Dl ey )s =12,
||773||w+ < C|h|m 2(|a3D1D2u| m=2q) + ||a3||c(ﬁ)|D1D2U|W;"—2<m).

As to the functionals gf 50 it is sufficient to notice that they are bounded
for u € W3" and vanish on w3. Therefore the norms of these functionals
are estimated from above by means of |h|m*2||u||wgn(m. Moreover, taking

into account the imbedding W5"~2? C C and the inequality \av|wm_2 <
2

@ -

clall .., vl , from (10.22) we obtain the estimate
w2

win=2()

[Anz]| < c|h|™ 2y 3<m<4.  (10.23)

i (28X flaall s

(b) u € W (Q), 2.5 < m < 3. In this case, by definition, g(z) = 0, and
the estimate (10.22) takes the form
1AR2N < co(llmllqry + lIm2ll2) + 2lmslle+). (10.24)
and moreover, instead of (10.10) we have
Naa = (Tg,a(aaDiu) - Tg,aaaTaDiu) + TaDiu(Tg,aaa —ay) =
= oo T Mo (10.25)

For every (fixed) function a; € C(Q), the linear with respect to u(x)
functional nj; = 11, (u) is bounded since

anhmww(/w ommmy/me>ng

< b7 [larll,. g 12l

c@) wir(e) "

Therefore using again the generalized Bramble—Hilbert lemma, we have

mal < elh 72 [laxll g [l < e p|"™ 2 (haha) " P lar | . g luf when-

c@) Wi (e)?
ce

1M1 ll2) < elhl™ 2 all o g [l o - (10.26)
nYy = n{1(a1) is a linear (with respect to ay(z), for fixed u(x)) bounded
functional,

s < elhuha) ™l ey < claha) ™ /ul

wir(e) — c(Q)

a
Wg(e) || 1 || W;n—2<é) )
which vanishes on 7. Consequently,

1] < e(hahz) Y% ul < c(hiha) ™2 ul

W2 (e )l |W;77n72(€) W2(e)|a1|w;"*2(e)’

and
Illay < elB™2lat] s [l (10.27)
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Taking into account (10.26), (10.27) and analogous estimates for 75,
and 735, as well as the imbeddings W,;*~2 c C, Wy" € W2, from (10.25)
we get

a3y < A1l s o Nl - (10.28)

Further, representing 7,0 in the form 7,0 = (T3_a(agD3_,u) —
Ts_naoTs_oD3_ u)+T3_ oD% u(Ts5_nap—ag), similarly to (10.25) we have
ool (3-a) < el 2ol s el (10.20)

From (10.12) it follows |n3| < 2|lasll.,, (hihe)~" [|D1Dau|dé <
e

c(hlhg)_l/qHZigHW [ul Since 73 is a linear bounded functional

7@

with respect to as € W;,”*Q and vanishes on 7,
5] < e(hha) ™V as]
P

< C|h|m_2(h1h2)_1/2

w2(e)”

(a)|u|W3(6> <

|a3|w;,“"2(e)|u|W§(e)’

whence |93+ < c|h|m_2|a3|wm_2 The latter together with the
P

imbedding W™ C VVq2 results in

&) |u|W§<Q>'

sl < clBl™as], g g (10.30)

Relying now on the estimate (10.24) and the inequalities (10.28), (10.29)
and (10.30), we can write

ARz < c|h|™ 2|yl 2.5<m <3 (10.31)

Wi (2) 0213%(3 Ha&”w;"‘%n)’
Combining the results (10.23), (10.31) and taking into account the fact

that the norms ||Apz| and ||z|yz(,) are equivalent in the space H (see
[L1]), we obtain the following

Theorem 10.4. Let the coefficients of the problem (10.1),(10.2) sat-
isfy the conditions (10.3),(10.4), and the solution u(x) € W3 (Q). Then
the convergence rate of the difference scheme (10.7) is characterized by the
estimate

ly—ullwg) <clh[™ ™2 max [laa|, [l 25<m=4, (10.32)

0<a<3 e W@

where the constant ¢ > 0 does not depend on |h| and u(z).



CHAPTER 3

Schemes of Higher Accuracy

To avoid cumbersome calculations, it is desirable for the difference
scheme to be sufficiently good on rough meshes, i.e. to have higher or-
der accuracy. The problem of increasing the accuracy of a method without
increasing standard pattern of difference schemes has always been topical.

In this chapter we suggest difference schemes of higher accuracy for:
elliptic equations with the mixed derivatives and lowest derivatives (Sec-
tions 11, 12); the problem of bending of an orthotropic plate simply sup-
ported over the contour (Section 15). In the case we fail in obtaining such
schemes, it is reasonable to obtain an approximate solution of higher accu-
racy by using the method due to Richardson in which solution of a difference
scheme is given on a sequence of meshes (Section 14).

In the problem of bending of an orthotropic plate we suggest a new
method of decomposition.

11. Elliptic Equation with a Mixed Derivative

History of the matter. The results of Section 11 have been pub-
lished in [68]. Analogous estimates for difference schemes of more compli-
cated structure than in the present paragraph were established in [11]. The
schemes converging with the rate O(h*) to the solution u(x) = C%(Q) of
the original problem, were suggested and investigated in [70].

In [51] consistent estimates were obtained for the difference schemes
(under the condition that the differential equation is satisfied outside of the
boundaries, and the solution u(x) preserves the required smoothness).

A difference scheme with the estimate (0.1) for s = 2, m € (4,6], is
considered in [81].

1°. Statement of the problem. Here we suggest and investigate differ-
ence schemes of higher accuracy which approximate the problem
0u 49 0%u N 0%u
— a4 —_—
81% 8931 812 89:%
with the solutions u(z) € W3 (£2), m > 1. By Q is denoted a rectangle with
the boundary I, the constant a satisfies the condition |a| < 1 for which the
operator (11.1) is elliptic.

Suppose that the lengths £ and /5 of the rectangle sides are commen-
surable.

—flx), €Q, u(z)=0, zel, (11.1)

68
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Let w be a quadratic mesh, i.e. h1 = hy = h.

We introduce the space H of the mesh functions defined on w and equal
to zero on 7, with the inner product (y,v) = (y,v), and with the norm
lyll = (y, 9)"/>.

On the mesh @w we approximate the problem (11.1) by the difference
scheme

Ay=—p(z), r€w, ylx)=0, z€7, (11.2)

2
ola) = TiTo] + % (ST e (11.3)

where Ay = Yz, + a(yflibQ + ym@) + Yzyxo + F (1 + 3a + 2a2)y511152:62'

The existence of a unique solution of the problem (11.2) for any right-
hand side ¢(x) is proved in [70].
20, A priori estimates of error. The error z = y — u is a solution of the
problem

Az=—¢(z), zew, zx)=0, z€n. (11.4)
Here ¢ = Au + ¢ is the approximation error which can be transformed to
P 2

Y= 77:(,311)11 + anig?i):w + 77:(522)332) where 77(37(1) =Uu-—- ?au + % UFpaa, @ = 1,2,
77(3) =u"h) 4 y(-12) 4 2 3 Uz z — 25,5y (u + % Au)

Theorem 11.1. For a solution z of the problem (11.4) the estimates

2
v, I/:§(17|a|), s=0,1,2, (11.5)

2l <

(2) (3) I

1
hold, where Jo=|ln® ||+||n<2 IFHallln® s, Jo=l1nS2 IS I al IS,

1T
Tt = 105t sy + 1182 e + [0S

Proof. The validity of Theorem 12.1 for the case s = 0 follows from the
inequality [|z] < [|A~ 177261;“” + ||A- 177@12” + la] || A~ 1771112” whose sum-
mands in the right-hand side are estimated analogously to [83]. To prove
the theorem for s = 1,2 we use the formulas of summation by parts, the es-
timates v||z||3 < (—Az,2) and v||z||2 < || — Az established in [70] (pp. 320,
321), and the Cauchy-Buniakowski’s inequality. O

w1 XUJ2

3. Accuracy of the scheme. It is not difficult to verify that n(®),
a =1,2,3, being linear functionals of the function u(z), vanish for u(x) € 73
and are bounded in WJ™(2), m > 1. The first and the second difference
derivatives of n(®) are likewise bounded in W3*(Q), m > 1, and vanish,
respectively, for u(z) € w4 and u(zx) € 5.

Using the generalized Bramble-Hilbert lemma and the above-mentioned
properties of the functionals 7(®), we establish upper bounds for the func-
tional norms, their first and second difference derivatives, respectively
through the values h™|ul,m o, m€ (1,4], A Hulm.0, m€ (1,5], A" 2|u|m.q,

€ (1,6]. Using these estimates in the inequalities (11.5), we can see that
the following theorem is valid.



70 G. Berikelashuvili

Theorem 11.2. If a solution of the problem (11.1) is sufficiently
smooth, i.e. m > 1, then the convergence of the scheme (11.2),(11.3) is
characterized by the estimates

Iy = gy < A" Nl ME B4+, 5=0,1,2.  (116)

4°. Modification of the scheme. Consider the scheme (11.2) with the
right-hand side

o

¢:T1T2f+ 192 (ff1£82 +f£81f2)' (11'7)

The following theorem is valid.

Theorem 11.3. If a solution of the problem (11.2) is sufficiently
smooth, i.e. m > 1, then the convergence of the scheme (11.2),(11.7) is
characterized by the estimates

||§fu||wg(w) < ch™ % u| me (3,4+s], s=0,1,2. (11.8)

Wi (9)?

Proof. Let y and y be, respectively, solutions of the discrete problems
(11.2),(11.3) and (11.2),(11.7). For the difference § — y we formulate the
following problem:

~ ah? oo (-1) _ p(-12)
A(yfy):ﬁ(%ﬁngff —f )
y—y=0, €.

, TEw,
1T

(11.9)

For a solution of the problem (11.9) it is not difficult to obtain an esti-
mate through the semi-norm of the right-hand side of the problem (11.1),
||g7 yHWgS(w) S Ch2+6_s|f| 9 ﬂ € (172 + S], s = Oa 1727 or thrOUgh the
semi-norm of a solution of the problem (11.1), ||[y7—y|| Wi < ch™ 5 |u)
mée (3,4+s], s=0,1,2.

To see that (11.8) is valid, it remains to make use of the triangle in-
equality ||§—UHW5(W) < ||§—y||wzb»(w) + ||y—u||W5.(w), whose second summand
is estimated by Theorem 11.2. O

Remark 11.1. Using the imbedding W3 (w) in C(2) for the mesh func-
tions of two variables with the multiplier |Inh|%® ([63]), we obtain for the
schemes (11.2), (11.3) and (11.2), (11.7) the estimates

wh (@)

Wi (9)?

Iy — ullo, < clnh|®hm™ = ul (11.10)

Wi (Q)
with m € (1,5] and m € (3, 5], respectively.

Using the imbedding W3 (w) in C(w), for the both schemes we obtain
ly = ull o, < el

wg@)’
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12. Elliptic Equation with the Lowest Derivatives

History of the matter. The results of this section have been pub-
lished in [18]. In [47], for the problem (12.1) on the square mesh a dif-
ference scheme possessing the fourth order accuracy is considered. This
scheme is a particular case of the constructed and investigated earlier in [3]
scheme of higher accuracy, converging with the rate O(|h|?) to the solution

u(z) € C5(Q).

19, Statement of the problem. In the rectangle 2 we consider the
Dirichlet problem
2 24
g_;%ug =W g o 552 = —f(z), 2€Q, ul®)=0, zeT, (12.1)
where \; and )y are constant coefficients. It is assumed that f € W3 2(Q)
and W3 (Q), m > 2.
Suppose that lengths ¢; and ¢5 of the sides of the rectangle 2 are com-
mensurable. Let w be a quadratic mesh, i.e. hy = hy = h.
Consider the space H of the mesh functions given on w, with the inner
product (y,v) = (y,v), and with the norm ||y|| = ||y/||w-
In H, the designations | - ||(a4) and || - ||(a) take the form Hv||(21+) =
> hhot?, ity = X hihev?, |[v]la) = |lv]-
Wi Xwa w1 Xwy
In the space H we define the operators A, J,, a = 1,2, as follows:
Aayzgjgaza, aay:i}; , y€ H and gj(x):y(x) for wa,ﬂ(x):() for €.
Let A = —A; — As. It is known (see, e.g., [69]) that the operator A is
self-conjugate, positive definite in H, and

8 8 4 4
Sy )E A<( + )E Ey=y. (12.2)
(6% 3 h? * h2
It is not difficult to verify that
Wy = A0 9)' 20yl = 1Ay (12.3)
We approximate the problem (12.1) by the difference scheme
Lyy=(A+B+Cly=¢, v€w, yeH, (12.4)

where

o) =TTy (f + h—2 Z ), (12.5)

iAa(E+}f—;A3a), C;)\aaa(EJr%QAsa),

a=1

h2
B— -5 (A?Al + A%Ag + 2/\1)\28132)-

20, A priori estimates. The following lemma is valid.
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Lemma 12.1. The operator Ly, is positive definite in H and the esti-
mate

2
Ln 2 5 A, (12.6)
[Ay]l < coll Lnyll, (12.7)
1Lyl < coll Ayl (12.8)

is valid with co = 1.5(1 + 3v/201£27/8), A = max(|A1]; | A2]).

Proof. The estimate (12.6) follows from the easily verifiable relations A =
A* > %A, B =B*>0,C = —C* and on the basis of (12.2) it is obvious
that the operator Ly is positive definite.

Next, taking into account the relation [|ys o || <||yz,z.[lv+ = (A1y, A2y),

T
we have

(Bya 7Aay) Z
h2
> 75 (Al + o lymz 12+ = 2P0l 1Aayl Izl ) = 0.

Moreover, (Ay, —Aoy) > 2 [|[Aay|® + 2 (A1y, A2y), @ = 1,2. Consequently,
((A+ By, Ay) = (2/3)[| Ay, so

3
Ayl < 5 (A + Byll- (12.9)

Obviously,

2 h2
leyll <A |[(B+ % Asa)day
a=1

SO (IR

and hence

] <

[12ayl < Al0wyl + 10231);

1Cyll < V2 Aly|

Using the inequality (12.6) and the difference analogue of the Fridrichs
inequality, we obtain

(12.10)

Wi(w)'

RV
|y|W21(w) S S I Lnyll, (12.11)
and from (12.10) it follows that the estimate
32014
ICyll < # Al Lnyll (12.12)

is valid.

Replacing in (12.9) A+ B = L;, — C and taking into account (12.12),
we arrive at (12.7).

Analogously to (12.7), we can see that the estimate

Ayl < cllLyyll, Yy € H, (12.13)
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is valid.
Further, the operator Lj Ly, is self-conjugate and positive definite in H.
Therefore

Ly yll = ||(LyLn) ' Lyl =

Ly, v Ay, ALpv _ ALpv
i WL IO AL sy, Il
w0 [ LRLnvll w0 (LG Lavll w0 115 Lo
whence on the basis of (12.13) we obtain the inequality (12.8). O

The error z = y — u of the difference scheme (12.4), (12.5) is a solution
of the problem
Lypz=1, z€ H, (12.14)
where the approximation error is representable in the form of the sum
2

l/} == Z (Aanal + )\aA37a77a2 + )\anaSma + )\iAanoA) + )\1 )\27711932 . (1215)
a=1

2 2
Here no1 = u + % As_qu — T3_qU, N2 = % (% (u 4 ul=1e)) — S’;u)za,
2 2
Moz = 5 (u+uT1)) + B STAs u— ST Ty qu — & T&a(%)%’ Nod =
ff—; (u—Ts_qu), n:h—; (% (utu4 a2y (Flnmt2)) g6y,
Since the operator Lj is positive definite, this implies that the scheme

(12.4),(12.5) and the problem (12.14) are uniquely solvable.

Lemma 12.2. For the solution of the difference boundary value problem
(12.14) the a priori estimates

2]l <

2
Y
< C(;(HnallH% 70 )+ A2 Wt + Al )+ 22l ) (12.16)

2
2
2y € X2as o + 5 (D Imatz, llas) + Mitasll e+
a=1

N2 otz lwt) + Alnazs, s ), B=3-a,  (1217)
142 < A2[le.0, 1+

2
oD Ihamatl + Mz, |+ A2 Aattaall + AlAs—anea]]) — (12.18)
a=1

are valid.

Proof. The inequality (12.16) is obtained from the estimate (12.8). To prove
the estimate (12.17), we have to multiply both parts of (12.14) scalarly
by z and make use of the formulas of summation by parts and the in-
equality (12.6). The estimate (12.18) follows directly from (12.14) by using
(12.7). O
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3Y. Accuracy of the scheme. The norms gy 2nd [ s s = 1,2,
are equivalent. Therefore the inequalities (12.15)—(12.17) together with the
Bramble-Hilbert lemma allow one to establish that the following statement
on the accuracy of the difference scheme (12.4),(12.5) is valid.

Theorem 12.1. Let the solution of the problem (12.1) belong to the
space W (Q). Then the convergence rate of the difference scheme (12.4),
(12.5) is defined by the estimate

ly = gy < ARl mE 24+, 5=0,1,2.  (1219)

Let now the right-hand side in (12.4) be defined by the equality

h2
p=f+ 13 (M4 A+ M0+ Xd)f. (12.20)

The difference scheme (12.4),(12.20) is, in fact, the scheme from [2],
[47].
The following statement is valid.

Theorem 12.2. Let the solution of the problem (12.1) belong to the
space WJ*(Q1), m > 3. Then the convergence rate of the different scheme
(12.4),(12.20) is defined by the estimate

ly =ty < h™ [lu] s=2, me (3,6 (12.21)

W ()

As is mentioned in [47], the equations of the type (12.1) often appear in
the problems of hydrodynamics upon linearization of the equation of motion,
and it is desirable for the corresponding difference scheme to possess good
accuracy for sufficiently large values of A,. Therefore of special interest is
to write out the estimate for the convergence rate with regard for A\. Such
estimate, for example, in the norm W (w) for the scheme (12.4), (12.5) has
the form |ly — u||W22(w) < ch™2(1 4 AR+ >‘2h%2)”u||w2m(sz>’ m € (3,6],
where 511 = min(1;6 — m), 30 = min(2;6 —m).

Remark 12.1. Using the imbedding of W (w) in C(w) for the mesh func-
tions of two variables with the multiplier |Inh|%5 ([63]), for the schemes
(12.4),(12.5) and (12.4),(12.20) we obtain the estimates |y — <
c|In |25 ™= |ul|

Using the imbedding W#(w) in C(w), for both schemes we obtain ||y —
< ch™2||ul| with m € (2,6] and m € (3, 6], respectively.

UHC(M)
with m € (2,5] and m € (3, 5], respectively.

Wi ()

ul

C(w) win(©)

13. Richardson’s Method of Extrapolation

History of the matter. One of the methods of constructing approx-
imate solutions of higher accuracy is Richardson’s method of extrapolation
in which the use is made of the solution of difference schemes on a sequence
of meshes. For the Poisson equation, this method is justified in the works
by E. A. Volkov (see, e.g., [82]) and considered in detail in [61]. However,



Construction and Analysis of Difference Schemes 75

the above-mentioned works essentially use Taylor’s formula, and this re-
sults in too strict smoothness requirements imposed on the coefficients and
solutions of the original problem.

The present section is devoted to obtaining consistent estimates for
the convergence rate in Richardson’s method of extrapolation for elliptic
equations with mixed derivatives and variable coefficients. The results of
Section 13 have been published in [14]. In the case of constant coefficients,
analogous results were obtained in [9].

1°. Statement of the problem. In the domain 2 we consider the Dirich-
let problem
2

- 0 ou B -
Lu=-Y" (aaﬁ 8—m)+a0uff, z€Q, u(z)=0, zel. (13.1)

a=1,28$0‘

It is assumed that
aap € W31 Q) (a,f=1,2), 0<ag(z) € W3"2(Q),

L, (13.2)
f(x) e W3"2(Q), u(z) e W3 (Q), m € (3,4]
and let the condition of uniform ellipticity
2
Z Qop(T)Eals > V(EE +€3), v =const >0, = €Q, (13.3)
a,=1,2
be fulfilled.
We approximate the problem (13.1) by the difference scheme
2
Ay=— Y Aapy+ay=¢, zcw, y(@)=0, v€7, (13.4)

a,3=1,2
where Aapy = 0.5((afgY2,)z. + (055Y55)2.), P(x) = TiTaf, als(x) =
Serjaag, a;B(x) = a;rﬁ(xl — h1,x2 — ha), a(x) = ThTeap.
Let H be the space of the mesh functions defined on w and equal to

zero on v, with the inner product (y,v) = (y,v). and the norm ||y|| = ||y||w-
The notation [ - [|(a4) takes the form Hv||%1+) = 3 hihgv?, ||v||%2+) =
w Xwa
Z hthUQ.
w1 xwi

The operator A is positive definite (and for ai2(z) = a9 (z) is self-
conjugate as well) in H, hence the problem (13.4) is uniquely solvable, and
the estimate (see (3.6))

1 0303
19y, < = (1 + m)(/ly,y), Vye H, (13.5)
is valid.

Let 3"(z) be a solution of the difference scheme (13.4) on the mesh

wp = w, and y"/?(x) be a solution on the mesh wp /2 with the steps hy/2
and ha /2.
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We will show that the linear combination

/ xr) — xr
7o) = )3 '@ e, (13.6)

has higher accuracy as |h| — 0.

20, Expansion of the difference solution. In the course of our investi-
gation we will consider the following auxiliary differential problems:

0

Lv) = e ((I)“‘*Fa"‘ﬂé)a:g_a (Ps_a—Fs_n0) + Fo, z€Q,
Vieylp =0, a=1,2, (13.7)
Ly = —i Dip — 0 o1, €9, vg)(r)=0, veT,
or1 Oxa
where

Otge O%u

Ozg 0x,0zg *

Fopg =

+| _5|( 9% Oane O%u _02aaa ﬁ)
@ o 8a:a8:c% Orp Oxa0xp 89:%, 0xq/’

9%y atf 004,3—a 0%y

(I)a =0a3—-a 3 249 — -1 ) y :1723
p = Qa3 81%8:53,g (=1) Org  Ox1012 3
0%y dag Ou
Fa =007 t+27/7 7,
0 ox2 0zq OTq

3 2 2
0u 8aag8_u 8aa58_u b=3—a a=1,2.

Sy = aupg 7=
o= fap dx% ~ Ovp Oxy  Oxy Oxg’

The fulfilment of the assumptions (13.2) and (13.3) implies the existence
of a unique (from the class W3'(2), 1 < A < 2) solution of the problem
(13.1), satisfying the a priori estimates ([71], p. 172)

||U(a)||m—2,Q < C(Hq)oza - aaHm—3,Q+
P30 = Fs_aalim-s.0+ |1Fallms0), a=12, (13.8)

I 2.0 < (I B12lm-s.0+ @21 lln-s0), m € (3,4]

Let
h h3
No = Tng(aou) — T1T2a0U — T1T2 (E F1 + E FQ),
2
h? h3

Naa = S;gﬁaaaufa - S;TB (G/OéCKDCEU’ - 1_3 Faoz N E FCEB)’ (139)
Nas = 0.5(57 S5 aapuz, + S;Sﬁ*aaﬁugﬁglw)_

hihs
4

_ h2 3
ST (aaﬁDﬁuJr 2 Daat 75 Pam

5 (I)ag), f=3—a, a=1,2.
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Then after some transformations we will have

2

h2 3
Aoou =TT (Da(aaaDau) 12 DoFoo — ﬁ DaFaﬁ) + (naa)xav

h2 h3 h h
Aapu=T1T (Da(aaﬁpﬁunﬁ Da®aa+ 75 Daa— =2

+(77a6)xa7 =3—a a=1,2,

D @ag)+

and hence
h2
Au = TTo(Lu) + 1—; T, (D1(F11 — ®11) + Da(Foy — Do) — F1)+

h2
+1—; T (D1(F12 — ®1) + Do(Fay — Do) — F2)+

+h1h2

T (D1@12+D2‘I)21) —(Mm1+m2)e, — (21 +m22)2, —Mo-  (13.10)
Introduce the notation

n(j) = Tng(aov(j)) — Tngao’U(j),

1) = Sa 9p0aa(v(j)z. = Sa Tp(aaaDav(s)),
o _ —1a .
NS = 0.5(S7 S5 aap(vG))ms + Sz S5 sl )a,)— (13.11)
— 5 Tﬁ(aagaa ) B=3-a, a=1,2, j=1,2,3.

It is not difficult to notice that
Aapv(y = TiTeDa(a0p Do) + (0))e, . f=1,2, j=1,2,3,
and thus

2
Avyy =TT (Lo = 3 0Dee —0"), G=1,23. (13.12)
a,B=1

The functions y(x), u(x), v ( ), 7 =1,2,3, are defined on the mesh @.

Therefore the function z =y —u — % V(1) — }112 V(o) — hl 2 v(z) will likewise
be defined on the mesh @.
Substituting in (13.4) the obtained from the above inequality function

h? h3 hihs _
y(z) = u(x)+ﬁv(1)(x)+ﬁv(2)(x)+ 1 vy (x)+2(z), »ew, (13.13)

and taking into account (13.1), (13.7), (13.10), (13.12), we obtain for z the
problem

Az = Y14, + 2z, + 0, TE€wW, z(x)=0, €7, (13.14)

where

h3 hih
2 (2)+ L 277(3)

h D
¢0—770+ +12 4 0 >

(13.15)
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2

h hs (2, hiha 3
Vo= (nas+ 2 nln + 20l + =20), a=12. (13.16)
B=1

Using the inequality (13.5), it is not difficult to get an a priori estimate
for a solution of the problem (13.14): ||z ||W1(w) < c(llvrllas) + el +

ll40]), so taking into account (13.15), (13.16), we find

el <

< <lml+ 3 Prooliony -+ Z(|\n“>||+ S 1nlen)). (1317)

a,f=1 a,f=1
Thus we have proved the following

Lemma 13.1. Let u(z) and vg(x), j = 1,2,3, be solutions of the
problem (13.1), (13.7), respectively, and let the assumptions (13.2), (13.3)
be wvalid. Then for the solution y(x) of the difference scheme (13.4) the
expansion (13.13) is valid, and for the mesh function z(x) the estimate
(13.17) is valid.

3. Estimation of a solution of the problem (13.4). To obtain an
estimate for the convergence rate of the extrapolation solution (13.6), we
will need an estimate of the mesh function z(x) appearing in the right-hand
side of the inequality (13.17).

Let e = e(x) = (x1 — h1,x1 + h1) X (x2 — ho,x2 + ha), eq = eq(x) =
(x1 — h1,21 + (@ = 1)hy) X (x2 — ha, 22 + (2 — @)ha), a = 1,2.

We prove the following

Lemma 13.2. Let u € W), ap € Wi 2(Q), anp € Wi H(Q),
a,f = 1,2, m € (3,4]. Then for the expressions nas (o, 5 = 1,2), no,
defined by the formulas (13.3) the estimates

Mas| < Bl (haha) M2
X <|aaﬁDﬁu|mfl,ea +laasllm-1.0llullme. +laasllm-1,e. Hu”m,ﬂ)a (13.18)
nol < el™ 1 (haha) 2 (Jlaollm-2.olulm 1.0+

2 2
+ Z (Z laoDaDpgte|m—3.c + |a0Dau|m_27e>) (13.19)

a=1 pg=1
are fulfilled.
Proof. Using the notation

h2
(M) =S7v—1— 2—1 ST TyD?u,

h2 h2 h
6(2)(1)):5—51T2( 2i D2 ——2D2 ) U(m)zv(ml—é,@),
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= h? h3
(P (v) = Sy Sov —T — ST T (i Div + FQ ng),
(W (v, w) = ST TouSy Sow — Sy Ta(vw),
() (v, w) = ST Tow — Sy Ta(vw),
we represent 711 in the form

mi1 = S;?gauf(l)(Dlu) + 6(2) (auDlu) + D1ﬂ£(3) (a11)+

h? h3 h? .
+ 5(4) (—1 D%an + -2 D%an, Dlu) + —L 6(5) (D‘fu, an). (13.20)
24 6 24
It can be easily verified that the functionals ¢()(v), i = 1,2,3, are
bounded in W2 () and vanish on polynomials of second degree. Therefore
using the Bramble—Hilbert lemma, we obtain

(O] < bl (haha) ™ Plelme,, m€[2,3], i=1,2,3  (1321)

If w € W3™(), m > 2, then w € C*(Q), and hence the direct checking
results in the estimate

16D (w,w)] < ell (hrha) 2 [olo ey [wllm, m > 2, i=45  (13.22)

Using the inequalities (13.21) and (13.22), we see from (13.20) that the
estimate (13.18) for &« = § = 1 is valid. The functional 722 is estimated
analogously.

Estimate now the functional 7;5. Towards this end, we transform it as

follows:
@) —(3) @ (M e h3 o
ma = £ (a12Dou) + Dol (a12) + £ (— Diaiz + —= D3a12, D2U)+

24 6
(5) h% 2 h% 3 hihy 2
+ 4 (g DiDou + ?DQU_ 1 D1D2u,a12>+

h3 hihg
+ E(E)) (Dgalg, f Dgu — 1 D1D2u>+
h —_
+ ZQ SI_TQDQCllQ 6(6)(D2u) + Sl_SQCllQ 5(7)(D2u), (13.23)

where
(O (v) = S 1) — 87w 4 hy ST SaDyv — heS; Sy Dyv,
(M (v) = 0.5(S5 v+ Sy ~1)) — 5
h? h3
_s-T (_1 na
Sy 6
The first four summands in (13.23) we estimate by means of (13.21)
and (13.22), and the rest of the summands we estimate by the inequality
167 (0, w)| < elh* (hiha) ™2 (ollexgllw]xe
|69 (v) < el (hiha) "2 vl e
|60 (0) < el B> (hiho) "2 vlz4xen, A€ (0,1],

hihs )

D3v+ -2 D3v — —5 DiDv
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obtained by virtue of Theorem 1.2 and the Bramble-Hilbert lemma.
As a result, we arrive at (13.18) for the case @« = 1, 8 = 2. The
functional 79; is estimated analogously.
Finally, we represent 79 as
2
Ny = fo( )—l—fo aODngu Z aODau —|—€ (a0D2 )) (13.24)

a=1
where
fo(w) = 115 [a0(6) (40) ~ u(e) = (G2 — 1) 5 = (G2 = ) T )4
+ (G —21)* Pu(Q) | (& —a2)® PPu(()
2 a¢? 2 ¢z
82
— (G —21)(C2 — 22) 6(?0(2)}
lo(v) = Ty T ((C1 — 21) (G2 — 22)v(C)),
h? 0
balt) = TTa((Go = a)ol€) — "2 1T S0
- 2
éa(v) = };g T1T2U — %TITQ((C xa)Q’U(C)), o = 1,2,
(o 1s a variable with respect to which we perform integration in Ty, a = 1, 2,
¢=(¢1,¢2).

Note that: the linear functionals ¢, (v) (o = 1,2) are bounded in the
space W2(Q) and vanish on the polynomials of first degree; (o (v) (o =
0,1,2) are bounded in Ly(€2) and vanish on the constants; £y(u), being a
linear functional of u(z) (for the given function ag € C(Q))), is bounded in
W3(£2) and vanishes on polynomials of second degree.

Then using Theorem 1.2 and the Bramble—Hilbert lemma, we obtain
the estimates

[a(0)] < clb* A (haha) 2 uligne, @ =1,2,
[a()] < clh* P (hiha) P lulne, @ =0,1,2,
[o(u)| < cl**A(hiha)~1/?

by means of which from (13.24) it follows that the estimate (13.19) is
valid. O
We rewrite 77(]) in the form 77( ) (TlTQGOTlTQ’U(]’) —Tngaov(j)) +

(T1T2(a0v(j))fT1T2a0 T1T2’u(j)) and 77(]) in the form indicated in Section 3.
Estimating each group of summands by the Bramble-Hilbert lemma, we
prove that the following lemma is valid.

Lemma 13.3. Let v € W3"%(Q) (j = 1,2 3) ao e MQ”_QGQL
aop € W3 1(Q) (a,8 =1,2), m € (3,4]. Then for naﬁ and 770 deﬁned n

0<A<1,
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(13.11) the estimates
gl < elhl™ > (hah2) ™2 (laasll o o) lm-2.c + |aapDavip],s.,):
1§71 < elpl™ 3 (haha) 2 lao]| o 10 2,00 00 B=1,2, §=1,2,3,
are fulfilled.

Using Lemma 1.1, from (13.18) and (13.19) we obtain
2
ol + >~ lnasllar) < elbl™ Hlullma, m e (3,4] (13.25)
a,B=1
Analogously, by means of Lemmas 1.2 and 13.3, we find that ||n(()j N+

2 .
%; ||ngﬁ)|\(a+) < ¢|h|™3]Jvj) [l m—2,0. But on the basis of Lemmas 1.1 and

1.2, from (13.8) we obtain ||v(j|[m—2,0 < c||u||m,o. Hence

2
6”14 3 Indglliasy Sl ullmo, §=1,2,3, me(3,4]. (13.26)
a,f=1
Taking now into account the inequalities (13.25) and (13.26), from the
estimate (13.17) we conclude that

< b Hullm.a, m € (3,4]. (13.27)

1ol <

4%, Convergence of the improved solution. Let 3"(z) and y"/?(z) be
solutions of the difference scheme (13.4) respectively on the meshes wp, and

wh/Q.
By Lemma 13.1, the expansions
h? h3 hih
y"(z) = u(z) + 1—; vy (x) + é vy () + 14 21)(3)(:0) + 2"(z), (13.28)
T € Wy,
h? h3 hih
Y2 (2) = u(z)+ = vy (T)+ 2 vy (z)+ =2 v(3) (z)+2"2(z), (13.29)

48 48 16

T € Wpy2,

are valid for them.

Here 2" and 2"/2 are solutions of the difference problem (13.14) on
the meshes wy, and wy, /o, respectively, for which, according to (13.27), the
estimates
h

I

h/2

1 gy, < ™ s 12200 < el ulme (13.30)

are valid.
From (13.28), (13.29) and (13.6) it follows

_ 4 1
v =9, <3 ”Zh/2||w21<%> +3 ||Zh||w%(%). (13.31)
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h/2

But for any mesh function 2"/* defined on the mesh wy, /5 we can write

hi h hi h
|02, =43 5 51 P@P<a Y 5 S P@ P =4, ..

2 2
TEW TEWR /2
Estimating analogously the first differences of 2"/2, we obtain ||2*/2 ||W1( | <
2 (“h
2||zh/2||wl( ,» and hence from (13.30) and (13.31) we can conclude that
2 “h/2

= Fllyy oy < bl Hlllma, m € (3,4]. (13.32)

Thus we have proved the following

Theorem 13.1. Let the coefficients of the differential equation in the
Dirichlet problem (13.1) satisfy the condition (13.3) of ellipticity. Moreover,
let 0 < ag € W2m72(Q), aag € W2m71 (o, B = 1,2), and the solution of the
problem (13.1) belong to the space Wit (), m € (3,4]. Then the conver-
gence of the Richardson-extrapolated solution (13.6) is characterized by the
estimate (13.32).

14. The Problem of Bending of Orthotropic Plate

History of the matter. For a numerical solution of the problem of
bending of an isotropic plate, many authors (see, e.g., [62], [32], [46]) apply
the method of reduction of a biharmonic equation to two Poisson equations
(the method due to Marcus). The method suggested in [2] can be con-
sidered as a generalization of the above-mentioned expansion to the case
of orthotropic plates. In [8], the authors suggest a decomposition of an-
other type. In the present section, relying on the methods of decomposition
([2], [8]), we construct schemes of higher accuracy and obtain consistent
estimates for the convergence rate. Difference schemes for the biharmonic
equation (free from expansion) with solutions from the Sobolev space have
been studied in [71], [59], [42], [40], [50]. The results of this section have
been published in [8], [19].

1°. As is known,the equation of elastic equilibrium of a homogeneous or-
thotropic plate has the form
0*w 0w *w

Dy — +2D Dy — = 14.1
! oz} +2Ds 0z2022 52 x4 9(), (14.1)

where w is the midsurface deflection of the plate; ¢ is the intensity of
transversal load; D;, ¢ = 1,2, 3, are the constants depending on the Young
modulus, plate thickness and Poisson coefficients v, 15 for the principal di-
rections. In the case of an isotropic plate, vy = 1o = v, D1 = Dy = D3 = D.

Let us consider an isotropic plate simply supported over the contour.
The axes 1 and x5 are directed along its sides whose lengths we denote by
¢1 and ¢5. Thus in the rectangle Q = {(z1,22) : 0 < x; < ¢;, i = 1,2} with
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the boundary I' we seek for a solution of the equation (14.1) satisfying the
boundary conditions

(2) 0?w(z)  0*w(x)
w(x) = =
0z? 0z3
By 521 and 5 we denote the midsurface curvatures of the plate in the
directions x1 and x2, respectively. A characteristic peculiarity of the method

is that instead of the problem (14.1), (14.2) we approximate successively two
problems: the system of differential equations

0?5 0?5
57 T By = Q@) v€Q H@) =0, xel,  (143)

where B; = (231 32), Bs = (221))32 2?)2), » = (Z;), Q= (g) and the

one-dimensional equation

2 2
‘;71;’ = () (or ‘;77;’ - —%2(:5)), e, w) =0, zel. (14.4)
1 2

=0, zel. (14.2)

B,y

The second equation of the system (14.3) is, in fact, the condition of compat-
ibility of deformations, while the first one is the equation of statics (14.1).

The bending moments M7 and My and the transversal forces N7 and
N are defined by the formulas My = Dy (561 +v236), Ma = Da(vy30 + 32),
N = 8i;c1 (D1%1 + Dg%z), Ny = 6872 (Dg%l + DQ%Q).

— h2—a

20, Let Ay = AQ(E + 33 A3,a), Ey=vy, A\oy = Y70, a=1,2.

We approximate the problem (14.3) by the difference scheme

BiA15% + Bohozz = —Q, z € w, x#(x)=0, z€n, (14.5)
while the problem (14.4) by the scheme

2

A = f(Ef %Al)%h rew, w(r)=0, xen. (14.6)
Here, 3z = (37, 32)7, @ = (T1T2q,0)T, and the mesh functions 7, 7o, @
are approximate values of the functions ¢, s, w in the mesh nodes.

The scheme (14.6) is, in fact, a one-dimensional problem. Its second
argument is taken as a parameter.

Below we will prove that the problems (14.5), (14.6) are uniquely solv-
able. Having found a solution of the problem (14.5), we can find approxi-
mate values of the bending moments and transversal forces in the nodes of
the mesh w by the formulas

M, = D151 + v232), M, = Da(v130 + ),
M:(DI%JFDS%Q)%I, No=(Ds321+Da303). for weWiH(), 3<m<5,

- ~ ~ h2 _ ’ _ h2
N = (Dl%1 + D33ep + €1A2(732%2 + D3301) + EIQ)O )
T1
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~ _ N h2 _ _ h2
NQ = (D3%1 + Doy + EQAl(’D1%1 + Dg%g) + %q)o
zo
for we W3*(Q), 5<m<7.
3°. By H we denote the set of the mesh functions defined on @ and vanishing

on 7. Let H be the set of the mesh functions defined on the mesh w, with
the inner product (y,v) = (y,v), and with the norm |ly|| = ||y/|w-

In H, the designations (-, )., || - ||(a+), |- [l(a) take the form
V)a+) = Z hihayv, (y,v Z hihayv,
wl Xwa w1 ><w2

1/2
lollas) = @002, Toll = o]l
In the space H we define the linear operators Aa, Aa, o = 1,2, as
follows: Aoy = —Aoy, Ay = —Aoy, y € Hy, y € Hy, y(x) = y(z) for
r E€w. Let A=A + As.

The operators A, (and hence A, A) are self-conjugate, positive definite
and permutational for which the estimates (see, e.g., [69], p. 274)

8 4 2 —
—E<A,<=E A, <A, <A, 14.7
62 h/a Y 3 — —_ ( )
are valid.
We write the scheme (14.5), (14.6) in the operator form
L= B A3+ BoAy3e=Q, 5,Q€ Hx H, (14.8)
. hi -
Ajw = ( — 1—;141)%1, w, »1 € H. (149)

Not giving rise to misunderstanding, for the inner product and for the
norms of the mesh functions and vector-functions the use will be made of the
same notation: (y,v) = (y1,v1) + (y2,v2), |yll = (y,9)"/?, y, v € H x H.

Lemma 14.1. The operator Ly, is positive definite in H x H and the es-
timate Ly, > 1 E is valid, where ¢y = min ((8/¢3)D1+(16/(3)Ds; (8/¢3)D2).

Proof. Indeed, this follows from the inequality (Lny,y) = D1(Ary1,y1) +
Da(Arye, y2) +2D5(Aay1, 1) = (55 D1+ 75 Ds)wall + 7 llwell®. O

Owing to the positive definiteness of the operators Lj and A, the
equations (14.8), (14.9) (or the difference scheme (14.5), (14.6)) are uniquely
solvable.

Lemma 14.2. Let L} be the operator adjoint to Ly. Then there exists
a constant ca > 0 such that ||Ayll < ca2||Lryll, | Ayl < c2||Liyl| for every
ye HxH.

Proof. Let By = < ! (2))2 \/%>
1
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Since

«_ponp T T Dyv/Dy A142D3y/Dy Ay —Day/Dy Ay
B3Lh—B3B1A1+B3B2 A2< DQ\/YTlZQ DQ\/'ZTlZI ,
we have

| BsLj,yl|* =D Do Avy: ||+ D1 Di | Aryz || >+ (4D3 D2+ D3 Dy ) || Aoy ||+
+D3 || Asys||* +4D1 Do D3(Ary1, Asyr) +2eD1 D3 (Arys, Asys)—
—2eD1D3(Arys, Asys) —4D3D5(Asy1, Azys).

Applying to the last two summands Cauchy—Buniakowski inequality, as
well as the e-inequality, we obtain

|BsLyyl* = DiDs|[ A1y ||” + DiD3(1 — 2ee1) || Arya|*+
+ (4D2D, + D3Dy — 469 D2D3) || Aoy |2+

€ 1 —
+ (D} — 5Dy DE — — D3Dy ) Ao >+
2e1 €2

+ 4D1D2D3 (Zlyh Zgyl) —|— 2€'D1D% (Zlyg, Zgyg). (1410)

_ Ds3(l—e
Let &1 = 12_587 €2 = 02—5((Dl+)1>2)’
Then from (14.10) it follows that

D2 — &(D1Dy + D2 + 4D2)

1 —
——— | Bs Lyl > D | A |® + =2
DD, 1PsLayll” = Dill Al Dy — (D + D)

+4D5(Ary1, Aoyn) + D2 ([[Aryz || + 2(Aryz, Azyz) + [[Azye|?).  (14.11)
Taking into account the restriction imposed earlier on €, from the
requirement for the coefficient of [|Aay1]| to be positive, it follows that
0 < & < D3(Da(D1+D2)+4D2)~L. We choose, for example, e = D3 (Do (D;+
2D5) + 4D3)~L. Then

D»>
0<e< 15, -

[ Aoy ||*+

D2 — &(D1Dy + D3 + 4D3) D3 D
= g s
Dy — (D + D) D2 + 4D2 2
and from the inequality (14.11) we obtain
L |BLiylP 2 Dul Al + D o P+
DD, Rl = 4DZ 4 Dy(D; + 2Dy)
_ _ D3 _ _
+4D5(A g1, Asyr) + 2 Ays|?, A="4, + 4.
3(A1y1, A2yr) 4D§+’D2(D1+2D2) (| Ays|| 1 2
Under the notation c3 = min (DnQDyW), we find that
3

| BsL;yl|* > c3D1Da|| Ay||?, or, taking into account (14.7),
4
max(Dy; D) | Liyl* > | BsLiyl* > 5 csDiDs || Ayl (14.12)

From (14.12) it follows that the second inequality of the lemma is valid.
The validity of the first inequality is verified analogously. O
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4°. If in every node z € w we apply to the system (14.3) the averaging
operator T1T», and to the equation (14.4) the operator T, then we obtain
B1A Ty + By AyTyc = Q, (14.13)

Alw = Tl%l. (1414)

h3_

Introduce the notation ¢*= (n¢, n8)", n§="Ts_ass—(E——3= As_a) 5.
Then (14.13), (14.14) can be rewritten as Ly = Q — BiA1Y! — By Asy)?,
Ayw=(E—"0 A))30 + 2.

This and (14.8), (14.9) imply that the errors z = 3¢ — s> and x = W —w
are solutions of the problems

Lz =1, where @ = BiAjY" + BoAgp?, 2, € H x H,  (14.15)

G p
Ay = (Ef EAl)zl _— (14.16)

Lemma 14.3. For the solution of the problem (14.15), the following a
priori estimates are valid:
2

Izl <ea D> gl (14.17)
a,=1,2
2
||Z||W21(w) < ¢ Z ||77§%a||(a+), (14.18)
a,B=1
2
Izl ze, <6 D lAanll: (14.19)
a,B=1

Proof. From (14.15) it follows

_ Ly, v)|
2| = L*L lL* = su |( ht _
|| || ||( h h) th 'L;EIF-; ||L>;1Lh’U||
A=Y, AL AL
= sup |( iba h’U)| S ||A_1’¢|| sup || - hU” ;
ver  ||L5 Lo ved || Ly Lyl
so applying Lemma 14.2,
2l < cal A9l < e(l| B! || + | B2y?),

which proves the estimate (14.17).

D1
0 ~p,
Denote By = 27)32 . Then
1 P
D,

((Ln + BsLp)z, z) =
2
= (Da(Aaz™,2%) + (Dg + 2D3) (42", 27)), B=3-a,

a=1
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and taking into account (14.7), we have ((Lp+ B4Ln)z,2) > C7|Z|W1( g

cr= % min(Dy; Dy; D1 +2D3; Do +2D3). Using this inequality, from (14.15)
we find

crlzll,y ., < W+ Ba,z) =

2
Z { o Dong — Daﬂg), Za) + (Aa(Dang + (Dﬁ + 2173)775)7 Zﬁ)} =

Z{ anﬁ ang)fav'z%a)(aﬂ* ((Dana (Dﬁ+2D3)nB)xav f)(aﬂ}g

a=1
2

I T

a=1

+|(Pans + (Dg + 2D3)ng) @H(QHHZ%H(aH} <
2
{z (Il Pan = Dan); 20y

1/2
+||(Da77§ + (Dﬁ + 2D3)77ﬁ)* ||(a+))} |Z|W21(w)7

SO

crlzf?

wi(w)

a=1

< 3 (1®an ~ Danlsa sy + [ (an + (D5 +205)3), 1., <
I

{310t ~Dars sy (P - P 2P0, ) <

2

2 fer a 2
<4( D (I o) + Iz, lan) )+ B=3—a
a=1
Hence with regard for the inequality ||z ||W1(w) < Cg|Z|W1(w), we obtain the

estimate (14.18) with ¢5 = 2cgcg/cr.

It is not difficult to verify that |z| < ||Az||. Therefore owing to

W2 (w)

W3 and the first inequality of Lemma 14.2, from (14.15)
wie < CllYl < ca(Dul| Al +(D2+2Ds) || Aani ||+ D2 | A2n )

and hence we arrive at the estimate (14.19) with ¢g = cac10. O

12050, < cr0l]

it follows |z|

Lemma 14.4. For the solution of the problem (14.16) the a priori
estimate x|, < llz1ll + 22l + [nEll + 2]l is valid.

Proof. First of all, we notice that by virtue of (14.19) and the second
2
inequality of the system (14.8), we have Asw = (E — % Ag)%g. Therefore
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performing some transformations, we can show that y satisfies the analogous
to (14.16) equation

h2
AQX = (E — ﬁ A2>22 — 7’]% (1420)
Since x|, = IAxI| < [[A1x]| + [[A2x], the statement of the lemma
2 w
follows directly from (14.16), (14.20). O

Applying the Bramble-Hilbert lemma, for the functionals 7§ we obtain
the estimates

51l < clhl*[|>]| s € (1,4],

W)
that is,

g1 < clhl™ 2wl m € (3,6],

Wi ()
while for their differences we get
1185, | < clh[™ 2wl

[Aan3 |l < clh[™~*w]

me (3,7, =3—q,
m e (3,8], =3—q,

Wi (Q)?
Wi (Q)

which together with Lemmas 14.3 and 14.4 prove the following convergence
theorem.

Theorem 14.1. Let the solution of the problem (14.1),(14.2) belong
to the Sobolev space W3 (QY), m > 3. Then for the difference scheme
(14.8), (14.9) the following estimates of the convergence rate

e e [

< clh[™ 7 wl]

Wi(w) — win(Q)?

||%_%||W‘29(w) win (@) m e (3,5+6], s=0,1,2,

[[w — w]] m € (3,6],

are valid with the constant ¢ > 0, independent of h and w(x).

Find now the accuracy of the approximate values of bending moments
and transversal forces.

Theorem 14.2. Let the solution of the problem (14.1), (14.2) belong to
the Sobolev space W3 (2), m > 3. Then the estimates

[ Mo~ Mall gy < bl ). me Bs 46l (14.21)

s=0,1, a=1,2,

INa = Nall < clb|™2||wl] me (3,7, a=12 (1422)

Wt (w)?
are valid with the positive constant ¢ > 0, independent of h and w(x).
Proof. Since Mo—Mg = Da((%af%a)JrVg(%gf%g)), b=3—a,a=1,2,

by Theorem 14.1, we obtain (14.21).
The estimate (14.22) for w € W' (w), 3 < m < 5 follows from the

equality N, — N, = (Da(%a — %) + D3(5¢5 — J?g)); , B =3— «, with
regard for Theorem 14.1.
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For w € Wi (w), 5 < m < 7, we have
No = Nao = (Da(0 — %) + D355 — 525)) s +

h2 ~ ~
+ ?a Ag (Dﬁ(%ﬁ — %ﬁ) + Dg(%a — %a))%a + Daf(al)(%a)‘k

h? h?
+ D3l (505) + 5 Dyl (525) + 5 Dl (30),  (14.23)

W,y 2 ha 82
where £, (v) = ﬁ — (vf <& &C;;)%

2 2
E&)(v) = (27% ng’u);a, f=3—-a.
Estimating ES) and Zg) by the Bramble-Hilbert lemma and taking into
account Theorem 14.1, from (14.23) we obtain the estimate (14.22) in the

case under consideration. O

)
@

59, We assume that
D2 > DD, (14.24)
and consider a decomposition of the problem (14.1), (14.2) of the type ([2])
0%u 0%u q

U p T8 9 b wu=0, zeT, 14.25
0z? o oz3 Dy ! ! ) ( )
0%w 0%w
8—$%+b28—$%:u’ LIJGQ, w:O,xGF’ (1426)
/D
where by o = DstyD;—DiD2 1;31 DiDa

On the mesh @, we approximate the problem (14.25),(14.26) by the
difference scheme

Mi+bihoii=p1, 2€Q, =0, 27, o1 =TT Di . (14.27)
1
Klﬂ)v + blng'E = (2, T E Q,
~ IR R (14.28)
= = — A —=A
w Oa TEY, P2 U+ 12 1u+ 12 2U,
or in the operator form
Lipu = —p1, U, p1 € Hp, (14.29)
Lo pw = —p2, W, @2 € Hy, (14.30)

where La,h = Zl + baZQ.

It is easy to see that the difference scheme (14.29),(14.30) is uniquely
solvable. If in every node x € w we apply to (14.25), (14.26) the averaging
operator 1175, then we obtain

Llyhu = 7A17]1 (U) - blAgng(u) — ¥1, (1431)
Lgth = 7A17]1 (w) — b2A27]2('LU) — T1T2u, (1432)

2
where na(v):Tgvaf%Agv,ﬂ:Sfa, a=1,2.
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From (14.29)—(14.32) it follows that the errors z = u—wv and x = W —w
are solutions of the problems
Lqipz = Ay (u) + by Aana(u), (14.33)
h? h3
Lo px = Aimi(w) + be Agma(w) — (z + 1 Az + 15 Agz) +n(u), (14.34)
where
h? h3
n(u) = T1Tou —u — é Au— 15 Asu.

Using for the estimation of solutions of the problems (14.33),(14.34)
the well-known method from [71], we obtain

< ™ 2wl oy, mE (3,6 +5], 5=0,1,2,

@ = wll,,, ., < clh[™2]uw] m € (3,6].

2(w) — Wi (Q)?

||ﬂ7u||w<29(w)

(14.35)

Thus the following theorem is valid.

Theorem 14.3. Let the condition (14.24) be fulfilled and the solution of
the problem (14.1), (14.2) belong to W3 (2), m > 3. Then the convergence
rate of the approximate value of bending function defined by means of the
difference scheme (14.27),(14.28) is characterized by the estimate (14.35).



CHAPTER 4

Nonlocal Boundary Value Problems

The aim of this chapter is to study the solvability of nonlocal boundary
value problems in weighted Sobolev spaces and to construct the correspond-
ing difference schemes.

15. On the Solvability of a Nonlocal Bitsadze—Samarskii
Boundary Value Problem in Sobolev Spaces

History of the matter. The generalization of the Bitsadze-Samarskii
type nonlocal problem [31] has been investigated by many authors. Theo-
rems on the existence and uniqueness of the classical solution of the above-
mentioned problem for uniformly elliptic equations were established in [43]
and [44]. For the Poisson operators this problem is studied in [49]. The
Fredholmity of the problem is stated in [74]. The results of this section are
published in [20] and [23].

1°. The notion of a nonlocal trace of a function. When investigat-
ing nonlocal Bitsadze—Samarskii type boundary value problems in Sobolev
spaces, there naturally arises the question what is meant under the nonlocal
boundary values. Below we will prove the theorem allowing one, unlike the
traditional approach (when the trace is defined by the limiting passage along
the normal of the contour), to determine a nonlocal trace of the function.
The idea of applying the weighted Sobolev spaces to our purposes originates
from the works of D. Gordeziani (see, e.g., [43]) in which the weighted inner
product and the corresponding norm are used for proving the uniqueness
of the classical solution of the nonlocal Bitsadze-Samarskii boundary value
problem.

Let @ = Qo = {(z1,22) : 0 <z, <1, k = 1,2} be a square with
the boundary I'; o, g, . .., oy, be arbitrary real numbers; &1, &2, ..., &m+1
be fixed points from [0,1] with 0 < & < & < - < &n < &1 = 1
F(i):{(fi,l‘g) : 0<IL’2<1}, i1=1,...,m+1, F1:F(m+1), F*:F\Fl.

We assume that the weight function r(z) =1 — z;.

As an immediate corollary of Theorem 1.2, W§ (€, r) can be defined as
the closure of the set C°°(€2) in the norm W}F(Q,r).

Let us define a subspace of the space W3 (€, r) which is obtained by the
closure of the set

(@) =

91
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m
= {UEC"X’(Q): suppu Ny =2, u(l,xg)zz:aiu(fi,xg), O<x2<1}

i=1

in the norm of the space W4 (£2,7). We denote it by W3(Q,r).
Let W3 . (Q,7) = W3(Q,r) N W3 (Q,7).

Lemma 15.1. C*°(Q) is dense in the space W3, ().

Proof. Indeed, the inclusion C*>(Q) C W3, (€2, r) follows from the definition

of these spaces, and since C°°(Q) is dense in W}(Q,7), it is likewise dense
in W3(Q,r) N W3(Q,r) = Wi, (Q,r). O

*

Lemma 15.2. For any function u(z) € C°°(Q) the inequalities

lull,, ey < clulior lul,, . <cluli, are valid, where the constant ¢ > 0
is independent of u(zx).

Theorem 15.1. There exists a unique bounded operator T : Wi(Q,r)

— 21/2(I‘1), which for any u(x) € C*(w) satisfiers the equality Tu(zx) =
’Lb(l, IQ).

Proof. Let u(x) € ﬁfé (2, 7). Then since the set é"’o(ﬁ) is dense in ﬁfé (Q,r),

there exists a sequence of functions u, (z) € C°°(Q) which converges to u(z)
in the norm W3 (€, r). On the basis of Lemma 15.1, it is not difficult to show

that the sequence {u,(1,z2)} is fundamental in VV21/2(O7 1). Taking into
account the fact that the space W21 / 2(07 1) is dense, there exists a function
v(x1) € WQI/Q(O, 1) to which the sequence {uy(1,22)} converges as n — oo.
The function v(z2) does not depend on the choice of the sequence {uy(z)}.
Consequently, for u € V?/é(Q, r) the operator T is defined as follows: Tu =
v(x2), where v(z2) = lim wu,(1l,2z2) in the norm of W21/2(0, 1). Moreover,
||Tu||1/21Fl < c||u||1,Q’r.nTl’>O}<1)us the theorem is proved. O
By Theorem 15.1, we can find a nonlocal trace of the function u €
ﬁfé(Q,r) onT'q, as u(l,z2) = Tu. In addition, for almost all zo € (0,1) the
equality u(:r)‘Fl - aiu(x)‘r(i) =0,Vue ﬁ/%(Q,T) is valid.
Analogously we prove that for any function u(z) € W3 ,(9,r) there

exists a nonlocal trace u(x)|r, € W23/2(I’1) satisfying for almost all x5 €
(0,1) the equality

=0, YuecW3(Q,r).

du(z)| i Ou(x)

% |
Oxs " Oy Irg,

i=1
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20, Statement of the problem. We consider a nonlocal Bitsadze—
Samarskii type boundary value problem [43] for the elliptic equation with
constant coefficients

2
_ 0%u

ij=1
u(z) =0, =z el Zaku(fk,xg) =u(l,z2), 0<zy<1. (15.2)

k=1
Assume that the conditions
2
Z aijtit; > vi(tT +13), v1 >0, ag >0, (15.3)
ij=1
are fulfilled.

We introduce the weight function

i 5 zg i+15 ‘:03"'7 717
play) = pi(z1), & < a1 <&y, 0 m (15.4)
r(xy), &nm<w1 <1,

where p;(z1) =r(z1)—» > %rk(xl), r(z1) =1—x1, ri(x1) = & — 1,
k=it+1

m
= kZ || V/Ek-
—1
Let 2 < 1.

Lemma 15.3. The function p(x1) defined in (15.4) is continuous on
the segment [0,1], and (1 — 3®)r(z1) < p(z1) < (7).

We say that a function u(z) € W3, (Q,r) is a strong solution of the
nonlocal boundary value problem (15.1)-(15.3) if the relation

a(u,v) =£(v), Yv € W227*(Q,p) (15.5)
is fulfilled, where a(u,v) = (Lu, Av)q,,, £(v) = (f, Av)q,,.

3%, The solvability. Before we proceed to proving the basic theorem, let us
establish that some inequalities are valid. Let (u,v)q,, =[r(z1)u(z)v(z) dz,
Q

and the symbols | - |0, and || - ||x,0,, have the same meaning as | - |0,
and | - ||x,0,r, respectively.

Lemma 15.4. Ifu € W3 (Q,7), then (—Au,u)a, > |uliq -

Proof. Since C*>(9) is dense in W3, (,7), it suffices to prove the lemma

for u € C*°(Q). Using integration by parts, we find that
1

1 1

0%u ou |2 du

I/p(:cl)a—x%ud:cl = f/p(:cl) p. dxq f/p’(:cl)%ud:cl
0 0 0
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A(u)?

ou 1
2 61‘1

and since Ta U=

1

I= —/p(aﬁl)}g—;rdm + % (u2(17$2) + iu2(§z‘,$2)(/>§ - PLO)-

0

, therefore

But p, — pi_; = —|ai|/V/& ». Hence
1

I:—/ ‘8 }dml—i—Q( (1,22) %Zu (&, x2) \/E|) (15.6)

0
It follows from the nonlocal condition (15.2) that

(1, 22) (Z \/MT fk,@)\/@) g'\/—— (x, w2),

by virtue of which from (15.6) we obtain

0%u
_ = 15.7
( 81%’”)9,) Ha:clHQp ( )
On the other hand, it is obvious that
0%u
- — = 15.8
( ox3’ )Qp Ha:chQp ( )
which together with (15.7) completes the proof of the lemma. O

Lemma 15.5. The semi-norms | - k.0, are equivalent respectively to
the norms || - ||x,0,p, k =1,2:

\/_
[ulnop < llullio, < 22 lulia,, Yue W), (15.9)

\/2
[ul2,0, < lull20,p < = lul2g,, Yu€ W3, (). (15.10)

Proof. Since C* () is dense in W}(Q) and W3, (Q), it suffices to prove

(15.9), (15.10) for the functions w(z) from the class 600(5) The left in-
x2

equalities in (15.9), (15.10) are obvious. Since u(z) = [ w dr, u(x) =
0

f MdT therefore 2|u(x }‘6“(x1’7)|d7 4u?(z) < fl‘agg) *dzs.
C(g)crisequently7 the estimate ’ ’
lullg,., < 0.5ul1,0, (15.11)
is valid and allows us to prove the right inequality in (15 9).
Analogously to (15.11), we have || 2% B o, < <3 L 52 2 B5s g - Moreover,

82
|5 = (T o 25 15 2108 < S G510 5
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Consequently, |ul1,0,, < (1/2)|u]2,0,, which together with (15.9) proves the
right inequality in (15.10). O

Lemma 15.6. If u € W3, (Q,r), then ||Aulq,, > |ul2,0,-

Proof. Let u € C’°°( ). Denote J = (gxg; ‘212)9 o

Integration by parts yields

k1l

11
du ou 9%u
//p Oxy 03:18372 dzy drs Zpk// 02 dxo dry, (15.12)

and since

from (15.12) we obtain

2
‘89318932 ‘
o~ Janl | Qul€r,x2) > Qu(l, @) |2
/( Z—’ ’ ‘ —‘ ’ ‘)dajg. (15.13)
J =1 \/_k 8332 89:2
Using the consequence from the nonlocal condition (15.2),

k=1

Q,p

from (15.13) we have

2
J > 15.14
} 811 812 } 7p ( )
2 2 2 2
Thus ”Au”ap = H ga:?”ﬂ,p + H ngHQ,p + 2(29:?’ g_zQ)Q p = |u|2 Q. Using
this inequality and the standard argument of density, we can see that the
lemma is valid. (]

Theorem 15.2. Let f(z) € L2(Q,7). Then the nonlocal boundary
value problem (15.1)—(15.3) has a unique strong solution. Moreover, there
erists an independent of f positive constant ¢y such that

2.0 < e1llFllo (15.15)
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Proof. To prove this theorem, we use the Lax—Milgram lemma (see, e.g.,
[36], p. 19). Performing some transformations, we obtain

o2y 9%u
alu,u) = Z/p(:m) Z Q5 M OOy, dz+
-~

0%u 0*u O?u |2
— 75— |7/ )Jdz— A .
+ (all + a22) /p(xl)<ax% ax% axlaxQ ‘ ) x U/O(U;, ’U/)Q,p
Q
whence using the ellipticity condition (15.3), Lemma 15.4 and the inequality
(15.14), we see that a(u,u) > nlul3q , + aolulf g ,, that is, by virtue of
(15.10) and the equivalence of the norms || - 2,05, || - [|2,0,r,

au,u) > caf|ull2,0., (15.16)

which means the W3-ellipticity of the bilinear form a(u,v).
Obviously, ||Lulla, < welulz.a, + aollull,,. Therefore |a(u,v)|

[Lullg 1AV, , < /3 + af [[ull2.0.plv]l2.0.,, v2=maxi |a; ], so0 |a(u, v)|
csllull2..rllvll2,0.r

Hence the bilinear form a(-,-) : W3, (Q,7) x W3 ,(Q,r) — R is contin-
uous. Moreover,

<
<

(L)l < [flla, A0, < callvllz.or, (15.17)

i.e., the linear form £(v) is continuous in W3 (€2, 7).

Thus all the conditions of the Lax—Milgram lemma are fulfilled. This
guarantees the existence of a unique solution u € W22*(Q, r). The estimate
(15.15) follows directly from (15.16), (15.17). O

16. Difference Scheme for a Nonlocal Bitsadze—Samarskii Type
Boundary Value Problem

History of the matter. In this section we will consider difference ap-
proximation of a nonlocal Bitsadze—Samarskii type boundary value problem
for the second order elliptic equation with constant coefficients. The results
of the present section have been published in [29]. In [49], in the case of
Poisson equation, the difference scheme is investigated which converges in
the mesh norm W$ with the rate O(h?) to the exact solution of the class
c4Q).
1°. Statement of the problem. We consider the nonlocal boundary value
problem (15.1),(15.2). Assume that f(z) € W4 (Q), and the problem
(15.1),(15.2) is uniquely solvable in the class WJ*(Q), 1 < m < 4.

Introduce the mesh domains with the step h = 1/N.

Let vo = ToNw, wip = {z1 : x1 =ih, i = 1,2,...,n%}, & =
(nk 4+ 0k)h, 0< 0, <1,k =1,2,...,m, where nj, are nonnegative integers,
0<ny <ng <---<ny < N, among which there exists equality if in the
corresponding subinterval (between adjacent points of the mesh wy) there
are more than one point &.
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Assume that
<1—§m—v, (16.1)

| >

where v > 0 is a fixed number.
Define the following projection operators:

O 1
Gru = (1 —6%) /tu(nkh + th,xs) dt + 0 /(1 —tu(ngh + th, z2) dt,
0 O
k=1,2,..., .

Let T,, ST be the averaging operators defined in Section 1 for which the
identities

0%u ou _
Ty @ = Uzpzas Lo % = S;ruia =S5, Uz, a=1,2,
0%u 1
G pr ((1 — Op)u(nih, z2) + Ou(ngh + hyxo) — u(ﬁk,xg)),
1
k=1,2,...,npm,
are valid.

By Yi(x2), Zi(x2), Zi(x2), Z(x2) we denote the expressions
Yi(x2) = (1 — 0 )y(nih, z2) + Ory(ngh + h,x2), and so on.
We approximate the problem (15.1),(15.2) by the difference scheme
Lyy =¢(z), v cw, @=TTaf, (16.2)

y=0, z €, y(l,z2) ZakYk Z2), T2 € wa, (16.3)

where Lpy = a11¥yz,z, + 012(Yz,20 + Yor7,) + 022Yz00, — G0Y-

20, The correctness of the difference scheme. Let H be the space
of the mesh functions defined on @ and satisfying the conditions (16.3),
with the inner product and the norm (y,v), = > h?r(z1)y(z)v(z), ||y||? =

(y,y)r, r(x1) =1—x1. Let, moreover,

Iy][? = Z R wlli= Y Ry Z 2Ty,

‘*’1 X wa w1><w2 “’1 ><u)2

Wi = lym 7+ lymll?, 1ylT e, = lul7 + 1yl

|y|§ w,r ||y51931 H2+||yf212|]2+2”y§152]]72“7 Hy”% w,r |y|§ W r+||y||% W, T

lyll* = Zh2 %yl Z Ry, ylP= > Y

wl Xwa w1Xw2

I = > 1y il = Zhy, Iy 12 Zhy,

Wi xwy
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r(z1) +r(xy — h)
5 .
We introduce the auxiliary weight function

p(iﬂ){pl(xl)’ £i§x1<£i+1a Z‘:03172a"'am71,

F(Il) =

r(z1), &m<x <1, (16.4)

m
where p;(21) = r(z1)— s Z re(@1), ri(21) = & =21, 3¢ = 3 ||V
hsi1 Ve k=1
Suppose » < 1. Then

(1 —5*)r(x1) < p(xr) < (). (16.5)

In what follows, we will assume that the inner product and the norm
containing the index p have the same meaning as the expression with the
index r.

By ®(y) we denote the functional of the type

Zh(Z lak' 2) — y2(1,x2)). (16.6)

To apply the obtained in this section results in the sequel for a priori
estimate of error of the method in the case where the nonlocal condition will
not be homogeneous, the estimates for the function y(x) will be obtained
in the form, where the nonlocal condition is not taken into account.

Lemma 16.1. For every mesh function y(z) defined on @ and vanishing
for x1 = 0 the estimate

(—¥Yz21:9)p = |z |l + 2(y) (16.7)
is valid.
Proof. We represent the weight function in the form p(z;) = 1 — z1 —
o ]t for t >0, .. .
lawl — x1), where x(t) = This implies that
g \ﬁ X(8 ) x(®) {O, for t < 0. P

Pziz, — Z P4 |0‘k‘ ( (fk — ))511‘1'
It can be easﬂy verified that

0, if i<ng—1or i>ng+2,
h(X(fk - xl))flm = (]. — 0k), if 1= N,
O, if 1=ng+1,
SO
1

(X(&r —21))5,,, = ’ (1 = 0r) d(ng, i) 4 0k (ny 4 1,1)),
where §(-, ) is the Kronecker symbol. Consequently,
-~ vl

Pz (’Lh) = -
k=1 h

(1 = 6x)6(nk, i) + O (ny + 1,4)). (16.8)

5
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Using summation by parts, we obtain
_ 1 h
=D hoymey =) hovE, = 5 v (Lae) = D v pm
w1 WT w1
so taking into account (16.8), we find

L, 1
=D hoymay =D hpyz, — 5y (L)t
w1 wt
1

1 m
+ 3 kz:; » % ((1 — 01)y? (nih, 2) + Opy? (nih + h, xg))

Replacing here (1 — 0y )y?(nh, x2) + 0py? (ngh + h, x2) = Y2 (x2) + h205 (1 —
Or)yz (nkh, x2) > Y2 (22), we see that Lemma 16.1 is valid. O

Lemma 16.2. For every mesh function y(z) defined on @ and vanishing
on vx, the estimate

(yflxlvyfw«a)p > ||yf152]|§ + (I)(yf2) (169)
is valid.
Proof. Let Ju(y) = (Yz121» Yzaws )p- Using summation by parts, we obtain
_ h 1
Tn@) =Y Wiz, =D 5 vn(Lae) =5 D Wpnaui,,
wt

w; w1 Xw;

whence with regard for (16.8) we find that

Tn)=> W, = g (y%z(lwa)—

Wy

wt
~ #ay] ( 2 2
— 1—0r)yz, (nkh, z2) + Orys, (nh + h, x2 )
; \/f_k ( ) 2( 2) 2( ))
Replacing here (1—0;)y2, (nih, x2)+0kyz, (neh+h, 22) = (Yiz, )7 +h?0,(1—
Or)y2 5, (nih, 2) > (Yiz,)?, we see that the inequality (16.9) is valid. Thus
the lemma is proved. ([l

Lemma 16.3. For every mesh function y(z) defined on @ and vanishing
on v«, the estimates

41/1
— e, < (~Lny. ), (16.10)

1®(y) + e2®(yz,) + esllyl3 .., < ILnyll}, c1,c2,c5 = const >0, (16.11)

an®(y) +

are valid.

In addition, if y(x) satisfies the nonlocal condition (16.3), then the ap-
pearing in the left-hand sides of (16.10), (16.11) summands with the func-
tional ® can be omitted.
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Proof. Tf we multiply (—Lpy) scalarly by y and make use of the estimate
(16.7), after simple transformations we obtain

(=Lny,y)p >
1 2 1 2
252 00 Y Gapyryma + 5 W D Gapleayes +an®(y),
wt a,f=1 w— a,f=1

so taking into account the ellipticity condition (15.3),
an®(y) +nlylt. , < (=Lny,y)p- (16.12)

Further, 2|y(z)| < > .+ hlyz,|. Therefore 4llyllz < lyl3 ., ,» which together

with (16.12) proves the estimate (16.10).
An obvious consequence of (16.10) is the inequality

(y) + yliw, < (“AY,Y)p, (16.13)

where Apy = Yz,2, + Yzoas -
For y we write the identity

(Lny, Any)p = Ti(y) + L2 (y) + Is(y), (16.14)
where
=) 2 . ) Yzros HYmiz, | 2
I1(y)—2hp a11y5111+a12(yx1x2+Z/x1z2)yx1x1+a22 5 +
w
T Yz T \ 2
+Zh2p(a22y%2x2+a12(y51x2+y$1§2)y52x2+a11(%‘15”272?]”12) )

Yzizs T Yui7 2
I (y)=(a11 + a22) Zh2p<yﬁz1y§2x2 - (%) )7

Is(y)=—ao Y _ h’pyAny.

By the ellipticity condition (15.3), we get I1 (1) > v1 ([|[yz,2, | 5H| Yz, |2) -
Next,

Z hgp(yilm J2ryx1§2 )2 <
w

1 1 _
5 2 Povim 5 D Mo, <Y Py,

wt

IN

w1 Xwy wi xws

which together with (16.9) yields Iz(y) > (@11 + a22)®(yz, ), and by virtue
of (16.13) we have I5(y) > ao®(y).
Consequently, from (16.14) we obtain

1 (19z00 15 + Ymaws 15) + (@11 + a22)®(yz,) + ao®(y) <
< (Lny, Any)p. (16.15)
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But since
1 141
(Lny, Any), < o I Lyl + > vz 15 + Nyzas113),
from (16.15) we have
1
1

5} 1Yz, 124 1Yz [12) +(a11 +a22) (Y, ) +ao ®(y) < o ILnyl2. (16.16)
On the other hand7 by (169) (b(yi2) + 2||y5152||§ < ||y5111||§ + Hyfzih”%?
20(yz,) + |y|§7w7p < 2(Hy51951 H% + ||y§2z2||;2)) Therefore from (16.16) we find
that

V2 V2
v1((a11+020)@(yz,) +a0®(y) + 5 P(ym) + 7 Wl < [Layll5. (16.17)
Further, from (16.12) we derive

a1 ®(y) +mlyli., < S0 HLhyll2 + 20|y (16.18)

Summing up (31/1/5)(4||y||2 —|yl3.,,) <0 and (16.18), we arrive at

16V1

a1 ®(y) + 191130, < I Zayll3, (16.19)

which together with (16.17) results in the inequality (16.11).
If y(x) satisfies also the nonlocal condition (16.3), then

m / m
(1, 32) (; Erag)t/* ( )1 4Yk($2)>2 < Z%%Yf(m)

k=1

m
and analogously (yz,(1,2))? Z % (Yiz,(72))?. By virtue of the

above inequalities we have ®(y) 2 O ®(yz,) > 0, and the summands in
(16.10), (16.11) containing these values can be neglected. Thus Lemma 16.3
is proved completely. O

On the basis of (16.11), for the solution of the difference scheme (16.2),
(16.3) we obtain ||y||2,w.r < ¢||®]lr, which implies that the difference scheme

in the metric of the space W (w, ) is correct.

30, A priori estimate of error of the method. To study the question of
convergence and accuracy of the difference scheme (16.2), (16.3), we consider
the error z = y — u of the method, where y is a solution of the difference
scheme, and u = wu(z) is a solution of the initial problem. Substituting
y=z+wuin (16.2), (16.3), we obtain

Lpz=v¢, rcw, 2=0, xE€, z(l,xg)zz:aka—i—R, T2 Ewg, (16.20)
k=1
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m
where ¥ = aiiMize, + 127272, + 022022752, + G0, B = ) apRyk,
k=1

Ry, = h2Gy, g%ﬁ, Naa = T3_qu —u, @« = 1,2, 19 = QSf'SQ_U(:E) —u(z) —
u(xy + h,xo — h), no = u — ThThu.

A solution z of the problem (16.20) we represent in the form of the sum
z = Z+ Z of solutions of the following two problems:

m
Lp,z=0, zc€w, z=0, €, E(l,xg)zz:ak?k—i—R, To Ewy, (16.21)
k=1

Lpz=v, rzcw, z=0, €, Z(l,xg):Zaka, T Ews. (16.22)
k=1

Lemma 16.4. For the functional ® defined in (16.6), the estimates

. x 2 e
— < E——— .
20(2) < (1+ IR+ 2 Fl e, Vo> 0, (16.23)
%62

~20(z7,) < (1+ f)HRmu el ez 0, (16.2)

are valid, where Z is a solution of the problem (16.21).
Proof. First of all, we note that the inequalities
1/2 1/2
|Zx| < 1/5’“ (Zhﬁ%l) | Zhz,| < ,/5’“ (Zhﬂ%@) (16.25)
“’1+ Wy

are valid.
Indeed,

Nk
| Zu(2)| < \ S hzz, (i, xg)\ + Okh|Zx, (neh + hyx2)| <
i=1

Tk 1/2
< nkh(thgl (m,@)) HORh (W2 (nh + B, 32)) " <
=1
netl 1/2
< (nkh—i-Hkh)l/Q( 3 oz, (ih,x2)> , (16.26)
=1

and since by (16.1), 7(ih) > (1 —ih+ %) > (1 — (npm + DA+ &) > v,
i =1,2,....,nm + 1, from (16.26) we obtain the first of the inequalities
(16.25); the second 1nequahty is proved analogously.

We now make use of the nonlocal condition (16.21). Then

_20(z) < Zh(RQ +2R2aka)
—20(zz,) < Z h( 2 4 2Rz Z akik@).
k=1
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Therefore by virtue of (16.25),
—29(2) < || RI? +\/— IR NZz ), —2@(Zz,) < Ra, 15 \/— = | Rz, e 7,5l

whence follow (1.23) and (16.24). O
Lemma 16.5. For the solution of the difference scheme (16.20) the a

priori estimate
2]l w.r < (IRl AlImz, ] +HImez, [+HInzz, [ +nol), c=const>0, (16.27)

18 valid.

Proof. Relying on (16.5) and (16.10), for the solution of the problem (16.21)
2

we obtain a11¢(2)+% IZ[13 .- <0, which together with (16.23) (and

€1 chosen appropriately) yields

1Zll1,0,r < ClIR)]l- (16.28)

Using the inequality (16.10) and taking into account (16.5), for the
solution of the problem (16.22) we obtain

41/1(]. — %2) —
AR <

< V2(|(771151m1aap| + |(7712flzzaap| + [(N22z222 » g)pD + ao(no, ap' (16.29)

It is not difficult to estimate the last two summands in the right-hand
side of (16.28):

|(na25ad?2’z)ﬁ| < ||na2fa|] ||Ef2|]7“ﬂ o= 172 (1630)
If for the second summand in the right-hand side of the inequality
m o B
(7’1151117,5),0 - (771151951 ’ E)T - Z » |\/_§_| Z h2rk7’1151112 (1631)
k=1 w1,k Xwa

we use the formulas of summation by parts, we will get

Z h? TEMiz 2, 2 = Q1 + Q2, (16.32)
W1,k XW2
where
Q1= Z h27”k7711513§1,
Wi,k XwW2
Q2 = Z h*Mi1a, 2 + Zekh27711x1(nkh7x2)z(nkh,Ig).
W1, k—1XWw2 wo

Taking into account the relations r; < &r < & and using the Cauchy
inequality, after certain transformations we conclude that

|Q1|§§k( Z hQTZ*) ( Z h2771111>1/27

Wi g XWw2 Wi,k XWw2
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nkfl [

Q2 | D2 ST W, i, w2)F, (jh, w2) [+

i=1 j=1 wa

Nk
| 30 3 Ot (s w2) B, (i, 22)| <

=1 w2
1/2

S( Z h2(nkhf:cl)5%1)1/2(§k Z hQU%ul) +

W1 k—1 Xw2 W1,k—1XW2

(X wa) " (6 o Wi ) <

W1 g Xw2

1/2

(2 ) e X e

Wi g Xw2 W1,k XwW2

SO
1/2

1/2
@l <a( X n2) (X i)
Wi,k Xw2 W1,k XW2
whence from (16.31) follows
‘ Z W reniz e, 2

Wi, ke XwW2

< 28123, )| Iz |- (16.33)

It is not difficult to show that the estimate

|(771151x1a5)r| < 2”551”7“”771151“ (1634)

is valid.
Finally, with regard for (16.33), (16.34), from (16.31) we find that

|(M1z120 2)p| < 2(1 4 32|12z, 11z ]| (16.35)

since r(x1) < F(x1). Using (16.29), (16.30) and (16.35) we can see that the
estimate

41/1(]. — %2)
5)
< 12 (2(1 4 3) Iz | + ez, ] + [1n227.1]) + aollmoll, (16.36)

||E||1,w,r §

is valid.
The estimate (16.27) is the direct consequence of (16.28), (16.36). O

Lemma 16.6. For the solution of the difference problem (16.20) the a
priori estimate

1201 2,0,r < (I RN By A Im1120 00 -2 20 [+ 022750 [+ 0]]) (16.37)
is valid.

Proof. We multiply (16.23) and (16.24) respectively by ¢1/2 and c2/2 and
add the inequality (16.11) which was written for Z. In the right-hand side
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of the obtained inequality we choose €1 and eo sufficiently small and find
that

2l 20,0 < e[| Rl + | Rz [])- (16.38)

Next, by virtue of (16.11), for the solution of the problem (16.22) we

have ¢3|Zll2.wr < va(llmiza || + [Mozies | + 1122m0.11) + aollnoll, which

together with (16.38) completes the proof of the lemma. O

4°. Estimation of the convergence rate. Lemmas 16.5 and 16.6 show
that to obtain estimates for the convergence rate of the difference scheme
(16.2),(16.3) it is sufficient to estimate the corresponding norms of R and
N11, M12, N22, No- Let us show that

IR < ch™ M ullp o, m e (1,3] (16.39)

Let e, = (nkh,nkh+h)x(x2—h/2,x2+h/2) Q. = (nkh nih+h)x ( 1).

We represent Ry as the sum Ry, :(hQGk hQGkSQ )+h2GkSQ 812 =
R, +R], k=1,2,...,n,. Note that R vamshes on the second degree

polynomials and is bounded in W3"(2), m > 1. As a consequence, using
the Bramble—Hilbert lemma, we obtain

|R,.| < ch™ Hul | Ry« < ch™ Hul m € (1,3]. (16.40)

Wi (ep,)? wan(Q))

R}/ vanishes on the first degree polynomials and is bounded in W3 (),
m > 1. Therefore using the Bramble-Hilbert lemma, we obtain the estimate

|RY|« < ch™ tul s € (1,2.5]. (16.41)

Wi ()

For m > 2.5, we write
R// 2 hS / ‘ ‘ d < h3H
1851l < Z 0z? = 8371

and since 9%u/0x? € WQm_Q(Q), m—2 > 0.5, we may use an estimate for La-
norm of a function in a strip along the boundary in terms of WQm_Q—norm

L2(Q%)

: ; 1/2|| 82
in the domain (Theorem 1.5): Haxl HL2 ) < chl/ Ha_x?HWQ*"‘Q(Q)’ 0.5 <
m — 2 < 1. Consequently, we obtain the estimate ||R}|. < ch2|u|wéﬂ,(m,

€ (2.5, 3], which together with (16.40) and (16.41) proves the validity of
the inequality (16.39).
It is not also difficult to see that

| Rz, ]« < ch™ 2|ul s € (2,4]. (16.42)

Wi ()

Taking into account the well-known estimates for 711, 712, 122, 1o and
for their differences, on the basis of the estimates (16.27), (16.37) we con-
vince ourselves that the following statement is valid.

Theorem 16.1. Let the solution of the problem (16.1), (16.2) belong to
the class W' (Q), m € (1,4]. Then the convergence rate of the difference
scheme (16.2), (16.3) s defined by the estimate

< ch™ % ul] me (s,s+2], s=1,2, (16.43)

Hy*UHWi;(w,T) = wI(Q))
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where the positive constant ¢ does not depend on u(x) and h.

Remark 16.1. The obtained results are likewise valid both for the inho-
mogeneous boundary value problems and for the nonlocal conditions.

17. Difference Scheme in the Case of Variable Coefficients

History of the matter. In this section we consider difference approx-
imation of a nonlocal Bitsadze-Samarskii type boundary value problem for
the second order elliptic equation with variable coefficients. The results
have been published in [26].

1°. Statement of the problem. We consider the nonlocal boundary
value problem (15.1), (15.2), where a1; = a1;(x3—;), a2; = az;j(x) (j =1,2),
ap = ao(x), ar; € W'71(0,1), p > max(1/(m — 1);2) for m € (1,2], p = 2
for m € (2,3], ag; € W 1(Q), ¢ > 2/(m — 1) for m € (1,2], ¢ = 2 for
€(2,3], a0 € Loyc(Q), 1 <m <2, a0 € Wa"2(Q), 2 < m < 3. Let,

moreover, f(x) € Wi 2(Q), and the problem (15.1),(15.2) be uniquely
solvable in the class W3"(Q2), 1 <m < 3.

For the mesh domains and mesh functions we use the notation of Sec-
tion 16.

The problem (15.1),(15.2) is approximated by the difference scheme

Ay=" Ayy+ay = —¢@), rew, p=TNT (17.1)
ij=1

y=0, €7, y(l,z2) ZakYk Z2), T2 € wa, (17.2)

where Ajjy = —0. 5( GO Sl)yiﬁj)xi —0. 5(@§g+o Sl)ylj)ii-

. The correctness of the difference scheme. Let H be the space of
mesh functions introduced on Section 16.
By ®(a11,y) we denote the functional

®(a11,y Zhau T2 ( Z |ak| y2(1al’2))- (17.3)

Lemma 17.1. For every mesh function y(x) defined on @ and vanishing
on 7o the estimate

4v
(Ay.9)p > = Wl + Blarn,y) (17.4)

is valid. In addition, if y(x) satisfies also the nonlocal condition (17.2), then
in the right-hand side (17.4) the second summand can be omitted.



Construction and Analysis of Difference Schemes 107

Proof. Analogously to the inequality (16.7), we can show that

1 1
(Any.y)p 2 5 > hPpanyd, + 3 > Bpany?, + (a1, y).

wf’xwg W Xwa

Next, summing by parts, we find that
0.5 1 +0.5
(AIQZU y Z h2pa(2 1)y$1y52 + 5 Z h2pa/§2 1)y$1y$2 + I7
wl X wy Wy Xwa

where

1 —o.
=3 ol S bl ) =,
+

0.51) +0.51) .
(A25,9), Z h?pay; %) yx]yxﬁ S n20alt "y s, G=1,2.
UJ1><UJ2 w1Xw2
Consequently,
—0.5
(Ay,9), Zh2 Z a; " yzye, +
1,j=1,2
(40.5
2Zh2 Z 0l e e, + (a0, 5%), + ®larn, y).
1,j=1,2

Using the condition of ellipticity, we obtain the inequality (Ay, y), > |y|1,w,+
®(a11,y), which together with 2||y||, < |y|1,w,p results in (17.4).
If y(z) satisfies also the nonlocal condition (17.2), then y2(1,z5) <

m
> %% Y?(z2) and ®(aiq1,y) > 0. Thus the proof of the lemma is com-
k=1
plete. O

By Lemma 17.1, the operator A is positive definite in the space H.
Hence the difference scheme (17.1), (17.2) is uniquely solvable.

3°. A priori error estimate of the method. To study the question
of the convergence and accuracy of the difference scheme (17.1), (17.2), we
consider the error z = y—wu of the method, where y is a solution of the differ-
ence scheme, and u = u(x) is a solution of the initial problem. Substituting
y=z4+wuin (17.1),(17.2), we find that

Az=v¢, x€w, z=0, xE~, z(l,xg):ZakaJrR, ToEwy, (17.5)
k=1

where ¢ = Z(%)xl +no, R= ZakRk, Ry = h2G), & 522+ Mo = TiTa(agu) —
i,7=1

T Traou, nij = % (= O51)u5+ (+051’ L) ( “1o) =S, 15— Z(a” e ) 1,7=1,2.

’Lj 32 ’Lj
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We now represent the solution z of the problem (17.5) in the form of
the sum z = Z + Z of solutions of the following two problems:

Az=0, z€w, z=0, zE€, E(l,xg):Zak7k+R, ToEwa, (17.6)
k=1

m
AZ = P, T E€w, z=0, z € Yo, g(].,(ﬂg) = ZOL}CZ]C, To € Wo. (177)
k=1

Lemma 17.2. For the functional ® defined in (17.3) the estimate

_ 4 we
—20(an,%) < (1+ m)ﬂRHf o 172, Ve>0, (17.8)

where Z is a solution of the problem (17.6), is valid.

Proof. Using the nonlocal condition (17.6), we find that —2®(a11,%z) <
m —

S h(R?* + 2R Y axZy). Therefore by (16.25), —2®(a11,Z) < ||R||? +

w2 k=1

2—\/;5 | R||«||Zz,]|r, whence we obtain (17.8). O

Lemma 17.3. For the solution of the difference problem (17.5) the a
priori estimate
I2ll1w.r < (IRl + llmall + llmell + 121 ] + [In22l] + [Inol])) — (17.9)

18 valid.

Proof. On the basis of (16.85), (17 4), for the solution of the problem (17.6)

we obtain ®(a11,Z) + M IZ||13,,, < 0, which together with (17.8)
(with & chosen approprlately) yields

I1Z[1,0,r < el Rl (17.10)

Using Lemma 17.1 for the solution of the problem (17.7) and taking
into account (16.5), we get

4y (1 — »2) 2
f ” ||1wr Z 771] 5% (nOaN)p (1711)

It is not difficult to estimate the last summand in the right-hand side
(17.11):

000:2)p < 3 Il F (7.12)
Analogously to (16.35), (16.30), we have
(771] z1) ) <2 1+”‘ Nzl lmglls 7 =1,2, (17.13)
((125)22, %), < Zzllelimesl], 5 =1,2. (17.14)
Applying (17.12)—(17.14), from (17.11) we obtain that
4y (1 — 5%)

7 o <
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1
< 2(1+5) (Il + mall) + el + lIn2al] + 5 linoll- (17.15)
The estimate (17.9) is a direct consequence of (17.10), (17.15). O

4%, Estimate of the convergence rate. Lemma 17.3 shows that in
order to obtain the needed estimate of the convergence rate of the differ-
ence scheme (17.1),(17.2) it is necessary to have estimates for summands
appearing in the right-hand side (17.9).

The estimate of the norm || R||. is given in (16.39).

Let us show that for n;; defined in (17.5) the estimates

Il < ch™ Ml oy, 25l < k™ Hullwgr @), 1<m <3, (17.16)

are valid.
For 1 <m < 2 we represent 7;; as the sum

(—0.51) du (+0.51,—15) ou
mig =y + 050 %l (S ) +0.505 n;;'(axj), (17.17)

where

(~0.51) (+051,—1) ou ( 8u>
=05 S, Ts5—; =8, T\ a; — |,
nz] ( ta ) 3— axj 3— a] 633]‘

() = S50 =S Tso, i (v) = (Sf0) 1) = 57T 0.

7)’2]-, being a functional with respect to as;, vanishes for as; € mp. By
the Bramble—Hilbert lemma for that functional we obtain

| < b, 1()/\—\dx<chm oy 1()/\ e

/‘81] (/‘axj

But

2q =2
2q
o ) pit+2/a

Consequently, [n5;[ < ch™™ 2|ag]| ], and
m=1 1w, o
-2
a1 < eh™ 1||azg|| w1 1w, @ (17.18)
a— —
Analogously, [ny;| < ch™~ 2H1/P|qy ” lul| and hence
Wyt T (e1) Woop (@
p—2
Il < eh™ Hlagsl s, Il o, o (17.19)
p—2

Since qu/(q 2 ng/(p 9 C W32 therefore using (17.18), (17.19)

and the analogous inequalities for 7/}, n;7, from (17.17) we obtain (17.16)
for 1 <m < 2.
For 2 < m < 3 we write

i = (aug )+o5aﬂeg(§x )+05 §f°'517‘1i)eg(§—;), (17.20)
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where £1(v) = 0.50(70-20) 4.0.50(+0-51.=10) _ G730y £y(v) = S v—v(70-51),
l3(v) = S v — v(+051) and

Nio = {4 (aig %) + a§;0‘5i)€5 (%) + O.5u52€6(ai2), (17.21)
where £4(v) = v(70-5) — S7 Ty v, l5(v) = 0.585 v+ 0.555 v(~1:) — y(=0-5)
ls(v) = v(70:51) — 29)(=0:5:) 4 4(+0.51,—14)

Note that £;(v), j = 1,2,3,4,5,6, vanish for v € 7, and are bounded
in Wg*, 2 < m < 3. Therefore using the Bramble-Hilbert lemma, for the
above values we obtain |¢;(v)| < chm_2|v|wm_1( g 2 < m < 3, on the basis

m-l

of which from (17.20), (17.21) we easily obtain (17.16) for 2 < m < 3.
For the norm of ny we have ||no|| < chm_lHu||W5,L(Q)7 1<m<3.
Finally, the above-obtained estimates and Lemma 17.3 imply that the
following statement is valid.

Theorem 17.1. Let the solution of the problem (15.1), (15.2) belong to
the class W' (Q), m € (1,3]. Then the convergence rate of the difference
scheme (17.1), (17.2) is defined by the estimate

”y o u||W21(w,7‘) = Chm_l”“”wén(nw me (1’ 3]7 (1722)

where the positive constant ¢ does not depend on u(x) and h.

18. Difference Scheme for The Poisson Equation with Integral
Restriction

History of the matter. The boundary value problem for differential
equations with nonlocal conditions are encountered in many applications.
Various problems with integral conditions have been considered, for exam-
ple, in [72], [73] and [45]. In this section we consider nonlocal boundary
value problems with integral restriction for the Poisson equation. The re-
sults of Section 18 are published in [25].

1Y. Statement of the problem. Let Q= {(x1,72) : 0<a) </ly, a =
1,2} be a rectangle with the boundary ', I’y = {(0,z2) : 0 < x2 < {a},

Do=T\T,.
We consider the nonlocal boundary value problem
?u  0%u
—t+ === Q 18.1
o2 T o~ @ weQ, (18.1)
£y
u(z) =0, z €Ty, /u(t, x2)dt =0, 0<mg < {s. (18.2)
0

Assume that f(zr) € W3" (Q) and the problem (18.1),(18.2) is uni-
quely solvable in the class Wi (Q2), 1 <m < 3.



Construction and Analysis of Difference Schemes 111

As usual, on Q we introduce mesh domains, and on the set of mesh
functions we define the operator

Gy=x1y— Sy, v €w, (18.3)
where
i Iy
(Sy)ig = > hay; — < (Wi + yoj), (18.4)
k=0

i=0,1,2,...,N1, j=0,1,2,..., No.
We approximate the problem (18.1), (18.2) by the difference scheme

Ay = Yz1o1 T Yzoms = _(p(x)7 rew, p =TT, (185>
y(x) =0, x €, Sy(lr,z2) =0, z2 € Wo. (18.6)

20, The correctness of the difference scheme. Let H be the space of

mesh functions defined on @ and satisfying the conditions (18.6), with the

inner product and the norm (y,v) = Y. hihoy(z)v(z), ||yl = (y,v)"/2.
Wy Xw2

Let, moreover,

IyllF = llyll> + 1Vy1%, 11Vl = llyz 17y + vzt
lyz 1ty = D Mhari(yz ), llymlllyy = Y. hihora (=)

wi xws wi Xwy
h h
7"1:9:1*?177”2:11 for x1 € wy, 7"2:_1f0rx1:07
Iy]? z hibhay?, yll> =) hihay?,
wi xwa w1 xwy
2= 3 hihay? Iyl = Zhgy 1l Zhw :
Wi xwy

Lemma 18.1. If the mesh function v defined on w satisfies the condi-
tions v =0, Sv =0 for x1 = {1, then

Zhl (Sv)? < 4Zh1x (18.7)
Zhl (Gv)? < QZhlm (18.8)

h2
Zhlva = —gl’UQ(O,I‘Q). (18.9)

w1
Proof. Tt is not difficult to verify that
Z hl(SU)2 = - Z hlxl(sv)l‘l ((SU)(+11) + SU))
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from which owing to (Sv),, = 3 (v+11) 4 v), we obtain

Zhl(SU)Q <
<5 (Cmatoe ) (S +50%) " 0810

If we notice that

w1

Z hlx%(v('Hl) +v)?2 <4 Z h1x% v?,
wy

3 hi((50)F) 4+ 50)* <437 ha(Sw)?,
wy w1
then from (18.10) it follows the estimate (18.7). According to (18.3),
> hi(Gu)® <
w1

1/2

< Z h1x§v2 + Z hl(Sv)2 + 2(2 hlacfzﬂ) e ( Z hl(Sv)2> ,

w1

which together with (18.7) proves the estimate (18.8).
The relation (18.9) follows from the easily verifiable identity > hiSvv =

> hl(Sv)glsv - hé v2(0,x2). Thus the lemma is complete. O

w1

Lemma 18.2. For any y € H the identity

—(Ay,Gy)o = | Vyl? (18.11)
holds.
Proof. By (18.9) we have >_ hjv Gv = Y hyz1v? + %21) v2(0, 22).
w1 w1
Substituting v = yz,, we obtain
Urawa: G = — Y h1hayz,Gyz, = —[lyz,|I%)- (18.12)
w1 XUJ;
The summation by parts yields (yz,2,,GY)w = — >, hi1hayz (GY)z,
wi xws
and since L
(GY), = (zl - ?1)% (18.13)
therefore
(Yzr21, Gy = =z, 1) (18.14)

The equalities (18.12), (18.14) complete the proof of the lemma. |

Lemma 18.3. For any y € H the estimate
lyllf < (1+46)]|Vy|? (18.15)
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18 valid.

Proof. We have

2y’ == ) = =) iy +y Ty, <
Wy wf T

+

Wy
1 _
<2) hari (yz)’ + §Zh1(y+y( W) <
+
Wy

1
2 2 2
§22+h17’1 (yfl) +§Z_h1y .
Wi Wi
Therefore > hihoy? <4 > hihor?(yz,)? < 4441]|Vy||?, which proves
Wy Xwa wawz
the estimate (18.15). O

From (18.11), (18.15) it follows
lyllf < —(1+461)(Ay, Gy)o (18.16)

Thus if Ay = 0 for ¢ € w, then y(z) = 0 for x € W. This means that the
solution of the inhomogeneous problem (18.5), (18.6) exists and is unique.

3°. A priori estimate of error of the method. For the error z = y —u,
where y is a solution of the difference scheme (18.5), (18.6), and u = u(z) is
the exact solution, we obtain the problem

Az=1, z€w, (18.17)
z(x) =0, z €y, Sz=x(x2), v1 =41, T2 € Wa, (18.18)

where w = Mz2, + N2Zszs s X(xQ) - E:h1777 Na = TB—CMU’ —u, @ = 1727
+
Wy

n=Syu(x) — % (u(x)+ u(zr — hi,z2)).
If in (18.17), (18.18) we pass to the new unknown function

w(z) = 2(z) - 63 (02— 21)x(2), (18.19)

then for that function we will obtain the problem

2
B (61 — 21)X5,,,, TEwW, wE H. (18.20)
1

Aw =1
Relying on (18.16), for the solution of the problem (18.20) we have
lwlf < (1+4€1)x

2
X (|(771§1;c17Gw)w‘+‘(n2§2x27Gw)w‘+£_2 |((€1—a:1)x5212,6'w)w|>. (18.21)
1
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Using summation by parts, the formula (18.13) and the Cauchy—Bun-
jakovski’s inequality, we obtain

Z hihary Nz, Wz,

w?‘sz

< Valmz ) oz, llay. (18.22)

‘(7715111 ’ Gw)w| =

The summation by parts, the Cauchy—Buniakowski inequality and the
estimate (18.8) result in
|(7’252932aGw)w| = ‘ Z h1h277252Gsz < 3\/6_1”1052”(2)”77252”7 (1823)

wi Xw;

and analogously,
(6 = 21, )| < Bl Ll . (18.24)
Substituting (18.22)—(18.24) in (18.21), we obtain

lwlly < e ([Imz, lay + m2z @) + 11xz, 1<) (18.25)

According to (18.19), for the error of the method we can write

2/l < Hlwlls + e2(IIxll + Xz, 1+)- (18.26)

From the definition of x it immediately follows that

Il < Vel lixs, e < Velinz)): (18.27)

Substituting (18.25) in (18.26) and taking into account (18.27), we ar-
rive at the following

Lemma 18.4. For the solution of the difference problem (18.17), (18.18)
the a priori estimate

Izl < es(llmaz,]| + In2z. ] + ]l + lI72.]]) (18.28)

18 valid.

20, Estimation of the convergence rate. Lemma 18.4 shows that
to obtain an estimate of the convergence rate of the difference scheme
(18.5),(18.6) it is sufficient to estimate the norms of the summands in the
right-hand side (18.28).

Note that n vanishes on 71, while 7z,, mz, and 72z, vanish on ms.
Using then the well-known techniques of estimation which is based on the
Bramble-Hilbert lemma, we can see that the following theorem is valid.

Theorem 18.1. The convergence rate of the difference scheme (18.5),
(18.6) is defined by the estimate

ly = ully < el A |ull m € (1,3], (18.29)

Wi (@)

where the positive constant ¢ does not depend on u(x) and h.



Construction and Analysis of Difference Schemes 115

19. Difference Scheme for a System of Statical Theory
of Elasticity

History of the matter. In the present section the results obtained
in Section 18 for the Poisson equation are generalized to a system of the
statical theory of elasticity. The results were published in [25].

1°. Statement of the problem. Consider the nonlocal boundary value
problem

aQul 2u2 aQul

A+2 A __n

2,,2 aQul 82u2 ) (19'1)
— + (A A2u) —5 = — Q

u'(z) =0, x €Ty,
. , (19.2)
w (t,ze)dt =0, 0 <o <V, u(x)=0, z€T,
0

where A\, u = const are the Lamé coefficients.

It is assumed that g > 0, A+ x> 0 and the problem (19.1) is uniquely
solvable in W3™(2), m € (1, 3].

We approximate the problem (19.1),(19.2) by the difference scheme

Ay+¢p=0, vew, (19.3)
y'(x)=0, €%, Sy'=0, x1="01, 20€Ws, y*(x)=0, z€v, (19.4)

where y = (y',4°), ¢ = (9", ¢%), ¢* = T2 f%, a = 1,2, (Ay)! = (A +
21)Y% o, + 05N+ W) (Y2 4y + V2 5,) + M5,y (AY)? = 2, +0.5(X +

29, The correctness of the difference scheme. Let ||y||%v1(w ny =
2 s

Iyl = VYl + lyll*, where [Vyl* = [IVy'[|* + [|Vy2]2, ly]* = ly*]* +
ly%(|?. Other notation not defined in this section is the same as in Section 18.
We investigate the solvability of the problem (19.3),(19.4). As a result of
the summation by parts we obtain

(y%lxl ’ Gyl)w - 7”1/%1 ”%1)7 (195)

(y%%cw Gyl)w - 7”1/%2 ”%2)7 (196)
h

(Y1000 Gy s = = ) haha <x1 + é)y;y;, (19.7)
h

(y:%liy Gyl)w = - Zh1h2 (xl — é)y%ly%y (19.8)

w
(V2yanr 219 ) = — D hahowa |12, [, (19.9)
wt
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(Y2100 1197 ) thleymlyzz, (19.10)
wt

e(Yayza0 T1Y° e Zhthxlymlym, (19.11)

(Y22 7157 Zh1h2 <x1 - —)l y2 |2 (19.12)

After some transformations, from (19.8), (19.10) it follows that

hy
(Y2 7, GY ) + (Ym0 T1Y7 ) = —2 E hihs (:Ul — Z)y%ly%, (19.13)
wt

from (19.7), (19.11) it follows

hy
(y%wvy Gyl)w + (y31;1§2,$1y2)w =2 Zhth (wl + 4 )y:clyl2’ (19'14>

w™

from (19.5) it follows

(y%m’Gyl)w =
- ——Zhth(Jcl - —>| g L Zh1h2($1 + )| yL 2 (19.15)

from (19.9) follows

(y%ﬂyxlzf)
- 7—2}11}12 (:cl - —) - Zh ha (:cl + )IyMI2 (19.16)

Multiplying scalarly (19.3) by Gy' and (19.4) by z1%?, summing up
the obtained results and taking into account the formulas (19.6), (19.12)-
(19.16), we obtain

2Wh = (¢, GyY)w + (9% 21970, (19.17)
where

1
Wi = 5 [IVyl*+

TR (Z s (1= +42) +Z haha (o) 0, 2,)°)

is the mesh analogue of energy of elastic deformation.
Similarly to Lemma 18.3, we prove that ||y||? < (1+4/1)||Vy||?. There-
fore from (19.17) we get

yli < (1+46) (0", Gy + (¥%, 219%)0). (19.18)

Thus if ¢ =0, € w, then y = 0. This means that the solution of the
problem (19.3), (19.4) exists and is unique.
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3°. The problem for the error of the method. Let z = y — u.
Substituting y = z + w in (19.3),(19.4), for the error z we obtain the
problem
Az+1Y =0, z€w,
1 1 — 2 (19.19)
2 (2)=0, zE€~y, Sz (l1,x2)=x(x2), T2€W2, 2°(x)=0, xE~,
where 1 = ¢ + A\u is the approximation error of the equation (19.1), and
X = —Sul(f1,22) is the approximation error of the nonlocal condition.
Let n = S;u! — %(u1 + ' (=1), nB, = Tz _uP —uP, an = S;S;u” —
% (uﬁ(—ll) T uﬁ(—b))7 a,B=1,2.
27145
Then T1T2 2 - uﬁ +(nga)5a$a7 T1T2 8(3:16:62 = % ( :C112+ flw2)+

TaZa

77?211127 ful(t,:cg)dt — Sul(f1,22) = x(x2) and the components of the
0
approximation error can be represented as

Y = (A +20)(Non)Faza+

)\Jru
t— (7712)1112 +u(nGs)zsesy B=3—a, a=12 x= th
wi
Let
2
wh =2t — E (b1 —z1)x(z2), w?=2% w=(w'w?). (19.20)

Then for w we obtain the problem with the homogeneous nonlocal condition
Aw + 1~# =0, z€w,

) ) ) (19.21)
w(x)=0, €%, Sw' ({1,22)=0, x2€W2, w(x)=0, x€"~,

s 2(A
where ! = 4" + ¥ (6 — 21)X,.,, 92 = 07 + 2 x,

4%, Estimation of the convergence rate.

Lemma 19.1. For the solution of the problem (19.19) the a priori
estimate |z|)1 < cJ(u), is valid, where J(w)= |1}y 1+ ks, |+ Infiz, |1+
1982, ] HIm20z, HHI30m, Xl HIXz, 1+, and the constant c does not depend
on u and h.

Proof. By virtue of (19.18), for the solution of the problem (19.21) we have
lw]f < (14 40)((W", Guw')o + (%, 210),). (19.22)

Using summation by parts and the Cauchy—Buniakowski inequality, we
find that

~ Ap
(0, Gt < 2V iz, ) w0y + 5= Ve oz, ) e, oy +

+ 30/ 01 3oz, ] 1w, ll2) + 2ullXa, 11w, || 2)- (19.23)
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Analogously,
(@ w1w?)y < A+ 2V 0oz, ] 02, [l o)+

)\Jru
Ve H7712;c1 ||w )+

2(A +p)
+3uﬂ_1|\w%1||<1>||n?m]|+ o Ixllllwg, [l ) (19.24)

Note that when deducing the inequality (19.24) we have used the esti-
mate

(77%151:61 ) mle)w =

= — Z h1h2($1__)7711:c1 Wz, — Z h1h2n1111 (’LU 42— 11))

wl Xwa wlwa
<V a2,y + i P < 3V o 2, -
Taking into account (19.23), (19.24), from (19.22) we obtain
lwlh < e (). (19.25)
Moreover, according to (19.20),

2
12l < llwlh + 7 ||
1

The inequalities (19.25), (19.26) complete the proof of the lemma. O

DX gy < llwlls +e(lxll + lIxz, [1+) - (19.26)

From Lemma 19.1, using the Bramble-Hilbert lemma we obtain the
following

Theorem 19.1. The difference scheme (19.3), (19.4) converges in the
mesh norm W4 (w r), and the convergence rate is determined by the estimate
ly — u||W1(w o < < clh|™™ 1||u||Wm(m, 1 <m < 3, where the positive constant

¢ does not depend on u and h.

20. A Nonlocal Problem with the Integral Condition for
a Two-Dimensional Elliptic Equation

History of the matter. In this section we consider a nonlocal bound-
ary value problem with integral restriction for second order elliptic equation
with constant coefficients. The existence and uniqueness of a weak solution
of the problem in a weighted Sobolev space are proved in the first part of
this section. The second part is devoted to the construction and investiga-
tion of the corresponding difference scheme. The a priori estimate of the
convergence rate,

Hy - u||W21(w,p) < Chm71||u||wl7ﬁ(n>’ m € (17 3]7 (20'1)

is obtained; here p = 2 for € € (0.5,1) and p > 1/¢ for € € (0,0.5].
The results of Section 20 were published in [28].
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1Y. The solvability of the nonlocal problem. Let Q = Qg = {(z1,22) :
0 < ap <1, k=1,2} be a square with the boundary I'; T', = T'\T'_;. Here
we consider the nonlocal boundary value problem with integral restriction
for the second order elliptic equation with constant coefficients

Lu= f(z), x € Qu(x)=0, z €Ty, Lu)=0, 0<zy<1, (20.2)

where

and the coefficients satisfy the conditions

2

Z agjtit; > (6] +13), v1 >0, ag > 0. (20.3)
ij=1
We choose the weight function p(x) as follows: p(z f B(t)

5. Define a subspace of the space W, (€, p) Which is obtained by closmg the
set C"X’ {UGC‘X’ Q) : suppunT,=g, fﬂ (z1)u(x) dzy =0, 0<x2<1}
in the norm || - |1 (q,p)- Denote it by W%(Q,p).

Let the right-hand side f(z) in the equation (20.2) be a linear continuous
1

*
functional on W, (2, p) which is representable as

f= fo+%+%, fi(@) € La(Q,p), k=0,1,2. (20.4)

The function u € W% (€, p) is said to be a weak solution of the problem
(20.2)—(20.4) if the identity

a(u,v) = (f,v), Vo e WHQ,p), (20.5)
is fulfilled; here

ou Ov ou Ov
a(u,v) = (a11301 o . o + (a12 + az1)x] — D2q 011 —+
Q

+agp — G — + aoqu) dx, (20.6)

(f,v) :/fOGvdx—/:cifla—;lda:—/nga—xQd:c, (20.7)
Q Q
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Gu(z) = pv(z) — /6(t)v(t,x2) dt. (20.8)
0

(The equality (20.5) is obtained formally from (Lu — f, Gv) = 0 by integra-
tion by parts.)

To prove the existence of a unique solution of the problem (20.5) (a
weak solution of the problem (20.2)—(20.4)), the use will be made of the
Lax—Milgram lemma ([s1]). First of all, we establish some auxiliary results.

Lemma 20.1. Let u,v € La(2,p), and v(x) satisfy the condition
¢(v) =0. Then

1+¢
|(w, Gv)| < T llully@n 1V]2s@0 (20.9)
o2 ., < (v,Go), (20.10)
ol 0 o) < GOl < 22+ D)ol o (2011)

Proof. Since C>(£2) is dense in L((, p), it is sufficient to prove the lemma

for arbitrary functions from C°° ().
Using the Cauchy inequality, we obtain

|(w, Go)| < lull 0, (1] 1y, + € T2(0)), (20.12)
where
xr1 9
Ji(v) = /:El_6</t€1v(t,x2)dt> de =
Q 0
z1
2 e—1 2
=13 v(z) [ 7 vt ze) dtdr < T V[l 1,0« J1(v):
Q 0

Thus Ji(v) <2(1—¢) "]l ., and from (20.12) it follows (20.9).
The inequality (20.10) is the consequence of the identity (v,Gv) =
HU||§2(Q@ +0.5¢(1 — &) JZ(v).

Let left-hand side of (20.11) follows from the identity

IGu|)? = / 20 () de + (&2 + ) (Ta(0)?,

Q
(J2(v))? Q/<O/t€1v(t,x2)dt) dz.

To prove the validity of the right-hand side of (20.11), it suffices to

notice that
T

(Jo(v))* = fQ/xiv(:c) /t“lfu(t, x2) dtdx < 2||UHL2(Q,/)2)J2(U)’
Q 0
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ie., (J2(v))? < 4||v||%2(Q p2)- Thus the proof of the lemma is complete. [

Lemma 20.2. If u € W3(Q,p), then

|ul < e1ul =41 +¢e)"2+1)V2

wian Sl Saluly g,

* _ *
Proof. Since C*°(Q) is dense in W3(£2, p), it is sufficient to prove the lemma

o
for an arbitrary u € C*°(Q).
The left inequality of the lemma is obvious. Integration by parts results

in
0
/xiuQ( Ydz = —/ (z;‘ajlu () + 225 u(x) —u) dx.
811
Q Q
Consequently,
(I+¢) /:clu
Q
R ou ctra| OU |2 1/2
=2 [t g e < 2, < [ as)
Q Q
so

2 Ju |2 1/2
+2
il < 7o ([ o|5m] )
Q

Application of this inequality completes the proof of the lemma. Using
Lemmas 20.1, 20.2 and the conditions (20.3), from (20.6) follows the con-

tinuity: |a(u,v)| < cof|ul| co >0, Vu,v € Wi(Q,p) and

vt g

Wa-ellipticity: a(u,u) > c3jul/? ,c3 > 0,Vu € Wi(8, p) of the bilinear

wi@.p)’
form a(u,v).

Again, using Lemmas 20.1 and 20.2, from (20.7) follows the continuity
of the linear form (f,v), |(f,v)| < C4H’U||W1(Q >0,V e W3, p).

2 P

Thus all the Lax—Milgram conditions are fulfilled, and hence the follow-
ing theorem is valid. O

Theorem 20.1. The problem (20.2)—(20.4) has a unique weak solution

*
from WH(S, p).
20, The difference scheme. Here we introduce mesh domains with the

step h=1/N. Let 7. =T, NW, w1 = {x1: @1 =ih, i =1,2,... k}.
Denote Br=T76, B~ =Ty B, 5k:l(5+(kh)+ﬁ_( h)), By = 6% =0,

Z hﬁk—— ﬁ+ It is not difficult to notice that p; = fﬁ t)dt=p(ih).
k=0
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Let pt = p+ 28t =S8fp, p-=p—54B =Spp=350p"+p)
The difference analogue of the operator G from (20.8) is defined as follows:

i Biy(ih, x2). (20.13)

Gy =Py — Py, Py(ih,zs) Zﬁky (kh, w2) — 5

k=0

By H we denote the set of the mesh functions defined on @ and satisfying
the conditions

N
y=0, €, Ly = Zﬁky(k:h, x2) =0, X2 € wo. (20.14)
k=0
Let
= > hhyo, lyll=(u.9)6, llyll; =Y mhpy®, lyll; = Y hhoy?,
Wy Xw2 Wy Xwa Wi xwy

1% = Iyll* + 1Vyl?, 1Vl = llys 1) + 19z,
Yz, 1ty = 07Uz Yo )t xwar NWm2ll2) = 1922117,

Il = S0, ol Zhy

We approximate the problem (20.2)—(20.4) by the difference scheme
Lpy=—anyz e, —2012Y3 o —0a22Yz,0, +aoy=(z), rew, yeH, (20.15)

where ¢ = T1Ta fo + (S7 Taf1)z, + (1155 f2),-

Lemma 20.3. For the mesh functions y(x) satisfying the conditions
lh(z) = 0, y(1,22) = 0, z2 € wo, the estimates (y,Gpy)w > ||y||§’
¥ GrY)u, xwt 2 lyl]2 are valid.

Proof. We can show that

N—-1
" hy(ih,@2)Py(ih, x2) = ﬁ (g y0.a2) +d (206)

=1

where J3=0 for N=2 and ng% > (ﬁL - ﬁ_l - ) (Py(ih, Xo)— % Biy(ih, @))2
£t \Bi " Bi-

for N > 2. -
If we observe that J3 > 0 by (1/8;) — (1/8i—1) > 0, and also 85 > fi,

then from (20.16) it follows that Lemma 20.3 is valid. O
Lemma 20.4. For any function y € H the estimate
v
(Lny, Gry)w = cs|lyllt, s = 7, (20.17)

is valid.
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Proof. The identities

D hve,Gry ==Y hp vyz, Y hvgGry=—> hptoy,,,
w1 wrr w1 w;
where v is an arbitrary mesh function, are valid. Therefore

1 _ 1
7(yf1z1aGhy)w:_ Z h2p (y51)2+_ Z h2p+(ym1)2a (2018)

> >
wi xws wf Xwa
1
~(Ws,5, Cnv)e =5 D W0 umyg, +— Z Wp ymys, . (20.19)
wi Xwa “’1 Xw2

Moreover, using Lemma 20.3, we obtain

7(yf2$2a Ghy)w Z ||y§2|‘(22) (2020)

Let p=p+ 28T - 285, p=p— 28" +2085. Thenp=1%(+p),
po = % B¢ and after some transformations, (20.18) yields

—(Yz121, GrY)w Z h2j( Z Rp(ye,)?,  (20.21)

“’1 Xwa “)1_ Xwo

from (20.19) it follows

1 _
~(y5.5,, Gry)e Z Whymyg, +5 D, Whumys,.  (2022)

“’1 X wa Wi Xwy

from (20.20) we have

1 2~ 2 1 2 < 2
~(Ymaaz, Gny)e > 5 > PPp(ys,) +3 S h(yn,)? (20.23)

Wy Xw; w1 Xwy

Taking into account (20.21), (20.22) and (20.23), from (20.15) we obtain

(Lhvahy Z h2pF(y£15ylz Z hQﬁF(y§17yf2)+

+ + ot
wi Xwy wi Xwj

+ > WPF(erYea) + Y BPF(Yay ym) + a0y, Gry)w,  (20.24)
Wy Xwy Wy ><u.12+
where F(t1,t2) = ai1t? + 2a1atits + agets. If we notice that
T h
1 1 .
=y p(t)dt+% pt)dt >0, z1 € wy,
0

z1—h

1931+h 1 h
h/p(t) —h/p t)ydt >0, 1 € wy,
0

)
I
I
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then by the ellipticity conditions (20.3), from (20.24) follows the estimate
(Lry, Gry)w > v1||Vyl|?, which together with ||y|| < 2||Vy| proves the
lemma. ]

Thus if ¢ = 0, x € w, then y = 0, and hence the difference scheme
(20.15) is uniquely solvable.

Lemma 20.5. If the mesh function y defined on w satisfies the condi-
tions {p(y) =0, y(1,22) =0, x2 € wa, then
1/2

‘Zhthy‘ < C(Zhﬁ02>1/2(zhpy2) 7

w1

where v is an arbitrary mesh function.

Proof. From the definition of the operator G, it follows that

‘ 3 hthy‘ < ( 3 hﬁvQ) i (( 3 hmf) A J4(y)) , (20.25)
where J3(y) = %ﬁ h(p)~ ' (Py)*.

Denote 2(Py); = S hBry(kh,zs), o Zﬁi, = 0. Then (Py); +
k=0 k=1
(Py)i—1=(Py)i, (Py)i~(Py)i-1= héji y(ih, x2), ( V)N—1=0,0,—0;-1 = ﬁ_hl’
and we have
N—-1 N N
Tiy) <23 (00 —0i1) (Py)? + (Py)? ) =
i=1
N—1 N N
=-2) (oi+0i1)((Py); — (Py)i,) =
i=1
-1
= (05 + 0i—1)hBiy(ih, z2)(Py);. (20.26)
i=1
Let us show that
(Ui +o0i-1)0;i <c. (20.27)

Indeed, for i=1, o1+00=0.5(14+€)(2h)' 7, B1=hc"1(e +1)71 (271 -2)
and (o1 + 09)f1 < 1.
(k+1)h
For i > 1, we have p, = 2 [ p(t)dt > t;_,, t, = kh. By the
(k=1)h
Lagrange theorem, ¢, 5 —t,~5=(1—e)hé = > (1—e)ht; ° |, tp—2 <E<tp_1.

tla tls

3
Therefore (p;) " < (ti-1)"° < 27572, k=2,3,..., 3 h(p,) "' <
k=2
1—e 1—e i
tf +=%, and since h(p;)"' = 4= (20)17F < tf:;, therefore Y h(p,)™' <
k=1
2t} 7% =y . -1
T 0i t o1 < 20y < 4=, 1 = 2,3,.... Moreover, 3; < et;";, i =
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2,3,..., and hence (o; + 0;—1) < 14f€, i =2,3,.... The inequality (20.27)
is proved.
Using (20.27), from (20.26) we obtain
1/ 1/2
<th|yPy| <C(thy ) Ju(y), ie. Ju(y <C(Zh ) ,
which together with (20.25) completes the proof of Lemma 20.5. O

To study the problem on the convergence and accuracy of the difference
scheme (20.15), we consider the error z = y — u, where y is a solution of the
difference scheme, and u = wu(z) is a solution of the differential problem.
For z we obtain the problem

Lyz=1v¢, x€w, 2=0, €7y, Lh(2)=x(z2), T2 € wo, (20.28)

where ¢ = allnllxlazl+a127712:51:62+a227722x2m2+a07’0; 1o = T1Tou—u, Noa =
u—Ts_qu, @ = 1,2, mp =3 (u+ul"1) u(712) 4o (711=12)) 26787y (7)),

X =(u) =l (u).
Noticing that

0= [ 0

"-’1 T1—

t—x1+h
h

u(xl — h,xo) + u(xl,:cg)) dt,

we can represented y in the form
8214(5’ 12)

x:z;n, n*/ﬁ 962

/ ﬁ x1+h/(€—$1)62u(€,x2) de dt.

(g — 11+ h) de di+

&2

Obv10usly7 x = 0 for u(z) = 1 — x1. Consequently, ¢,(1 —z1) =
(1 —x1) =1/(1+ ¢€), and substitution

1-— X1
20.29
() (20.29)

reduces the problem (20.28) (in which the nonlocal condition is inhomoge-
neous) to the problem with the homogeneous conditions

z(x) =z(z) +

LiZ=1, tcw, 2€H, (20.30)

where w P+ 2a12( e X)O o + a22(11_f€1 X)im ao 14:? X

T1T2

Using Lemmas 20.4 and 20.5, for the problem (20.30) we obtain the a
priori estimate

12111 < e(llmiz s xws  Im202 it sy +

22z L, ot + 170/l + Il + [z, 1) (20.31)
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For the error of the method we obtain from (20.29) the estimate ||z||; <
IZ01 + c(llxll« + lIxz,1]+), which together with (20.31) yields

l2lls < ellmim g sy + 1202 oty

Hlm22zs [y ot + 10l + X1 + lIxg, 1) (20.32)

To obtain the estimate of the convergence rate of the difference scheme
(20.15) it is sufficient to estimate the corresponding norms of x and the
components 111, 112, N22, Mo of the approximation error in the right-hand
side of (20.32).

Let us estimate X, . Note that the linear with respect to u(x) functional
Nz, is bounded in W) (), pm > 1, and vanishes on the polynomials of sec-
ond order. Consequently, using the Bramble-Hilbert lemma, for the above

z1
functional we obtain the estimate |nz,| < ch™ 172/ [ B(t)dt|ul
:El*h
pm>1,mée€ (1,3], e = (1 — h,x1) X (x2 — h,z2). Thus

T p—1

1 (e=Dp P
|7752| SChm ! 1/1)( / tet dt) |U’|W§"’(6)a

xl—h

m K
Wi (e)

x1 p—1

(e=1) P
it ([ a) T g,

w1

:El*h
Applying Holder’s inequality, we obtain

p—1

1
(e—=1p P
|Xx2|§chm11/p</t P dt> (] ey €=(0,1) % (22 — h, 22).
0

L1
Obviously, [t 1 dt = 6’;;11, p > % Therefore, choosing p = 2 for
0

e € (0.5,1), and p > 1/e for € € (0,0.5], we have [x,, | < chm=1=1/p|y|

Wi (e)?
Xz, 112 < ch?m=2=2/p 3" lul? ., - Taking here into account the inequality
+ P
Wa
z; |u|‘2/vgn(€) < ch*1+2/10|u|3v;n(g) we finally have ||x,, [« < chm’1|u|wy(m.
Wa

An analogous estimate is obtained for ||x||«. Taking also into account
the well-known estimates for n11, M2, 722, 1o, from (20.32) we prove the
theorem on the convergence.

Theorem 20.2. The finitely-difference scheme (20.15) converges, and
for its convergence rate the estimate (20.1) is valid.
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