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Abstract—Efective necessary and sufficient conditions are established for the stability in the
Lyapunov sense of solutions of the linear system of generalized ordinary differential equations

dx(t) = dA(t) - z(t) + df (2),

where A : Ry — R™™" and f: R, — R” (Ry = [0,+00[) are, respectively, matrix- and vector-
functions with bounded total variation components on every closed interval from R4, having proper-
ties analogous to the case of systems of ordinary differential equations with constant coefficients. The

obtained results are realized for linear systems of both impulsive equations and difference equations.
© 2005 Elsevier Ltd. All rights reserved.
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1. STATEMENT OF THE PROBLEM
AND FORMULATION OF THE RESULTS

Let A: Ry — R™" and f : Ry — R™ (Ry = [0,+00[) be, respectively, matrix- and vector-
funetions with bounded total variation components on every closed interval from R,. Consider
the system of linear generalized ordinary differential equations

dz(t) = dA(t) - z(t) + df (t). (1.1)

In this paper, the problem on the stability in the Lyapunov sense with respect to small per-
turbations is investigated for solutions of system (1.1). In particular, effective necessary and
sufficient conditions are obtained for the stability and asymptotic stability of this system which
generalize the previous one in [1,2]. They are the analogues of the well-known conditions for the
stability of linear ordinary differential systems with constant coefficients (see, e.g., [3.4]).

To a considerable extent, the interest to the theory of generalized ordinary differential equa-
ticns has been stimulated also by the fact that this theory enables one to investigate ordinary
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differential, impulsive, and difference equations from the unified viewpoint. In particular, in
form (1.1} can be rewritten:

(a) the impulsive system

%f:, = Q(t)z + q(t), forteR,, (1.2)
o(let) = 2(te~) = Gra(te—) + ge,  k=1,2,..., (1.3)

where @ : R} — R™*™ and ¢ : R, — R™ are, respectively, a matrix- and a vector-function
with Lebesgue integrable components on every closed interval from R,; G, € R"*"
(k=1,2,..)}, e €R*" (k=1,2,...),0 < t; <tg < -+, im0t = +o0;

(b) the difference system

Ay(k — 1) = G1{k — L)y(k — 1) + Ga(k)y(k) + Ga(k)y(k + 1) + go(k), k=12,..., (14)

where G;(k} € R**" and go(k) €eR" ( =1,2,3; k=0,1,...).

Quite a few questions of the theory of generalized ordinary differential equations (hoth linear
and nonlinear) have been studied sufficiently well (see [1,2,5-15] and the references therein). In
particular, some questions of stability have been investigated, e.g., in [1,9,10,14] (see also the
references therein). Analogous questions are investigated, e.g., in [1,2,5,8,16-18] for impulsive
and difference systems.

Throughout in the paper, the following notation and definitions will be used.

N={1,2,...}, Ng =0UN, R =] — o0, +o0], [2,}] (a,b € R) is a closed interval. [ is an
arbitrary closed or open interval from R. [f] is the integral part of + € R. C ia the space of all
complex numbers 2; |z| is the modulus of 2.

R™*™(C"*™) is the space of all real (complex} n x m-matrices X = (z;);;Z; with the norm

kg m

IXI =" 3" lessls

i=1 j=1
|X| = (|25 )75 Onxm (or O) is the zero n x m-matrix.

If X € C**7, then X! is the matrix,inverse to X; det X is the determinant of X, In X is the
logarithm (the principal value) of X, and r{X) is the spectral radius of X. diag(Xy,...,Xm),
where X; € C%X% (j = 1,...,m), n1 + iy = m, i8 a quasidiagonal n x n-matrix; I, is
the identity n x n-matrix; d;; is the Kronecker symbol, ie., §; = 1 and 6;; = 0 for i # j
(1‘!.7 =1,2,.. '); Zn = (61:+1j)?,j=1'

R™ = R™*! is the space of all real column n-vectors z = (z;);.

The inequalities between the real vectors (matrices) are understood componentwise.

If X : Ry — R™™ is a matrix-function, then V&(X) is the sum of total variations on [a, b] of
its components zy; (i =1,...,n; j =1,...,m); V{(X)(t) = (v(z;)(2));j=1, where v(z)(0) = 0,
v(zy)(t) = Vi(zy) for t >0(i=1,...,n; 7 =1,...,m).

X(t—) and X{t+) are, respectively, the left and the right limits at the peint ¢ € Ry, (X(0-) =
X(0)); diX(t) = X() — X(t-), do X(t) = X(t+) — X(2).

BV([a, b); R®*™) is the set of all matrix-functions X : [a,b] — R®*™ such thatv?(X) < +co.

BVioc{I; R**™) is the set of all matrix-functions X : I — R™*™ such that V&(X) < +oo for
a,bel

Lioc(I;R**™) is the set of all matrix-functions X : I — R"*™ whose components are the
functions measurable and Lebesgue integrable on every closed interval from R,.

éloc(I ;R"™™) ig the set of all matrix-functions X : I — R™™™ whose components are the
functions absolutely continuous on every closed interval from I.
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éloc(]R+\{tk};?:1; R™*™), where 0 < t; < ¢3 < - -+, is the set of all matrix-functions X : Ry —
R™*™ whose restrictions to an arbitrary interval I C R, \ {£x}52, belong to Ci,o(f; R**™).

A matrix-function is said to be continuous, integrable, nondecreasing, ete., if such is every its
component.

8, J : BV (Ry;R) — BV (R4 ;R) (F = 0,1,2) are the operators defined, respectively, by

31(2)(0) = s2(2)(0) = 0;
si@®) = Y diz(r), sa(@)t)= Y dax(r), fort >0
o<TSt o<t
so(z)(t) = z(t) - s1(x)(t) - s2(2)(2), for ¢ € Ry,
and
J(z)(0) = =(0),
J(@)(t) = so(@)t)~ 3 W[l —diz(r)|+ Y In|l +dga(r)], fort>0.

O<T<t LT <t

If g: R; — R is a nondecreasing function, z : B, —» R and 0 < s < ¢, then

L 2() dg(r) = /] OO+ T s)dor)+ 3 o) daole),

8<TLE FETCE

where jia i x(7) dsog{T) is the Lebesgue-Stieltjes integral over the open interval s, t[ with respect

to the measure corresponding to the function so{g) (if s = ¢, then f: z(r)dg(T) =0).
If g(t) = g1(t) — ga(t), where gy and g, are nondecreasing functions, then

/tl‘("') dg(r) = ftﬂ?(f) ds1{g)¢T) — /t (7)) dsa(g)(7), for0<s<t

Lige (R, R; g} is the set of all functions z : Ry — R such that

/O ’ 2t

G = (g,-k):::=1 € BVjoo(Ry; R*7) and X = (z4;)2, : Ry — R™™, then

dg,(t) < oo, forbeRy, j=1,2,

SJ(G) (t) = ('Sj (gik)(t))i:';:=1 ’ i=0,1,2,

{,m

, for0<s<t.

/th('r) - X(7) = (Ef ij(‘f)dg-'k(T))
5 k=177 §,4=1

A BV (Ry; R™*™) X BVip (R4 R?*™) — BV (R4 ; R**™) is the operator defined by

AX,Y)(0) = Y (0),
AXYY)=YO+ Y dX(r): (In—diX(r) " di¥(r)

— Y BX(@) - (In+dX(7) ' dY(r), fort>0.

0gr<t
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We say that the matrix-function X € BVjo.(R4; R"*") satisfies the Lappo-Danilevskii condi-
tion if the matrices Sp(X)(t), S1(X)(t}, and S3(X)(t) are pairwise permutable for every t € R,
and

H i
/0 So(X)(r) dSe(X)(r) = fo dSo(X)(7) - So(X)(),  for t € Ry,

E(J, D), where J C Ny and D ¢ R**™, is the set of all matrix-functions Y : .J — D.
A is the first-order difference operator, i.e.,

Ay(k-1)=yk) —glk—1), k=1,2,..., forye E(No;R").
We use the following formulas:
b t b
/ ft)d ( / o(s) dh(s)) - f F(t)gt)dh(t)  (substitution formula);

b b
f (&) da(t) + f F(&)dg(t) = F(B)a(b) ~ F(@)a(a)
+ Z dif(t) - daglt)

o<tk
- Z daf(2) - dag(t) (integration-by-parts formula);
agi<h
b b“t b
[ rods©a®) = [ 1@ o+ [ heeOF® - 3 b))

a<t<h

+ Y h(e)daf(t) - daglt)

ast<h
(general integration-by-parts formula);

b b
[ 1= 3 foaee, [ 1@ dsor= 3 f@dat)

a<t<h a<t<h

4 ([ " 1ts) ) = SOdsa®,  fortefad, j=12

for f,g,h € BVio(Ry;R); a,b € Ry; @ < b (see [15, Theorems 1.4.25, 1.4.33, Lemma 1.4.23]).
By a solution of system (1.1} (of the system of generalized differential inequalities

dx(t) < dA(E) - (1) + dF (1))

we understand a vector-function z € BV ,.{R;R") such that

z(t) — z(s) = f dA(T) - z(T) + f(t) — f(s)(<), for0<s<t.

We assume that A € BVic(R4;R®™™), A(f) = (04;(1)) =1, A(0) = Onxn, f € BViec(R4;R"),
and
det (I, + (—1)7d; A(t)) #0, forteR,, j=1,2. (L.5)

Condition (1.5) guarantees the unique solvability of the Cauchy problem for system (1.1)
(see [15, Theorem IIL.1.4]).
Let X € BVoo(R4; R™*™) be a fundamental matrix of the homogeneous system

dz(t) = dA(t) - =(t), {1.15)
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and let = be a solution of system (1.1}. Then

#(t) = f(t) — f(to) + X(t) {X ~Hto)z(to) — ft t dXY(s) - (f(s) — t(to))} , forte,teRy

(variation-of-constants formula, see [15, Theorem II1.2.13]).
If 8 € BV, (R, ;R) is such that

14 (-1Yd;B(t) #0, forteRy, j=1,2
then by v{#) we denote the unique solution of the Cauchy problem
dv(t) =~(1)dB(t),  ~(0) =1

It is known (see [11,12]) that v(3){0) =1,

YB)(t) = exp (so(B)(t) — 50(8)(0)) [T 1—diBr))™" J[ (1 +B(r)), fort>o0.

0<Tst oL Tt

The stability in one or another sense of a solution of system (1.1) is defined in the same way
as for systems of ordinary differential equations.

DEerFINITION 1.1. System (1.1} is called stable in one or another sense if every its solution is
stable in the same sense.

It is evident that system (1.1) is stable if and only if the zero solution of its corresponding
homogeneous system (1.1o) is stable in the same sense.

Therefore the stability is not the property of some solution of system (1.1); it is the common
property of all solutions, and the vector-function f does not affect this property. Hence it is the
property only of the matrix-function A. Thus, the following definition is natural.

DEFINITION 1.2. A matrix-function A is called stable in one or another sense if system (1.1p) is
stable in the same sense.

THEOREM 1.1. Let the matrix-function A € BVi,.(Ry; R"*") be such that

So(A)(t) = sola)(t)- Bi, forteRy, (1.6)
1=1

and o
L, + (—1)d; A(t) = exp ((—l)j Zdja;(t) - B;) ) forteRy, j=1,2, (1.7)
=1
where oy € BV o (R4 Ry (T=1,...,m), and B e R"*" (I =1,...,m) are pairwise permutable
constant matrices. Let, moreover, (A — A)™ (i = 1,...,mu; Yoo, 7 = n) be elementary
divisors of the matrix By for every l € {1,...,m}. Then:
(a) the matrix-function A is stable if and only if

sup {ﬁ (i {1+ (t))"“_l exp{oy(t) Re.\;.-)) = ]R+} < +00; (1.8)
i=1 \i=1

(b} the matrix-function A is asymptotically stable if and only if

Jim ] (2'3(1 + (6" explon() Re)\u)) =o. (1.9

=1 \i=1
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CoRrROLLARY 1.1. Let conditions {1.6) and (1.7} hold, where By ¢ R™*" (I = 1,...,m} are

pairwise permutable constant matrices, and ap € BV .(R+;Ry) (I =1,...,m) are such that
t_l}gloo a(t) = 400, I=1,...,m. {1.10)
Then:

(a) the matrix-function A is stable if and only if every eigenvalue of the matrices By {{ =
1,...,m) has the nonpositive real part; in addition, every elementary divisor, correspond-
ing to the eigenvalue with the zero real part, is simple;

(b) the matrix-function A is asymptotically stable if and only if every eigenvalue of the ma-
trices By (I = 1,...,m) has the negative real part.

If the matrix-function A € BV),(Ry;R**™") has at most a finite number of discontinuity
points in [a,£] for every t > 0, then by 14 (t) and (¢} we denote, respectively, a number of points
7 €0, t] for which ||d; A(7)|| # 0 and a number of points T € [0, ¢], for which ||dz A(T)|| # 0.

COROLLARY 1.2. Let A € BVioo(R4;R**™) be such that
So(A)(t) = a(t) Ag, fort e Ry,
and
dAG) =45, FGA®] 40, teRy, j=12
where o € BVioo(R4;Ry) Is a continuous function satisfying
lim aft) = +oc,
tet 00

and Ay, A;, and Ay € R™*"® are pairwise permutable constant matrices. Let, moreover, there
exist numbers f, 32 € Ry such that

limsup |v; () — B;0(t)| < +oo, i=1,2. (1.11)

t—+oo
Then:

(a) the matrix-function A is stable if and only if every eigenvalue of the matrix P = Ag —
BrIn(I, — Ay) + B2 In(I, + A;) has the nonpositive real part; in addition, every elementary
divisor, corresponding to the eigenvalue with the zero real part, is simple;

(b) the matrix-function A is asymptotically stable if and only if every eigenvalue of the ma-
trix P has the pegative real part.

COROLLARY 1.3. Let the matrix-function A € BVioo(Ry; R**™) be such that
So(A)(t) = Cdiag (So(G1)(t),. .., Sa(Gm)(t)) cL, forte Ry,

and

In+ (~1Yd; A(t) = C diag (exp ((—1)7d;G1(8)) ;.- ., exp (1Y d;Gm(t))) C,
forteRy, §=1,2,
where C € C"*" is a nonsingular complex matrix, Gy(t) = E:‘;El au(t)Zy, @ = 1,...,m;
Yoy =n), 01 € BV (Ry;Ry) (1=1,...,m;i=1,...,ny — 1), and o, is a complex-valued
function such that Reoyy and Imayg € BV o (R4 ; R). Then:
{(a) the matrix-function A is stable if and only if

n;—1
sup {exp (Re oy, (t)) H {14 oy, (t))[("'—l)m tE ]R+} < 400, i=1,...,m

i=1
(b} the matrix-function A is asymptotically stable if and only if

ﬂ]—l .
Jim_exp (Re oy, (£)) [T +a @)D =0, 1=1,.. m

i=1
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THEOREM 1.2. Let ay € R (i, =1,...,n), and p; : Ry — R (i =1,...,n)} be nondecreasing
functions such that so(p;) € Cloe(R4;Ry) i=1,...,7n) and

t_]&'glm ap(t) = +oo0, ;= ltim_én.f {aidaps(t)) > -1, i=1,...,n, {1.12)

where ap(t) = futno(s) ds + 3 ocect N1 — m(8)] — 2pcsci In|1 + m2(8)], M0 (t) = min{low| -
(so(ps)(®)Y :i=1,...,n}, 5;(t) = max{ogd;pui(ty i =1,...,n} ( =1,2). Then the condition

ay; <0, t=1,...,n, T(H) <1, (113)

where H = ((1 — 8u)(1 4 |ou]) ™ |evatl|ewss| =1)7 1=y, is sufficient for the matrix-function A(t) =
(@uipai(t)) iy to be asymptotically stable; and if

ay >0, il il=1,...,n {1.14)

and

Z ardypi(t) < min {1 — ayady pi(t), |1 + cusdapa ()}, forte Ry, i=1,...,n, (1.15)
=1, l£

then condition (1.13) is necessary as well.

1.1. Impulsive Systems

By a solution of the impulsive system (1.2),(1.3) we understand a continuous from the left
vector-function z € Cloc(Ry \ T;R™) (T = {t1,t3,...}) satisfying both system (1.2) almost
everywhere on |t, %51 [ and relation (1.3) at the point ¢, for every k € {1,2,...}.

The stability in one or another sense of solutions of system (1.2},(1.3) as well as the stability
of that system is defined as above.

Besides the homogeneous system, corresponding to the impulsive system (1.2),(1.3), is defined
by the pair (@, {Gx}32,). Therefore in this case we discuss the stability of this pair instead of
the stability of the matrix-function A.

We assume

det{I, + Gi) #0, k=1,2,.... (1.16)
By v(t) (¢t > 0) we denote a number of the points £ (k=1,2,...) belonging to [0,£[.
THEOREM 1.3. Let @ € Lioc(R4; R"*™) and G, € R*** (k =1,2,...) be such that

¢ m
f Qrydr=3 oa()Bi,  forteRy, (1.17)
e i=1
and
m
Gk = eXp (Z CEMB:) et I.n, k= 1, 2, - (118)
I=1
Here B; € R"*™ (I = 1,...,m) are pairwise permutable constant maitrices, ag € BVio(R1;R)
(t = 1,...,m) are continuous functions, and oy € R I = 1,...,m; k = 1,2,...) are numbers

such that oy(t) >0 fort e Ry (i=1,...,m), where

oy (t) = oy (8) + z it fortcRy, 1=1,...,m (1.19)
0<tx<t

Let, moreover, (A — A)™ (i = 1,...,my; Yo, ny; = n) be the elementary divisors of the
matrix By for every | € {1,...,m}. Then the pair (Q, {Gi}:Z,) is stable (asymptotically stable)
if and only if condition (1.8) (condition (1.9)) holds.



964 M. ASHORDIA

COROLLARY 1.4. Let @ € Lioo(R4;R"™")} and Gy € R™*™ (k = 1,2,...) be such that con-
ditions (1.17) and (1.18) hold, where B; € R™*™ (I = 1,...,m) are pairwise permutable con-
stant matrices, ag € BV (Ry;Ry) (! = 1,...,m) are continuous functions, and o € R
(t=1,...,m; k = 1,2,... ) are numbers such that the functions ay(t) (I = 1,...,m), defined
by (1.19), are nonnegative and satisfy condition (1.10). Then:
(a) the pair (Q,{Gk}32,) is stable if and only if every eigenvalue of the matrices B; € R**»
(t =1,...,m) has the nonpositive real part; in addition, every elementary divisor, corre-
sponding to the eigenvalue with the zero real part, is simple;
(b) the pair (Q, {Gx}i2,) is asymptotically stable if and only if every eigenvalue of the ma-
trices B; € R™*™ (I = 1,...,m) has the negative real part.

COROLLARY 1.5. Let
Q) = alt)}Qo, forteRy, Ge=Gy, k=12,...,
and there exist 8 € R, such that

limsup [v{t) — Bt < +o0,
t—+o0

where Qo and Go are permutable constant matrices, and o € Ejoc{R4;R) is such that

+o0
/ a(t) dt = +oo.
Q

Then:

(a) the pair (Q,{Gr}{2,) is stable if and only if every eigenvalue of the matrix P = Qg +
B1In(I, + Go) has the nonpositive real part; in addition, every elementary divisor, corre-
sponding to the eigenvalue with the zero real part, is simple;

(b) the pair (Q,{Gx}2,) is asymptotically stable if and only if every eigenvalue of the ma-
trix P has the negative real part.

COROLLARY 1.6. (See [18].) Let Q(t) = Qo, Gx = Go (k =1,2,...), and x4 — tx = 7 = const
(k = 1,2,...), where Q¢ and Gy are permutable constant matrices. Then the conclusion of
Corollary 1.4 is true, where P = Qo + 71 In(Z,, + Go).

THEOREM 1.4. Let ay € R, s € Ry (3,1 = 1,...,n; k = 1,2,...}, and i; € Lio.(R4;R,)

(i=1,...,n) be functions such that the conditions
+o0
f nes)ds+ Z In|l+n)=—co
0 0t <00
and
o; = Uiminf (osvp) > ~1, i=1,...,n,
k— 400

hold, where n{t) = min{|a|w(t) 13 =1,...,n}, o = max{oup i =1,...,n} (k=1,2,...).
Then condition (1.13), where H = ((1 — u)(1 + |o|} vt | s |1} .y » I8 sufficient for the pair
(@, {Gr}2,) to be asymptotically stable, where Q(t) = (cavi(t))Py and @ = (auvi)li_,
(k=1,2,...); and if condition (1.14) holds, then condition (1.13) is necessary as well.

REMARK 1.1. From Theorems 1.3, 1.4, and Corollaries 1.4-1.8, if we assume G = Opxn,
op=0, v =0 =1,....m;i=1,...,n; k = 1,2,...) and § = 0, follow some results
for the stability and asymptotic stability for the linear system of ordinary differential equations

% = Q(t)x + g(t), forteR,.



Lyapunov Stability 965

1.2. Difference Systems

Let yo € E(Ng; R™) be a solution of the difference system (1.4} and let G € E{Ny; R**") be
an arbitrary matrix-function.

DEFINITION 1.3. A solution yg € E{No;R™) of system (1.4} is called G-stable if for every ¢ > 0
and ko € Ny there exists § = §(e, ko), such that for every solution y of system (1.4), satisfying
(£ + G(ko) ) (g (ko) — yo(ko))|| + lly(ko +1) — yolko + 1)|| <4,
the estimate
| + CN W) — ol + Ik +1) —wo(k+ 1) <&,  fork > ko,
holds.

DEFINITION 1.4. A solution yo € E(No;R™) of system (1.4) is called G-asymptotically stable if
it is G stable and for every kg € Ny there exists § = é(kg) > 0 such that for every solution y of

system (1.4), satisfying
| (In + G(ko)) (y(ko) — yo(ka))|l + lly(ko + 1) — wo(ko + 1}|| < &,

the condition

o ([ + G(E)) (k) ~ yo (k) + lly(k +1) — yolk + 1)) =0

holds.

We say that yo is stable (asymptotically stable) if it is Opxn-stable (O, xn-asymptotically
stable).
DEFINITION 1.5. System (1.4) is called G-stable (G-asymptotically stable} if every its solution
is G-stable (G-asymptotically stable).

It is evident that system (1.4) is G-stable (G-asymptotically stable) if and only if its corre-
sponding homogeneous system

Aylk — 1) = Gi(k — Lyy(k — 1) + Go(k)y(k) + Ga(k)y(k +1), k=12,..., (1.4p)

is G-stable (G-asymptotically stable). On the other hand, system (1.4y) is G-stable (G-asymptoti-
cally stable) if and only if its zero solution is G-stable {G-asymptotically stable).

Therefore the G-stability {G-asymptotic stability) of system (1.4} is the common property of
all solutions and the vector-function g does not affect this property. Hence it is the property of
the triple (G, G3, G3). Thus, the following definition is natural.

DEeFINITION 1.6. The triple (G1,G2, Gs) is said to be G-stable (G-asymptotically stable) if
system (1.4p) is G-stable (G-asymptotically stable).

REMARK 1.2. It is evident that the triple {1, G2, G3) is G-stable if and only if every solution y
of system (1.4y) is G-bounded, i.e., there exists M > 0 such that

1o + GBI + e+ 1) < M, k=0,1,....

Analogously, the triple (G, G2, Ga) is G-asymptotically stable if and only if every solution y of
system (1.4p) is G-convergent to the zero, ie.,

G (1 + GEDy(E + lly(k + 1)) = 0.

REMARK 1.3. If the matrix-function G is such that
det (I, + G(k)) £ 0, k=0,1,...,

and
IGE) + ||+ GEN | < M,  k=0,1,...,

for some M > 0, then the triple (G, Ga,G3) is G-stable (G-asymptotically stable) if and only if
it is stable (asymptotically stable).
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THEOREM 1.5. Let the matrix-functions G1, Gz, G3 € E(Np;R™*™) be such that

det (I, + G1(k)) £0, k=1,2,..., (1.20)
and
G(k) = Izn —exp (—ZAﬁ:(k -1) -B;) . k=12, (1.21)
1=1

where G(k) = (Gi; (K))? 1,

Gu(k) = (G1(k) + Go(k)) (In + G1(k))™",  Gua(k) = Ga(k),

) (122)

Ga(k) =~ (I.+Gi(k) ", Ge(k)) =1,
B € ENg;R,) (I=1,...,m), and B; € R**2n (I =1,...,m) are pairwise permutable constant
matrices. Let, moreover, (A~ )™ (i=1,...,my Yoo, nu; = 2n) be elementary divisors of the
matrix By for every 1 € {1,...,m}. Then:

{(a) the triple (G1, G4, Gs) is stable if and only if

sup {Iml (inj (1+ ﬁ,(k))m.-—l exp(ﬁ;(k)ReAh-)) ck=0,1,... } < 4005
=1 \i=1

(b) the triple (G1,Ga,G3) is Gy-asymptotically stable if and only if

lim b (i (1+ ﬂl(k))nu—-l exp{Bi(k) Re f\h‘)) =0.

k
-t \im

CoROLLARY 1.7. Let the matrix-functions G1,Ge,Gs € E(Ng;R™™ ™) be such that condi-
tions (1.20),(1.21) and

kE]_:EQQﬁg(k):—l—-OO, I=1,...,m,

hold, where 3, € E(Ng;R,) (I =1,...,m), B ¢ R¥"*2* (1 = 1,... m} are pairwise permutable
constant matrices, and G(k) = (Gy;(k)): ;- is defined by (1.22). Then:

(a) the triple (G1,Ga, G3) is stable if and only if every eigenvalue of the matrices By (I =
1,...,m} has the nonpositive real part; in addition, every elementary divisor, correspond-
ing to the eigenvalue with the zero real part, is simple;

{(b) the triple (G1,G4,Gs) is asymptotically stable if and only if every eigenvalue of the ma-
trices By (1 =1,...,m) has the negative real part.

COROLLARY 1.8. Let Gj(k) = Go; (7 = 1,2,3) be constant matrix-functions such that
det(In + Gm) # 0, det Ggs # 0.

Let, moreover, Ay, ..., Am be pairwise different eigenvalues of the 2n x 2n-matrix Go = (Goi;)7 j_1
where Goir = (Gor + Go2)(In + Go1)™%, Gorz = Gos, Goz1 = ~(In + Go1) ™!, Gozz = In. Then:
(a) the triple (G, G2, G) is stable if and only if |1 — A;) > 1 (i = 1,...,m); in addition, if
[1 — As;| =1 for some i € {1,...,m}, then every elementary divisor, corresponding to X;,
is simple;
(b) the triple (G4,Ga, Ga) is asymptotically stable if and only if |1 — X >1 (i=1,...,m}.
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THEOREM 1.6, Let G;(k) = Go; (§ =1,2,3) be the constant matrix-functions such that

Gor = (In — MiA1 + My As)~'S - I, (1.23)
Goa = I, + (M Ay + Ma Ay - 21 {1, + Go), (1.24)

and
Goz = (In ~ M2 4,)5, (1.25)

where A; = (oua)7—; (7 = 1,2), My = diag(ps, ..., ptyn) (§ = 1,2) and S are constant n x n-
matrices such that

pe>0, px>0, i=1,...n, (1.26)
and
det(l, — My Ay + MyA3z) # 0, det((I, — MaA3)S) #0. (1.27)
Then the condition
aji < 0, i=12 i=1,...,n, r(H)<1, {1.28)

where H = (Hm;)3 j=1, Hij = (1 = du)logatlloga| ™)y (5 = 1,2), Ha = (lasallozs| ™)1,
Hiz = (looupa — i;||a1ﬁ|_1p;,-1)21=1, is sufficient for the asymptotic stability of the triple
(Go1, Goz, Gos); and if

Q44 2 0: Qgiibhai 2 1, j =1,2,3, i :l‘é l; i:l =1,...,nm, (1‘29)
and n
04 15ifb2i — Ja + Z (ogapejs + oprarphai)
iy (1.30)

then condition (1.28) is necessary as well,

2. AUXILTARY PROPOSITIONS
LEMMA 2.1. Let X be a fundamental matrix of system (1.1p). Then
dX71(t) = -X"1(t) dA(4, A)t), forteR,.
Proor. By Proposition II1.2.15 from [15],
t
XYty — X Ys) = - X1 O)A() + X~ 1(s)As) + f dX~Y(r). A7), for0<s<t (21)
Hence, using the integration-by-parts formula, the equalities
;X)) = X" Ht)d; A®) - (In + (—1)’d_.,—A(t))_1, forteRy, j=1,2, (2.2)
and the definition of the operator .4, we obtain
t
X1ty -X"Ys) = —-/ X-Yr)dA(r)

+ Y dX7Nr) diA(T) - Y daXTH7)  daA(7)

pLTSt et

_— / " X~1(r)dA(r) - 3 XU r)diA(r) - (. — dy A()) " di A(T)

s<TSt

+ Y XA - U+ b AG) dA) = [ X724
st #
for 0 <s <t |
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LEMMA 2.2. Let the matrix-function B € BV o (R4 R™*") satisfy the Lappo-Danilevskii con-
dition. Then

b
/ﬂ dexp(B(£)) - exp(~B(t)) = So(B)(8) — So(B)(a)

+ Z (In — exp(—d1 B(t))) + Z {exp(d2B(t)) — I,,), for0<a <b.

a<t<h a<t<h

(2.3)

Proor. Since So(B)(t), S1(B)(t), and S2(B)(t} (t € Ry) are pairwise permutable matrices, we
have in addition

So(B)¢) - d;B(t) = d;B(t) - So(B)(t), forteRy, j=1,2,

and
G5(BYE) - dasBE) = dasB() - S(B)(t),  forteRy, j=1,2

Therefore, according to the general integration-by-parts formula, we find
b b
f dexp(B(1)) - exp(—B(t)) = f dexp(Sa(B)(t)) - exp (S1(B)(t) + S2(B)(t)) - exp(—B(t))
b
+ / exp(So(B)(?)) dexp (51(B)(t) + S2(B)(t}) - exp(- B(t))

b
- f dexp(So(B)(t)) - exp(—So(B)(1))

+ Y exp(So(B)(t)) diexp (Su(B)(t) + S2(B)()) - exp(—B(t))

a<t<h

+ Y exp(So(B)(t)) da exp (Su(B)(t) + S2(B)(t)) - exp(—B(2))-

a<i<h

Hence,
b b
_/ dexp(B(t)) - exp(~B(t)) = f dexp(So(B)(t)) - exp(—So(B)(1))
+ > (In—exp(—diB())) + Y (exp(deB(2)) — I.).

a<t<h ast<h

(2.4)

Due to the Lappo-Danilevskii condition, we easily get

b
/a dsé‘(B)(f)-Sb"(B)(t)=,H_Lm S5+ (B)(b) — 55+ ™(B)(a))

for every natural k and m.
By this and the definition of the exponential matrix, we obtain

b
fﬂ dexp(So(B)(t)) - exp(-So(B)(t))

= exp(So(B)(b)) — exp(So(B)(a}}
o m (_1)m—k+1

b
DI Y . LR 10
~ exp(So(B)(Y) - exp(So(B)(a)

] Sm+1(B)(b) - Sm+1(B)(a.) m—1 (_I)m_k
Z . m+10 'gk!(m—k)!

®  om+l _ gm+l o
= exp(5o(B)(9) — exp(Sa(B(@) - Y T EID=FH BN,

m=1

+

m=1
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Thus b
/ dexp(So(B)(t)) - exp(—So(B)(t)) = So(B}(b) — So(B)(a). (2.5)
By (2.4) and (2.5), condition (2.3) holds. |
LeMMA 2.3. Let the matrix-function A € BVi,.(Ry; R"*") be such that

So(A)®) = So(B)(t) and In+(~1)d;A() = exp (-1Yd;B(®),  i=1.2,

where the matrix-function B € BVj,.(R4; R**") satisfies the Lappo-Danilevskii condition. Then
the matrix-function exp{B(t)) is a solution of system (1.1p).

Proor. By (2.3),

f " dexp(B(r)) - exp(_B(r)) = A(t) — A(s),  for0<t<s
Consequently, using the substitution formula, we get
/ dA(T) - exp(B(T)) / ( f dexp(B exp(—B(o'))) -exp{B(T))
= exp(B(t)) — exp(B(s)), for0<t<s. ]
LEMMA 2.4. Let the matrix-function Ag € BV, (R ; R™*™) be such that
det (I, + (—1)d;Ao(t)) #0, fort>1t*, j=1,2, (2.6)

where t* € R,. Let, moreover:
(a) the Cauchy matrix Uy of the system

dz{t) = dAg(t) - z(2) 2.7
satisfly the inequality
|Ua(t, t*)] < Qexp(—£(t) + £(t")), fort >t~ (2.8)

where Q € R}*", and € € BV (R R);
(b) there exist H € R}*" such that r(H) < 1 and

ftexp (€)Y — £()) [Ua{t, )| dV (A(Ap, A — Ap))(T) < H, fort = t*. (2.9)

=

Then an arbitrary solution x of system (1.1g) admits the estimate
|2t} < (In — H)71Q|z(t*) exp (—£() + (%)) , fort > t*. (2.10)
The proof of this lemma is given in [9].
LEMMA 2.5. Let tp € g, b}, a,8 € BV([a, b];R) and
1+ (—1Yd;jo(t) £0,  fort € [o,b)]. (2.11)
Let, moreover, £ € BV ([a,b]; R) be a solution of the equation

dg(t) = £(t) da(?) + dB(t). (2.12)
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Then .
YHRER) — v (8)é(s) = f v 7)Y d8(r) - D diy(r) - diB(r)
# s<TSt (213)
+ ) dvN7)-daB(r), fora<s<it<b,

LTt

where -y € BV([a, b]; R) is a solution of the Cauchy problem
dr(t) =) dat),  (to) = 1. (2.14)

ProoF. By (2.11), problem {2.14) has the unique solution v and (¢} # 0 for ¢ € [a, }].
Let a < s <t < b By(2.1),(2.12) and the integration-by-parts formula, we have

T HEER) — v (8)é(s) = / ~(r) () f g(r) dy1{7)
= 3 diy i) diB(r) + D dayTNr) - daB(7)

<<t Tt
- f “1r)E(r) de(r) + / ) dBlr) + / g(r)ydy~H(r)
- Z diy~ M) - (£(7) dia(T) + d1 B(T))

sETRL

+ Y dyi(r) - (E(r) daa(r) + daB(r))

Tt

and

) =770 - [ 77 @) dalo)+

+ Z div e - dio(o) — Z doy (o) - dze(0), for s <1 <8,

CORT sSo<r

Therefore, (2.13) holds, since by the latter equality

t i
f £(r)dyir) = — f £(r)yy~}(r) dar)
+ Z E(r)dry M (7) - dia(r E E(r)dey () - deaa(T), for s < t. 1

sLTL LTt

LEMMA 2.6. Let to € [a,b], C = ()41 € BV([a, B;R™™),

det (I, + (—1)7d;C(£)) £0, fort € [a,b]\ {tc}, =12, (2.15)
14+ (=1 djcu(t) >0, for (—1)7(t—t) >0, j=1,2, i=1,...,n, (2.16)
and
14+ (-1 ) djea(t) >0,  for (-1)(t—t0) <0, j=1,2, k=1,...,n (2.17)
i=1
Let, moreaver, the functions ¢y (i #1;i,l =1,...,n) be nonincreasing on [a, ty| and nondecreas-

ing on |tp, b]. Then

U(t,s) =20, fora<t<s<tgorto<s<t<h, (2.18)
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where U (U{s, s) = I,,) is the Cauchy matrix of the system

dz(t) = dC(t) - z(t). (2.19)
PRrROOF. First we note that in view of (2.16) and (2.17),
1+ (—1¥d;eq(t) >0, fortefe,b], 5=1,2, i=1,...,n, (2.20)

since the functions ¢y (i #1;4,l =1,...,n) are nonincreasing on [a, t5[ and nondecreasing |¢o, b].
Let s € [a,b] (s # to) and k € { 1,...,n} be fixed, and let zx(t,5) = (zik(t, s))%; be the kth
column of the matrix U(t, s).
Assume

y(t) = ()1, for t € [a, ],
y.g(t) =*ys_1(c,-,;)(t) -:x:,-k(t,s), 7= 1,...,'ﬂ.,
where v, (c::){t) = v (i) (3) - ¥(cii)(t). Here, in view of (2.20), v(ci)(t) is positive for ¢ € [a, b).
According to Lemma 2.5 and the integration-by-parts formula, we find

L)

yi(t) —y(r) = Z (/ Y3 eu)() - zrl7, 8) dea ()

I#4,1=1
= Y iy Mew)(n) - zlr, 8) diea(r)

r<rst

+ Z doy; Heu)(7) - zu{T, 8) dzCi:(T))

raT<t

=2 ( [ 45 ea)) -z, ) dso(eado)

T

14, I=1

+ Z v; Heaw)(T=) - zulT, 8) dicar(T)

TR

+ > 2 Hea)(T+) - zwln,9) dzcix(‘f))

r<r<t

n

1
= > ( f Vo Hew)(T) - Yolen)(Tm(T) dsolca)(r)

14, i=1
+ Y e (r=) - valen)(r) drculr)

rorst

+ Z rYs_l(cii)(T-l') '7s(cﬂ)(7—) d?.cﬂ(T)) 3 foragrt<t< b, i=1,...,n.
rardt

Hence y = {3:)7, 1s a solution of the Cauchy problem
dy(t) = dC*{(t) - y(¢), y(s) = ex, (2.21)
where ep = (8ix)iny, C*() = (cj(t)) =1y cfi(t) =0 and

) = [ 37 ) (7) - vl () dsole)()

io

+ f 77 (ea)(7=) - olew)(r) dsa(ca)(7)

+ ]to T e () vlen) () dealea)(rh £l il=1..m
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In view of the conditions of the lemma, the functions ¢} (i # I; i,1 = 1,...,n) are nonincreasing
on [a, o[ and nondecreasing on Jto, 8].
Let
A“(t) = diag("y,(cn)(t), ver ;7a(cnn)(t))

and
Q(t) = diag(en1(t), - - -, ennlt}), for t € [a,b].

Using (2.2), we have

I + (1Y d;C°(t) = In + (—1F (A71(t) + (1Y d; A1 () (d5C(t) — d;Q(2))Au(2)
= (A7Y(t) + (1Y diATHE)) [(In + (~1¥dsQ()) Au(t)
+(-1¥ (d;C(1) — d;QU Au(t)],  forteab], 5=1,2,

L + (-1)7d;C*(2) = (A7) + (1Y A7 1(E)) (In + (1) d;C(1)) Au(2),

fort€la,b, j=1,2 (2.22)
Hence, due to (2.15), we obtain
det (I, + (—1)'d;C*(¥)) #0, forte[a,b]\ {to}, i=1,2.
Therefore, according to Theorem 1.2 from (8],
Wlm zn(t) =y(t),  uniformly on [a,B], (2.23)
where
tm(s)=ex, m=0,1,...,
20(t) = (In + (-1¥d,C" (1)) ex, for (-1)f(t—s) <0, j=1,2,
2m(t) = (In + (-1¥d;C*(8)) [e,, + f ' dC™(T) + Zm-1(T) (2.24)
+(—1)7d;C*(2) - zm_l(t)] , for (~1)(t-s)<0, j=1,2, m=12....
Taking into account the equalities
diAo(t) = d;Q(t) - As(t), fortefad], j=1,2,
from (2.22) we have
In+ (-1Y4,C*(8) = (A7 () + (~1Pd;A7 (1) (D — Q4(2)) (2.25)

% (Aa(t) + (—1Yd;A, (1)), forteled], i=1L2,

where Q;(t) = (—1)(d;Q(t) — &;C(t))(In + (—1)7d;Q(t))~!. On the other hand, by (2.17)
and (2.20),
Q;(t) 20,  for (-1¥(t—1) <0, 5=1,2,

and
1Q;l <1,  for (—1Y(t—to) <0, ji=1,2.

Therefore, due to (2.25),

(I'n + (_l)jdjo*(t))—l 2 Opxns for ("l)j(t - tﬂ) <0, ji=12, (226)
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since by (2.20),
A,(t) > Opxn, for t € [a,b]. (2.27)

From (2.24) and (2.26) we get
Zm(8) 2 (I + (14,0 () " er,  for (<1){t—s) <0, j=1,% m=0,1,....
Using now (2.23) and (2.24), we obtain
y(s) > ex, 9(t) > (In +(-1Yd;C"(8) 'ex,  for (—1)i(t~s) <0, j=1,2. (2.28)
On the other hand, by equalities
y(t) = A (t)zk(t,s), fort € [a,b],
inequality (2.28) implies
26(t,8) 2 A(t) (I + (17 ,C*(£)) e,
for (—1)(t—s) <0, (-1} (t—t) <0, j=1,2.
Since the latter inequalities are fulfilled for every & € {1,...,n}, we have
Uty s) > Aot) (In + (1Y d;C" 1)) ", for (1Y (t~s) <0, j=1,2 (2.29)

By (2.26) and (2.27}, condition (2.29) implies (2.18). ]

REMARK 2.1. In fact, we proved estimate (2.29) which is stronger than (2.18). Note also that
the condition
lld; ) < 1, fortela,b], j=1,2,

guarantees conditions (2.15)—(2.17).

LEMMA 2.7. Let tg € [a,b], c0 € R™, ¢ € BV{[a,d];R"), and a matrix-function C = (cix)Py—; €
BV([a, b]; R™*"), where ¢ (i £ k; i,k = 1,...,n) are nondecreasing functions on [a,b], be such
that

det (I, + d;C(t)) #0, forte [a,b]\ {tc}, i=1L12 {2.30)
1+djeu(t) >0,  for (-1t —2) >0, j=1,2, (2.31)

and ﬂ
> djea(ty <1,  for (-1¥(t—1) <0, j=1,2, k=1,...,n (2.32)

i=1

Let, moreover, a vector-function z : [a,b] — R®, z € BVioc([a, to[, R™) N BVie(Jto, 8], R?), be a
solution of the system of linear differential inequalities

dx(t) - sgu(t — to) < dC(t) - z(t) + dg(t) (2.33)
on the intervals [a,io[ and |to, b], satisfying the condition
w(to) + (~1Ydjz(to) < co +djClto) - co +dsqlto), =12 (2.34)

Then the estimate
z(t) < y(b), fort € [a,b] \ {to} (2.35)
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holds, where y € BV([a, bj;R") is a solution of the system
dy(t) = (dC(¢) - y(t) + da(t)) sgn(t — to) (2.36)

on the intervals la, to[ and |to, b], satisfying the conditions
(1) dsy(to) = d;C(to) - y(to) + djalto),  F=1,2, (2.37)

and
y(to) = co. (2.38)

PROOF. Assume £y < b and consider the closed interval [to,b]. Then problem (2.36)-(2.38) has
the form

dy(t) =dC(t) - y(t) +dg(t),  y(to) = <.
Let Z (Z(to) = I,) be a fundamental matrix of the system
dz(t) = dC(t) - z(t), for t € [a, b). (2.39)

Then by the variation of constants formula,

y(t) = q(t) —q(s)+Z(t) {Z_l(s)y(s) - f t dZ=(7)- (g(r) — Q(S))} ,  for s,t € [to,b]. (2.40)
Put .
ot) = —2(t) + z(to) + fh dO(r) - 2(r) + alt) — alte),  for ¢ € [fo, -

Evidently,
dz(t) = dC(t) - z(t) + d(g(t) — g(t)),  for t € [to, ).

Let £ be an arbitrary positive number. Then

o(t) = q(t) — alto +€) — 9(t) + alto + €) + Z(8) {Z'l(to + e)e(to +¢)

i
s dZ'l('r)-(c1('r)—Q(to+8)-y(f)+y(to+6))}. for t € [to +¢,b]-

Hence, by (2.40), we get
z(t) = y(t) + Z(£) 2™ (to + £) (z(to + &) — y(to +€)) + ge(2), forte[to+e,b], (241)

where
t
96(t) = —g(t) + glto + ) + Z(2) ] dZ-1(r) - (g(r) — glto +))-
to+e

Using the integration-by-parts formula, we have

t

ge®)=—[ Ut,Ddsolo)(r)— > Uft,r—)dig(r)
e fabscrst (2.42)
- ) Ult,v+)dg(r), fort € [to-+e,b],
totesr<t

where U(t,7) = Z(t)Z~1(r) is the Cauchy matrix of system (2.39).
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On the other hand, conditions (2.30)-(2.32) guarantee conditions (2.15)—(2.17). Hence, ac-
cording to Lemma 2.6, estimate {2.18) holds, and by (2.42),

g:(t) £0, for t € [to + &, 8],
since by {2.33) the function g is nondecreasing on ¢, b]. From this and (2.41),
z(t) < y(t) + Ut to +e)(z(to + &) —y(to +¢)), fort€ [to+e,bl

Passing to the limit as ¢ — 0 in the latter inequality and taking into account (2.18) and (2.34},
we get
z{t) < y(t), for ¢ €]to, 8],

since by (2.37) and (2.38)

y(to+) = co + d2C(fo) - co + daq(to).

Analogously we can show the validity of inequality {2.35) for ¢ € [a, to]. |
REMARK 2.2. It is evident that if in Lemma 2.7 we agsume

z(to) < o,

then inequality (2.35) is fulfilled on the whole [a,b]. Moreover, note that in this case inequali-
ties (2.34) follow from the inequalities

(—1)Yd;(to) < d;C(2) - co + dja(t),  j=1,2.

In particular, Lemma 2.7 yields the following proposition.

PRroposITION 2.1. Let io € [2,b], co € R™, g € BV([a,];R"), and C = (cix) =y * [2, ] = R™"
be a nondecreasing matrix-function satisfying conditions (2.30) and (2.32). Let, moreover, x :
[a,b] = R", z € BV{[a,to[; R") N BV(lto, b, R™), be a solution of the system of linear integral
inequalities

z(ty < ep+ (/tt dC{r) - () + q(t} — q(tg)) -sgn(t —t,), fort € [a,b], {2.43)

satisfying (2.34). Then the conclusion of Lemma 2.7 is true.
PROOF. Let us introduce the vector-function

Et)=co+ (ft dC(r) - z(t) + q(t) — q(tg)) - sgn(t — to), for t € [a, B}

to

It is clear that # € BV([a, fo[; R®) N BV(Jto, b]; R™). Moreover, by (2.43) & satisfies (2.34) and
z{t) < Z(t), for t € [a,B]. (2.44)

Since € is a nondecreasing matrix-function, from the latter inequality we find that = satis-
fies (2.33) on the intervals [a, to[ and |to,b]. Therefore, according to Lemma 2.7 and (2.44), the
proposition is proved. |

REMARK 2.3. Let the function 8 € BVi,.(R.;R) be such that
14 (~1)7d;8(t) >0, forteRy, j=1,2.

Then if one of the functions 3, J(8), and .A(3, 8) is nondecreasing (nonincreasing), then all the
others will be same.
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3. PROOF OF THE MAIN RESULTS
PROOF OF THEOREM 1.1. It is evident that the matrix-function
B(t)=>_ aft)B(t)
i=1
satisfies the Lappo-Danilevskil condition. Therefore, by Lemma, 2.3, the matrix-function
X(t)=[Jexp(euB)), forteR,, (3.1
=1

is a fundamental matrix of system (1.1p).
According to the Jordan theorem,

B, = C, diag (.I,,u()\u), U Ao v )) crt,  i=1,...,m,
where Jy,, (M) = Miln, + Zp,; is the Jordan box corresponding to the elementary divisor (A —

Ap)™ for every l € {1,...,m} and i € {1,...my}, and C; € C"*" ([ = 1,...,m) are nonsingular
complex matrices. Hence,

exp (eu(t) By) = Ci diag (exp (@1(t)Ins (1)) - &5 ((8) i, i) ) G,

(3.2
forteRy, [=1,...,m,
where
§~el)
exXp (ai(t)‘]mi (’\Ii)) = exp (Alial(t)) Z 41 Z-'r?u,-a fort e R-i-i t=1,...,m (33)
=0

In view of (3.2) and (3.3), it is evident that

my n
exp (oq(t)By) = (E Prije(ou(t)) exp (/\ua;(t))) . forteRy, i=1,...,m, (3.4)
i=1 ik=1
where pi;;x(5) is a polynomial with respect to the variable s, whose degree is at most ny — 1
(B,k=1,...,ml=1,...,m).
Substituting (3.4) in (3.1}, we find

B ﬁ (i 1+ a:(t))n“"l exp (cu(t) Re )\u))

=1 \l=1

<Xl <] (Z[: (1 + 0u(e))™ " exp (au(2) Bel\u)) , forteRy,

=1 \I=1
where 3 and S are some positive numbers.
The latter estimates imply the validity of the theorem. |

PrOOF OF CoROLLARY 1.1. The corollary immediately follows from Theorem 1.1 since condi-
tions (1.8) and (1.9} are equivalent to the conditions imposed on the real parts of the eigenval-
ues A (I=1,...,m;i=1,...,my) of the matrices By ({ =1,...,m). 1

ProOOF OF COROLLARY 1.2, Let

a1 (t) = alt), as(t) = froft) — (1), as3(t) = va(t) — Beolt),
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and
.B1 = Ao — ,61 lﬂ(In - A1) + ﬂz lIl(In, + Az), Bg = ln(Iﬂ - Al), B3 = lﬂ(Iﬂ + Ag)

Then we have R
So(A)(t) =) _solau)(t)-B;, forteRy, j=1,2
=1

and

exp ( Zd oy(t) - B;) = exp (In(I, —1)74; )}

=In+ (1Y 4; = I + (-1Yd;A(t),  if |ldsA(t)]| #0,
forteRy, j=1,2,

since the function o« is continuous, and d;#;(t) = 8;; (i,7 = 1,2).

Hence the conditions of Theorem 1.1 are fulfilled. The corollary follows from (1.8) and (1.9)
since due to (1.11) the functions a; and a3 are bounded on Ry. ]
Proor oF COROLLARY 1.3. The corollary follows from Theorem 1.1 if we choose the functions o
(I=1,...,m) and the matrices B; ({ = 1,...,m) in a suitable way. But the proof of Corollary 1.3
is easier if we use same way as in proof of Theorem 1.1.

By Lemma 2.3 the matrix-function

X (t) = Cdiag (exp{Gi(t)),...,exp(Gm())) C1

is a fundamental matrix of system (1.1p). Moreover, obviously

m—l 'nz--l [(ﬂ-l 1)/1] J(t)
exp(Gi(£)) = ] exp (@u®)Z:) = explowo(®) [[ D zs,
i=0 i=1l i=1

forteRy, I=1,...,m.

Hence, as in Theorem 1.1, the statement of the corollary follows, |

PROOF OF THEOREM 1.2. Let us prove the first part. Let a;(t) = agpu(t) (4,1 =1,...,n), and
Us(t,7) be the Cauchy matrix of system (2.7), where Ao(t) = diag(a1a(t),...,ann(t)). Then

Uo(t, 7) = diag (v(a11)(t) - v~ an) (), - ., ¥(@nn}(8) - v (ann)(7)),  forteRy,

where y({a:}(t) (i=1,...,n) are defined as above.
According to Lemma 2.1,

7He)(®) — 7o) = = | 7 Hau)() A )9, 9
for0<r<t, i=1,...,n

Due to {1.12), there exists t* € Ry such that
daay{t) > —1, fort>t*, i=1,...,n

Therefore,
+ (—1¥d;au(t) >0, fort>t*, =12 i=1,..,n, (3.6)
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since by (1.13) the functions ay; (i=1,..., n) are nonincreasing. By virtue of Remark 2.3, the
functions J(ai) (i =1,...,n) are nonnegative, nonincreasing, and

—J{au)E) + J{ai)(T) > ao(t) — ao(T), fortzr2>t", i=1,...,n (8.7
In view of (1.13), there exists £ €]0,1], such that
r(He) <1,

where H, = ({1 — &) hix)Ppmps ik = (1 — 8ix)(1 + lail) " Hovikllows| ! G k=1,...,n).
Assume £(t) = eag(t). Then by (1.13) conditions (2.6) and (2.8) are fulfilled for 2 = I,.
Moreover,

|s0(@ix }(t) — s0(aix)(7)| < —hix (so(a:)(2) — so(au)(7)),

fort>r>t*, i£k, iqk=1,...,n, (3.8
ldsau(t)] < —hixdsaut) - (1 + dyau(t))’ ™, (39)
fort>t", j=1,2, ik §k=1,..,n )
Let b (t) = A(aw, aax)(t) (i, k =1,...,n). Using (3.5}-(3.8), we get
exp (J(au)(t)) = ¥(a::)(t), fort>t*, i=1,...,n,
t
| exp ) &) + J(@)(0) = J(o)r)) do(bur)(r)
(3.10)

< [ exp((1 - 9) T@)(®) - Tau)r)) dolbun(r),
fort>t*, i#k, H,k=1,...,n,
o(Bus)(8) = so(bur)(r)| < (1= € (€ = solau)(®) = (€ = Doo(@l, (g,
fort>T2>t", i#£k ik=1,...,n
Then
(1 - )" Y(~1) [1 -1+ (—1)5dja;.-(t))s_1]
<djou(t) - (1+ (-1 djaa(®))’™, fort2t", j=12, i=1...,n
From this and (3.9) we conclude
ldsbur (£)] < (1 — &)™ (—1) hux [(1 + (~1Ydjas()" - 1]
fort>t*, j=12 i#k ik=1,...,n
By (2.3), (3.10)~(3.12), and the definition of J{(a) (i = 1,...,n), we find

(3.12)

[ o (@ - e ®) = Ta)r)) o))
< @ -9t [ e (1 = e)(U(ow)®) = Ta)r)

<d( [ e (@ - (eu)(s) dexp (e~ D (aaeD))

= (1— &)~ hix exp ({1 — €)J(aa)(2))} [exp ((e ~ 1) (a::)(2))
—exp((e - DJ(a)t*)] S (1 —&) " thix, fort>t*, i#k ik=1,...,n
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Consequently, estimate (2.9) is fulfilled. Therefore, by Lemma 2.4 every solution z of system {1.1¢)
admits estimate (2.10). Thus A is asymptotically stable since by the first condition in (1.12)
E£(t) s coast — oo,

Let us prove the second part. Assume the contrary. Let conditions (1.14) and (1.15) be fulfilled,
A be asymptotically stable, but condition (1.13) be violated. Then either

ﬂ.,'o,'o 2 0 (3.13)
for some iy € {1,...,n}, or
Qi < 0, 1= 1,...,11, (3.14)
but
r(H) > 1. {3.15)

If condition (3.13) holds, then in view of (1.14) the vector-function x(¢) = (4, )7 is a solution
of the system of generalized differential inequalities

dz(t) € dA{L) - z(t), for t € Ry. (3.16)

Moreover, with regard to (1.12), (1.15), and the Hadamard’s condition on the nonsingularity of
matrices (see [19, p. 382]) it is not difficult to verify that the conditions of Lemma 2.7 are fulfilled
for sufficiently large 5 > 0. By this lerma,

z(t) SU(t,to)x(to),  for t > to,

where U(%, 7) is the Cauchy matrix of system (1.1¢). Hence, due to the asymptotic stability of A,
we have
= < (U to)z(to)| = 0,  8st— +oo. (3.17)

But this is impossible since ||z(¢)|| = 1. Therefore (3.14) holds.
From (3.14) we find
0; <0, i=1,...,n and ¢ <0, (3.18)

where 0 = max{o;:i=1,...,n}
Assume now that (3.15) is fulfilled. Then there exist a complex vector (c;)7.; and a complex
number A such that

Zlck|=11 |Al=r(H) > 1,
k=1

and "

E(l —8)(1 — o) Y ourl|au| " tex = A, i=1,...,n

k=1
Therefore,

n n
elled € 32 (1—o)awlles] <@ =) Y Jowllenh  i=1,e.om.

k=1, kb k=1,ksi

The last inequalities, (1.14) and (3.18}, imply
n
0<(1~ ‘7)_1 Z aiklex]| + a,-,-|c1-|
k=1,ks#i

=1-0)"" Y oulokl+ (1 - 0) tawie] - o(l - a) loulel
k=1 k1

n
S(l—a)_IZaiklckl, i=1,...,n,
k=
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and "
Oszaiklcklg i=1,...,n
k=1

Consequently, the vector-function x({t) = (|cx|)F_; is a solution of the system of differential in-
equalities (3.16). As above we can show that (3.17) holds. But this is impossible since ||{t)|| = 1.
The obtained contradiction proves the theorem. [ |

To prove the results concerning the impulsive system (1.2),(1.3), we use the following concept.

It is easy to show that the vector-function 2 € C-'h.:(R+ \T;R") (T = {t1,t2,...}) is a solution
of the impulsive system (1.2),(1.3) if and only if it is a solution of system (1.1}, where

A(0) = Opn, £(0) = On;
t t
A(t)=j0 Q(r)dr + Z Gy, f(t)=/o q(r)dr + Z i fort > 0.

o<t <t 0t <t

Therefore system (1.2),(1.3) is a particular case of system (1.1). In addition, condition (1.5) is
equivalent to condition (1.16). Thus Theorems 1.3 and 1.4 and Corollaries 1.4, 1.5 are particular
cases of Theorems 1.1, 1.2 and Corollaries 1.2, 1.3, respectively. Corollary 1.4 follows from
Corollary 1.3.

Consider now the difference system (1.4).
ProoF or THEOREM 1.5. We construct a system of the form (1.1} corresponding to system (1.4)
in order to apply Theorem 1.1.

Let y € E(Np;R™) be a solution of the difference system (1.4). Then the vector-function
z = ()2, € E(No;R*"), where

z1(k) = (In + G1(R))y(k) and z(k) =y(k+1), k=0,1,...,
is a solution of the 2n x 2n-difference system
Az(k — 1) = G{k)z(k) + a(k), E=12,..., {3.19)

e GlK) = (Gis (k)2 - is defined by (1.22), and g(K) — (9:(K))1oy, Where g1(K) = go(k),
gp(k)y=0.

Conversely, if 2(k) = (2:(k))2.; (k=0,1,...) is a solution of the 2n x 2n system (3.19), then
due to (1.20), y(k) = (In + G1(k)) "1z (k) (k =0,1,...) is a solution of system (1.4). Indeed,
by (3.19} we have

(k) =(In + Gk + 1)) 15 (k+1) =y(k + 1), k=0,1,...,
and

(In + G1(R)y(k — 1) — (In + Ga(k — 1))y(k - 1)
=(G1(k) + G2(K)) y(k) + G3(k)z2(k) + o1 (k),  k=0,1,...,

ie., y satisfies system (1.4).

On the other hand, the vector-function z{k) (k = 0,1,...) is a solution of system {3.19) if and
only if the vector-function =(t) = 2([t]) for ¢t € Ry ([t] is the integral part of ) is a solution of
the 2n x 2n system (1.1), where

A(t) = Oanxan, and f(t) = Ogn, for0<t<l,
[¢] [¢]

Aity=>_G(), and f(t)=) g(i), fort=1.
i=1

=]
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It is evident that da A(t) = Oanxan for £ € Ry, dyA(f) = Ogaxan for £ € Ry \ N, and dy A(k) =

G(k) for k € N. Therefore, det(fz, +d2A(t)} = 1fort € Ry, det(fan—d1A(t)) = 1 fort € R, \N,
and by (1.21},

det(lon — d1A(k)) = det(fa, — G{k))
=det(exp(—§:Aﬁg(k—1)-Bl))7&0, k=1,2,....
=1

Thus (1.21) guarantees condition (1.5).
Finally, if we assume o;(t) = Fi([¢t]) (I = 1,...,m), then the conditions of Theorem 1.1 are
fulfilled. Consequently, Theorem 1.5 follows from Theorem 1.1 if we take into account that

l=(®)l = l|(Zn + GL BNy + lly(E+ DI, k=0,1,.... |

Corollaries 1.7 and 1.8 follow from Corollaries 1.1 and 1.2, respectively, or from Theorem 1.5.

ProoF OF THEOREM 1.6. As above we construct a system of the form (1.1) in order to apply
Theorem 1.2. This system differs from the system constructed in the proof of Theorem 1.5, since
Theorem 1.2 cannot be applied to the last system.

By (1.23), (1.25), and (1.27),

det(In + Ggl) ?é 0 and det Ggg :,é 0. (320)

It is easy to verify that the vector-function y € E(Np;R"™) is a solution of the homogeneous
difference system

Ay(k - 1) = G(ny(k - 1) + Gogy(k‘) + Gog'y(k + 1), k= 1, 2, ey
if and only if the vector-function z = (z;}2_; € E(No;R™), where

Z]_(k) = (In-l-Go;l)y(k) and Zg(k) = (Iﬂ-l-Gol)y(k) —Sy(k-l-l), k=0,1,...,

is a solution of the 2r x 2n-difference system

Az(k—1) = Goz(k), k=1,2,..., (3.21)
where Gy = (Gy;)? 1, Gir = (Go1+Go2+828)(In+Go1) "1 —Giz (i = 1,2), Gig = 821, —GoaS™!
(i=1,2).

In addition,

Jm =0, i lim_[ls(k)] =o0. (322

Moreover, the vector-function z(k) (k=0,1,...) is a solution of system (3.21) if and only if the
vector-function z(t) = z([t])(t € R, ) is a solution of system (1.15), where

Alt) = [t] G, for t € Ry.

In addition,
Jm R =0, i lim_ st} =0. (3.23)

Clearly, dz A(t) = Oanxan for t € Ry, d1A(t} = Ozpxan for t € Ry \ N, and d A(k) = Gy for
k € N. On the other hand, by (3.20),

det(lz, — d1A(k)) = £det S - det(I, + Go1) " 'detGoa #0, k=1,2,....
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We assume pi(t) = pysft] and ppygi(t) = pxft] for ¢ € Ry (i = 1,...,n). Then, due to (1.26),
#i (i =1,...,2n) are nondecreasing functions such that so(p;)(t) = 0 and dop;(t} =0 for £ € R,
(i=1,...,2n), dyu(t) =0 for t e Ry \N (i = 1,...,2n), and dipigyn-n(k) = g3 (7 =1,2;
i=1,...,n;k=0,1,...). Hence, no(t) =ma(t} =0fort c Ry, 0¢=0(i=1,...,2n), m(t) =0
for t € Ry \N, and m (k) = max{ajup;i: =1,2;i=1,...,n} = const < 1 for k € Nif aji; <0
(j=1,2;i=1,...,n). Thus condition (1.12) is fulfilled.

Assume now Aj; = A; (j = 1,2), An = As, and Ayp = M7 (MaA; — 1) = (u3; (ngioni —
6a))i1=1- Then, by (1.23)-(1.25),

At) = [l (M Amj) i1 = (@ups(t))ilys  fort €Ry,

where ag = auy (i,] = 1,...,n), ounpt = p5 (ooupes — 8a) Gyl = 1,...,n), ansa = oau
(i,l=1,...,n), and Onqinpt = agg (5,1=1,...,n).
Moreover,
— - n
(HmsYang=1 = (1 = 8:)(1 + losl) evallowad| =), -

Therefore, conditions (1.13}-(1.15) are equivalent to conditions (1.28)—(1.30). In view of condi-
tions (3.22), (3.23), and Remarks 1.2, 1.3 we conclude the validity of the theorem. ]
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