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In [Du11] we have revised an asymptotic model of a shell (Koiter, Sanchez-
Palencia, Ciarlet etc.), based on the the calculus of tangent Günter’s derivatives,
developed in the papers of R. Duduchava, D. Mitrea and M. Mitrea [Du11, ?,
Du02b, DMM06]. As a result the 2-dimensional shell equation on a mid-surface
S was written in terms of Günter’s derivatives, unit normal vector field and the
lamé constant, which coincides with the Lamé equation on the Hypersurface S ,
investigated in [Du11, ?, Du02b, DMM06].
The present investigation is inspired by the paper of G. Friesecke, R. D. James &
S. Mller [FJM1], where a hierarchy of Plate Models are derived from nonlinear
elasticity by Γ-Convergence. The final goal of the present investigation is to
derive 2D shell equations in terms of Günter’s derivatives by Γ-Convergence.
As a first step to the final goal in the paper of T. Buchukuri, R. Duduchava
& G. Tephnadze [BDT1] was studied a mixed boundary value problem for the
stationary heat transferA mixed boundary value problem for the stationary heat
transfer equation in a thin layer around a surface C with the boundary. It was
established what happens in Γ-limit when the thickness of the layer converges
to zero. In particular, was shown that the Γ-limit of a mixed type Dirichlet-
Neumann boundary value problem (BVP) for the Laplace equation in the initial
thin layer is a Dirichlet BVP for the Laplace-Beltrami equation on the surface.
For this was applied the variational formulation and the calculus of Günter’s
tangential differential operators on a hypersurface and layers. This approach
allow global representation of basic differential operators and of corresponding
BVPs in terms of the standard cartesian coordinates of the ambient Euclidean
space Rn.
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INTRODUCTION

Modern interest in shell theories has blossomed with the ubiquitous presence of thin
films in science and technology. Thin structures encounter in engineering applications more
and more often and there emerged numerous approaches proposed for modeling linearly elas-
tic flexural shells. Started by the Cosserats pioneering work (1909), Goldenveiser (1961),
Naghdi (1963), Vekua (1965), Novozhilov (1970), Koiter (1970) and many others con-
tributed essentially the development of the shell theory. Ellipticity of the corresponding
partial differential equations was proved later by Roug’e (1969) for cylindrical shells, by
Coutris (1973) for the shell model proposed by Naghdi, Gordeziani (1974) for the shell
model proposed by Vekua, Shoikhet (1974) for the shell model proposed by Novozhilov,
Ciarlet & Miara (1992) for the model proposed by Koiter (cf. [Ci1], [Ci3]-[Ci6], [De1] for
survey and further references).

Inspired by the books and papers of Sanchez-Palencia [Sa90, Sa92], Miara & Sanchez-
Palencia [MS96], Ciarlet & Lods [CL1, CL2, CL3], Ciarlet, Lods & Miara [CLM1] and
exposed in details in Ciarlet [Ci3, Ci5] we have developed in [Du11] asymptotic analysis of
a linearly elastic shell based on the formal calculus of tangential Günter’s derivatives, devel-
oped in the papers of the author with D. Mitrea and M. Mitrea [Du11, ?, Du02b, DMM06].
As a result the 2-dimensional shell equation on a middle surface S is derived written in terms
of Gunter’s derivatives, unit normal vector field and the lamé constant, which coincides with
the Lamé equation on the Hypersurface S , investigated in [Du11, ?, Du02b, DMM06].

The present investigation is inspired by the paper of G. Friesecke, R. D. James & S.
Mller [FJM1], where a hierarchy of Plate Models are derived from nonlinear elasticity by
Γ-Convergence. The final goal of the investigation is to derive 2D shell equations written in
terms of Günter’s derivatives by Γ-Convergence

Let us consider an example: a surface S be given by a local immersion

Θ : ω → S , ω ⊂ Rn−1 , (0.1)

which means that the derivatives
{
gk := ∂kΘ

}n−1

k=1
are linearly independent, i.e., the Jakobi

matrix ∇xΘx has the maximal rank n− 1. Thus,
{
gk
}n−1

k=1
is a basis (or a covariant frame

if the basis is enriched with 0) in the space ω(S ) of all tangential vector fields on S . The
system

{
gk
}n−1

k=1
which is biorthogonal 〈gj, gk〉 = δjk forms the contravariant basis (the

contravariant frame) in the same space ω(S ) of all tangential vector fields on S . Let
ν(X ) = (ν1(X ), . . . , νj(X ))> be the outer unit normal vector (the Gauß mapping) to S at
X ∈ S (see § 4 for details).

The Gram matrix GS (X ) = [gjk(X )]n−1×n−1, gjk := 〈gj, gk〉, is then positive definite,
responsible for the Riemann metric on S and is called the covariant metric tensor. More-
over, it has the inverse matrixG−1

S (X ) = [gjk(X )]n−1×n−1, , gjk := 〈gj, gk〉 (cf. (2.4), (0.2)),
which is called the contravariant metric tensor.

The Gram determinant

G
(
∂1Θ(x), . . . , ∂n−1Θ)(x)

)
= detGS (x) , x ∈ ω ⊂ Rn−1 (0.2)

is responsible for the volume element dσ of the surface, which is the vector product of the
tangential vectors

dσ := |∂1Θ ∧ . . . ∧ ∂n−1Θ| =
√

detGS dx , (0.3)
dx = dx1 · · · dxn−1 .

Γ-CONVERGENCE R.Duduchava et all ,
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The surface divergence and the surface gradient are defined in the intrinsic coordinates
by the equalities

divS U :=
[
detGS

]−1/2
n∑
j=1

∂j

{[
detGS

]1/2
U j
}
,

∇S f =
n−1∑
j,k=1

(gjk∂jf) ∂k

(0.4)

(see § 6 and [Ta96, Ch. 2, § 3]). Their composition is the Laplace-Beltrami operator

∆S f := divS∇S f =
[
detGS

]−1/2
n−1∑
j,k=1

∂j

{
gjk
[
detGS

]1/2
∂k f

}
, f ∈ C2(S ) ,

(0.5)
which is self-adjoint

∆∗S =
(
∇S divS

)∗
=
(
divS

)∗(∇S

)∗
= ∇S divS = ∆S . (0.6)

The intrinsic parameters enable generalization to arbitrary manifolds, not necessarily im-
mersed in the Euclidean space Rn.

On the other hand sometimes it is more convenient to record these operators in Cartesian
coordinates. To set the conditions for precise formulations let us consider the natural basis

e1 := (1, 0, . . . , 0)>, . . . , en := (0, . . . , 0, 1)> (0.7)

in the Euclidean space Rn (
{
ej
}n
j=1

is also called the Cartesian basis since it is ordered).
Each point x = (x1, . . . , xn)> in the Euclidean space Rn is represented in the Cartesian basis
x =

∑n
j=1 x

jej in a unique way.
Let the operator (the matrix)

πS : Rn → ω(S ), πS (t) = I − ν(t)ν>(t) =
[
δjk − νj(t)νk(t)

]
n×n , t ∈ S (0.8)

denote the canonical orthogonal projection π2
S = πS onto the space of tangential vector

fields to S at the point t ∈ S :

(ν, πS v) =
∑
j

νjvj −
∑
j,k

ν2
j νkvk = 0 for all v = (v1, . . . , vn)> ∈ Rn .

It turns out that the surface gradient is nothing but the collection of the weakly tangential
Günter’s derivatives (cf. [Gu94], [KGBB76], [Du02a])

∇S = DS := (D1, . . . ,Dn)> , Dj := ∂j − νj(X )∂ν = ∂d j , (0.9)

where ∂ν :=
∑n

j=1 νj∂j denotes the normal derivative. The first-order differential operators

Dj = ∂d j , 1 6 j 6 n, (0.10)

are the directional derivative along the vector fields d j := πS e
j , j = 1, . . . , n.

Γ-CONVERGENCE ,
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Moreover, the surface divergence coincides with the operator

divSU =
n∑
j=1

DjU
0
j , for U =

n∑
j=1

U0
j ∂j ∈ ω(S ) (0.11)

and the Laplace-Beltrami operator coincides with (see also [MM84, pp. 2ff and p. 8.])

∆S ϕ := divS∇Sϕ =
n∑
j=1

D2
j ϕ , ϕ ∈ C2(S ) . (0.12)

Relatively simple form of recorded operators enables simplified treatment of correspond-
ing boundary value problems, which require proofs of Korn’s inequalities or similar.

The Laplace-Beltrami operator (0.12) is the natural operator associated with the Euler-
Lagrange equations for a variational integral

E [u] = −1

2

∫
S

‖Du‖2 dS. (0.13)

A similar approach, based on the principle that, at equilibrium, the displacement mini-
mizes the potential energy (Koiter’s model), leads to the following form of the Lamé operator
LS on S (cf. [DMM06])

LSU = µπS divS ∇SU + (λ+ µ)∇S divSU + µH 0
S WSU , (0.14)

(cf. (0.8) for the projection πS ). Here U is an arbitrary (tangential) vector fields on S ,
λ, µ ∈ R are the Lamé moduli, whereas

H 0
S = −divSν := −

n∑
j=1

Djνj = Tr WS , WS = −
[
Djνk

]
n×n . (0.15)

Note, that HS := (n − 1)−1H 0
S and WS represent, respectively, the mean curvature and

the Weingarten mapping (cf. (2.19)) of S . This identification ensures that the boundary-
value problem{

LS U = 0 in S ,

U
∣∣
Γ

= f ∈ Hs(∂S ) , f · ν = f · νΓ = 0 on Γ := ∂S ,
(0.16)

whereU =
∑n

j=1 U
0
j d

j ∈ ω(S )∩Hs+1/2(∂S ) is the (tangential) generalized displacement
vector field of the elastic hypersurface S , is well-posed, whenever µ > 0, 2µ + λ > 0, and
0 6 s 6 1. Here Hs stands for the usual L2-based Sobolev scale, ν is the normal vector to
S and νΓ(t) is the unit tangential vector to S at the boundary point t ∈ Γ := ∂S and outer
normal vector to the boundary Γ = ∂S .

Γ-CONVERGENCE R.Duduchava et all ,
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Chapter 1

AUXILIARY

In the present chapter we have collected, for the readers convenience, some auxiliary infor-
mation, mostly from [Ci1, Ci2, Ci3, Ci4, DMM06, FJM1, Ta92].

1 DIFFERENTIATION AND IMPLICIT FUNCTION THEOREM

In the present section we expose implicit and inverse function theorems, which are ap-
plied later.

Let us recall some standard notation: N := {1, 2, . . .}, N0 := {0, 1, . . .}. For a natural
number n ∈ N let Rn and Cn denote the n-dimensional spaces of vectors x = (x1, . . . , xn)>

with real xj ∈ R and complex xj ∈ C entries and standard metrics, based on the scalar
product

〈x, y〉 := x1y1 + · · ·+ xnyn for x, y ∈ Cn

〈x, y〉 := x1y1 + · · ·+ xnyn for x, y ∈ Rn .

Nn and Nn
0 denote the sets of n-tuples α = (α1, . . . , αn) with components from the

corresponding sets

∂αu(x) = ∂αxu(x) :=
∂|α|u(x)

∂xα1
1 . . . ∂xαnn

, ∂j :=
∂

∂ xj
, , j = 1, 2, . . . , n (1.1)

α ∈ Nn
0 , |α| := α1 + · · ·+ αn .

Let Ω ⊂ Rn be an open domain. A continuous function Φ : Ω → Rm is called
differentiable at a point x ∈ Ω with derivative DΦ(x) : Rn → Rm, if DΦ(x) is a linear
mapping (i.e., a matrix) and

Φ(x+ y) = Φ(x) +DΦ(x)y +R(x, y) , R(x, y) = O(|y|) (1.2)

for small y ∈ Rn, |y| → 0.
With respect to the standard bases of Rn and Rm the derivative DΦ(x) is the matrix of

partial derivatives

DΦ(x) = [∂jΦk(x)]n×m (1.3)

7
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and transforms a column vector u = (u1, . . . , un)> into a new column vector

DΦ(x)u =

(
n∑
j=1

∂jΦk(x)uj

)>
.

The matrix DΦ in (1.3) is called the Jacobi matrix. If n = m the corresponding deter-
minant is called Jacoby determinant or Jacobian.

Φ is differentiable whenever all the partial derivatives exist.
Let Ω ⊂ Rn be an open domain (Ω can be non-compact, e.g. Ω = Rn). For r,m ∈ N0

by Cr(Ω,Rm) (or by Cr(Ω)) is denoted the r-times continuously diferentiable mappings
Φ : Ω→ Rm and C∞(Ω,Rm) :=

⋂∞
r=1 C

r(Ω,Rm).

The set of complex valued mappings will be denoted by Cr(Ω, Cm) (or by Cr(Ω)).
The subspace C∞0 (Ω) consists of infinitely differentiable functions on Ω with compact

supports.
A composition of functions

F = Ψ ◦ Φ : Ω→ Rk , Φ : Ω→M ⊂ Rm , Φ : M → Rk ,

where Φ is differentiable at a point x ∈ Ω and Ψ is differentiable at a point z = Φ(x) ∈M ,
is differentiable at a point x and the chain rule holds:

D(Ψ ◦ Φ)(x) = (DΨ)(Φ(x))DΦ(x) . (1.4)

Let us recall that Ω ⊂ Rn is called a star-like domain with respect to the point x0 ∈ Ω
if y ∈ Ω implies x0 + t(y − x0) ∈ Ω for all 0 6 t 6 1.

The fundamental theorem of calculus, applied to ϕ(t) = Φ(x+ ty) in a star-like domain
with respect to x ∈ Ω, gives the Lagrange formula

Φ(x+ y) = Φ(x) +

∫ 1

0

DΦ(x+ ty)y dt = Φ(x) +DΦ(x+ t0y)y (1.5)

for Φ ∈ C1(Ω), all y ∈ Ω and some 0 ≤ t0 < 1.
Let us consider a function

Φ : Ω→ Rn , Φ ∈ Ck , (1.6)

which maps a domain Ω ⊂ Rn to the same Euclidean space and Φ(x0) = y0. It is important
to know conditions ensuring the existence of the inverse mapping

Φ−1 : V → U ⊂ Ω , Φ(Φ−1(y)) ≡ y , y ∈ V (1.7)

and its smoothness properties, at least locally, in a neighborhood of some y0. The next inverse
function theorem provides such conditions and, together with the Implicit function theorem
(cf. Theorem 1.2), represent most fundamental results of multivariable analysis.

Γ-CONVERGENCE ,
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Theorem 1.1 (Inverse function theorem). Let Ω be a domain in Rn, k ∈ N and Φ ∈
Ck(Ω,Rn). Let the differential DΦ(x) be an invertible matrix at x0 ∈ Ω and Φ(x0) = y0 ∈
Rn.

There exist neighborhoods U ⊂ Ω of x0 and V ⊂ Rn of y0 such that the mapping
Φ : U → V is one-to one and the inverse mapping Φ−1 : V → U is Ck-smooth (i.e.,
Φ−1 is a Ck-diffeomorphism).

Proof: Let

Ψ(x) := (DΦ)(x0)]−1
[
Φ(x0 + x)− y0

]
. (1.8)

Then, obviously,
Ψ(0) = 0 and (DΨ)(0) = I .

Thus, the case reduces to Φ(0) = 0, (DΦ)(0) = I , 0 ∈ Ω, which we suppose fulfilled. Then
we have to solve the equation Φ(u) = v for small v. Due to formula (1.2) this can be written
as an equation

u+R(u) = v , R(0) = 0 , (DR)(0) = 0 (1.9)

where R(u) = O(|u|) .

with the mapping R ∈ Ck−1(Ω,Rn). Solving (1.9) is equivalent to solving

Tv(u) = u , Tv(u) = v −R(u) . (1.10)

Thus, we look for a fixed point u = K(v) = Φ−1(v) and will show that (DK)(0) = I or,
equivalently, K(v) = v + O(|v|). The latter implies that for all x close to the origin (small
enough)

(DK)(x) =
(
DΨ(K(x))

)−1 (1.11)

and taking further derivatives it follows by induction that K ∈ Ck. To implement this idea
we consider a metric space

Mv := {u ∈ Ω : |u− v| 6 Av} ,

where (cf. (1.2) and (1.9))

Av := sup
|w|62|v|

|R(w)| = O(|w|) = O(|v|) . (1.12)

Let us check that Mv is invariant under the mapping

Tv : Mv →Mv (1.13)

provided that v is small enough. Indeed, since Tv(u) − v = −R(u) we only need to check
that |R(u)| 6 Av for all u ∈ Mv provided that v is small enough. Indeed, if u ∈ Mv than,
due to (1.12), |u| 6 |v|+ Av 6 2|v| for a v small enough and

|R(u)| 6 sup
|w|62|v|

|R(w)| = Av .

Γ-CONVERGENCE R.Duduchava et all ,
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This completes the proof of the mapping property (1.13).
Due to the Lagrange formulae (1.5) and the property (DR)(0) = 0 (see (1.5), by taking

v sufficiently small, the mapping (1.13) becomes a contraction

|Tv(u)− Tv(w)| = |R(u)−R(w)| = |(DR)(u+ t0(w − u))(u− w)|

6 r|u− w| , 0 < r < 1 .

Then, by virtue of the fixed point theorem there exists a unique fixed point u = K(v) ∈Mv.
Moreover, from u ∈Mv we conclude that

|K(v)− v| = |u− v| 6 Av = O
(
|v|
)
.

This completes the proof.

Theorem 1.2 (Implicit function theorem). Let Ω ⊂ Rm, E ⊂ Rn be domains and k =
1, 2 . . .. Let Ψ(x, y) : Ω× E → Rn be a Ck-mapping, Ψ(x0, y0) = 0 and the partial n× n
Jacoby matrix DyΨ(x, y) be invertible at (x0, y0) ∈ Ω× E .

There exists a neighborhood U0 ⊂ Ω of x0 and a Ck-smooth mapping y = ψ(x), ψ :
U0 → E (called the implicit function) such that Ψ(x, ψ(x)) ≡ 0.

The function ψ(x) is unique: If there exists another continuous implicit function ψ1 :
U1 → E , the functions coincide ψ1(x) = ψ(x) in the common neighborhood x ∈ U0 ∩ U1

of x0.

Proof: Consider the mapping Φ : Ω× E → Rm × Rn defined by

Φ(x, y) :=
(
x,Ψ(x, y)

)
. (1.14)

The corresponding differential (the Jacobi matrix)(
D(x,y))Φ

)
=

(
I DxΨ
0 DyΨ

)
(1.15)

is, obviously, invertible. Therefore, by virtue of the foregoing Theorem 1.2, there exists the
inverse function Φ−1 : V 0 × U0 → Rm × Rn and at the point (x, y0) acquires the form

Φ−1(x, y0) =
(
x, ψ(x, y0)

)
.

The function ψ(x) = ψ(x, y0) is the desired implicit function.
The uniqueness of the implicit function follows since, according to Theorem 1.1, there

exists only the unique inverse function to Φ(x, y) = (x,Ψ(x, y)).

2 CALCULUS OF TANGENTIAL DIFFERENTIAL OPERATORS

The content of the present section follows [DMM06, § 4] with a slight modification.
Throughout the present section we keep the convention similar to that in § 6: S is a

hypersurface in Rn, given by an immersion

Θ : Ω→ S , Ω ⊂ Rn−1 (2.1)

Γ-CONVERGENCE ,
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with a boundary Γ = ∂S , given by the corresponding immersion

ΘΓ : ω → Γ := ∂S , ω ⊂ Rn−2 , (2.2)

such that the corresponding differentials

DΘj(p) := matr [∂1Θj(p), . . . , ∂n−1Θj(p)] , (2.3)

have the full rank

rankDΘj(p) = n− 1 , ∀p ∈ Yj , k = 1, . . . , n , j = 1, . . . ,M ,

i.e. , all points of ωj are regular for Θj for all j = 1, . . . ,M .

Let S be a hypersurface given by a collection of charts
{

(Sj,Θj)
}M
j=1

, where

Θj : ωj → Sj , S =
M⋃
j=1

Sj , ωj ⊂ Rn−1 , j = 1, . . . ,M (2.4)

(cf. (2.2)). The derivatives

gk = ∂kΘj, k = 1, . . . , n− 1, (2.5)

are then tangential vector fields on S and this system is a basis in the space of tangential
vector fields ω(S ). The symmetric Gram matrix

GS (x) := [〈gk(X ), gm(X )〉]n−1×n−1 = [〈∂kΘj(x), ∂mΘj(x)〉]n−1×n−1, (2.6)
x ∈ ωj ⊂ Rn−1

defines the natural metric on the space of tangential vector fields ω(S ), which is inherited
from the ambient space Rn. Namely, for arbitrary tangential vectors

uk(x) = α1
k∂1Θj(x) + · · ·+ αn−1

k ∂n−1Θj(x) ∈ ω(S ) , αmk ∈ R , k = 1, 2 ,

the inner product is defined by the bilinear first fundamental form

〈u1, u2〉 = 〈GS a1, a2〉 , ak = (α1
k, . . . , α

n−1
k )> , k = 1, 2 . (2.7)

νΓ(t) is the outer normal vector field to the boundary Γ, which is tangential to S and
ν(X ) is the outer unit normal vector field to S , which has the most important role in the
calculus of tangential differential operators we are going to apply. The unit normal vector
field to the surface S , also known as the Gauß mapping, is defined by the vector product
of the covariant basis

ν(X ) := −+
g1(X ) ∧ . . . ∧ gn−1(X )

|g1(X ) ∧ . . . ∧ gn−1(X )|
, X ∈ S . (2.8)

The system of tangential vectors {gk}
n−1
k=1 to S (cf. (2.5)) is, known as the covariant

basis. There exists the unique system
{
gk
}n−1

k=1
biorthogonal to it-the contravariant basis:

〈gj, gk〉 = δjk j, k = 1, . . . , n− 1.

Γ-CONVERGENCE R.Duduchava et all ,
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The contravariant basis is defined by the formula:

gk =
1

detGS
g1 ∧ · · · ∧ gk−1 ∧ ν ∧ gk+1 ∧ · · · ∧ gn−1, k = 1, . . . , n− 1, (2.9)

where GS (X ) is the Gram matrix (see (2.6)).
Next we expose yet another definition of a hypersurface-an implicit one.

Definition 2.1 Let k ≥ 1 an ω ⊂ Rn be a compact domain. An implicit Ck-smooth (an
implicit Lipschitz) hypersurface in Rn is defined as the set

S =
{

X ∈ ω : ΨS (X ) = 0
}
, (2.10)

where ΨS : ω → R is aCk-mapping (or is a Lipschitz mapping) which is regular∇Ψ(X ) 6=
0.
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Fig. 1

Note, that Definition (2.1) and Definition 2.1 of a hypersurface S are equivalent and
by taking a single function ΨS for the implicit definition of a hypersurface S we does not
restrict the generality (see e.g., [Du02b]).

It is well known that using implicit surface functions gradient (see (5.2)) we can write
an alternative definition of the unit normal vector field on the surface (see (2.8)):

ν(t) := lim
x→t

(∇ΨS )(x)

|(∇ΨS )(x)|
, t ∈ S . (2.11)

In applications it is necessary to extend the vector field νt in a neighborhood of S ,
preserving some important features. Here is the precise definition of extension.

Definition 2.2 Let S be a surface in Rn with unit normal ν. A vector filed N ∈ C1(ΩS )

in a neighborhood ΩS of S , will be referred to as a proper extension if N
∣∣∣
S

= ν, it is

unitary |N | = 1 in ΩS and if N satisfies the condition in the neighborhood

∂jNk(x) = ∂kNj(x) for all x ∈ ΩS , j, k = 1, . . . , n. (2.12)
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Such extension is needed, for example, to define correctly the normal derivative (the
derivative along normal vector fields, outer or inner). It turned out that the ”naive” extension
(cf. (5.4))

ν(t) :=
(∇ΨS )(x)

|(∇ΨS )(x)|
, x ∈ ΩS (2.13)

is not proper. Indeed (see [DST15]), let n = 2 and S be the ellipse{
x = (x1, x2) ∈ R2|ΨS (x1, x2) := x2

1 + 2x2
2 − 1 = 0

}
.

Then

N (x) :=
(∇ΨS )(x)

|(∇ΨS )(x)|
=

(x1, 2x2)√
x2

1 + 4x2
2

,

∂1N2(x) = − 2x2 x1

(x2
1 + 4x2

2)
3/2
,

∂2N1(x) = − 4x1x2

(x2
1 + 4x2

2)
3/2
.

Hence ∂1N2(x) 6= ∂2N1(x) unless x1 = 0 or x2 = 0.

For the proof of the next Proposition 2.3 and Corollary 2.4 on extension of the normal
vector field we refer to [DST15].

Proposition 2.3 Let S ⊂ Rn be a hypersurface given by an implicit function

S = {X ∈ Rn : ΨS (X ) = 0} .
Then the gradient∇ΦS (x) of the function

ΦS (X + tν(X )) := t, X + tν(X ) ∈ ΩS , (2.14)

defined in the parameterized neighborhood

ΩS := {x = X + tν(X ) : X ∈ S , −ε < t < ε}
represents a unique proper extension of the unit normal vector field on the surface

ν(X ) = lim
x→X

∇ΦS (x), X ∈ S .

Corollary 2.4 For any proper extension N (x), x ∈ ΩS ⊂ Rn of the unit normal vector
field ν to the surface S ⊂ ΩS the equality

∂N N (x) = 0 holds for all x ∈ ΩS . (2.15)

In particular, for the derivatives

Dk = ∂k −Nk∂N , k = 1, . . . , n , (2.16)

which are extension into the domain ΩS of Günter’s derivatives Dk = ∂k − νk∂ν on the
surface S , we have the equality:

DkNj = ∂kNj −Nk∂N = ∂kNj, DkNj = DjNk, (2.17)
for all j, k = 1, . . . , n.
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In the sequel we will dwell on a proper extension and apply the above properties of N .

Lemma 2.5 (see [DMM06]) For an arbitrary unitary extension N (x) ∈ C1(ΩS ), |N (x)| ≡
1, of ν(X ), in a neighborhood ΩS of S , the following conditions are equivalent:

i. ∂N N
∣∣
S

= 0, i.e., ∂N Nj(x)→ 0 for x→ X ∈ S and j = 1, 2, ..., n;

ii. [∂kNj − ∂jNk]
∣∣
S

= 0 for k, j = 1, 2, . . . , n.

The second fundamental form of S has the form

II(U(X ),V (X ))ν(X ) := ∂UV (X )− ∂S
U V (X ) = (I − πS )∂UV (X )

= 〈ν(X )∂UV (X )〉ν(X ), ∀X ∈ S , U ,V ∈ ω(S ) (2.18)

and the Weingarten matrix (or the Weingarten mapping)

WS : ω(S ) −→ ω(S ), (2.19)

is defined uniquely by the requirement that

〈WSU ,V 〉 = II(U ,V ) = 〈ν, ∂UV 〉 = −〈∂Uν,V 〉 = −〈∂S
U ν,V 〉 (2.20)

∀U ,V ∈ ω(S ) .

In the last equality in (2.20) we have applied the following: for a tangential vector field
V ∈ ω(S ) holds 〈ν(X ),V (X )〉 ≡ 0, X ∈ S and, by differentiating,

〈∂Uν(X ),V (X )〉+ 〈ν(X ), ∂UV (X )〉 ≡ 0 , X ∈ S , j = 1, . . . , n , (2.21)

for all U =
n∑
j=1

Ujdj , V =
n∑
j=1

Vjdj , d j = πS e
j , ∂S

U :=
n∑
j=1

UjDj .

We can extend the Weingarten matrix WS (x) from the surface S to a neighbourhood as
follows:

WS (x) := −∇N (x) = −
[
∂jNk(x)

]
n×n , x ∈ ΩS . (2.22)

Lemma 2.6 The extended Weingarten matrix WS (x) in (2.22) has the following properties:
i. WS (x)N (x) = 0 for all x ∈ ΩS ;

ii. even if extension N (x) is not proper, the restriction to the hypersurface WS

∣∣
S

coin-
cides with the Weingarten mapping of S and only depends on S (is independent of
the choice of the extension N );

iii. even if extension N (x) is not proper, Tr (WS )
∣∣
S

= H 0
S , where H 0

S is the mean
curvature of S ;

iv. WS (x)V (x), x ∈ SC , is tangential to the level surface

SC := {y ∈ Rn : ΨS (y) = C := ΨS (x)} (2.23)

for arbitrary vector field V : S → Rn.
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Proof: First, WS N = ∇‖N ‖2 = ∇1 = 0 in ΩS , justifying (i). Assertions (ii) and (iii)
follow from Lemma 2.5.

Next, (iv) is proved as follows:

〈N (x),WSV (x)〉 = −
n∑

j,k=1

Nj(∂jNk)Vk = −
n∑
k=1

(∂N Nk)ω = 0

due to (2.15), proved below.

We remind that

GS (X ) = G(X ) = [gjk(X )]n−1×n−1 , gjk := 〈gj, gk〉

is the positive definite Gram matrix, which is known as the covariant Riemannian metric
tensor and defines the metric on the surface S (cf. § 4).

Let dσ =
√

detGS dx and ds =
√

detGΓdx
′ stand for the volume elements on S and

Γ := ∂S , respectively (x ∈ Rn−1, x′ ∈ Rn−2; cf. § 4).
Let

P (∇)u =
n∑
j=1

aj∂ju+ bu , aj, b ∈ C1(Rm×m) (2.24)

be a first-order differential operator with real valued (variable) matrix coefficients, acting on
vector-valued functions u = (uβ)β in Rn and its principal symbol is given by the matrix-
valued function

σ(P ; ξ) :=
n∑
j=1

ajξj ξ =
{
ξj
}n
j=1
∈ Rn . (2.25)

Definition 2.7 We say that P is a weakly tangential operator to the hypersurface S , with
unit normal ν, provided that

σ(P ;ν) = 0 on the hypersurface S . (2.26)

Next, call P a strongly tangential operator to S provided that there exists an extended
unit field N such that

σ(P ; N ) = 0 in an open neighborhood of S in Rn . (2.27)

Note that in a strongly tangential operator the coordinate derivatives ∂j can be replaced
by the Günter’s derivatives Dj:

P (∇)u =
n∑
j=1

aj∂ju+ bu =
n∑
j=1

ajDju+ bu = P (D)u , aj, b ∈ C1(Rm×m) (2.28)

Most important tangential differential operators to the hypersurface are for us:
A. The weakly tangential Günter’s derivatives (see (0.9))

Dj := ∂j − νj∂ν = ∂j − νj
n∑
k=1

νk∂k , j = 1, . . . , n.
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B. The weakly tangential Stoke’s derivatives Mjk = νj∂k − νk∂j , introduced in § 5.
The Günter’s and Stoke’s derivatives are tangent since the corresponding vector fields

are tangent

Dj := ∂d j = d j · ∇ , Mjk := ∂mjk = mjk · ∇ ,

d j := πS e
j = ej − νjν = ν ∧

(
ν ∧ ej

)
=

n∑
k=1

(δjk − νjνk)ek ,

mjk := νjek − νkej , 〈d j,ν〉 = 0 , 〈mjk,ν〉 = 0 , j, k = 1, . . . , n ,

(2.29)

where πS is the projection on the tangential space to the surface (see (0.8)). Therefore Dj

and Mjk can be applied to functions which are defined on the surface S only.

The generating vector fields
{
d j
}n
j=1

{
mjk

}n
j,k=1

are not frame since they are linearly
dependent

n∑
j=1

νj(X )d j(X ) ≡ 0 , mjj = 0 , (2.30)

but both systems
{
d j
}n
j=1

and
{
mjk

}n
j,k=1

are full in the space of all tangential vector fields:
any vector field U ∈ ω(S ) is represented as follows

U(X ) =
n∑
j=1

U j(X )d j(X ) =
n∑

06j<k61

cjk(X )mjk(X ) . (2.31)

For example, the covariant vector fields g1(X ) := ∂1Θk(X ), . . . , gn−1(X ) := ∂n−1Θk(X ),
X ∈ Sk, k = 1, . . . , N on S , which generate the derivatives ∂j = ∂dxj , are represented as
follows

gj(X ) =
n∑

m=1

gmj (X )em =
n∑

m=1

gmj (X )dm(X ) (2.32)

and
{
em
}n
m=1

is a Cartesian frame in Rn. Indeed, by applying the derivative to Θk we get

gj =
n∑

m=1

gmj e
m =

n∑
m=1

gmj d
m since

n∑
m=1

gmj [em − dm]

=
n∑

m=1

gmj νmν = 〈gj,ν〉ν = 0 , j = 1, . . . , n− 1.

Let us recall the following result about surface divergence divS , the surface gradient
∇S and the surface Laplace-Beltrami operator ∆S .

Theorem 2.8 ([DMM06]) For any function ϕ ∈ C1(S ) we have

∇Sϕ =
{

D1ϕ,D2ϕ, ...,Dnϕ
}>
. (2.33)
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Also, for a 1-smooth tangential vector field V =
∑n

j=1 V
jej ∈ ω(S ),

divS V = −∇∗SV :=
n∑
j=1

DjV
j. (2.34)

The Laplace-Beltrami operator ∆S on S takes the form

∆S ψ=divS∇S ψ = −∇∗S
(
∇Sψ

)
=

n∑
j=1

D2
j ψ (2.35)

=
∑
j<k

M 2
jkψ =

1

2

n∑
j,k=1

M 2
jkψ ∀ψ ∈ C2(S ) . (2.36)

An important operator on forms is the exterior derivative. The derivative of a 0-form,
i.e., of a scalar function

f : S → R , f ∈ C1(S ) , (2.37)
is a 1-form and maps

df(w) : TwS → R . (2.38)
Thus, df(w) is a linear functional df(w) ∈ T∗wS over TwS for all w ∈ S : being a vector
df(w) = Df(w) = (∂1f(w), . . . , ∂n−1f(w))> the differential assigns to a vector ξ ∈ TwS
the number

df(x)ξ =
n−1∑
j=1

∂jf(x)ξj , ∂jf(x) := ∂dxjf(x), x ∈ Sk, (2.39)

where
{
dxj = ∂jΘk

}n−1

j=1
is the covariant basis on S and Θk : Ωk → Sk, k = 1, . . . , N is

the surface immersion.
From (2.32) and the definition of the derivative ∂jf(x) := ∂dxjf(x) in (2.39) follows

that (see for the differential matrix DΘk):

∂S :=
(
∂1, . . . , ∂n−1)> :=

(
∂dx1 , . . . , ∂dxn−1

)>
=
(
DΘk

)>∇S ,

∇S :=
(
D1, . . . ,Dn

)>
or ∂dxj =

n∑
m=1

(∂jΘ
m
k )Dm , m = 1, . . . , n− 1.

(2.40)

Let N be a proper extension of the unit normal vector field ν to S (cf. Definition 2.2).
Then each operator Dj and Mjk extends accordingly by setting

Dj = ∂j −Nj∂N , Mjk := Nj∂k −Nk∂j , 1 6 j, k 6 n (2.41)

In the sequel, we shall make no distinction between the operator Dj or Mjk on S and the
extended one in Rn given by (2.41). Note, that the extended operators Dj and Mjk becomes
even strongly tangent.

For further reference, below we collect some of the most basic properties of this system
of differential operators.
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Lemma 2.9 Let N be a proper extension of the unit vector field of normal vectors ν to S .
The following relations are valid for j, k = 1, . . . , n:

i. Mjj = 0, Mjk = −Mkj;

ii. ∂k =
∑n

j=1 NjMjk + Nk∂N = −
∑n

k=1 NkMjk + Nj∂N ;

iii.
∑n

k=1 MjkNk = −NjH 0
S , where H 0

S (X ) = −divS ν(X ) and HS (X ) := (n −
1)−1H 0

S (X ) is the mean curvature at X ∈ S (see (0.15));

iv. Dj =
n∑
k=1

NkMkj;

v. Mjk = NjDk −NkDj;

vi.
n∑
j=1

NjDj = 0;

vii.
m+1∑

r,j,k=m−1

σ(r, j, k)NiMjk = 2
∑

{r,j,k}⊂{(m−1),m,(m+1)}

σ(r, j, k)NiMjk = 0 for m = 2, . . . , n − 1,

where σ(r, j, k) is the permutation sign:

σ(j1, . . . , jk) =



+1 if (j1, . . . , jk)is an even permutation of the strongly

ordered row (m1, . . . ,mk) , m1 < . . . < mk ,

0 if jr = js for some r, s = 1 . . . , k and r 6= s ,

−1 if (j1, . . . , jk) is an odd permutation of the strongly

ordered row (m1, . . . ,mk) , m1 < . . . < mk ;

(2.42)

viii. [Dj,Dk] =
n∑
r=1

(MjkNr)Dr +
[
Nj∂N Nk −Nk∂N Nj

]
∂N ;

ix. [Dj,Dk] =
n∑
r=1

(MjkNr)Dr = Nk[DN , ∂j]−Nj[DN , ∂k];

x. ∂jNk = DjNk = DkNj .

Proof: The identities (i)-(ii) and (iv)-(vii) are simple consequences of the definitions. For
the equality (iii) we have

n∑
k=1

MjkNk =
n∑
k=1

MjkNk =
n∑
k=1

(Nj∂k −Nk∂j)Nk

= Nj div N − 1

2
∂j(‖N ‖2) = −NjH

0
S ,

as claimed.
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To prove (viii) we calculate

DjDk =(∂j −Nj∂N )(∂k −Nk∂N ) = ∂j∂k − (∂jNk)∂N

−
n∑
r=1

[
Nk(∂jNr)∂r + NkNr∂r∂j + NjNr∂r∂k

]
+ Nj

(
∂N Nk

)
∂N + NjNk∂

2
N

=−
n∑
r=1

Nk(∂jNr)∂r + Nj(∂N Nk)∂N +Bjk

=−
n∑
r=1

Nk(∂jNr)Dr + Nj(∂N Nk)∂N +Bjk , (2.43)

since
n∑
r=1

Nk(∂jNr)Nr∂N =
1

2

n∑
r=1

Nk(∂jN
2
r )∂N =

1

2
Nk(∂j1)∂N = 0 .

The operator

Bjk = ∂j∂k − (∂jNk)∂N −
n∑
r=1

[
NkNr∂r∂j + NjNr∂r∂k

]
+ NjNk∂

2
N

is symmetric Bjk = Bkj and the desired commutator identity in (viii) follows from (2.43).
The first commutator identity in (ix) utilizes the facts that ∂N Nk = 0 (cf. Lemma (2.12))

and follows from the identity in (viii). The second commutator identity in (ix) applies the
same identity ∂N Nk = 0, the identity ∂jNk = ∂kNj (cf. (2.15)), and follows by a routine
calculations.

The identities in (x) are already proved in (2.12) and (2.17).
The next Lemma 2.10 provides an useful and interesting example of restriction of the

differential form to hypersurface and to it’s boundary.

Lemma 2.10 Let Θ : Ω → S be a smooth hypersurface in Rn with a smooth boundary
Γ := ∂S , while dσ and ds designate the respective volume elements on S and on Γ.
Let ν(X ) =

(
ν1(X ), . . . , νn(X )

)> be the outer unit normal vector to S at X ∈ S and
νΓ(s) =

(
ν1

Γ(s), . . . , νnΓ(s)
)>-the unit tangential vector to S at the boundary point s ∈ Γ,

which is outward (unit) normal vector to the boundary S . Then

νjdS = βj
∣∣
S
, (2.44)[

νjν
k
Γ − νkν

j
Γ

]
ds = βjk

∣∣
Γ
, (2.45)

where

βj :=
∣∣dx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxn

∣∣ = (−1)j−1dx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxn ,

βjk :=
∣∣dx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ d̂xk ∧ . . . ∧ dxn

∣∣
= (−1)j+k−1dx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ d̂xk ∧ . . . ∧ dxn

and d̂xm denotes that the factor dxm is dropped.
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The next Theorem generalizes Stoke’s formulae (see [Ta96, § 2.2, Theorem 2.1] for the
version on compact Riemannian manifolds).

Theorem 2.11 For any real-valued function ϕ ∈ C1(S ) and any 1 6 j < k 6 n, there
hold: ∫

S

Mjkϕdσ =

∮
Γ

[
νjν

k
Γ − νkν

j
Γ

]
ϕds , (2.46)

where νΓ(ξ) =
(
ν1

Γ(ξ), . . . , νnΓ(ξ)
)> is the unit tangential vector to S at the boundary point

ξ ∈ Γ := ∂S and outward (unit) normal vector to the boundary Γ = ∂S .

Proof: With formula (2.44) at hand the integrand in (2.46) can be represented as a total
differential

(Mjkϕ) dσ = (∂kϕ)ωj
∣∣
S
− (∂jϕ)ωk

∣∣
S

= d
[
ϕωjk

]∣∣
S
.

Applying the well known Stoke’s formula∫
S

dβ :=

∫
Γ

β (2.47)

(see, e.g., [Du11]) and formula (2.45) we get:∫
S

Mjkϕdσ =

∫
S

d
[
ϕωjk

]∣∣
S

=

∫
Γ

ϕωjk
∣∣
Γ

=

∫
Γ

[
νjν

k
Γ − νkν

j
Γ

]
ϕds

and (2.46) is proved.

The formal adjoint (in Rn) to P is defined by

P ∗u = −
∑
j

∂ja
>
j u+ b>u

If Ω ⊂ Rn is a smooth, bounded domain, and if P is a first-order operator, weakly
tangent to ∂Ω, then, applying (2.54) (cf. § 5), P can be integrated by parts over Ω without
boundary terms, i.e.

(Pu, v)Ω :=

∫
Ω

〈Pu, v〉 dx =

∫
Ω

〈u, P ∗v〉 dx =: (u, P ∗v)Ω (2.48)

for all vector-valued sections of vector fields u, v ∈ C1(Ω̄).
For a weakly tangential differential operator Q on a closed hypersurface S let Q∗S

denote the “surface” adjoint:

(QSϕ, ψ)S :=

∮
S

〈QSϕ, ψ〉 dσ =

∮
S

〈ϕ,Q∗Sψ〉 dσ = (ϕ,Q∗Sψ)S (2.49)

for all vector-valued sections of vector fields ϕ, ψ ∈ C1(Ω̄).
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Corollary 2.12 The surface-adjoint operator P ∗S to the weakly tangential differential oper-
ator P in (2.24) is equal to the formally adjoint one

P ∗Sϕ = P ∗ϕ = −
n∑
j=1

∂ja
>
j ϕ+ b>ϕ . (2.50)

In particular, the Stoke’s derivatives are skew-symmetric(
M ∗

jk

)
S

= M ∗
jk = −Mjk = Mkj ∀ j, k = 1, . . . , n . (2.51)

The adjoint operator to the operator Dj is(
Dj

)∗
S
ϕ = D∗j ϕ = −Djϕ+ νjH

0
Sϕ , ϕ ∈ C1(S ) , (2.52)

where (n− 1)−1H 0
S (X ) = HS (X ) is the mean curvature of the surface S (cf. (0.15)).

For any real-valued function ϕ ∈ C1(S ), any 1 6 j < k 6 n and for νΓ =(
ν1

Γ, . . . , ν
n
Γ

)> being the the same as in Theorem 2.11 the following integration by parts
formula ∫

S

[
(Djϕ)ψ − ϕ

(
D∗j ψ

)]
dσ =

∮
Γ

νjΓϕψ ds , (2.53)

holds. It is an analogue of the classical Gaußian integration by parts formula∫
Ω

∂jf(y)g(y) dy =

∮
S

νj(τ)f(τ)g(τ) dσ −
∫

Ω

f(y)∂jg(y) dy, (2.54)

which holds for arbitrary f, g ∈W1(S ).
In particular, the following Gauß formulae for open surfaces is valid:∫

S

Djϕdσ =

∮
Γ

νjΓϕds +

∫
S

νjH
0

Sϕdσ . (2.55)

Proof: We start by proving (2.51): by applying the Stoke’s formulae∮
S

(Mjkf)(τ) dσ = 0, j, k = 1, . . . , n, f ∈W1
1(S ), (2.56)

we get ∮
S

(Mjkϕ)ψ dσ =

∮
S

(Mjkϕψ) dσ −
∮

S

ϕ(Mjkψ) dσ = −
∮

S

ϕ(Mjkψ) dσ

and the equality (
M ∗

jk

)
S

= −Mjk = Mkj (2.57)
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follows. Moreover, note that the formal adjoint to Mjk = NjDk −NkDj is

M ∗
jkϕ=

(
Nj∂k −Nk∂j

)∗
ϕ = −∂j(Nkϕ) + ∂k(Njϕ)

=Nk∂jϕ−Nj∂kϕ+ (∂jNk)ϕ− (∂kNj)ϕ = −Mjkϕ

(cf. (2.12)), where ϕ ∈ C1(ΩS ) is defined in a neighborhood of S . (2.51) is proved.
To prove (2.50) we note that, on S ,

Pϕ=
n∑
j=1

aj∂jϕ+ bϕ =
∑
j

aj
[
Dj + νj∂ν

]
ϕ

=
n∑
j=1

ajDjϕ+ bϕ+ σ(P ;ν)∂νϕ =
n∑
j=1

ajDjϕ (2.58)

=
n∑

j,k=1

ajνkMkjϕ (2.59)

due to Lemma 2.9.iv and the weak tangentiality of P . The property postulated in (2.50)
follows from (2.59) and (2.51):

P ∗Sϕ =
n∑

j,k=1

(Mkj)
∗
S a
>
j νkϕ+ b>ϕ =

n∑
j,k=1

(Mkj)
∗a>j νkϕ+ b>ϕ = P ∗ϕ .

With (2.50) and with (2.12) we get

(Dj)
∗
Sϕ=D∗j ϕ = −∂jϕ+

n∑
k=1

∂k
(
NjNkϕ

)
=−∂jϕ+

n∑
k=1

[
NjNk∂kϕ+

(
Nk∂kNj)ϕ+ Nj

(
∂kNk

)
ϕ
]

=−Djϕ−NjH
0

Sϕ+ (∂N Nj)ϕ , (2.60)

where ϕ ∈ C1(ΩS ) is defined in a neighborhood of S and

H 0
S := −

n∑
k=1

DkNk , H 0
S (X ) = −

n∑
k=1

Dkνk(X ) for X ∈ S . (2.61)

(2.52) follows since (cf. (2.15)) ∂N Nj = 0.
To prove (2.61) we apply

∂N N
∣∣
S

=

{
n∑
j=1

Nj∂jNk

}n

k=1

∣∣∣∣∣
S

=

{
n∑
j=1

Nj∂kNj

}n

k=1

∣∣∣∣∣
S

=
1

2
∇x|N |2

∣∣∣
S

=
1

2
∇x1 = 0 . (2.62)
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and proceed as follows

n∑
k=1

Dkνk =
n∑
k=1

(
∂kνk − νk

n∑
j=1

νj∂jνk

)
= −H 0

S −
n∑
j=1

νj
2
∂j1 = −H 0

S .

For the proof of the last formula (2.53) we apply Lemma 2.9.iv, (2.51), the equalities
n∑
k=1

ν2
k = 1,

n∑
k=1

νkν
k
Γ = 0 and proceed as follows:

∮
S

(Djϕ)ψ dσ=
n∑
k=1

∮
S

νk(Mjkϕ)ψ dσ −
n∑
k=1

∮
S

ψ(Mjkνkψ) dσ

+
n∑
k=1

∮
Γ

(ν2
kν

j
Γ − νkνjν

k
Γ)ϕψ ds =

∮
S

ψ(D∗j ψ) dσ +

∮
Γ

νjΓϕψ ds .

Concerning the formula (2.55): it follows from formulae (2.53) and (2.52), if we insert
ψ(t) ≡ 1 in (2.53) and note, that Dj1 = 0.

Lemma 2.13 Let P be, as in ((2.24)), a first-order differential operator with C1-smooth
coefficients. P is weakly/strongly tangent if and only if the formally adjoint P ∗ is so.

If P is weakly tangent to S and P is defined in a neighborhood of S , then

(Pϕ)
∣∣∣
S

= P
(
ϕ|S

)
(2.63)

for every C1 function ϕ defined in a neighborhood of S . In particular,

Djϕ
∣∣
S

= Dj

(
ϕ
∣∣
S

)
, Mjkϕ

∣∣
S

= Mjk

(
ϕ
∣∣
S

)
, j, k = 1, . . . , n . (2.64)

Furthermore, (2.63) is true for the adjoint P ∗, and∫
S

〈Pϕ, ψ〉 dσ =

∫
S

〈ϕ, P ∗ψ〉 dσ +

∮
Γ

〈σ(P ;νΓ)ϕ, ψ〉 ds (2.65)

for any vector-valued functions ϕ, ψ ∈ S .

Proof: The first assertion follows since σ(P ∗; ξ) = −σ(P ; ξ)>, for each ξ ∈ Rn.
Due to the representation (2.58) it suffices to prove (2.63) for only the operator Dj =

d j · ∇, where d j = πS e
j = N ∧

(
N ∧ ej

)
is at least C1-smooth vector field in a

neighborhood ΩS of S , tangent to the surface S at surface points (cf. (2.29)). Thus, we
have to justify the following equality:

Djϕ
∣∣
S

=
(
d j · ∇

)
ϕ
∣∣∣
S

= d j · ∇
(
ϕ
∣∣∣
S

)
= Dj

(
ϕ
∣∣∣
S

)
. (2.66)
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The vector field d j(x) = d j(θ,X ) depends on the signed distance θ = dist(x,S ) =

−+|x−X | continuously (θ > 0 for the outer domain and θ > 0 for the inner one). Let F t
d j(·)

be the integral curve of the vector field d j and

F t
d j(·) : ΩS → ΩS , F t

d j(0,·) = F t
d j(·) : S → S (2.67)

be the flow generated by this vector field `θ in the neighborhood ΩS (cf. § 2). Since the flow
depends continuously on the parameter θ, we get(

d j(θ,X ) · ∇
)
ϕ
∣∣∣
S

= lim
θ→0

d

dt
ϕ
(
F t
d j(θ,X )

)∣∣∣
t=0

=
d

dt
ϕ
(
F t
d j

)∣∣
t=0

= d j · ∇
(
ϕ
∣∣
S

)
= Dj

(
ϕ
∣∣∣
S

)
and (2.66) is proved.

Next, using (2.58), (2.53) and integrating by parts we get∫
S

〈Pϕ, ψ〉 dσ=
n∑
j=1

∫
S

〈ajDjϕ, ψ〉 dσ +

∫
S

〈bϕ, ψ〉 dσ

=
n∑
j=1

∫
S

〈ϕ,D∗j a>j ψ〉 dσ +

∫
S

〈ϕ, b>ψ〉 dσ +
n∑
j=1

∮
Γ

〈ϕ, νjΓa
>
j ψ〉 dσ

=

∫
S

〈ϕ, P ∗ψ〉 dσ +

∮
Γ

〈σ(P ;νΓ)ϕ, ψ〉 ds

and this completes the proof.

Remark 2.14 By iteration, an identity similar in spirit to (2.65) holds for higher order
weakly tangential differential operators which are higher order polynomials of Günter’s or
Stoke’s derivatives (cf. Lemma 2.15).

In this connection, let us also point out that the strongly tangential operator-the Stoke’s
gradient

MS := N ∧∇S = N ∧∇ =
{
M23,−M13,M12

}
, MS

∣∣
S

= ν ∧∇S (2.68)

in R3 acting on scalar functions on S , is naturally identified with the skew-symmetric matrix
whose entries are the Stoke’s derivatives, in the sense that

ν ∧ d =
1

2

3∑
j,k=1

Mjk dxj ∧ dxk =
∑

16j<k63

Mjk dxj ∧ dxk . (2.69)

Further important examples of strongly tangential, first-order differential operators are
offered by

P1U := divU − ∂νU 〈U ,ν〉, with P ∗1ϕ = −∇ϕ+ (∂νϕ+ H 0
Sϕ)ν ,

P2U := divS πSU , with P ∗2ϕ = −πS∇Sϕ , (2.70)

P3U := ∂νπSU − ν ∨ dU, with P ∗3ϕ = −πS ∂νϕ−H 0
S πSϕ− δ(ν ∧ ϕ ) .

Γ-CONVERGENCE ,



December 11, 2018 Γ-CONVERGENCE AND SHELL THEORY 25

Indeed,

σ(P1; ξ) = 〈ξ, ·〉−〈ν, ξ〉〈ν, ·〉 , σ(P2; ξ) = 〈ξ, πS (·)〉 , σ(P3; ξ) = 〈ξ,ν〉 πS−ν∨(ξ∧·) ,

so that (2.27) is easily verified in each case.
In the sequel we use the following standard notation

∇α
S := Dα1

1 . . .Dαn
n , α ∈ Nn

0 ,

M β
S := M β1

1 . . .M βm
m , β ∈ Nm

0 , m =
n(n− 1)

2
, (2.71)

where

∇S := (D1, . . . ,Dn)> , MS := (M12, . . . ,Mn−1,n)> (2.72)

and the selected Stoke’s derivatives M1 := M1,2, . . . ,Mm := Mn−1,n are non–vanishing,
while the remaining non-vanishing Stoke’s derivatives differ from the selected ones only
by the sign. In contrast to the case of the usual derivatives ∂α it does really matters in
which sequence we apply the derivatives D

αj
j and M βk

k in (2.71), because they have variable
coefficients. In this connection let us write precisely what is meant under the dual operators:

(D∗x)α := (D∗n)αn . . . (D∗1 )α1 , α ∈ Nn
0 ,

(M ∗
x )β := (−1)|β|(Mm)βm . . . (M1)β1 , β ∈ Nm

0 , (2.73)

Note, that we use the same operators M ∗
1 = −M1 = −M1,2, . . . ,M ∗

m = −Mm :=
−Mn−1,n for the adjoint operators to the Stokes derivatives, because these operators are
skew-symmetric (Mj,k)

∗ = −Mj,k (cf. (2.51)).

Lemma 2.15 Let G(D) be a tangential differential operator of the form

G(D) =
∑
|α|6k

gα(t)Dα
t =

∑
|β|6k

fβ(t)M β
t , t ∈ S . (2.74)

Then ∮
S

〈G(D)ϕ, ψ〉 dσ =

∮
S

〈ϕ,G∗(D)ψ〉 dσ , (2.75)

where

G∗(D) =
∑
|α|6k

(D∗)αg>α I =
∑
|β|6k

(−1)|β|M βf>β I (2.76)

and D∗ and M ∗ are the adjoint operators (cf. (2.52) and (2.51)).
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Remark 2.16 Note that the operators iMj, j = 1, . . . ,m with variable coefficients

A(x,Mx)u =
M∑
j=1

bj(x)(iMj)
mjb>j (x)u , bj ∈ [C∞(S )]N×N (2.77)

and polynomials with constant self adjoint N ×N matrix coefficients

B(Mx)u =
M∑
j=1

ajM
mj
j u , a>j = aj = const ∀j = 1, . . . ,M , ∀mj ∈ N0 , (2.78)

are all self adjoint on the hypersurface A∗S (Mx) = A(Mx).

3 EQUATION OF ELASTIC HYPERSURFACE

One way of understanding the genesis of the Laplace-Beltrami operator ∆S on the
surface S (see (2.35)) is to consider the energy functional

E [u] :=

∫
S

‖∇u‖2 dσ, u ∈ C∞(S ). (3.1)

Then any minimizer u of the functional (3.1) should satisfy

0=
d

dt
E [u+ tv]

∣∣∣
t=0

=

∫
S

[〈∇u,∇ v〉+ 〈∇ v,∇u〉] dσ

=2Re

∫
S

〈∇u,∇ v〉 dσ u ∈ C∞(S ), ∀ v ∈ C∞0 (S ), (3.2)

which implies
∆u = 0 on S . (3.3)

In other words, (3.3) is the Euler-Lagrange equation associated with the integral func-
tional (3.1).

Similarly, minimizers of the energy functional

E [U ] :=

∫
S

[
‖dU‖2 + ‖δU‖2

]
dσ, U ∈ Λ`ω(S ), (3.4)

are null-solutions to the Hodge-Laplacian (cf. later (4.16)), while minimizers of the energy
functional

E [U ] :=

∫
S

‖∇U‖2 dσ, U ∈ ω(S ), (3.5)

are null-solutions to the Bochner-Laplacian (cf. later (4.17)).
Our aim is to adopt a similar point of view in the case of anisotropic and isotropic (Lamé)

system of elasticity on S .
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The Günter’s derivatives
{
Dj

}n
j=1

are tangent and represent a full system (cf. (2.29)-
(2.31)). But the derivative DjV is not covariant and maps the tangential vectors to non-
tangential ones Dj : ω(S ) 6→ ω(S ). To improve this we just eliminate the normal com-
ponent of the vector by applying the canonical orthogonal projection πS onto ω(S ) (cf.
(0.8))

DS
j V := πS DjV = DjV − 〈ν,DjV 〉ν = DjV + (∂V νj)ν , (3.6)

where ∂V ϕ :=
n∑
k=1

V 0
k ∂kϕ =

n∑
k=1

V 0
k Dkϕ

and obtain an automorphisms of the space of tangential vector fields

DS
j : ω(S )→ ω(S ) . (3.7)

The starting point is to consider the total free (elastic) energy

E [U ] :=

∫
S

E(y,DSU(y)) dσ, DSU :=
[
(DS

j U)0
k

]
n×n , U ∈ ω(S ) (3.8)

(cf. (3.6), (3.7)), ignoring at the moment the displacement boundary conditions (Koiter’s
model). As before, equilibria states correspond to minimizers of the above variational in-
tegral (see [NH80, § 5.2]). First we should identify the correct form of the stored energy
density E(x,DSU(x)). We shall restrict attention to the case of linear elasticity. In this
scenario, E = (SS ,DefS ) depends bi-linearly on the stress tensor SS =

[
Sjk
]
n×n and the

deformation (strain) tensor

DefS =
[
Djk

]
n×n , DjkU :=

1

2

[(
DS
k U

)
j

+
(
DS
j U

)
k

]
, j, k = 1, . . . , n (3.9)

which, according to Hooke’s law, satisfy SS = TDefS , for some linear, fourth-order tensor
T. If the medium is also homogeneous (i.e. the density and elastic parameters are position-
independent), it follows that E depends quadratically on the covariant derivative DSU ,
i.e.

E(x,DSU(x)) = 〈TDSU(x),DSU(x)〉 (3.10)
for a linear operator

T : Mn×n(R) −→Mn×n(R), (3.11)

where Mn×n(R) stands for the vector space of all n×n matrices with real entries. Hereafter,
we organize Mn×n(R) as a real Hilbert space with respect to the inner product

〈A,B〉 := Tr(AB>) =
∑
i,j

aijbij, ∀A = [aij]i,j , B = [bij]i,j ∈Mn×n(R), (3.12)

where B> denotes transposed matrix, and Tr is the usual trace operator for square matrices.
A linear operator (3.11) is a tensor of order 4, i.e., T =

[
cijk`

]
ijk`

, and

TA =

[∑
k,`

cijk`ak`

]
ij

, for A = [ak`]k` ∈Mn×n(R) . (3.13)
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T will be referred to in the sequel as the elasticity tensor. It is customary to assume that the
elasticity tensor (3.11) is self-adjoint

〈TA,B〉 = 〈A,TB〉 , A,B ∈Mn×n(R) . (3.14)

The condition rescaling (3.14), written in coordinate notation, is equivalent to the following
equality

cijk` = ck`ij, ∀ i, j, k, ` . (3.15)

Indeed, the equality

Tr((TA)B>) =
∑
i,j,k,`

cijk`ak`bij =
∑
i,j,k,`

ck`ijak`bij = Tr(A(TB)>)

holds, for arbitrary A = [ak`]k` and B = [bk`]k`, if and only if (3.15) holds: by inserting the
delta functions ak` = δk`, bij = δij we get the equality (3.15).

It is also customary to impose a symmetry condition, presented with two natural options:

T(A>) = TA and (TA)> = TA ∀A ∈Mn×n(R) . (3.16)

Then (3.16) amounts to the following symmetry in the indices of the elastic tensor:

cijk` = cij`k and cijk` = cjik` ∀ i, j, k, ` . (3.17)

Remark 3.1 The conditions (3.14) and the first equality in (3.16) imply the second equality
in (3.16) as well as the conditions (3.14) and the second equality in (3.16) imply the first
equality in (3.16). This is evident if we apply an equivalent formulation for corresponding
tensors and matrices: (3.15) and (3.17).

A linear operator T in the energy functional of anisotropic elasticity (3.10) satisfies the
symmetry conditions (3.14), and (3.16). Equivalently, the corresponding elasticity tensor
T =

[
cijk`

]
ijk`

has the symmetries (3.15), (3.17) and, therefore, might have n+n2(n−1)2/2

different entries only.

Remark 3.2 It is rather natural to introduce the deformation tensor as the symmetrized
covariant derivative (cf., e.g., [Ta96, V. I, Ch. 5, § 12]).

(DefS U)(V ,W )=
1

2

{
〈∂VU ,W 〉+ 〈∂WU ,V 〉

}
=

1

2

{
〈∂S
V U ,W 〉+ 〈∂S

WU ,V 〉
}
, ∀V ,W ∈ ω(S ). (3.18)

It is also worth of mentioning that the antisymmetric part of the covariant derivative ∂S
U

dU(V ,W ) = 〈dU ,V ∧W 〉 =
1

2

{
〈∂S
V U ,W 〉 − 〈∂S

WU ,V 〉
}
, ∀V ,W ∈ ω(S ),

(3.19)
is the exterior differential.
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By inserting the value (3.9) of deformation tensor DefSU and applying the symmetry
properties (3.17), we obtain

4〈TDefSU(x),DefSU(x)〉 = 〈TDSU(x),DSU (x)〉 = E(x,DSU(x)) (3.20)

(cf. (3.10)) which means that the density of the elastic energy functional depends quadrati-
cally also on the deformation tensor.

The density of the potential energy of an elastic medium should be strictly positive for
the non-vanishing deformation tensor DefSU 6= 0 (the energy conservation law). This leads
to the following.

Lemma 3.3 There exists a constant C0 > 0 such that

〈Tζ, ζ〉 :=
∑
i,j,k,`

cijk`ζijζk` > C0

∑
i,j

|ζi,j|2 := C0|ζ|2 (3.21)

for all symmetric and complex valued ζij = ζji ∈ C tensors ζ :=
[
ζij
]
n×n.

Proof: The sum in the left hand side of (3.21) is real 〈Tζ, ζ〉 = 〈Tζ, ζ〉 (easy to check
applying the symmetry properties (3.17) of the real valued coefficients). Dividing equality
in (3.21) by |ζ|2 =

∑
lm |ζlm|2 we find that it suffices to prove

inf
|ζ|=1

∑
i,j,k,`

cijk`ζijζk` > C0 > 0 . (3.22)

If otherwise C0 = 0, we select a sequence ζ(q)
jk = ζ

(q)
kj ∈ C, q = 1, 2, . . . such that

lim
m→∞

∑
i,j,k,`

cijk`ζ
(q)
ij ζ

(q)
k` = 0 , |ζ(q)| = 1 .

Since the space of tensors [ζ
(q)
jk ]n×n is finite dimensional, there exists a convergent subse-

quence ζ(qr)
k` → ζ

(0)
k` as r →∞. Then we get an obvious contradiction∑

i,j,k,`

cijk`ζ
(0)
ij ζ

(0)
k` = 0 , |ζ(0)| = 1 .

which proves that C0 > 0.

Theorem 3.4 The total free (elastic) energy functional (cf. (3.8)) acquires the form

E [U ] :=

∫
S

〈TDSU(y),DSU(y)〉 dσ = 4

∫
S

〈TDefSU(y),DefSU (y)〉 dσ , (3.23)

U ∈ ω(S )

and the Euler-Lagrange equation associated with the energy functional (3.23) for a linear
anisotropic elastic medium, reads

LSU = Def∗STDefSU , U ∈ ω(S ) . (3.24)

Here again T =
[
cijk`

]
ijk`

is the elasticity tensor which is positive definite (cf. (3.21)) and
has the symmetry properties (3.15), (3.17).
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Proof: The representation (3.23) follows from (3.8) and (3.20).
The Euler-Lagrange equation (3.24) is derived from (3.23) as a similar equation e3.3 is

derived from (3.1):

E [U ] :=4

∫
S

〈TDefSU(y),DefSU(y)〉 dσ

= 4

∫
S

〈Def∗STDefSU(y),U(y)〉 dσ = 0

if and only if U ∈ ω(S ) is a solution of equation (3.24) due to the positive definiteness of
the elasticity tensor T (cf. (3.21)).

Next we will find the Euler-Lagrange equation associated with the energy functional
(3.8) for a linear isotropic elastic medium (Lamé equation) which is simpler. Such energy
functional should be invariant with respect to any rotation. For the elasticity tensor T this
results into the requirement that

T(BAB−1) = B(TA)B−1, ∀A,B ∈Mn×n(R) and unitary B> = B−1. (3.25)

Examples of linear operators (3.11) satisfying (3.16) and (3.25) include

T = TA := (TrA)I and TA := A+ A> , (3.26)

where I denotes the identity. The incisive step in the direction of identifying all such oper-
ators is the observation that any other operator of the type is a linear combination of these
two. Namely, we have the following.

Lemma 3.5 Let a linear operator T in (3.11) be frame indifferent (cf. (3.25))

T(BAB>) = B(TA)B>, for all A ∈M3×3 and for all orthogonal B ∈ SO(3)

and have the symmetry property: one of conditions in (3.16) holds.
Then T has the form

TA = λ (TrA)I + µ (A+ A>), A ∈Mn,n(R), (3.27)

where λ, µ ∈ R are some constants and it has both symmetry properties from (3.16).

Proof: Let us first show that any linear operator (3.11) satisfying (3.16), (3.25) is represented
in the form (3.27). By the previous discussion (cf. (3.26)), it suffices to prove that the space
of linear operators (3.11) satisfying (3.16), (3.25) has dimension two.

It suffices to show that

TD = aD + b(I −D) where D :=


1 0 ... 0
0 0 ... 0

...
0 0 ... 0

 (3.28)
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for the identity matrix I and two numbers a, b ∈ R. Indeed, consider the following types of
unitary matrices:

Uj,k :=



1 0 ... ... ... ... 0
0 1 0 ... ... ... 0
0 ... 0 ... 1 ... 0

... ... ...
0 ... 1 ... 0 ... 0

... ... ...
0 0 0 ... ... 1 0
0 0 0 ... ... ... 1


, Wj,k :=



1 0 ... ... ... ... 0
0 1 0 ... ... ... 0
0 ... 0 ... 1 ... 0

... ... ...
0 ... −1 ... 0 ... 0

... ... ...
0 0 0 ... ... 1 0
0 0 0 ... ... ... 1


where the only non-zero, off the diagonal entries are at (j, k) and (k, j). By multiplication
Uj,kA exchanges j-th with k-th rows in A, while Wj,kA, j < k, makes the same but changes
the sign of j-th row before shifting it to k-th row.

By applying the unitary operator U1,k, we get

TE=
n∑
j=1

ekTU1,kDU
−1
1,k =

n∑
j=1

ekU1,k(TD)U−1
1,k

=
n∑
j=1

ekU1,k[aD − b(I −D)]U−1
1,k = aE + b(I − E) (3.29)

for arbitrary diagonal matrix E = [δjke
k] =

∑n
j=1 e

kU1,kDU
−1
1,k . Since for any A ∈

Mn×n(R) we have TA = 1
2
T(A + A>), thanks to (3.16), and since a self adjoint matrix

can be diagonalized 1
2
(A + A>) = UEU−1 with a suitable unitary matrix U , the equality

(3.29) holds for arbitrary A:

TA = TUEU−1 = U(TE)U−1 = U [aE + b(I − E)]U−1 = aA+ b(I − A) .

To check (3.28) we again apply the unitary matrices Uio,jo and Wio,jo . Set

A := TD, A =
[
aij
]

16i,j6n

and observe that D is invariant under conjugation by Wio,jo , i.e. Wio,joDW
>
io,jo = D, as long

as io 6= 1 and jo 6= 1. Thus, by (3.25), the same is true forA = TD which, in turn, eventually
implies that

aioio = ajojo , ∀ io, jo 6= 1. (3.30)
The next observation is that D is invariant under conjugation by the product UiojoWio,jo , i.e.
UiojoWio,joDW

>
io,joU

>
iojo = D, this time for every 1 6 io 6= jo 6 n. Hence, by (3.25), the

same holds for A = TD, which ultimately implies that aiojo = −ajoio for every pair of
indices 1 6 io 6= jo 6 n. Consequently,

aiojo = 0, for every 1 6 io 6= jo 6 n. (3.31)

Under the current assumptions, i.e. (3.25), the first condition in (3.16), the desired con-
clusion, i.e. that TD has the two-parameter diagonal form indicated above, now follows
readily from (3.30) and (3.31).

Γ-CONVERGENCE R.Duduchava et all ,



32 3. Equation of elastic hypersurface December 11, 2018

Let us analyze the case when the linear operator T satisfies (3.25) along with the second
condition in (3.16). In this situation, let us consider the adjoint T∗ to the tensor T with
respect to the inner product (3.12) 〈TA,B〉 = 〈A,T∗B〉. It can be readily checked that
the adjoint T∗ satisfies (3.25) and the first condition in (3.16), so the previous reasoning
applies. Consequently, T∗ can be represented in the form (3.27), which is invariant under the
adjunction. Hence T can be written in the form (3.27) also. In particular, (3.27) holds in this
case as well.

Concerning the equivalence of the first and the second condition in (3.16). Each of two
conditions in (3.16) along with the condition (3.25) imply that the linear operator (3.11) has
the form (3.27). Then, in particular, T is self adjoint. Since conditions in (3.16) are obtained
by taking the adjoint, they are equivalent and the proof is completed.

Remark 3.6 A posteriori, the conditions (3.16) and (3.25) imply that the linear operator
(3.11) has the form (3.27) and, in particular, is self adjoint, i.e., imply the condition (3.14).

Remark 3.7 The above proof can be modified to hold in the case when (3.25) is (seemingly)
weakened to allow only orientation preserving unitary matrices U . All one has to do in
this later case is to employ the invariance of D under conjugation by Uko`oUiojoWio,jo (with
ko, `o 6= 1), in place of conjugation by (the inversion) UiojoWio,jo as in the original proof.

We are now ready to derive the Lamé equations of elasticity on a hypersurface.

Theorem 3.8 On a smooth hypersurface S in Rn, modeling a homogeneous, linear, isotro-
pic, elastic medium, the Lamé operator LS is given by

LS = −λ∇S divS + 2µDef∗S DefS = λ div∗S divS + 2µDef∗S DefS . (3.32)

In particular, LS is a formally self-adjoint differential operator of second order.

Proof: According to the discussion in the first part of this section, the elasticity tensor in the
case of linear, isotropic, elastic medium is given by (3.27), where λ, µ are the Lamé moduli.
Applying the following properties of the trace

Tr(A+B) = Tr(A) + Tr(B) , Tr(A>) = Tr(A) ,

〈A+ A>, A〉 = Tr
[
(A+ A>)A>

]
=

1

2
Tr
[
A2 + 2AA> + (A>)2

]2
=

1

2
Tr(A+ A>)2,

which are easy to verify directly, due to (3.10) the stored energy density is of the form

E(A)= 〈TA,A〉 = 〈λTr(A)I + µ(A+ A>), A〉 = λTr(A)〈I, A〉+ µ〈A+ A>, A〉
=λ (TrA)2 +

µ

2
Tr ((A+ A>)2) . (3.33)

Further, by inserting A := DSU in (3.33) and recalling (2.34), we get

E(x,DSU(x)) = λ (divS U)2(x) + 2µ 〈(DefS U)(x), (DefSU)(x)〉 (3.34)

by (3.18) and since the trace

Tr(∇SU) =
n∑
j=1

〈∂hjU , hj〉 = DivSU (3.35)
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is the divergence and is independent of a basis
{
hj
}n
j=1

. Thus, we are led to considering the
variational integral

E [U ] =

∫
S

[
λ (divS U)2 + 2µ 〈DefS U ,DefS U〉

]
dσ, U ∈ ω(S ). (3.36)

To determine the associated Euler-Lagrange equation, for a smooth and compactly supported
vector field V ∈ ω(S )

⋂
C1

0(S ) we compute

d

dt
E [U + tV ]

∣∣∣
t=0

= 2

∫
S

[
λ divSUdivSV + 2µ 〈DefSU ,DefSV 〉

]
dσ

By applying the Gaußtheorem on the divergence divS∫
Ω

divF (y) dy =

∮
S

〈ν(τ), F (τ)〉 dσ (3.37)

and taking into account that V vanishes on the boundary Γ = ∂S we get

d

dt
E [U + tV ]

∣∣∣
t=0

=2

∫
S

〈(−λ∇S divS + 2µDef∗S DefS )U ,V 〉 dσ

=2

∫
S

〈LSU ,V 〉 dσ = 0 . (3.38)

Since the vector field V ∈ ω(S )
⋂
C1

0(S ) is arbitrary, from (3.38) follows that the dis-
placement vector field U satisfies the equality LSU = 0.

That the operator LS = λ div∗S divS +2µDef∗S DefS is formally self adjoint, is obvious
from its structure:

(LSU ,V )S = λ(div∗S divSU ,V )S + µ(Def∗S DefSU ,V )S = (U ,LSV )S .

4 THE SURFACE LAMÉ OPERATOR AND RELATED PDO’S

The present section deals mostly with the identification of the deformation tensor

DefS (U )(V ,W ) :=
1

2
{〈∂S

V U ,W 〉+ 〈∂S
WU ,V 〉}, ∀U ,V ,W ∈ ω(S ), (4.1)

and the Lamé operator (3.32).

Theorem 4.1 For the deformation tensor and the Lamé operator on S the following iden-
tities are valid:

DefS (U) :=
[
Djk(U)

]
n×n , (4.2)

Djk(U ) =
1

2

[
(DS

j U)k + (DS
k U)j

]
=

1

2

[
DjUk + DkUj + ∂U

(
νjνk

)]
, (4.3)

[DefS (U)]> = DefS (U) and DefS (U )ν = 0 , (4.4)

LS =µπS∇∗S ∇S + (λ+ µ)∇S ∇∗S − µH 0
S WS

=−µ∆S − (λ+ µ)∇S divS − µH 0
S WS . (4.5)
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Proof: Given the local nature of the identities we seek to prove, it suffices to work locally,
in a small open subset O of S , where an orthonormal basis T1, . . . , Tn−1 to ω(S ) has been
fixed. We extend the basis by the outer unit normal vector field Tn := ν so that {Tj}16j6n
becomes an orthonormal basis for Rn, at points in O .

Since DefS (U ) is a linear operator (see (4.1)) it is represented by an n × n matrix in
the fixed basis {Tj}16j6n and the first equality in (4.2) follows. The symmetry property of
the matrix, recorded as the first equality in (4.4), follows from (4.1) since by interchanging
vector fields V andW does not affect the definition (4.1).

For a tangential field U to S with suppU ⊂ O and arbitrary V ,W ∈ Rn we have

∂S
V U = ∂S

πSV
U , 〈∂S

V U ,W 〉 = 〈∂S
πSV

U , πSW 〉

and, by the definition of the deformation tensor (cf. (4.1)) obtain

〈DefS (U)V ,W 〉 := DefS (U)(πSV , πSW ), ∀V ,W ∈ Rn. (4.6)

Equality (4.6) implies the second equality in (4.4). Applying (3.18) and (3.6) we eventually
obtain the second equality in (4.2):

Djk(U)=
1

2

[(
DS
k U

)
j

+
(
DS
j U

)
k

]
=

1

2

[
DkUj + DjUk + ∂U

(
νjνk

)]
=

1

2

[
DkUj + DjUk +

n∑
r=1

Ur(Drνk)νj +
n∑
r=1

Ur(Drνj)νk

]
.

We proceed with the proof of the last remaining equality (4.5). If V is also a smooth
vector field, tangential to S , applying (4.2) we get∫

S

〈Def∗S DefS (U),V 〉 dσ =

∫
S

〈DefS (U),DefS (V )〉 dσ

=
n∑

j,k=1

1

4

∫
S

[
DkUj + DjUk + ∂U (νjνk)

][
DkVj + DjVk + ∂V (νjνk)

]
dσ . (4.7)

Next consider
n∑

j,k=1

∫
S

(DjUk + DkUj)(DjVk + DkVj) dσ = 2
n∑

j,k=1

∫
S

D∗j (DjUk + DkUj)Vk dσ

= 2
n∑

j,k=1

∫
S

[
−VkD2

j Uk − VkDjDkUj −H 0
S νj(DjUk)Vk −H 0

S νj(DkUj)Vk

]
dσ

= −2

∫
S

〈∆SU ,V 〉 dσ − 2
n∑

j,k=1

∫
S

[
VkDjDkUj + H 0

S νj(DkUj)Vk

]
dσ , (4.8)

since
n∑
j=1

νjDj = 0 on S .
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To proceed in the second integrand in (4.8): we employ the commutator identity from
Lemma 2.9.ix and recall that the fields U and V are tangential to write

n∑
j,k=1

∫
S

VkDjDkUj dσ =
n∑

j,k=1

∫
S

[
VkDkDjUj + Vk[Dj,Dk]Uj

]
dσ

=

∫
S

〈∇S divSU ,V 〉dσ +
n∑

j,k,l=1

∫
S

[
VkνjDkνl − νkVkDjνl

]
DlUjdS

=

∫
S

〈∇S divSU ,V 〉dσ +
n∑

j,k,l=1

∫
S

Vk(Dkνl)
[
Dl(νjUj)− (Dlνj)Uj

]
dσ

=

∫
S

〈∇S divSU ,V 〉dσ −
n∑

j,k,l=1

∫
S

(∂kνl)(∂lνj)UjVk dσ

=

∫
S

〈∇S divSU ,V 〉 dσ −
∫

S

〈W 2
SU ,V 〉 dσ (4.9)

on S , because
n∑
j=1

νjUj =
n∑
k=1

νkVk = 0 and, due to (2.21)

n∑
j,l,k=1

(∂kνl)(∂lνj)UjVk =
n∑

j,l,k=1

(∂lνj)Uj(∂jνk)Vk = 〈WSU ,WSV 〉 = 〈W 2
SU ,V 〉.

For the third integrand in (4.8) we use Lemma 2.5.i and that the field U is tangential:

n∑
j,k=1

∫
S

H 0
S νj(DkUj)Vk dσ = H 0

S

n∑
j,k=1

∫
S

Vk
[
Dk

(
νjUj

)
−
(
Dkνj

)
Uj
]
dσ

=

∫
S

H 0
S 〈WSU ,V 〉 dσ. (4.10)

At this point, we may therefore conclude that

n∑
j,k=1

∫
S

(DjUk + DkUj)(DjVk + DkVj) dσ

= 2

∫
S

〈−∆SU −∇S divSU + W 2
SU −H 0

S WSU ,V 〉 dσ. (4.11)

We now proceed to analyze the remaining terms in (4.7). More precisely, we still have
to take into account the terms containing either ∂U (νjνk) or ∂V (νjνk). We start with the
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identity

n∑
j,k=1

(DkUj)DV (νjνk)=
n∑

j,k=1

νk(DkUj)DV νj +
n∑

j,k=1

(DV νk)
[
Dk

(
νjUj

)
− UjDkνj

]

=−
n∑

k,j=1

(DV νk)(DUνk) = −〈W 2
SU ,V 〉, (4.12)

valid at points on S , because
∑
k

νkDk = 0,
∑
j

νjUj = 0 and Dkνj = Djνk. There are four

such terms in (4.7), i.e. containing either DU (νjνk) or DV (νjνk). An inspection of the above
calculation shows that, on S , they are all equal to −〈W 2

SU ,V 〉. We still have to compute
the last integrand in (4.7):

n∑
j,k=1

DU (νjνk)DV (νjνk)

=
n∑

j,k,r,l=1

[
Ur(Drνj)νk + Ur(Drνk)νj

][
Vl(Dlνj)νk + Vl(Dlνk)νj

]

= 2〈W 2
SU ,V 〉+ 2

n∑
k,r,l=1

Ur(Drνk)Vlνk
1

2
Dl

( n∑
j=1

(νj)
2
)

= 2〈W 2
SU ,V 〉,

on S . At this point we combine all the above to get

4
n∑

j,k=1

∫
S

Djk(U)Djk(V ) dσ = 2

∫
S

〈−∆SU −∇S divSU −H 0
S WSU ,V 〉 dσ . (4.13)

Having deduced (4.13), we may now compute

4

∫
S

〈Def∗S DefS (U),V 〉 dσ =

∫
S

〈DefS (U),DefS (V )〉 dσ

= 4
n∑

j,k=1

∫
S

Djk(U)Djk(V ) dσ = 2

∫
S

〈−∆SU −∇S divSU −H 0
S WSU , V 〉 dσ

= 2

∫
S

〈−πS ∆SU −∇S divSU −H 0
S WSU , V 〉 dσ, (4.14)

since 〈W ,V 〉 = 〈πSW ,V 〉 for a tangential vector field V and an arbitrary vector fieldW
(also note that the original operator Def∗S DefS : ω(S ) → ω(S ) is tangential). We have
also applied that the vector WSW ∈ ω(S ) is tangential or an arbitrary vector field W .
Thus,

4 Def∗S DefS = −2πS ∆S − 2∇S divS − 2 H 0
S WS , (4.15)

since the tangential vectors fields U , V are arbitrary.
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The first identity in (4.5) now follows easily from (4.15) and (3.32). The remaining
identity in (4.5) then follows from what we have just proved and from Theorem 2.8.

Next recall the definition of the Hodge-Laplacian acting on 1-forms, i.e.

∆HL := −dSd ∗S − d ∗SdS : Λ1ω(S ) −→ Λ1ω(S ) (4.16)

where dS is the exterior derivative operator on S , and d ∗S its formal adjoint. As explained
in §2, 1-forms on S are naturally identified with tangential fields to S so, from now on, we
shall think of ∆HL as mapping ω(S ) into itself.

As pointed out in §2, the Hodge-Laplacian (4.16) is related to the Bochner-Laplacian on
S

∆BL := −(∇S )∗∇S , (4.17)

via the Weitzenbock identity
∆BL = ∆HL + RicS . (4.18)

Our aim is to find alternative expressions for all these objects, starting with the Ricci tensor.
The Ricci curvature RicS on S is a (0, 2)-tensor defined as a contraction ofRS :

RicS (U ,V ) :=
n∑
j=1

〈RS (hj,V )U , hj〉 =
n∑
j=1

〈RS (V , hj)hj,U〉, (4.19)

∀ U ,V ∈ ω(S ),

where h1, . . . , hn is an orthonormal basis (of unit vectors) in ω(S ). Thus, RicS is a sym-
metric bilinear form.

Theorem 4.2 For the Ricci tensor RicS (cf. (4.19)) on S there holds

RicS = −W 2
S + H 0

S WS . (4.20)

In particular, when n = 3 –i.e. for a two dimensional hypersurface S in R3– the above
identity reduces to

RicS = −det WS = −KS , (4.21)

where KS is the Gaußian curvature of the hypersurface S .

Proof: The Riemannian curvature tensorRS of S is given by

RS (U ,V )W = [∂S
U , ∂

S
V ]W − ∂S

[U ,V ]W , U ,V ,W ∈ ω(S ), (4.22)

where [U ,V ] := ∂UY − ∂YU is the usual commutator bracket. It is convenient to change
this into a (0, 4)-tensor by setting

RS (U ,V ,W ,Z) := 〈RS (U ,V )W ,Z〉, U ,V ,W ,Z ∈ ω(S ). (4.23)

Since Rn has zero curvature, it follows from Gauß’s Theorema Egregium that, ifX , Y ,
Z,W are tangential vector fields to S , then

〈RS (U ,V )W ,Z〉 = 〈IIS (U ,Z), IIS (V ,W )〉 − 〈IIS (V ,Z), IIS (U ,W )〉 (4.24)
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(see, e.g., [Ta96], Vol. II, p. 481). By inserting the second fundamental form IIS (U ,V ) =
〈∂UV − ∂S

U V ,ν〉 = 〈∂UV ,ν〉 (cf. (2.18)), we obtain:

〈RS (U ,V )W ,Z〉= 〈∂UZ,ν〉〈∂VW ,ν〉 − 〈∂VZ,ν〉〈∂UW ,ν〉
= 〈Z, ∂Uν〉〈W , ∂V ν〉 − 〈Z, ∂V ν〉〈W , ∂Uν〉
= 〈RSZ,U〉〈RSW ,V 〉 − 〈RSZ,V 〉〈RSW ,U〉. (4.25)

For the second equality in (4.25) we have used the fact that U , V ,W , and Z are tangential,
so in particular, ∂U〈W ,ν〉 = 0, ∂V 〈W ,ν〉 = 0, ∂V 〈W ,ν〉 = 0, and ∂U〈W ,ν〉 = 0 on
S .

Next, recall from (4.19) the definition of the Ricci tensor, i.e.

RicS (U ,V ) =
n−1∑
j=1

〈RS (hj,V )U , hj〉,

where h1, . . . , hn−1 is, locally, an orthonormal basis in ω(S ), and U , V are arbitrary tan-
gential vector fields to S . If we set hn := ν, and employ (4.25) together with WSν = 0,
we obtain

n−1∑
j=1

〈RS (Tj,V )U , Tj〉 =
n∑
j=1

[〈RSTj, Tj〉〈RSU ,V 〉 − 〈RSTj,V 〉〈RSU , Tj〉]

= −H 0
S 〈RSU ,V 〉 − 〈RSV ,

n∑
j=1

〈Tj,RSU〉Tj〉 − 〈(W 2
S + H 0

S WS )U ,V 〉, (4.26)

which takes care of (4.20).
Finally, (4.21) is a consequence of what we have proved so far, in Lemma 2.6.ii, and the

elementary identity A2 − (TrA)A = −(detA)I , valid for any 2× 2 matrix A.

Lemma 4.3 Let H :=
{
hj
}n
j=1

, |hj| = 1, be a basis in n-dimensional Banach space B.
Consider the hyperspace Bν :=

{
u ∈ B : 〈u,ν〉 = 0

}
orthogonal to some vector ν ∈ B,

|ν| 6= 0. Consider the system

ĥj := hj − νjν , νj := 〈ν, hj〉 j = 1, . . . , n , (4.27)

which is full in Bν but linearly dependent and thus can not be a basis. Nevertheless, for
a linear operator A =

[
ajk]n×n : B → B with Aν = 0 and ABν ⊂ Bν (i.e., it maps

A : Bν → B) we have
Â :=

[
âjk]n×n =

[
ajk]n×n := A , (4.28)

where Â :=
[
âjk]n×n is the matrix representations of A in the systems Ĥ :=

{
ĥj
}n
j=1
⊂ Bν .

Proof: Let us note that
n∑
k=1

ajkνk =
n∑
k=1

akjνk = 0 for all j = 1, . . . , n ,
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where the first equality is equivalent to Aν = 0 and the second one-to 〈ν, Aξ〉 = 0 for all
ξ ∈ B. Applying the obtained equalities we find that

Aĥj = Ahj − νjAν =
n∑
k=1

akjhk =
n∑
k=1

akjĥk +
n∑
k=1

akjνkν =
n∑
k=1

akjĥk

which entails ãkj = akj .

Theorem 4.4 The following identities are valid:

∆BL = πS ∆S + W 2
S , (4.29)

∆HL = πS ∆S + 2W 2
S −H 0

S WS . (4.30)

Proof: In order to identify the Bochner-Laplacian operator ∆BL on S we observe that, with
tangential fieldU fixed, if the matrix DefS (U ) satisfies 〈DefS (U)V ,W 〉 = 〈∂S

πSV
U , πSW 〉,

for each V ,W ∈ Rn then, much as in the proof of Theorem 2.8

Djk(U) := 〈DefS (U )ek, ej〉 = 〈∂ēkU , ēj〉 = DkUj −
n∑
r=1

νjνrDk(Ur). (4.31)

On account of this we can now write∫
S

〈(∇S )∗∇SU ,V 〉 dσ =

∫
S

〈∇SU ,∇SV 〉 dσ =
n−1∑
j,k=1

∫
S

〈∇S
Tj
U , Tk〉〈∇S

Tj
V , Tk〉 dσ

=
n∑

j,k=1

∫
S

〈DefS (U )Tj, Tk〉〈DefS (V )Tj, Tk〉 dσ =
n∑

j,k=1

∫
S

Djk(U)Djk(V ) dσ

=
n∑

j,k=1

∫
S

[
DkUjDkVj −

n∑
r=1

νjνrDjUrDkVj −
n∑
l=1

νjνlDkUjDkVl

+
n∑

r,l=1

νrνlDkUrDkVl

]
dσ =

n∑
j,k=1

∫
S

[
(D∗kDkUj)Vj −

n∑
r=1

UrVj(∂kνr)(∂kνj)
]
dσ

=

∫
S

〈−∆SU −W 2
SU ,V 〉 dσ. (4.32)

In the next-to-the-last equality, we have applied the following identity to the terms under the
integral sign in the fourth line above:

n∑
r=1

νrDsWr = Ds

( n∑
r=1

νrWr

)
−

n∑
r=1

WrDsνr = −
n∑
r=1

Wr∂sνr, on S , (4.33)

valid for any tangential vector field W , and any index s ∈ {1, . . . , n}. In turn, the identity
(4.33) can be seen from a direct computation (recall that ∂ννr = 0 on S ). Finally, to justify

the last equality in (4.32), it suffices to recall (2.35), (2.52) and the fact that
n∑
k=1

νkDk = 0.
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The conclusion is that (4.29) holds. Finally, the identity (4.29) in concert with (4.18) and
(4.20) implies (4.30).

Recall now from [EM70, Note Added in Proof, pp.161-162], [Ta92] (cf. also the remark
at the end of this paper), and [Ta96, Vol. III], that the Navier-Stokes system for a velocity
field U , tangential to S , and a (scalar-valued) pressure function p on S reads

∂U

∂t
− 2 Def∗S DefS (U) + ∂S

UU −∇S p = f in S × (0,∞),

divSU = 0, in S . (4.34)

If S is embedded in Rn and the Riemannian metric is inherited from Rn, a directional
derivative ∂U along a tangential vector field U ∈ ω(S ) maps the space of tangential vector
fields to the space of possibly non-tangential vector fields

∂U : ω(S ) −→ ω(S ) .

If composed with the projection

∂S
U V := πS ∂UV = ∂UV − 〈ν, ∂UV 〉ν (4.35)

(cf. (0.8)), it becomes an automorphism of the space of tangential vector fields. Such deriva-
tives are compatible with the Riemannian metric on S and are torsion free as well. There-
fore, they represent the natural Levi-Civita connection on S .

Theorem 4.5 The Navier-Stokes system (4.34) is equivalent to

∂U

∂t
+ ∂S

UU + πS ∆SU + H 0
S WSU −∇S p = f in S × (0,∞) ,

divSU = 0 in S . (4.36)

Proof: This is a direct consequence of (4.15) and (4.35).

5 LIONS’ LEMMA AND KORN’S INEQUALITIES

For 1 6 p < ∞, an integer m = 1, 2, . . . and a closed Cm+1-smooth hypersurface S
by Wm

p (S ), Wm(S ) := Wm
2 (S ) we denote the Sobolev spaces. The space W−mp (S ) is

defined as the dual to Wm
p′ (S ), p′ :=

p

p− 1
, with respect to the sesquilinear form (ϕ, ψ)S

(cf. (2.49)) on functions ϕ, ψ ∈ Cm(S ) and extended by continuity to pairs ϕ ∈ Wm
p′ (S )

and ψ ∈W−mp (S ).

The embeddings Wm
p (S ) ⊂ Lp(S ) ⊂W−mp (S ) are continuous, even compact, and

W−mp (S ) := {Dαϕ : ϕ ∈ Lp(S ) for all Dα = Dα1
1 · · ·Dαn

n , |α| = m} .

If S is an open surface with the Lipschitz boundary Γ = ∂S 6= ∅, W̃m
p (S ) denotes the

space of functions obtained by closing the space C∞0 (S ) of smooth functions with compact
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support in the norm of Wm
p (S̃ ), where S̃ ⊃ S is a closed surface which extends the surface

S . The notation Wm
p (S ) is used for the factor space Wm

p (S̃ )/W̃m
p (S̃ \ S ); the space

Wm
p (S ) can also be viewed as the restriction of all functions ϕ

∣∣
S

of the space Wm
p (S̃ ) to

the subsurface S (cf. [Tr95] and [DS93] for details about these spaces spaces).
The following generalizes essentially J. L. Lions’ Lemma (cf. [?, p.111], [Ta92], [AG1,

Proposition 2.10], [Ci3, § 1.7], [Mc96]).

Lemma 5.1 Let S be a 2-smooth closed hypersurface in Rn. Then the inclusions ϕ ∈
W−1

p (S ), Djϕ ∈W−1
p (S ), for all j = 1, . . . , n imply ϕ ∈ Lp(S ).

Moreover, the assertion holds for a hypersurface S with the Lipschitz boundary Γ :=

∂S and the spaces W−1
p (S ) and W̃−1

p (S ).

Proof: First we assume that S is a closed surface. The proof is based on the following facts
from [DS93, Hr83, Ta96], which we recall without proofs.

A. There exists a “lifting operator” (a Bessel potential operator) Λ(X , D), which has the
inverse Λ−1(X , D) and they mapping isometrically the spaces

Λ−1(X , D) : Wm−1
p (S )→Wm

p (S ) , Λ(X , D) : Wm
p (S )→Wm−1

p (S ) (5.1)

for arbitrary m = 0, −+1, . . ..
B. Λ−1(X , D) is a pseudodifferential operator of order −1 and the commutant

[Dj,Λ
−1(X , D)] := DjΛ

−1(X , D)− Λ−1(X , D)Dj (5.2)

with the pseudodifferential operator Dj has order −1, i.e., maps continuously the spaces

[Dj,Λ
−1(X , D)] : W−1

p (S )→ Lp(S ).

Let ϕ ∈ W−1
p (S ), Djϕ ∈ W−1

p (S ), for all j = 1, . . . , n. Then, due to (5.1), ψ :=

Λ−1(X , D)ϕ ∈ Lp(S ) and, due to (5.2), Djψ = [Dj,Λ
−1(X , D)]ϕ + Λ−1(X , D)Djϕ ∈

Lp(S ) for all j = 1, . . . , n. From the definition of the space W1
p(S ) follows that ψ ∈

W1
p(S ). Due to (5.2) we get finally ϕ = Λ(X , D)ψ ∈ Lp(S ).

If S has non-empty Lipschitz boundary Γ 6= ∅, there exist pseudodifferential operators

Λ−1
− (X , D) : Wm

p (S )→Wm+1
p (S ),

Λ−1
+ (X , D) : W̃m

p (S )→ W̃m+1
p (S ),

(5.3)

arranging isomorphisms between the indicated spaces, and having the inverses Λ−r− (X , D),
Λ−r+ (X , D) (cf. [DS93]).

Moreover, pseudodifferential operators Λ−1
−+

(X , D) have order −1 and the commutants
[Dj,Λ

−1
−+

(X , D)] := DjΛ
−1
−+

(X , D) − Λ−1
−+

(X , D)Dj have order −1, i.e., map continuously
the spaces W−1

p (S )→ Lp(S ).
By using the formulated assertions the proof is completed as in the case of a closed

surface S .
The foregoing Lemma 5.1 has the following generalization for the Bessel potential

spaces H̃s
p(S ) and Hs

p(S ) (see [Tr95] and [DS93] for details about these spaces spaces).
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Lemma 5.2 If S is closed, sufficiently smooth, 1 < p <∞, s ∈ R, m = 1, 2, . . . and

ϕ ∈ Hs−m
p (S ) , Dαϕ = Dα1

1 · · ·Dαn
n ϕ ∈ Hs−m

p (S ) for all |α| 6 m,

then ϕ ∈ Hs
p(S ).

Moreover, the assertion holds for a hypersurface S with the Lipschitz boundary Γ :=

∂S and the spaces Hs
p(S ) and H̃s

p(S ).

Proof: Assume first S has no boundary. The proof is based, as in the foregoing case, on the
following facts from [Hr83, Ta96, Tr95], which we recall without proofs.

A. There exists a “lifting operator” (the Bessel potential operator),

Λr(X , D) : Hs
p(S )→ Hs−r

p (S ) , r ∈ R (5.4)

arranging isomorphism between the indicated spaces, and having the inverse Λ−r(X , D).
B. Λr(X , D) is a pseudodifferential operator of order −r and the commutant

[Dα,Λr(X , D)] := DαΛr(X , D)− Λr(X , D)Dα (5.5)

with the pseudodifferential operator Dα = Dα1
1 · · ·Dαn

n has order |α| + r − 1, i.e., maps
continuously the spaces Hγ

p(S )→ Hγ−|α|−r+1
p (S ), ∀ γ ∈ R.

Assume that m = 1. Then ϕ ∈ Hs−1
p (S ) and, due to (5.4), (5.5), it follows that

ψ := Λs−1
S (X , D)ϕ ∈ Lp(S ), Djψ = [Dj,Λ

s−1
S (X , D)]ϕ + Λs−1

S (X , D)Djϕ ∈ Lp(S ) for
all j = 1, . . . , n. By the definition of the space W1

p(S ) we conclude that ψ ∈W1
p(S ). Due

to (5.2) we get finally ϕ = Λ1−s(X , D)ψ ∈ Hs
p(S ).

Now assume: m = 2, 3, . . . and the assertion is valid for m − 1. Then, due to the
hypothesis, ψj := Djϕ ∈ Hs−m

p (S ) for j = 1, . . . , n. Moreover, due to the same hypothesis,

Dαψj := DαDjϕ ∈ Hs−m
p (S ) for all |α| 6 m− 1 and all j = 1, . . . , n.

Hence the induction hypothesis implies that ψj := Djϕ ∈ Hs−1
p (S ) for j = 1, . . . , n. Now

it follows from the already considered case m = 1 that ϕ ∈ Hs
p(S ).

If S has non-empty Lipschitz boundary Γ 6= ∅, there exist pseudodifferential operators

Λr
−(X , D) : Hs

p(S )→ Hs−r
p (S ) , Λr

+(X , D) : H̃s
p(S )→ H̃s−r

p (S ) , (5.6)

arranging isomorphisms between the indicated spaces, and having the inverses Λ−r− (X , D),
Λ−r+ (X , D) (cf. [DS93]).

Moreover, the pseudodifferential operators Λ−r
−+

(X , D) have order −r and the commu-
tants [Dα,Λ−r

−+
(X , D)] := DαΛ−1

−+
(X , D)− Λ−r

−+
(X , D)Dα have order |α| − r − 1, i.e., map

continuously the spaces Hγ
p(S )→ Hγ+r+1−|α|

p (S ).

By using the formulated assertions the proof is completed as in the foregoing cases.
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Theorem 5.3 (Korn’s I inequality “without boundary condition”). Let S ⊂ Rn be a
Lipshitz hypersurface without boundary, DefS (U) := [Djk(U)]n×n be the deformation ten-
sor

Djk(U) =
1

2

[
DkUj + DjUk + ∂U

(
νjνk

)]
=

1

2

[
DkUj + DjUk +

n∑
m=1

UmDm

(
νjνk

)]
(cf. (4.2)) and

∥∥DefS (U)
∣∣Lp(S )

∥∥ :=

[
n∑

j,k=1

∥∥DjkU
∣∣Lp(S )

∥∥p]1/p

, U ∈W1
p(S ) (5.7)

for 1 < p <∞. Then∥∥U ∣∣W1
p(S )

∥∥ 6M
[∥∥U ∣∣Lp(S )

∥∥p +
∥∥DefS (U)

∣∣Lp(S )
∥∥p]1/p (5.8)

for some constant M > 0 or, equivalently, the mapping

U 7→
[∥∥U ∣∣Lp(S )

∥∥p +
∥∥DefS (U)

∣∣Lp(S )
∥∥p]1/p (5.9)

is an equivalent norm on the space W1
p(S ).

Proof: Consider the space

Ŵ1
p(S ) :=

{
U =

(
U0

1 . . . , U
0
n

)>
: U0

j , Djk(U) ∈ Lp(S ) for all j, k = 1, . . . n
}

(5.10)

endowed with the norm (cf. (5.8) and (5.9)):∥∥U ∣∣Ŵ1
p(S )

∥∥ :=
[∥∥U ∣∣Lp(S )

∥∥p +
∥∥DefS (U)

∣∣Lp(S )
∥∥p]1/p . (5.11)

The derivatives here are understood in the sense of distributions: Djk(U) ∈ Lp(S ) means
that there exists a function in Lp(S ) denoted by Djk(U) such that

(Djk(U),V )S :=

∫
S

[
Uj(X )D∗kV (X ) + Uk(X )D∗j V (X )

+
n∑

m=1

V (X )Um(X )D∗m
(
νj(X )νk(X )

)]
dσ ∀V ∈ Lp(S ) ,

(cf. (2.52) for the formal dual D∗m).

It is obviously sufficient to prove, that the spaces W1
p(S ) and Ŵ1

p(S ) are identical.
The inclusion W1

p(S ) ⊂ Ŵ1
p(S ) is trivial and we concentrate on the proof of the inverse

inclusion Ŵ1
p(S ) ⊂W1

p(S ).
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To this end take U ∈ Ŵ1
p(S ) and note that the inclusions U ∈ Lp(S ), DefS (U) ∈

Lp(S ) (i.e., DjkU ∈ Lp(S ) for all j, k = 1, . . . , n) imply

D0
jk(U) =

1

2

[
DkUj + DjUk

]
= Djk(U)− 1

2

n∑
r=1

∂r
(
νjνk

)
Ur ∈ Lp(S ) (5.12)

for all j, k = 1, . . . , n .

Then (cf. [DMM06, Proposition 4.4.iv] for the commutator [Dj,Dk]):

DjUk ∈ H−1
p (S )

[
Dj,Dk

]
Um =

n∑
r=1

[
νjDkνr − νkDjνr

]
DrUm ∈ H−1

p (S ),

DkDjUm = DjD̃km(U) + DkD̃jm(U)−DmD̃jk(U )− 1

2

[
Dj,Dk

]
Um

−1

2

[
Dj,Dm

]
Uk −

1

2

[
Dk,Dm

]
Uj ∈ H−1

p (S ) for j, k,m = 1, . . . , n ,

Due to Lemma 5.1 of J. L. Lions this implies DjUm ∈ Lp(S ) for all j,m = 1, . . . , n and
the claimed result U ∈W1

p(S ) follows.

Remark 5.4 The foregoing Theorem 5.3 is proved by P. Ciarlet in [Ci3] for the case p = 2,
for curvilinear coordinates and covariant derivatives.

A remarkable consequence of Korn’s inequality (5.8) is that the space

W1
p(S ) :=

{
U =

(
U1 . . . , Un

)>
: Uj , DkUj ∈ Lp(S ) for all j, k = 1, . . . n

}
and the space Ŵ1

p(S ) (cf. (5.10)) are isomorphic (i.e. can be identified), although only
n(n+ 1)

2
< n2 linear combinations of the n2 derivatives DjUk, j, k = 1, . . . n participate

in the definition of the space Ĥ1
p(S ).

6 KILLING’S VECTOR FIELDS AND FURTHER KORN’S INEQUALITIES

Definition 6.1 Let S be a hypersurface in the Euclidean space Rn. The space R(S ) of
solutions to the deformation equations

Djk(U) :=
1

2

[
(DS

j U)0
k + (DS

k U)0
j

]
=

1

2

[
DkU

0
j + DjU

0
k +

n∑
m=1

U0
mDm

(
νjνk

)]
= 0 , (6.1)

U =
n∑
j=1

U0
j d

j ∈ ω(S ), j, k = 1, . . . , n

is called the space of Killing’s vector fields.
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Killing’s vector fields on a domain in the Euclidean space Ω ⊂ Rn are known as the
rigid motions and we start with this simplest class.

The space of rigid motions R(Ω) extends naturally to the entire Rn and consists of linear
vector-functions

V (x) = a+ Bx , B =
[
bjk
]
n×n , a ∈ Rn , x ∈ Rn , (6.2)

where the matrix B is skew symmetric

B :=


0 b12 b13 · · · b1(n−2) b1(n−1)

−b12 0 b21 · · · b1(n−3) b2(n−2)

· · · · · · · · · · · · · · · · · ·
−b1(n−2) −b2(n−3) −b3(n−4) · · · 0 b(n−1)1

−b1(n−1) −b2(n−2) −b3(n−3) · · · −b(n−1)1 0

 = −B> (6.3)

with real valued entries bjk ∈ R. For n = 3, 4, . . . the space R(Rn) is finite dimensional and

dim R(Rn) = n+
n(n− 1)

2
=
n(n+ 1)

2
.

Note that for n = 3 the vector field V ∈ R(Ω), Ω ⊂ R3, is the classical rigid displace-
ment

V (x) = a+ Bx = a+ b ∧ x ,

b := (b1, b2, b3)> ∈ R3 , x ∈ Ω ,
B :=

 0 −b3 b2

b3 0 −b1

−b2 b1 0

 . (6.4)

Definition 6.2 We call a subset M ⊂ Rn essentiallym-dimensional and write ess dim M =
m, if there exist m + 1 points X

0,X
1, · · · ,X

m ∈ M such that the vectors
{

X
j − X

0
}m
j=1

are linearly independent.

Note, that any m-dimensional subset M ⊂ Rm is essentially m-dimensional, because
contains m linearly independent vectors. Moreover, any collection of m+ 1 points in Rm (a
0-dimensional subset) is essentially m-dimensional, provided these points does not belong
to any m− 1 dimensional hyperplane.

Lemma 6.3 Let

Def(U) :=
[
D0
jk(U)

]
n×n , (6.5)

D0
jk(U) =

1

2

[
∂kU

0
j + ∂jU

0
k

]
, U =

n∑
j=1

U0
j e

j.

be the deformation tensor in Cartesian coordinates.
The linear space R(Rn) of rigid motions (of Killing’s vector fields) in Rn consists of

vector fields K = (K0
1 , . . . , K

0
n)> which are solutions to the system

2D0
jk(K)(x) = ∂kK

0
j (x) + ∂jK

0
k(x) = 0 x ∈ S for all j, k = 1, . . . , n. (6.6)

If a rigid motion vanishes on an essentially (n − 1)-dimensional subset K(X ) = 0 for
all X ∈M , ess dim M = n − 1, or at infinity K(x) = O(1) as |x| → ∞, then K vanishes
identically K(x) ≡ 0 on Rn.
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Proof: By differentiating (6.6) and recalling that ∂k∂lK0
j = ∂l∂kK

0
j , we get

∂j∂kK
0
m = ∂jD

0
km(K) + ∂kD

0
jm(K)− ∂mD0

jk(K) = 0 for all j, k,m = 1, 2, . . . , n− 1 .

Therefore,
K0
j (x) = aj + bj1x1 + · · ·+ bjnxn j = 1, 2, . . . , n

or
K(x) = a+ B x with B = [bjk]n×n . (6.7)

From (6.6) we derive that B is a skew symmetric matrix (cf. (6.3)):

∂jK
0
k(x) = −∂kK0

j (x) ≡ 0 =⇒ bjk = −bkj j, k = 1, 2, . . . , n =⇒ B = −B>.

The inclusion K ∈ R(Rn) is proved.
The inverse statement, that any vector field K ∈ R(Rn) (of the form (6.2)) is a solution

of the system (6.6), is easy to verify.

Let us prove the second assertion: for any linearly independent vectors x0, . . . , xn−1 the
condition

K(xk) = 0 =⇒ a+ Bxk = K(xk) = 0 (6.8)

implies a = 0 and B = 0, i.e., K(x) = 0 for all x ∈ Rn. Indeed, if B = 0 then, obviously,
a = 0. Accepting B 6= 0, for rank of B we have the estimate 2 6 rank B < n (if B 6= 0
then, due to the symmetry B = −B>, there exists a non-degenerate minor of order at least
2). On the other hand, from (6.8) follows

B(xk − x0) = 0 ∀ k = 1, . . . , n− 1 ,

which contradicts the estimate 2 6 rank B < n since
{
x1− x0, . . . , xn−1− x0

}
are linearly

independent.
If a rigid motion K(x) in (6.7) vanishes at infinity K(x) = O(1) as |x| → ∞, then

obviously a = 0, B = 0 and, therefore, K(x) = 0 for all x ∈ Rn.

Remark 6.4 For the deformation tensor in Cartesian coordinates Def(U) (cf. (6.5)) in a
domain Ω ⊂ Rn Korn’s inequality

∥∥U ∣∣H1
p(Ω)

∥∥ 6M
[∥∥U ∣∣Lp(Ω)

∥∥P +
∥∥Def(U)

∣∣Lp(Ω)
∥∥p]1/p

, 1 < p <∞ (6.9)

with some constant M > 0 is well known and is proved e.g. in [Ci2] (cf. (5.7) for a similar
norm).

In contrast to the rigid motions in Rn nobody can identify Killing’s vector fields on
hypersurfaces explicitly so far. The next Theorem 6.5 underlines importance of Killing’s
vector fields for the Lamé equation on hypersurfaces. Later we investigate properties of
Killing’s vector fields to prepare tools for investigations of boundary value problems for the
Lamé equation.
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Theorem 6.5 Let S be an `-smooth closed hypersurface in Rn and ` > 2. The Lamé
operator LS for an isotropic media

LS : Hs+1
p (S )→ Hs−1

p (S ), (6.10)
LSU = µπS divS ∇SU + (λ+ µ)∇S divSU + µH 0

S WSU ,

is self adjoint L ∗
S = LS , elliptic, Fredholm and index Ind LS = 0 for all 1 < p <∞ and

all s ∈ R, provided that |s| 6 `.
The kernel of the operator KerLS ⊂ Hs

p(S ) is independent of the parameters p and s,
coincides with the space of Killing’s vector fields

Ker LS = {U ∈ ω(S ) : LSU = 0} = R(S ), (6.11)

is finite dimensional and dim R(S ) = dim Ker LS <∞.
If S is C∞ smooth, then the Killing’s vector fields are smooth as well R(S ) ⊂

C∞(S ).
LS is non-negative on the space H1(S ) and positive definite on the orthogonal com-

plement H1
R(S ) to the kernel

(LSU ,U )S > 0 for all U ∈ H1(S ) , (6.12)

(LSU ,U )S > C
∥∥U ∣∣H1(S )

∥∥2 for all U ∈ H1
R(S ) , C > 0 , (6.13)

where H1
R(S ) is the orthogonally complemented subspace to R(S ) in H1(S ).

Moreover, the following Gåarding’s inequality

(LSU ,U )S > C1‖U |H1(S )‖2 − C0‖U |H−r(S )‖2 (6.14)

holds for all U ∈ H1(S ), with any −1 < r 6 ` and some positive constants C0 > 0,
C1 > 0.

Proof: The proof is exposed in [Du11]. Here we draw the following consequence.

Corollary 6.6 Let S ⊂ Rn be a Lipshitz hypersurface without boundary, DefS (U) :=
[Djk(U)]n×n be the deformation tensor

D0
jk(U)=(DefS (U))jk =

1

2

[
(DS

k U)j + (DS
j U)k

]
=

1

2

[
DjU

0
k + DkU

0
j + ∂U (νjνk)

]
, ∀ j, k = 1, . . . , n. (6.15)

where (DS
j U )k denotes the k − th component of the covariant derivative DS

j U . The norm∥∥DefS (U)
∣∣L2(S )

∥∥ is defined by (5.7).
Then the following Korn’s inequality∥∥DefS (U)

∣∣L2(S )
∥∥ > c

∥∥U ∣∣H1(S )
∥∥ ∀U ∈ H1

R(S ) (6.16)

holds for some constant c > 0 or, equivalently, the mapping U 7→
∥∥DefS (U)

∣∣L2(S )
∥∥ is

an equivalent norm on the orthogonal complement H1
R(S ) to the space of Killing’s vector

fields.
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Proof: Due to Korn’s inequality (5.8) for p = 2∥∥U ∣∣L2(S )
∥∥2
>M1

[∥∥U ∣∣H1(S )
∥∥2 −

∥∥DefS (U)
∣∣L2(S )

∥∥2
]

the mapping DefS : H1
R(S )→ L2(S ) is Fredholm and has index 0. The inequality (6.16)

follows since the mapping is injective (has an empty kernel).
Let us recall some results related to the uniqueness of solutions to arbitrary elliptic equa-

tion.

Definition 6.7 Let Ω be an open subset with the Lipschitz boundary ∂Ω 6= ∅ either on a
Lipschitz hypersurface S ⊂ Rn or in the Euclidean space Rn−1.

A class of functions U (Ω) defined in a domain Ω in Rn, is said to have the strong
unique continuation property, if every u ∈ U (Ω) in this class which vanishes to infinite
order at one point must vanish identically.

If a surface S is C∞-smooth, any elliptic operator on S has the strong unique continu-
ation property due to Holmgren’s theorem. But we can have more.

Lemma 6.8 Let S be a W2
∞-smooth hypersurface in Rn. The class of solutions to a second

order elliptic equation A(X ,D)u = 0, with Lipschitz continuous top order coefficients on a
surface S has the strong unique continuation property.

In particular, if the solution u(X ) = 0 vanishes in any open subset of S it vanishes
identically on entire S .

Proof: The result was proved in [AKS1] for a domain Ω ⊂ Rn by the method of “Car-
leman estimates” (also see [Hr83, Volume 3, Theorem 17.2.6]). Another proof, involv-
ing monotonicity of the frequency function was discovered by N. Garofalo and F. Lin (see
[GL1, GL2]). A differential equation A(X ,D)u(X ) = 0 with Lipschitz continuous top order
coefficients on a W2

∞-smooth surface S is locally equivalent to a differential equation with
Lipschitz continuous top order coefficients on a domain Ω ⊂ Rn−1. Therefore a solution
u(X ) has the strong unique continuation property locally (on each coordinate chart) on S .

Since S is covered by a finite number of local coordinate charts which intersect on open
neighborhoods, a solution u(X ) has the strong unique continuation property globally on S .

Remark 6.9 If the top order coefficients of a second order elliptic equation A(X ,D)u = 0
in open subsets Ω ⊂ Rn, n > 3, are merely Hölder continuous, with exponent less than 1,
examples due to A. Plis [Pl63] and K. Miller [Mi03] show that a solution u(x) does not have
the strong unique continuation property.

Lemma 6.10 Let C be a W2
∞-smooth hypersurface in Rn with the Lipschitz boundary Γ :=

∂C and γ ⊂ Γ be an open part of the boundary Γ. Let A(X ,D) be a second order elliptic
system with Lipschitz continuous top order matrix coefficients on a surface S .

The Cauchy problem
A(X ,D)u = 0 on C , u ∈ H1(Ω),

u(s) = 0 for all s ∈ γ,
(∂V u)(s) = 0 for all s ∈ γ,

(6.17)
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where the vector V is a non-tangential to Γ, but tangential to S , has only a trivial solution
u(X ) = 0 on entire S .

Proof: With a local diffeomorphism the Cauchy problem (6.17) is transformed into a similar
problem on a domain Ω ⊂ Rn−1 with the Cauchy data vanishing on some open subset of the
boundary γ ⊂ Γ := ∂Ω.

Let us, for simplicity, use the same notation γ ⊂ Γ = ∂Ω, the non-tangential vector V to
γ, the function u and the differential operator A(x,D) for the transformed Cauchy problem
in the transformed domain Ω. Moreover, we will suppose that γ is a part of the hypersurface
x1 = 0 (otherwise we can transform the domain Ω again). We also use new variables t = x1

and x := (x2, . . . , xn−1). Then (0, x) ∈ γ while (t, x) ∈ Ω for all small 0 < t < ε and some
x ∈ Ω′.

Thus, the natural basis element e1 (cf. (0.7)) is orthogonal to γ and, therefore, e1 =
c1(x)V (x) + c2(x)g(x) for some unit tangential vector g(x) to γ for some scalar functions
c1(x), c2(x) and all x ∈ Ω′. Then, due to the third line in (6.17),

(∂tu)(0, x) = ∂eju(0, x) = c1(x)∂V u(0, x) + c2(x)∂gu(0, x) = 0

because any derivative along tangential vector to γ vanishes ∂gu(0, x) = 0 due to the second
line in (6.17).

The second order equation A(t, x; D) can be written in the form

A(t, x,D)u = A(t, x; e1)∂2
t u+ A1(t, x;D)∂tu+ A2(t, x;D)u, D := −i∂x,

where A(t, x; e1) is the (invertible) matrix function, A1(t, x;D) and A2(t, x;D) are differen-
tial operators of orders 1 and 2 respectively, compiled of derivatives ∂x, x ∈ Ω′. Therefore,
if A0

j(t, x;D) := A−1(t, x; e1)Aj(t, x;D), j = 1, 2, the Cauchy problem (6.17) transforms
into

∂2
t u(t, x) + A0

1(t, x;D)∂tu(t, x) + A0
2(t, x;D)u(t, x) = 0 on (t, x) ∈ Ωε,

u(0, x) = 0 for all x ∈ Ω′,

(∂tu)(0, x) = 0 for all x ∈ Ω′,

(6.18)

where Ωε := (0, ε)× Ω′ ⊂ Ω, u ∈ H1(Ωε) and γ :=
{

(0, x) : x ∈ Ω′
}

.
Now let us recall the inequality (see [Miz73, § 4.3, Theorem 4.3, § 6.14], [Sc77, § 4-7,

Lemma 4-21]): There is a constant C which depends on ε and A(t, x;D) only and such that
the inequality∫

Ωε

e−λt|v(t, x)|2dt dx 6 C

∫
Ωε

e−λt|(A(t, x;D)v)(t, x)|2dt dx, (6.19)

holds for A(t, x;D)v ∈ L2(Ωε), v ∈ C∞(Ωε); moreover, v(t, x) should vanishe near t = ε
and should have vanishing Cauchy data v(0, x) = (∂tv)(0, x) = 0 for all x ∈ Ω′.

Let ρ ∈ C2(0, ε) be a cut-off function: ρ(t) = 1 for 0 6 t < ε/2 and ρ(t) = 0 for
3ε/4 6 t < ε. Then v := ρu ∈ H1(Ωε) and since A(t, x;D)u = 0 on Ωε, we get

A(t, x;D)(ρu)=ρA(t, x;D)u+ (∂2
t ρ)u+ (∂tρ)∂tu+ (∂tρ)A0

1(t, x;D)u

=(∂2
t ρ)u+ (∂tρ)∂tu+ (∂tρ)A0

1(t, x;D)u.
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We have asserted u ∈ H1(Ωε), ρ ∈ C2 and this implies (∂2
t ρ)u ∈ L2(Ωε), (∂tρ)∂tu ∈

L2(Ωε). Note, that ∂tρ(t) vanishes for 0 < t < ε/2. Therefore (∂tρ)A0
1(t, x;D)u vanishes in

a neighborhood of the boundary γ ⊂ Γ. Due to a priori regularity result (cf. [LM72, Ch. 2, §
3.2, § 3.3]), a solution to an elliptic equation in (6.18) has additional regularity u ∈ H2(Ω0

ε)
for arbitrary Ω0

ε properly imbedded into Ωε. This implies (∂tρ)A0
1(t, x;D)u ∈ L2(Ωε) and

we conclude

A(t, x;D)(ρu) ∈ L2(Ωε). (6.20)

Introducing v = ρu into the inequality (6.19) we get∫
Ω′

∫ ε/4

0

e−λt|ρ(t)u(t, x)|2dt dx 6
∫

Ωε

e−λt|ρ(t)u(t, x)|2dt dx

6 C

∫
Ω′

∫ 3ε/4

ε/2

e−λt|(A(t, x;D))ρ(t)u(t, x)|2dt dx.

This implies for λ > 0∫
Ω′

∫ ε/4

0

|ρ(t)u(t, x)|2dt dx 6 e−λε/4
∫

Ωε

|(A(t, x;D))ρ(t)u(t, x)|2 dt dx 6 C1e
−λε/4.

where, due to (6.17), C1 > 0 is a finite constant. By sending λ → ∞ we get the desired
result u(t, x) = 0 for all 0 6 t 6 ε/4 and all x ∈ Ω′. Since u(x) vanishes in a subset of the
domain Ω, bordering γ, due to Lemma 6.8 the solution vanishes on entire Ω (on entire C ).

Due to our specific interest (see the next Lemma 6.12) and many applications, for ex-
ample to control theory, the following boundary unique continuation property is of a special
interest.

Definition 6.11 Let S be a Lipschitz hypersurface in Rn and C ⊂ S be an open subsurface
with the Lipschitz boundary Γ = ∂C .

We say that a class of functions U (Ω) has the strong unique continuation property
from the boundary if a vector-function U ∈ U (Ω) which vanishes U(s) = 0, ∀ s ∈ γ on
an open subset of the boundary γ ⊂ Γ, vanishes on the entire C .

Lemma 6.12 Let S be a W2
∞-smooth hypersurface in Rn and C ⊂ S be an open W2

∞-
smooth subsurface.

The set of Killing’s vector fields R(S ) on the open surface C has the strong unique
continuation property from the boundary.

Proof: Let γ ⊂ Γ := ∂C , mes γ > 0 and U (s) = 0 for all s ∈ γ ⊂ Γ := ∂C . Then (cf.
(2.24))  (DjU

0
k )(s) + (DkU

0
j )(s) = −

n∑
m=1

U0
m(s)Dm

(
νj(s)νk(s)

)
= 0,

U0
k (s) = 0 ∀ s ∈ γ, j, k = 1, . . . , n.

(6.21)
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Among tangential vector fields generating the Gunter’s derivatives
{
d j(s)

}n−1

j=1
only

n − 1 are linearly independent. One of vectors might collapse at a point d j(s) = 0 if
the corresponding basis vector ej is orthogonal to the surface at s ∈ S , while others might
be tangential to the subsurface Γ, except at least one, say d n(s), which is non-tangential to
γ. Then from (6.21) follows

2(DnU
0
n)(s) = 0 and implies (DjU

0
n)(s) = 0 (6.22)

for all s ∈ γ and all j = 1, . . . , n.

Indeed, the vector d j , 1 6 j 6 n − 1, is a linear combination d j(s) = c1(s)d n(s) +
c2(s)τ j(s) of the non-tangential vector d n(s) and of the projection τ j(s) := πγd

j(s) of
d j(s) to the subsurface γ at the point s ∈ γ. Since Un vanishes identically on γ, the
derivative (∂τ jU

0
n)(s) = 0 vanishes as well and (6.22) follows:

(DjU
0
n)(s) = c1(s)(∂d nU

0
n)(s) + c2(s)(∂τ jU

0
n)(s) = c1(s)(DnU

0
n)(s) = 0
∀ s ∈ γ.

Equalities (6.21) and (6.22) imply

(DnU
0
j (s) = −(DjU

0
n)(s) = 0 ∀ s ∈ γ, ∀ j = 1, . . . , n. (6.23)

Thus, we have the following Cauchy problem
LC (X ,D)U(X ) = 0 on C ,

U(s) = 0 for all s ∈ γ,
(DnU)(s) = (∂d nU)(s) = 0 for all s ∈ γ,

(6.24)

where d n is a vector filed non-tangential to Γ. Due to Lemma 46.10, U(X ) = 0 for all
X ∈ C .

Before we draw some consequences from the proved unique continuation property, we
should make some comments. The finite dimensionality of the linear space R(C ) when the
surface C is 2-smooth, was proved in the papers [CLM1, GS1, Ge1].

The foregoing Lemma 6.12 generalizes essentially the “infinitesimal rigid displacement
lemma” (see [Ci3, Theorem 2.7-2] the following conditions are imposed:

i. C ⊂ S is C3-smooth, elliptic in R3, i.e., if

2∑
k=1

|ξk|2 6 C
2∑

k,j=1

∣∣bjk(X )ξjξk
∣∣ ∀X ∈ S , ∀(ξ1, ξ2)> ∈ R2, (6.25)

where bjk(X ) : S → R are the covariant components of the curvature tensor of S ;
the equivalent condition is that the Gaußian curvature is positive on the entire surface
S or that tho principal curvatures of the surface S have the same sign everywhere on
S .

ii. The Killing’s vector field U vanishes on the entire boundary ∂S , i.e.,

R0(C ) =
{
U ∈ R : U

∣∣
∂C

= 0
}

= {0}. (6.26)
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A similar assertion is proved by Lods & Mardare in [LoM1], but for C2,1-smooth hypersur-
face with the Lipschitz boundary ∂S and when a Killing’s vector field expires on the entire
boundary ∂S . An earlier version of the “infinitesimal rigid displacement lemma” is due to
I. Vekua [Ve82], who proved it using the theory of “generalized analytic functions”.

Corollary 6.13 (Korn’s I inequality “with boundary condition”). Let C ⊂ Rn be a C`-
smooth hypersurface with the Lipschitz boundary Γ := ∂C 6= ∅ and ` > 2, |s| 6 `. Then∥∥U ∣∣Hs

p(C )
∥∥ 6M

∥∥DefC (U)
∣∣Hs−1

p (C )
∥∥ ∀U ∈ H̃s

p(C )

for some constant M > 0. In other words: the mapping

U 7→
∥∥DefC (U)

∣∣Hs−1
p (C )

∥∥ (6.27)

is an equivalent norm on the space H̃s
p(C ).

Proof: If the claimed inequality (6.27) is false, there exists a sequence U j ∈ H̃s
p(C ), j =

1, 2, . . . such that∥∥U j
∣∣Hs

p(C )
∥∥ = 1 ∀j = 1, 2, . . . lim

j→∞

∥∥DefC (U j)
∣∣Hs−1

p (C )
∥∥ = 0.

Due to the compact embedding H̃s
p(C ) ⊂ Hs

p(C ) ⊂ Hs−1
p (C ), a convergent subsequence

U j1 ,U j2 , . . . in Hs−1
p (C ) can be selected. Let U 0 = limk→∞U

jk . Then∥∥DefC (U 0)
∣∣Hs−1

p (C )
∥∥ = lim

k→∞

∥∥DefC (U jk)
∣∣Hs−1

p (C )
∥∥ = 0

and U 0 is a Killing’s vector field. Since U(x) = 0 on Γ, due to Lemma 6.12 U 0(x) = 0 for
all x ∈ C which contradicts to

∥∥U 0
∣∣Hs

p(C )
∥∥ = limk→∞

∥∥U jk
∣∣Hs

p(C )
∥∥ = 1.

Let us check the following equalities for a later use:

∇ΩεU =
[
DjU

0
k

]
n+1×n+1

+ 〈N ,U〉WΩε , (6.28)

where

U :=
n+1∑
m=1

U0
md

m =
n∑

m=1

Ume
m, U0

n+1 =
n∑

m=1

NmUm, Dn+1 := ∂N , dn+1 := N .

WΩε is the extended Weingarten matrix

WΩε :=
[
DjNk

]
n+1×n+1

(6.29)

and its last column and last row are 0, because DjNn+1 = Dn+1Nj = Dn+1Nn+1 = 0 for
j = 1, . . . , n.
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In fact (see (2.13) fore some further details of calculation):

∇ΩεU :=
[
∂jUk

]
n×n =

n∑
j,ky=1

∂jUke
j ⊗ ek

:=
n∑

j,k=1

[Dj + Nj∂N ][U0
k + Nk〈N ,U〉][dj + NjN ]⊗ [dk + NkN ]

=
n∑

j,k=1

(DjU
0
k )dj ⊗ [dk + NkN ] +

n∑
j,k=1

Dj[Nk〈N ,U〉]dj ⊗ [dk + NkN ]

+
n∑

j,k=1

N 2
j (∂N U0

k )N ⊗ [dk + NkN ] +
n∑

j,k=1

N 2
j N 2

k ∂N 〈N ,U〉N ⊗N

=
n∑

j,k=1

(DjU
0
k )dj ⊗ dk +

n∑
j,k=1

Nk(DjU
0
k )dj ⊗ dn+1

+
n∑

j,k=1

〈N ,U〉(DjNk)d
j ⊗ [dk + NkN ] +

n∑
j,k=1

N 2
k Dj〈N ,U〉dj ⊗ dn+1

+
n∑
k=1

(Dn+1U
0
k )dn+1 ⊗ dk +

n∑
k=1

[
NkDn+1U

0
k + Dn+1U

0
n+1

]
dn+1 ⊗ dn+1

=
n∑

j,k=1

(DjU
0
k )dj ⊗ dk +

n∑
j,k=1

[
Dj(NkU

0
k )− U0

kDjNk

]
dj ⊗ dn+1

+〈N ,U〉
n∑

j,k=1

(DjNk)d
j ⊗ dk +

n∑
j=1

Dj〈N ,U〉dj ⊗ dn+1

+
n∑
k=1

(Dn+1U
0
k )dn+1 ⊗ dk + (Dn+1U

0
n+1)dn+1 ⊗ dn+1

=
n+1∑
j,k=1

(DjU
0
k )dj ⊗ dk −

n∑
j,k=1

U0
k (DjNk)d

j ⊗ dn+1 + 〈N ,U〉
n∑

j,k=1

(DjNk)d
j ⊗ dk

=
[
DjUk

]
(n+1)×(n+1)

+ 〈N ,U〉WΩε −
n∑

j,k=1

U0
k (DjNk)d

j ⊗ dn+1

=
[
DjUk

]
(n+1)×(n+1)

+ 〈N ,U〉WΩε −
[
(WΩεU

0)jδj,n+1

]
(n+1)×(n+1)

,

since

∂N Nj = 0,
n∑

j,k=1

N 2
j = 1,

n∑
j=1

NjDj = 0,
n∑
j=1

Njd
j = 0,

n∑
k=1

NkU
0
k = 0,

n∑
k=1

NkDjNk =
1

2
Dj

n∑
k=1

N 2
k =

1

2
Dj1 = 0, j = 1, 2 . . . , n+ 1.
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For a domain Ω ⊂ Rn with a smooth boundary M := ∂Ω and M0 ⊂ M -a subsurface
of non-zero measure let W̃1(Ω,M0) denote a subspace of functions ϕ ∈W1(Ω,M0) which
is the closure of the set C∞(Ω,M0) of smooth functions ϕ(x) which have vanishing trace
on M0, i.e. ϕ+(X ) = 0 for all X ∈ M0. The space W̃1(Ω,M0) inherits the standard norm
from W1(Ω):

‖ϕ
∣∣W1(Ω) ‖ :=

[
‖ϕ
∣∣Lp(Ω)‖+

n∑
j=1

‖∂jϕ
∣∣Lp(Ω)‖

]1/p

.

Since the space W̃1(Ω,M0) does not contain constants, it is easy to prove the following.

Lemma 6.14 The formula

‖ϕ
∣∣ W̃1(Ω,M0) ‖ :=

[
n∑
j=1

‖∂jϕ
∣∣Lp(Ω)‖

]1/p

. (6.30)

defines an equivalent norm in the space W̃1(Ω,M0).

If ε is sufficiently small, the boundary Mε := ∂Ωε is represented as the union of three
C1-smooth surfaces Mε = Mε,D ∪M−

ε,N ∪M +
ε,N , where Mε,D = ∂C × [−ε, ε] is the lateral

surface, M +
ε,N = C ×{+ε} is the upper surface and M−

ε,N = C ×{−ε} is the lower surface
of the of the boundary Mε of the layer domain Ωε.

The next Lemma 6.15 is proved for a later use in § 3.

Lemma 6.15 T ∈ W̃1(Ωε,M ), Let M0 := γ × [−ε, ε], where γ ⊂ Γ := ∂C is a subset of
the boundary of the surface C of non-trivial measure. If g ∈ L2(Ωε), for the linear functional

Eε(u) =

∫
Ωε

g(x)u(x) dx, u ∈ W̃1(Ωε,M0) (6.31)

we have the following estimate:

Eε(u) 6 C‖g|L2(Ωε)‖ ‖DCu|L2(Ωε)‖ (6.32)

for some constant C > 0 independent of u ∈ W̃1(Ωε,M0).

Proof: To prove (6.32) we recall that u ∈ W̃1(Ωε,M0) vanishes on the lateral subsurface
X ∈M0 ⊂MD := ∂C × (−ε, ε).

Let Ct be the ”parallel” surface to the mid-surface C on a distance |t| and for negative
t < 0 the surface Ct is ”below” C , while for positive t > 0 is ”above” C , i.e., in the
direction of the normal vector filed ν(X ), X ∈ C . Note, that C−+1ε = M −+

D . Taking u(X , t),
X ∈ C , −ε < t < ε from a dense subset of the space W̃1(Ωε,M0) we can assume that
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u(·, t) ∈ W̃1(Ct) for all fixed −ε 6 t 6 ε. Since u(X , t) vanishes on the part of the
boundary M0 ∩ ∂Ct, the Sobolev semi-norm

‖u(·, t)|W1(Ct)‖0 := ‖DCu(·, t)|L2(Ct)‖ =

[
3∑
j=1

∫
Ct

|Dju(X , t)|2dσ

]1/2

turns into the norm and is equivalent to the standard Sobolev norm

‖u(·, t)|W1(Ct)‖ :=

[∫
Ct

|u(X , t)|2dσ +
3∑
j=1

∫
Ct

|Dju(X , t)|2dσ

]1/2

for all t ∈ [−ε, ε], which means

M‖u(·, t)|W1(Ct)‖ 6 ‖u(·, t)|W1(Ct)‖0 6 ‖u(·, t)|W1(Ct)‖

for some constant 0 < M < 1, independent of t and u. From this equivalence we get the
estimate

‖u(·, t)|L2(Ct)‖2 6
1−M2

M2
‖DCu(·, t)|L2(Ct)‖2. (6.33)

By integrating the obtained inequality with respect to the variable twe get the following final
estimate

‖u|L2(Ωε)‖ 6
√

1−M2

M
‖DCu|L2(Ωε)‖ ∀u ∈ W̃1(Ωε,M0). (6.34)

The estimate in (6.32) follows with the help of the Cauchy inequality and inequality
(6.34):∫

Ωε

g(x)u(x)dx 6 ‖g|L2(Ωε)‖‖u|L2(Ωε)‖ 6
√

1−M2

M
‖g|L2(Ωε)‖‖DCu|L2(Ωε)‖.

Remark 6.16 Let us stress that in estimate (6.32) we only need the surface derivatives
D1,D2 and D3. If we would have g ∈W−1(Ωε), then we should assume u ∈ W̃1(Ωε). These
spaces are dual and, therefore if the integral in the functional Eε in (6.31), is understood as
the duality, the functional Eε is bounded, but then estimate writes

Eε(u) 6 C‖g|L2(Ωε)‖ ‖DΩεu|L2(Ωε)‖, DΩε = (D1,D2,D3,D4)>. (6.35)

In this estimate all derivatives, the surface and the transversal ∂t = ∂ν = D4 (the normal to
the surface C ) are participating.
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7 AUXILIARY FROM THE OPERATOR THEORY

The results exposed in the present section will be applied to complex valued matrices,
which are identified with operators in the finite dimensional space C. Nevertheless, we will
formulate results in general setting of operators in a Hilbert space.

Throughout this section we assume that H is a Hilbert space with respect to some con-
tinuous scalar product, a bilinear form (·, ·) : H× H→ C, i.e.,

(λu+ µw, v) = λ(u, v) + µ(w, v) , (u, λ v + µ z) = λ(u, v) + µ(u, z) ,∣∣(u, v)
∣∣ 6 C‖u‖H‖v‖H , ∀u,w ∈ H , ∀ v, z ∈ H ,

(ϕ, ψ) = (ψ, ϕ) ∀ϕ, ψ ∈ H.

Recall, that the dual operator (A∗ϕ, ψ) = (ϕ,Aψ) maps continuously the same space
A∗ : H −→ H andA ∈ L (H) is self-adjoint operator if

(Aϕ, ψ) = (ϕ,Aψ) ∀ϕ, ψ ∈ H. (7.1)

A ∈ L (H,H) is positive definite (or coercive) if the inequality

(Aϕ, ϕ) > C‖ϕ
∣∣H‖2 (7.2)

holds for some constant C > 0 and all ϕ ∈ H.

Lemma 7.1 LetA ∈ L (H). The inequality

‖Aϕ
∣∣H‖ > C‖ϕ

∣∣H‖ (7.3)

with some constant C > 0 holds if and only if the operator A is normally solvable =A =
=A and injective KerA = {0}.

Proof. If the inequality (7.3) holds, then Aϕ = 0, ϕ ∈ H implies ϕ = 0 and KerA = {0}.
Now let ψj = Aϕj → ψ0 (convergence in the norm). From (7.3) follows the convergence
ϕj → ϕ0. Due to continuity ofA this impliesAϕ0 = ψ0 ∈ =A and =A is closed.

Vice versa, let A be normally solvable and KerA = {0}. Then =A is a Hilbert space,
subspace of H and the operator A : H → =A is bijective. Due to the Banach’s Inverse
mapping theorem A is invertible: there exists B ∈ L (=A) such that ABx = x BAy = y
for all x ∈ =A and all y ∈ H. Inserting in ‖Bψ

∣∣H‖ 6 C‖ψ
∣∣=A‖ := ‖ψ

∣∣H‖ the equality
ψ = Aϕ, ϕ ∈ H, we get (7.3).

Definition 7.2 For an operatorA ∈ L (H) the closed set

Σ(A) := {(Aϕ, ϕ) : ϕ ∈ H}, (7.4)

where the overbar denotes closing of the set, is called the spectral set ofA.

Lemma 7.3 If the spectral set Σ(A) of an operator A ∈ L (H) is real valued Σ(A) ⊂ R,
thenA is self-adjoint.
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Proof. We proceed as follows:

(Aϕ, ψ) =
1

4

{
(A[ϕ+ ψ], ϕ+ ψ)− (A[ϕ− ψ], ϕ− ψ)

+i(A[ϕ+ iψ], ϕ+ iψ)− i(A[ϕ− iψ], ϕ− iψ)
}

=
1

4

{
(A[ϕ+ ψ], ϕ+ ψ)− (A[ϕ− ψ], ϕ− ψ)

+i(A[ϕ+ iψ], ϕ+ iψ)− i(A[ϕ− iψ], ϕ− iψ)
}

=
1

4

{
(ϕ+ ψ,A[ϕ+ ψ])− (ϕ− ψ,A[ϕ− ψ])

+i(ϕ+ iψ,A[ϕ+ iψ])− i(ϕ− iψ,A[ϕ− iψ])
}

= (ϕ,Aψ) , ϕ, ψ ∈ H

since (Au, u) = (Au, u) by the condition Σ(A) ⊂ R and (Au, u) = (u,Au) by the defini-
tion.

Corollary 7.4 If an operatorA ∈ L (H) is positive definite, it is self-adjoint and invertible.

Proof. IfA is positive definite, its spectral set is real valued andA is self-adjoint.
From (7.2) we get

‖Aϕ
∣∣H‖‖ϕ∣∣H‖ > (Aϕ, ϕ) > C‖ϕ

∣∣H‖2

and further
‖Aϕ

∣∣H‖‖ > C‖ϕ
∣∣H‖ , ϕ ∈ H . (7.5)

Due to Lemma 7.1 the inequality (7.2) implies that A is normally solvable and has a trivial
kernel KerA = {0}. Being self-adjoint A∗ = A the operator has the trivial cokernel
dim CokerA = dimKerA = 0 (due to (7.2) Aϕ = 0 implies that ϕ = 0). Therefore, A is
invertible.

Let A ∈ L (H) and A = RHA be its left polar decomposition, where R ∈ SO(H)
is the orthogonal (unitary) operator R∗ = R−1 and HA is positive, self adjoint (Hermitian)
operator

〈HAϕ, ϕ〉 > C0‖ϕ‖2, C0 > 0, H∗A = HA, ∀ϕ ∈ H.

Let us check, that HA =
√
A∗A. Indeed, if A = RUA, then A∗ = H∗AR∗ = HAR−1 and√

A∗A =
√

HAR−1RHA =
√

H2
A = HA.

Similarly, for the right polar decompositionA = H′AR′ we get H′A =
√
AA∗.

Note, that if A is positive definite (or, at least, has a real valued spectral set), then A
is self adjoint A∗ = A and the polar decomposition is trivial HA = H′A =

√
AA = A,

R = R′ = I.
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Note, that the norm has the following property:

‖RAR‖ = ‖RA‖ = ‖AR‖ = ‖A‖ ∀A ∈ L (H), and ∀R ∈ SO(H). (7.6)

Indeed,

‖RA‖ = inf
ϕ∈H

√
((RA)∗RAϕ, ϕ) = inf

ϕ∈H

√
(A∗R∗RAϕ, ϕ) = inf

ϕ∈H

√
(A∗Aϕ, ϕ) = ‖A‖ .

By using the obtained equality and recalling that ‖A‖ = ‖A∗‖ and R ∈ SO(H) implies
R∗ ∈ SO(H), we prove the following

‖AR‖ = ‖(AR)∗‖ = ‖R∗A∗‖ = ‖A‖ .

As a consequence, ‖RAR‖ = ‖RA‖ = ‖AR‖ = ‖A‖.

Next we will prove, that ifA = RHA is the left polar decomposition, then

dist(A, SO(H)) = ‖HA − I‖ ifA is invertible,

dist(A, SO(H)) 6 ‖HA − I‖ otherwise.
(7.7)

Indeed, due to (7.6),

dist(A, SO(H)= inf
V ∈SO(H)

‖RHA − V ‖ = inf
V ∈SO(fH)

‖R∗(RHA − V )‖

= inf
V ∈SO(H)

‖HA −R∗V ‖ 6 ‖HA − I‖ ,

since I,R∗V ∈ SO(H).
The second inequality in (7.7) is proved. To prove the first equality in (7.7) we assume

A is invertible and...
The subsequent proof has to be modified later
Let us show that a small perturbation R(t) := R + tU, |t| < ε, of R by arbitrary matrix

U with the constraint R(t) ∈ SO(H) (i.e., R(t)R∗(t) = I for all |t| < ε) gives

inf
t∈R
‖A−R(t)‖=inf

t∈R
inf
ϕ∈H

√
((A−R(t))ϕ, (A−R(t))ϕ)

=inf
t∈R

inf
ϕ∈H

√
((A−R(t))∗(A−R(t))ϕ, ϕ)

=inf
t∈R

inf
ϕ∈H

√
( [(HA − I)2 − t(U∗A+A∗U)]ϕ, ϕ)

=inf
t∈R

inf
ϕ∈H

√
((HA − I)2ϕ, ϕ) = inf

ϕ∈H

√
((HA − I)ϕ, (HA − I)ϕ)

=‖HA − I‖

because the minimization by t shows, that the norm minimizes at (U∗A+A∗U) = (U∗A+
A∗U)∗ = 0.
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8 GEOMETRIC RIGIDITY

The basic rigidity result relevant to passage to the thin plate limit is the following.

Proposition 8.1 (see [FJM1]) Let Ω be a bounded Lipschitz domain in Rn, n > 2 and
1 < p <∞. There exists a constantC(Ω) with the following property: For each U ∈W1(Ω)
there is an associated rotation RU ∈ SO(n) such that,∥∥∇U −RU

∣∣Lp(Ω)
∥∥ 6 C(Ω)

∥∥dist(∇U,SO(n))
∣∣Lp(Ω)

∥∥ . (8.1)

The result is sharp in the sense that neither the norm on the right hand side nor the power
with which it appears can be improved.

By considering the special case when the right hand side in (8.1) is zero, Proposition 8.1
reduces to the following.

Corollary 8.2 (Liouville theorem) Let Ω be a bounded Lipschitz domain in Rn, n > 2. If
U is a W1(Ω) map which satisfies the partial differential equation

∇U(x) ∈ SO(n) a.e. in Ω, (8.2)

then it is affine U(x) = Rx+ c, R ∈ SO(n), c = const or, equivalently,∇U = R ∈ SO(n).

Proof: In the setting of Sobolev maps this was first proved by Reshetnyak [Re67]. A short
modern proof belongs to G. Friesecke, R.D. James & S. Müller [FJM1] and consists of three
observations.

First, for n× n matrix A = [ajk]n×n let cofA denote the matrix of cofactors of A, i.e.,

cofA =
[
(−1)j+kdetAjk

]
n×n , (8.3)

where Ajk is the (n− 1)× (n− 1) matrix obtained from A by deleting the j-th row and the
k-th column. It is well-known that

div cof∇U = 0 for all U ∈W1(Ω). (8.4)

Note first that if the equality (8.4) is proved for U ∈ C2(Ω), it can be extended to
arbitrary U ∈W1(Ω).

We have to prove

Ci :=
n∑
k=1

∂k(cof∇U)ki = 0, i = 1, . . . , n. (8.5)

Note, that Ci can be formally written as

Ci = det


∂1 ∂2 · · · ∂n
∂1v

(i)
1 ∂2v

(i)
1 · · · ∂nv

(i)
1

...
... . . . ...

∂1v
(i)
n−1 ∂2v

(i)
n−1 · · · ∂nv

(i)
n−1

 , (8.6)
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where v(i) = (U1, · · · , Ui−1, Ui+1, · · · , Un). The equality (8.5) follows from the following
assertion: For any u = (u1, · · ·un−1) ∈ C2(Rn−1)

det


∂1 ∂2 · · · ∂n
∂1u1 ∂2u1 · · · ∂nu1
...

... . . . ...
∂1un−1 ∂2un−1 · · · ∂nun−1

 = 0, (8.7)

which can be easily proved by induction, expanding the determinant with respect to the last
row.

Second, (8.2) implies that U is harmonic, and in particular smooth. To prove this recall,
that if A ∈ GL(n) is an invertible matrix, A−1 = detA(cofA)>. In particular, for B ∈
SO(n), which means B−1 = B>, detB = 1, we get cofB = B. Then from the asserted
inclusion∇U ∈ SO(n) we get∇(U)(x) = cof∇U(x) and by taking the divergence we get
the following:

∆U = div∇U = div cof∇U(x) = 0.

Third, the second gradient squared of any harmonic map can be expressed pointwise via
derivatives of the inner products,

1

2

(
|∇U |2 − n

)
= 〈∇U,∆∇U〉+ |∇2U |2 = |∇2U |2; (8.8)

but |∇U |2 − n = 0 when U satisfies (8.2).

An estimate in terms of ε+
√
ε, where ε :=

∥∥dist(∇U,SO(n))
∣∣∣∣Lp(Ω)

∥∥, is much easier
to prove, but is insufficient for the application to plate theory, where one needs to sum the
estimate over many small cubes of size h.

Corollary 8.3 (see [Re67]) If Uj → U in W1(Ω) and dist(∇Uj,SO(n)) → 0 in measure,
then ∇Uj → R in L2(Ω) for some constant rotation matrix R ∈ SO(n)).

Let us remind, that the space of n × n matrices Mn×n(R) is a real Hilbert space with
respect to the inner product (3.12) and the norm

‖A‖ :=
√

Tr(AA>) =
√

Tr(A>A) =

√∑
i,j

a2
ij, ∀A = [aij]n×n . (8.9)

Note, that the norm has the following property:

‖RAR‖ = ‖RA‖ = ‖AR‖ = ‖A‖ ∀A ∈Mn×n, and ∀R ∈ SO(n). (8.10)

Indeed,

‖RA‖ =
√

Tr[(RA)>(RA)] =
√

Tr(A>R>RA) =
√

Tr(A>A) = ‖A‖ ,

‖AR‖ =
√

Tr[(AR)(AR)>] =
√

Tr(ARR>A>) =
√

Tr(AA>) = ‖A‖
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and, as a consequence, ‖RAR‖ = ‖RA‖ = ‖AR‖ = ‖A‖.
Let A = RHA be the left polar decomposition of a matrix A, where R ∈ SO(n) is the

orthogonal (unitary) matrix R> = R−1 and HA is positive, self adjoint (Hermitian) matrix

〈HAξ, ξ〉 > C0‖ξ‖2, C0 > 0, H∗A = HA, ∀ ξ ∈ C.

Let us check, that HA =
√
A>A. Indeed, if A = RUA, then A> = H>AR

> = HAR
−1 and√

A>A =
√
HAR−1RHA =

√
H2
A = HA.

Similarly, for the right polar decomposition A = H ′AR
′ we get H ′A =

√
AA>.

By analogue with (7.7) is proved, that if A = RHA is the left polar decomposition of A,
then

dist(A,SO(n)) = ‖HA − I‖ if detA 6= 0 (i.e., A is invertible),

dist(A,SO(n)) 6 ‖HA − I‖ otherwise.
(8.11)
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Chapter 2

Γ-CONVERGENCE BY NUMBERS

3 SOME PRELIMINARIES

The main purpose of the present chapter is to introduce Γ-convergence, discuss it‘s prop-
erties and demonstrate its application on a simplest version of dimension-reduced problems.
Γ-convergence was introduced by De Giorgi in [DF1] and represents powerful toolkit for the
investigation of various dimension-reduction problems.

Our exposition follows mostly the book [Br1]. Let N+ denote the set of positive integers,
N:= N+ ∪ {0} and R the set of real numbers.

Definition 3.1 Let f : X → R. We define the lower limit (lim inf for short) of f at x as

lim inf
y→x

f (y) = inf

{
lim inf

j
f (xj) : xj ∈ X, xj → x

}
= inf

{
lim
j
f (xj) : xj ∈ X, xj → x, ∃ lim

j
f (xj)

}
.

and upper limit (lim sup for short) of f at x as

lim sup
y→x

f (y) = sup

{
lim sup

j
f (xj) : xj ∈ X, xj → x

}
= sup

{
lim
j
f (xj) : xj ∈ X, xj → x, ∃ lim

j
f (xj)

}
.

The lower limit is linked to our minimum problems much more then the upper limit. The
first notion will be preferred in our statements, but many results will obviously hold for the
limsup, with the due changes. Definition (3.1) can also be given if f is not defined in the
whole X (in this case the xj must be taken in the domain of f ); in particular, we can have
X = N and x =∞ and recover the usual definition of lim inf and lim sup for sequences.

By taking xj = x we always get lim inf
y→x

f (y) 6 f (x) . Moreover, it can easily checked

that
lim inf
y→x

(−f (y)) = − lim inf
y→x

f (y) ,
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lim inf
y→x

(f (y) + g (y)) ≥ lim inf
y→x

f (y) + lim inf
y→x

g (y) , (2.1)

lim inf
y→x

(f (y) + g (y)) 6 lim sup
y→x

f (y) + lim inf
y→x

g (y) .

A way to interpret these limit operators is that they give the sharpest upper and lower
bounds for the behaviour of f close to x : that is, for all ε > 0 we will have

lim inf
y→x

f (y)− ε < f (x,) < lim inf
y→x

f (y) + ε,

provided that d (x, x,) < δ = δ (ε) . With this observation in mind it can be easily checked
that we have the equivalent topological definitions:

lim inf
y→x

f (y) = sup
U∈N(x)

inf
y∈U

f (y) , lim sup
y→x

f (y) inf
U∈N(x)

sup
y∈U

f (y) , (2.2)

where we have used the notation N (x) for the family of all open sets containing a point
x ∈ X.

4 LOWER SEMICONTINUITY

Definition 4.1 A function f : X → R will be said to be (sequentially) lower semicontinuous
functions (l.s.c for short) at x ∈ X, if for every sequence (xj) converging to x we have

f (x) 6 lim inf
j
f (xj) ,

or, in other words,

f (x) = min

{
lim inf

j
f (xj) : xj → x

}
.

We will say that f is lower semicontinuous functions (l.s.c for short) (on X) if it is l.s.c at
all x ∈ X.

Remark 4.2 The following conditions are equivalent:

(i) f is lower semicontinuous.

(ii) we have f (x) = lim infy→x f (y) , for all x ∈ X.
(iii) for all t ∈ R the sublevel set {f 6 t} is closed.

Indeed the equivalence of (i) and (ii) is given by (2.2). Note that (i) implies that if
f (xj) 6 t and xj → x then f (x) 6 t, while if there exists x and xj → x such that
f (x) > t > lim infj f (xj) then (iii) is violated for such a t.

Remark 4.3 (i) If f and g are l.s.c at x, then so is f + g by (2.1).
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(ii) Let {fj : i ∈ I} be a family of l.s.c functions (I an arbitrary set of indices, not
necessarily countable). Then the function defined by f (x) = supi fi (x) is l.s.c. In fact, for
fixed x ∈ X and xj → x, we have

fi (x) 6 lim inf
j
fi (xj) 6 lim inf

j
f (xj) .

By taking the supremum for i ∈ I we obtain f (x) 6 lim infj f (xj) . In particular, the
supremum of a family of continues functions is l.s.c.

(iii) If f = χE is the characteristic function of the set E, then f is l.s.c, if and only if
E is open, by Remark (4.2) (iii).

(iv) A function f : X → R is called upper semicontinuous if −f is l.s.c. All the
results of this section have an obvious counterpart for upper semicontinuous functions. In
particular f = χE is upper semicontinuous if and only if E closed.

5 CONVEXITY

Definition 5.1 We recall that a function f : Rn → (−∞,+∞] is convex if we have

f (tz1 + (1− t) z2) 6 tf (z1) + (1− t) f (z2)

for all z1, z2 ∈ Rn and t ∈ (0, 1) .

Remark 5.2 (a) The convexity of f is equivalent to requiring that Jensen‘s inequality holds:

f

(∫
X

gdµ

)
6
∫
X

f (g) dµ (2.3)

for all probability spaces (X,µ) and measurable f : X → Rn.

(b) If f ∈ C1 (Rn) , then it is convex if and only if

f (z) 6 f (w) +
〈
f
′
(z) , z − w

〉
(2.4)

for all z, w ∈ Rn.

(c) The supremum of the family of convex functions is convex.
(d) If f is a convex function and f is finite at every point of en open set Ω, then f is

continuous on Ω and locally Lipschitz continuous on Ω.

(e) If f is convex and there exists 1 6 p <∞ and c > 0 such that

0 6 f (z) 6 c (1 + |z|p)
for all z ∈ Rn, then f satisfies the local Lipschitz condition

|f (z)− f (w)| 6 c
′ (

1 + |z|p−1 + |w|p−1) |z − w| (2.5)

for all z, w ∈ Rn for some c
′

defending only c and p.
(f) If fj : Rn → R is a sequence of locally equi-bounded convex functions then there

exists a subsequence of (fj) converging uniformly on all compact subsets of Rn.

We can now recall the definition of Γ-convergence and make some first remark.
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6 Γ-CONVERGENCE

Definition 6.1 (Γ-convergence) We say that a sequence fj : X → R Γ-converges in X to
f∞ : X → R if for all x ∈ X we have

(i) (lim inf inequality) For every sequence (xj) converging to x,

f∞ (x) 6 lim inf
j
fj (xj) ; (2.6)

(ii) (lim sup inequality) There exists a sequence
(
x0
j

)
converging to x, such that

f∞ (x) ≥ lim sup
j
fj
(
x0
j

)
; (6.1)

The function f∞ is called the Γ-limit of (fj) and we write f∞ = Γ-limj fj.

Pointwise definition. The definition above can be also given a fixed point x ∈ X : we
say that (fj) Γ-convergence at x to the value f∞ (x) if (i), (ii) above hold. In this case we
write

f∞ (x) = Γ- lim
j
fj (x) .

In this notation, fj Γ-convergence to f∞ if and only if

f∞ (x) = Γ- lim
j
fj (x)

at all x ∈ X.
If we want to highlight the role of the metric, we can add the dependence on the distance

d, and write Γ (d)-limj Γ (d)-convergence and so on.
Different ways of writing the lim sup inequality. Note that if (xj) satisfies the lim sup

inequality, then by (2.6) we have

f∞ (x) 6 lim inf
j
fj (x) 6 lim sup

j
fj (x) 6 f∞ (x) ,

so that indeed
f∞ (x) = lim

j
fj (xj) ,

hence (ii) can be substituted by

(ii)
′ (exitance of a recovery sequence) there exists a sequence (xj) converging to x, such

that
f∞ (x) = lim

j
fj (xj) ; (2.8)

On the other hand, sometimes it is more convenient to prove (ii) with a small error and
then deduce its validity by an approximation argument: that is, (ii) can be replaced by

(ii)
′′ (approximate lim sup inequality) for all ε > 0 there exists a sequence (xj) con-

verging to x, such that
f∞ (x) ≥ lim sup

j
fj (xj)− ε. (2.9)
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In the following (and in the literature) all conditions (ii), (ii)
′
, (ii)

′′ are equally referred
to as the lim sup inequality or as the exitance of a recovery sequence.

Note that the lim inf inequality (i) can be rewritten as

f∞ (x) 6 inf

{
lim inf

j
fj (xj) : xj → x

}
.

Trivially, we always have

inf

{
lim inf

j
fj (xj) : xj → x

}
6 inf

{
lim sup

j
fj (xj) : xj → x

}
and if (xj) is a recovery sequence for (ii) we have

inf

{
lim sup

j
fj (xj) : xj → x

}
6 lim sup

j
fj (xj) 6 f∞ (x) ,

so that (i) and (ii) imply that we have

f∞ (x) = min

{
lim inf

j
fj (xj) : xj → x

}
= min

{
lim sup

j
fj (xj) : xj → x

}
. (2.10)

(and actually both minima are obtained as limits along a recovery sequence). It is impor-
tant to keep in mind this characterization as many properties of the Γ-limit will be easily
explained from it.

Remark 6.2 (Γ-convergence as an equality of upper and lower bounds) It is sometimes
convenient to state the equality in (2.10) as an equality of imfima

f∞ (x) = inf

{
lim inf

j
fj (xj) : xj → x

}
= inf

{
lim sup

j
fj (xj) : xj → x

}
. (2.11)

This equality is indeed equivalent to the definition of Γ-limit, that is, the Γ-limit exists if
and only if the two infima in (2.11) are equal. This characterization will be important in that
in this way the exitance of the Γ-limit (which not always exists) is expressed as the equality
of two quantities which are always defined and which can (and will) be studied separately.
The first quantity can be thought as the lower bound for the Γ-limit, the second as an upper
bound.

By (2.11) we obtain in particular that the Γ-limit, if it exists, is unique.

Remark 6.3 (stability under continuous perturbations). An important property of Γ-
converges is its stability under continuous perturbations: if (fj) Γ-converges to f∞ and
g : X → [−∞,+∞] is a d-continuous function then (fj + g) Γ-converges to f∞ + g.

This is an immediate consequence of the definition, since if (i) holds then for all x ∈ X
and xj → x we get

f∞ (x) + g (x) 6 lim inf
j
fj (xj) + lim

j
g (xj) = lim inf

j
(fj (xj) + g (xj)) ,

while if (ii)
′

above holds then we get

f∞ (x) + g (x) = lim
j
fj (xj) + lim

j
g (xj) = lim

j
(fj (xj) + g (xj)) .
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Remark 6.4 (Γ-limit of a constant sequence). Consider the simplest case fj = f for all
j ∈ N. In this case it will be easily seen that fj Γ-convergence. By the lim inf inequality,
the limit f∞ must satisfy

f∞ (x) 6 lim inf
j
f (xj)

for all x and xj → x. If f is not lower semicontinuous then there exists x and a sequence
xj → x such that

lim inf
j
fj (xj) < f (x) ,

hence, in particular f∞ (x) 6= f (x) . This shows that Γ-convergence does not satisfy the re-
quirement that a constant sequence fj = f converges to f (if f is not lower semicontinuous).
We will see however that this holds true in the family of lower semicontinuous functions (see
Remark (6.6))

Remark 6.5 (dependence on the metric). The choice of the metric on X is clearly a funda-
mental step in problems involving Γ-limit. In general, even when two distance d and d′ are
comfortable; That is

lim
j
d′ (xj, x) = 0⇒ lim

j
d (xj, x) = 0. (2.12)

The exitance of Γ-limit in one metric does not imply the existence of the Γ-limit in the
second (see examples in Section 1.3). However, in this situation, if both Γ-limits exist then
we have

Γ (d)− lim
j
fj 6 Γ

(
d
′
)
− lim

j
fj.

This is clear, for example, from the characterization (2.10) since the set of converging
sequences for d is larger than that is for d

′
.

Remark 6.6 (comparison with pointwise and uniform limits). As a very particular case,
we can consider the metric d

′
of the discrete topology (where the only converging sequences

are constant sequences). In this case the Γ-limit coincides with the pointwise limit (if it
exists). If d is any other metric then (2.12) holds trivially, so that we obtain

Γ (d)− lim
j
fj 6 lim

j
fj

as a particular case of the previous remark.

If fj converges uniformly to a f on an open set U (in particular if fj = f ) and f is l.s.c.
then we have also that fj Γ-convergence to f. Indeed, the lim sup inequality is obtained by
the constant sequence, while the liminf inequality is immediately verified once we remark
that if xj → x ∈ U, then xj ∈ U, for j large enough, so that

lim inf
j
fj (xj) = lim

j
(fj (xj)− f (xj)) + lim inf

j
fj (x) ≥ f (x) .
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7 SOME EXAMPLES ON THE REAL LINE

In this section we will compute some simple Γ-limit of functions defined on the real line
(equipped with the usual Euclidean distance) and will also compare it with the point-wise
convergence, which can be thought of as a Γ-limit with respect to the discrete metric, as
explained in Remark 6.6.

We have seen that a constant sequence fj = f Γ-converges to f if and only if f is
lower semicontinuous. Hence, if f is not l.s.c the point-wise limit and Γ-limit are different.
Now we construct an example where these two limits differ even if the pointwise limit is
lower semicontinuous.

Example 1. Let
fj (t) = f1 (jt) ,

where
f1 (t) =

√
2t exp

(
−
(
2t2 − 1

)
/2
)

or

f1 (t) =

{
−+1, if t = −+1,
0, otherwise.

Then fj → 0 pointwise, but Γ− limj fj = f , where

f (t) =

{
0, if t 6= 0,
−1, if t = 0.

Indeed, the sequence fj converges locally uniformly (and hence also Γ-converges) to 0 in
R\ {0} , while clearly the optimal sequence for x = 0 is −1/j, for which fj (xj) = −1. In
this case the pointwise and Γ-limits both exist and are different at one point.

Example 2. Take
fj (t) = −f1 (jt) ,

where f1 is as in the previous example. Clearly, the Γ-limit remains unchanged. This shows
that in general

Γ- lim
j

(−fj) 6= −Γ- lim
j
fj,

Γ- lim
j

(fj + gj) 6= Γ- lim
j
fj + Γ- lim

j
gj.

(taking in the example gj = −fj) even if all functions are continuous.
The pointwise and Γ-limits may exist and be different at every point. Take gj = fj ,

where

gj (t) =

{
0, if t /∈ Q or t = k

n
, with k ∈ Z and n ∈ {1, ..., j}

−1, otherwise.

We then have fj → −1. The liminf inequality is trivial and limsup inequality is easily
obtained by remarking that {gj = −1} is dance for all j ∈ N.

Example 3. There may be no pointwise converging subsequence of (fj) but the Γ-limj fj
may exist all the same. Take, for example, fj (t) = − cos (jt) . In this case Γ-limj fj = −1.
Again, the liminf inequality is trivial, while the lim sup inequality is easily obtained by
taking, for example, xj = [jx/2π] 2π/j ([t] the integer part of t).
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The sequence fj may be converging pointwise, but may not Γ-converge. Take for exam-
ple

fj = (−1)j gj,

where gj, is defined in Example 2. In this case fj → 0 pointwise, but the Γ-limj fj does not
exist at any point.

8 FUNCTION SPACES AND THEIR PROPERTIES

In all the follows (a, b) is bounded open interval of R.
The norm (or quasi norm) of the space Lp(a, b) (0 < p 6∞) is defined by

‖f‖Lp(a,b) :=

(∫ b

a

|f(x)|p dµ(x)

)1/p

, (0 < p <∞) (2.13)

and
‖f‖L∞(a,b) = inf

M
(µ {x : |f(x)| ≥M} = 0) (2.14)

It is well known that

‖f‖L∞(a,b) = lim
p→∞

(∫
(a,b)

|f(x)|p dµ(x)

)1/p

. (2.15)

Definition 8.1 (Weak derivative). We say that u ∈ L1(a, b) is weakly differentiable if a
function g ∈ L1(a, b) exists such that the following integration by parts formula holds∫ b

a

uϕ
′
dt = −

∫ b

a

gϕdt

for all ϕ ∈ C1
0(a, b). If such g exists then it is called the weak derivative of u and is denoted

u
′
.

Remark 8.2 The notion of weak derivative is an extension of notion of classical derivative:
If u ∈ C1(a, b) and its classical derivative belongs to L1(a, b) then the classical derivative
coincides with its weak derivative. The function x → |x| is weakly differentiable in any
(a, b), but u /∈ C1(−1, 1) and its weak derivative is the function x → x/ |x| , which in turn
is not weakly differentiable in (−1, 1).

Definition 8.3 (Sobolev spaces) Let p ∈ [0.+∞] . The Sobolev spaces W1,p (a, b) is defined
as the space of all weakly differentiable u ∈ Lp(a, b) such that u

′ ∈ Lp(a, b). The norm of u
in W1,p (a, b) is defined as

‖u‖pW1,p(a,b) = ‖u‖pLp(a,b) +
∥∥∥u′∥∥∥p

Lp(a,b)
.

The spaceW 1,p
loc (R) consists of such functions u for which u ∈ W 1,p

loc (I) for all bounded open
intervals I ⊂ R.
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Remark 8.4 The Sobolev spaces W1,p (a, b) equipped with the natural norm, indicated in
Definition 8.3, is a Banach space. This is easily checked upon identifying W1,p (a, b) with
the subspace of Lp(a, b) × Lp(a, b) of all pairs

(
u, u

′)
with u ∈ W1,p (a, b) . The same

identification shows that W1,p (a, b) is separable if 1 6 p <∞.

Theorem 8.5 (pointwise value of Sobolev spaces). Let u ∈ W1,p (a, b) . Then there exists
.
u ∈ C1

0 [(a, b)] such, that
.
u = u a.e. on (a, b) and

.
u (y)− .

u (x) =

∫ y

x

u
′
(t) dt (2.16)

for all x, y ∈ [a, b] .We commontly identify u with its continuous reprensentative u
′
whenever

pointwise values are taken into account.

Remark 8.6 (boundary values). If W1,p (a, b) then the boundary values u (a) and u (b) are
uniquely defined by the values

.
u (a) and

.
u (b) , respectively. We may then extand a function

W1,p (a, b) to the function W 1,p
loc (R) by simply setting u (t) = u (a) for t 6 a and u (t) = b,

for t ≥ b.

Theorem 8.7 (equivalent definitions of Sobolev spaces). Let 1 6 p 6∞. Then the follow-
ing statements are equivalent:

(i) u ∈W1,p (a, b) .

(ii) There exists C ≥ 0, such that∣∣∣∣∫ b

a

uϕ
′
dt

∣∣∣∣ 6 C ‖ϕ‖L
p
′ (a,b) ,

for arbitrary ϕ ∈ C1
0(a, b).

(iii) There exists C ≥ 0, such that for all for all I ⊂ (a, b) and for all h ∈ R such that
|h| 6 dist (I, {a, b}) we have

‖τhu− u‖Lp(I) 6 C |h| ,

where τhu = u (t− h) .

(iv) There exists a sequence (uj) in C∞ ([a, b]) such that

lim
j
‖uj − u‖W1,p(a,b) = 0. (2.17)

(v) There exists a sequence (uj) in C∞ (R) such that (2.17) holds.
(vi) There exists a sequence (uj) in C∞ (R) such that supj ‖uj‖W1,p(a,b) <∞ and

lim
j
‖uj − u‖Lp(a,b) = 0.
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Remark 8.8 (a) The best constant C in (ii) and (iii) above is
∥∥u′∥∥

Lp(a,b)
.

(b) If p = 1 then (i)⇒(ii)⇔(iii). Note that the function x→ x/ |x| satisfies (ii)-(vi) with
p = 1 but does not belongs to W1,1 (−1, 1) .

(c) By (iii) we easily see that W1,∞ (a, b) coincides with the space lip (a, b) of all Lips-
chitz functions on (a, b) and

∥∥u′∥∥
L∞(a,b)

is the best Lipschitz constant for u.

Theorem 8.9 (embedding results). There exists a constant C = C (a, b) such that

‖u‖L∞(a,b) 6 C ‖u‖W1,p(a,b) (2.18)

Moreover, we have compact embeddings

W1,p (a, b) ⊂ C0 ([a, b]) (2.19)
for 1 < p 6∞ and

W1,1 (a, b) ⊂ Lq(a, b)

for all q ≥ 1.

Definition 8.10 The space W 1,p
0 (a, b) is defined as the closure of C∞0 (a, b) in the W 1,p

0 -
norm, or equivalently, as the set of those u ∈ W1,p (a, b) with boundary values u (a) =
u (b) = 0.

Theorem 8.11 (Poincare‘s inequality). There exists a constant C = C (a, b) such that

‖u‖W1,p(a,b) 6 C
∥∥∥u′∥∥∥

Lp(a,b)
, (2.20)

for all u ∈ W1,p (a, b) such that
.
u (x) = 0, for some x ∈ [a, b] . In particular this holds for

u ∈ W 1,p
0 (a, b) .

Definition 8.12 Let u : (a, b)→ R be measurable function. The total variation of u on (a, b)
is defined as

V ar (u, (a, b)) :=

= inf
v=u, a.e. on (a,b)

sup

{
N∑
i=1

|v (ti+1)− v (ti)| : a < t0 < ... < tN < b, N ∈ N

}
If V ar (u, (a, b)) < ∞ then we say that u is a function of bounded variation. We simply
write V ar (u) if (a, b) is fixed.

Remark 8.13 If u ∈W1,1 (a, b) , then

V ar (u, (a, b)) =

∫ b

a

∣∣∣u′∣∣∣ dt.
In particular, u is a function of bounded variation. Note that also

v (x) = x/ |x|
is a function of bounded variation with V ar (v, (−1, 1)) = 2.
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9 MORE PROPERTIES OF Γ-LIMITS

From the definition of Γ-convergence we immediately obtain the following properties.

Remark 9.1 If {fjk} is a subsequence of {fj}, then

Γ− lim inf
j
fj 6 Γ− lim inf

k
fjk , Γ− lim sup

k
fjk 6 Γ− lim sup

j
fj.

In particular, if f∞ = Γ − limj fj exists then for every increasing sequence of integers jk
f∞ = Γ− limk fjk .

Remark 9.2 If g is a continuous function then f∞+ g = Γ− limj(fj + g); more in general,
if gj → g uniformly then f∞ + g = Γ− limj(fj + gj). In particular, if fj → f uniformly on
an open set U , then Γ− limj fj = sc f On U .

Remark 9.3 If fj → f pointwise, then Γ− lim supj fj 6 f and, hence, Γ− lim supj fj 6
sc f .

We can state some simple but important cases when Γ-limit does exist and is computed
easily.

Proposition 9.4 (Γ-limit of monotone sequaences) (i) (decreasing sequences) If fj+1 6
fj for all j ∈ N, then

Γ− lim
j
fj = sc(inf

j
fj) = sc(lim

j
fj). (9.1)

(ii) (increasing sequences) If fj 6 fj+1 for all j ∈ N, then

Γ− lim
j
fj = sc(sup

j
sc fj) = lim

j
scfj. (9.2)

In particular, if fj is l.s.c. for every j ∈ N, then

Γ− lim
j
fj = lim

j
fj. (9.3)

In particular, if fj is l.s.c. for every j ∈ N, then

Proof: As fj → infk fk pointwise, by Remark 9.3 we have Γ − lim supj fj 6 sc(infk fk),
while the other inequality is trivially derived from the inequality sc(infk fk) 6 infk fk 6 fj
and (i) is proved.

To prove (ii) note that since sc fj → supk sc fk pointwise, by Remark 9.3

Γ− lim sup
j
fj = Γ− lim sup

j
sc fj 6 sup

k
sc fk.

On the other hand sc fk 6 fj for all j > k so that the converse inequality follows easily.
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Remark 9.5 By Proposition 9.4.(ii), if fj is a equi-mildly coercive non-decreasing sequence
of l.s.c. functions, then supj minX fj = minX supj fj .

Proposition 9.6 (Compactness of Γ-convergence) Let (X, d) be a separable metric space.
and for all j ∈ N let fj : X → R be a function. Then there exists a subsequence fjk such
that the Γ-limit Γ− limk fjk exists for all x ∈ X .

Proof: Let {Uk} be a countable base of open sets in the topology of X . Since R is compact,
there exists an increasing sequence of integers {σ0

j}j along which the limit

lim
j

inf
y∈U0

fσ0j(y)

exists, and for all k > 1 we define {σkj }j recurrently as a subsequence of {σk−1
j }j along

which the limit
lim
j

inf
y∈U0

fσkj(y)

exists. The “duiagonal” sequence j+k := σkk being a subsequence of {σjj}j , has the property
that the limit

lim
j

inf
y∈U`

fjk(y)

exists for all ` ∈ N. In particular, we have

lim inf
k

inf
y∈U`

fjk(y) = lim sup
k

inf
y∈U`

fjk(y)

for all ` ∈ N, and the claimed convergence follows.

Remark 9.7 If (X, d) is not a separable metric space, then Proposition 9.6 fails. As an
example we can take X = {−1, 1}N equipped with the discrete topology. X is metrizable
and Γ-convergence on X is equivalent to pointwise convergence. We take the sequence
fj : X → {−1, 1} defined by fj(x) = xj if x = (x0, x1, . . .). If {fjk} is a subsequence
of {fj} and we define x by xjk = (−1)k and xj = 1 if j 6∈ {jk : k ∈ N}, then the limit
limk fjk(x) does not exist. Hence no subsequence of {fj} Γ-converges.

Γ-convergence enjoys the following useful property.

Proposition 9.8 (Urisohn property of Γ-convergence) We have f∞ = Γ − limj fj if and
only if for every subsequence {fjk} there exists a further subsequence which Γ-converges to
f∞.

Proof: Clearly, if fj Γ-converges to f∞, then every subsequence of fj Γ-converges to the
same limit (see Remark 9.1).

For an increasing sequence of integers {jk} we have

Γ− lim inf
j
fj 6 Γ− lim inf

k
fjk 6 Γ− lim sup

k
fjk 6 Γ− lim sup

j
fj.
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Hence if Γ− lim infk fjk(x) = f∞(x) but Γ− lim fj(x) does not exist we have

either f∞(x) 6 Γ− lim sup
j
fj(x) or f∞(x) > Γ− lim inf

j
fj(x).

In the first case we have

f∞(x) < sup
U∈N (x)

lim sup
j

inf
y∈U

fj(y),

so that there exists U ∈ N (x) with the property

f∞(x) < lim sup
j

inf
y∈U

fj(y).

This means that there exists a subsequence {fjk} of {fj} along which

f∞(x) < lim inf
k

inf
y∈U

fjk(y),

so that f∞(x) < Γ − lim infk inf
y∈U

fjk(y) leads to a contradiction. In the second case a

sequence xj converging to x exists such that lim infj fj(xj) < f∞(x). This means that
Γ− lim supk fjk , f∞(x), thus giving a contradiction.

Proposition 9.9 Let X be a topological vector space. If {fj} is the sequence of convex
functions, the Γ-limit f := Γ− lim supj fj is also a convex function.

The statement fails in general case.

Proof: We leave the proof to the reader as an exercise (see [Br1], Exercise 1.6).
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Chapter 3

Γ-CONVERGENCE OF HEAT
TRANSFER EQUATION

A mixed boundary value problem for the stationary heat transfer equation in a thin layer
around a surface C with the boundary is investigated. The main object is to trace what
happens in Γ-limit when the thickness of the layer converges to zero. The limit Dirichlet BVP
for the Laplace-Beltrami equation on the surface is described explicitly and we show how the
Neumann boundary conditions in the initial BVP transform in the Γ-limit. For this we apply
the variational formulation and the calculus of Günter’s tangential differential operators on a
hypersurface and layers, which allow global representation of basic differential operators and
of corresponding boundary value problems in terms of the standard Euclidean coordinates of
the ambient space Rn.

The exposition follows the paper of T. Buchukuri, R. Duduchava & G. Tephnadze [BDT1].

1 INTRODUCTION

The main object of the paper is to demonstrate what happens with a boundary value
problem for the Laplace equation in a thin layer Ωε around a surface C in R3 when the
thickness of the layer ε diminishes to zero: ε → 0. We impose the Neumann boundary
conditions on the upper and lower faces of the layer C × {−+ε} and the Dirichlet boundary
conditions on the lateral surface ∂C × (−ε, ε).

The limit of the associated functionals is understood in the sense of Γ-convergence
and the main tool is the representation of differential operators with the help of Gunter’s
derivatives-the system of tangential derivatives on the surface Dj := ∂j − νj∂ν , j = 1, 2, 3

and the normal derivative ∂ν :=
∑3

j=1 νj∂j , where ν = (ν1, ν2, ν3)> is the unit normal vector
field on the mid surface C . The first-order differential operator Dj is the directional deriva-
tive along π ej , where π : R3 → TC is the orthogonal projection onto the tangent plane to
C and e1, . . . , en is the canonical basis in the Euclidean space ej = (δjk)1≤k≤3 ∈ R3, with
δjk denoting the Kronecker symbol (cf. [Gu94], [KGBB76], [Du02a]).

Calculus of Gunter’s derivatives on a hypersurface allows representation of the most
basic partial differential operators (PDO’s), as well as their associated boundary value prob-
lems, on a hypersurface C in global form, in terms of the standard spatial coordinates in Rn.
Such BVPs arise in a variety of situations and have many practical applications. See, for
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example, [?, §72] for the heat conduction by surfaces, [?, §10] for the equations of surface
flow, [Ci1], [?] for the vacuum Einstein equations describing gravitational fields, [?] for the
Navier-Stokes equations on spherical domains, as well as the references therein.

A hypersurface C in R3 has the natural structure of a 2-dimensional Riemannian man-
ifold and the aforementioned PDE’s are not the immediate analogues of the ones corre-
sponding to the flat, Euclidean case, since they have to take into consideration geometric
characteristics of C such as curvature. Inherently, these PDE’s are originally written in local
coordinates, intrinsic to the manifold structure of C .

The surface gradient
D := (D1,D2,D3)> (1.1)

is defined on C , and has a relatively simple structure. In terms of (1.1), the Laplace-Beltrami
operator on C simply becomes (see [MM84, pp. 2ff and p. 8.])

∆C = D∗D on C .

Alternatively, this is the natural operator associated with the Euler-Lagrange equations for
the variational integral

E [u] = −1

2

∫
C

〈Du,Du〉 dS, (1.2)

where 〈·, ·〉 denotes the scalar product in Rn.
A similar approach, based on the principle that, at equilibrium, the displacement mini-

mizes the potential energy, leads to the derivation of the equation for the elastic hypersurface
(cf. [DMM06, ?] for the isotropic case).

These results are useful in numerical and engineering applications (cf. [?], [?], [?], [?],
[?], [?], [?]) and we plan to treat a number of special surfaces in greater detail in a subsequent
publication.

We consider heat conduction by an ”isotropic” medium, governed by the Laplace equa-
tions, with the classical mixed Dirichlet-Neumann boundary conditions on the boundary in
the layer domain Ωε := C × (−ε, ε) of thickness 2ε, where C ⊂ S is a smooth subsurface
of a closed hypersurface S with smooth nonempty boundary ∂C . In particular, we confine
ourselves with zero Dirichlet and non-zero Neumann data (see Remark 4.1 for the case of
non-zero Dirichlet data):

∆ΩεT̃ (X , t) = f(X , t), (X , t) ∈ C × (−ε, ε),

T̃+(X , t) = 0, (X , t) ∈ ∂C × (−ε, ε),

(∂tT̃ )+(X , −+ε) = q−
+

ε (X ), X ∈ C .

(1.3)

In the investigation we apply that the Laplace operator ∆Ωε = ∂2
1 + ∂2

2 + ∂2
3 is represented

as the sum of the Laplace-Beltrami operator on the mid-surface, the square of the transversal
derivative and the lower order term

∆ΩεT̃ = ∆C T̃ + ∂2
t T̃ + 2HC∂tT̃ , (1.4)

where D4 = ∂t. The Laplace-Beltrami operator ∆C defined in (0.12) and the mean curvature

HC (X ) =
3∑

k=1

DkNk(X ) of the surface are extended properly from C (see the forthcoming

Lemma 2.2).
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Introducing the function G(X , t) which has the same Dirichlet and Neumann traces as
T on the ∂C × (−ε, ε) and on C × {−+ε} respectively

G(X , t) =
1

4ε
(t+ ε)2q+

ε (X )− 1

4ε
(t− ε)2q−ε (X ), (1.5)

we can reduce the problem (1.3) to the following boundary value problem with respect to
unknown function T = T̃ −G

∆ΩεT (X , t) = F (X , t), (X , t) ∈ C × (−ε, ε), (1.6)

T+(X , t) = 0, (X , t) ∈ ∂C × (−ε, ε), (1.7)

(∂tT )+(X , −+ε) = 0, X ∈ C . (1.8)

where

F (X , t) := f(X , t)− 1

4ε

(
(t+ ε)2∆C q

+
ε (X )− (t− ε)2∆C q

−
ε (X )

)
− H 0

C (X )

2ε

(
(t+ ε)q+

ε (X )− (t− ε)q−ε (X )
)
− 1

2ε

(
q+
ε (X )− q−ε (X )

)
, (1.9)

(X , t) ∈ C × (−ε, ε).

The BVP (1.6)-(1.8) is reformulated as the minimization problem for the functional which,
after scaling (stretching the variable t = ετ and dividing the entire functional by ε) has the
following form

Eε(Tε) : =

1∫
−1

∫
C

[
1

2
(DCTε)

2(X , τ) +
1

2ε2
(∂τTε)

2(X , τ) + Fε(X , τ)Tε(X , τ)

]
dσdτ (1.10)

Fε(X , t) := F (X , εt) = f(X , εt)− ε

4

(
(t+ 1)2∆C q

+
ε (X )− ε

4
(t− 1)2∆C q

−
ε (X )

)
− H 0

C (X )

2

(
(t+ 1)q+

ε (X )− (t− 1)q−ε (X )
)
− 1

2ε

(
q+
ε (X )− q−ε (X )

)
, (1.11)

Tε(X , τ) := T (X , ετ) , Tε ∈ H̃1(Ω1, ∂C × (−1, 1)), Fε ∈ H̃−1(Ω1), q−
+

ε ∈ H̃2(C ),

(X , t) ∈ C × (−ε, ε).

(For the definition of H̃1(Ω1, ∂C × (−1, 1)) see (4.9).)
Let

P(C ) :=
{
T ∈ H1(Ω1) : T (X , τ) = TC (X ), TC ∈ H̃1(C ), τ ∈ [−1, 1]

}
. (1.12)

The main result of the present investigation is the following Theorem 1.1.

Theorem 1.1 Let

fε(X , t) := f(X , εt) →
ε→0

f 0(X ) in L2(Ω1),
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q−
+

ε ∈ H̃2(C ) be uniformly bounded (with respect to ε) in H2(C ), and

lim
ε→0

q+
ε = lim

ε→0
q−ε = q0, q0 ∈ L2(C ),

1

2ε
(q+
ε − q−ε ) →

ε→0
q1 in L2(C ).

Then the functional in (1.10) Γ-converges to the functional

E(0)(T ) =


∫
C

[
〈DCTC (X ),DCTC (X )〉+ 2

(
f 0(X )−H 0

C q0(X )− q1(X )
)
TC (X )

]
dσ,

if T ∈P(C );
+∞, if T 6∈P(C ).

(1.13)

The following Dirichlet boundary value problem for Laplace-Beltrami equation on the mid
surface C

∆CT (X ) = f 0(X )−H 0
C q0(X )− q1(X ), X ∈ C ,

T+(X ) = 0, X ∈ ∂C ,

T ∈ H1(C ), f 0, q0, q1 ∈ L2(C ),

(1.14)

is an equivalent reformulation of the minimization problem with the energy functional (1.13).

Remark 1.2 The BVP (1.14) is the ”Γ limit” of the initial BVP (1.3) in the following sense:
The corresponding functional (1.13) is the Γ-limit of the functional (1.10), corresponding to
the BVP (1.6)-(1.8).

It is remarkable to note that the weak derivative q0 of the Neumann condition from the
initial BVP (1.3) migrated into the right hand side of the limit equation.

Note as well that the Γ-limit TC (X ) of a solution T (X , ετ). T ∈ H1(Ωε) to the BVP
(1.6)-(1.8) has better smoothness TC ∈ H1(C ) than expected.

Γ-limits of boundary value problems in thin structures, reformulated as a minimiza-
tion problem for the associated energy functional, were studied by many authors (see, e.g.,
[FJM1, ?, Ve82, Br1] and the literature cited therein). But mostly the Lamé equations for
elastic plates C ⊂ R2 and zero boundary conditions were treated (the Laplace equation for
a plate is studied in [Br1]). In the papers [?, Ve82] the case of shells is treated, but with a
different technique. Our approach is based on the calculus of Günter’s derivatives, which we
find more appropriate for such problems.

The layout of the paper is as follows. In § 1-§ 2 we review some basic differential-
geometric concepts which are relevant for the work at hand (e.g., hypersurfaces and different
methods of their identification). In § 3 we identify the most important partial differential
operators on hypersurfaces, such as gradient, divergence, Laplace-Beltrami operator. In § 4
we consider the energy functional (1.2) and the associated Euler-Lagrange equation. In
sections § 5, § 6 the aforementioned approach is applied and proved main theorems of the
present paper, including Theorem 1.1.
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2 LAPLACE OPERATOR IN A LAYER DOMAIN

We will keep the notation of § 1: Θ, ω, S and C . We consider a layer domain

Ωε :=
{

X t ∈ Rn : X t = X + tν(X ) = Θ(x) + tν
(
Θ(x)

)
, x ∈ ω , −ε < t < ε

}
= C × (−ε, ε), (2.1)

where ν(X ) = ν(Θ(y)) for X = Θ(y) ∈ S , is the outer unit normal vector field (see (2.8)
and (5.4)). The surface C is a mid-surface for the layer domain.

We will also use the notation ν(y) := ν(Θ(y)) for brevity unless this leads to a confu-
sion. The coordinate t will be referred to as the transverse variable.

Without going into detail let us remark only that if the hypersurface S is C2-smooth and
1/ε is more than the maximum of modules of all principal curvatures of the surface S (i.e.,
of all eigenvalues |λ1(X )|, . . . , |λn−1(X )|, λn(X ) ≡ 0 of the Weingarten matrix WS (X ),
X ∈ S ), then the mapping

Θε : ωε := ω × (−ε, ε)→ Ωε , ωε ⊂ Rn ,

Θε(y, t) := Θ(y) + tν(y) , (y, t) ∈ ωε
(2.2)

is a diffeomorphism.
We will also suppose that N is a proper extension of the outer unit normal vector field

ν into the layer neighborhood Ωε (cf. Definition 2.2).
The n-tuple g1 := ∂1Θ, . . . , gn−1 := ∂n−1Θ, gn := N , where N is the proper exten-

sion of ν in the neighborhood Ωε, is a basis in Ωε and arbitrary vector fieldU =
∑n

j=1 U
0
j e

j

on Ωε is represented with this basis in “curvilinear coordinates”.
Let us consider the system of (n+ 1)-vectors

d j := ej −NjN , j = 1, . . . , n and d n+1 := N , (2.3)

where e1, . . . , en is the Cartesian basis in Rn (cf. (0.7)); the first n vectors d 1, . . . ,d n are
tangential to the surface C , while the last one d n+1 = N is orthogonal to all d 1, . . . ,d n.
This system is, obviously, linearly dependent, but full and any vector field U ∈ W (Ωε) is
written in the following form:

U =
n∑
j=1

Uje
j =

n+1∑
j=1

U0
j d

j. (2.4)

Since the system
{
d j
}n+1

j=1
is linearly dependent

n∑
j=1

Njd
j = 0, 〈N ,dj〉 = 0, j = 1, . . . , n, (2.5)

the representation (2.4) is not unique. To fix the unique representation in (2.4) we will keep
the following convention:

U0
j := Uj − 〈N ,U〉Nj, j = 1, . . . , n, U0

n+1 = 〈N ,U〉 =
n∑
j=1

UjNj. (2.6)
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The convention (2.6) is natural because if the vector U(X ) is tangent to C for X ∈ C , then
U0
j (X ) := Uj(X ) for j = 1, . . . , n and U0

n+1(X ) = 0.
Moreover, if the scalar product of vectors

U :=
n∑
j=1

Uje
j =

n+1∑
j=1

U0
j d

j, V :=
n∑
j=1

Vje
j =

n+1∑
j=1

V 0
j d

j (2.7)

is defined by the equality

〈U ,V 〉0 :=
n+1∑
j=1

U0
j V

0
j ,

then the ”new” and the ”old” scalar products coincide:

〈U ,V 〉0 =
n+1∑
j=1

U0
j V

0
j =

n∑
j=1

(Uj −Nj〈N ,U〉)(Vj −Nj〈N ,V 〉) + 〈N ,U〉〈N ,V 〉

=
n∑
j=1

UjVj = 〈U ,V 〉. (2.8)

In particular,

‖U‖0 :=
n+1∑
j=1

|U0
j |2 =

n∑
j=1

|Uj|2 = ‖U‖. (2.9)

Note for a later use, that due to the equalities (2.5) and the convention (2.6) we get

∂U =
n∑
j=1

Uj∂j =
n∑
j=1

[U0
j ∂j + 〈N ,U〉Nj∂j] =

n∑
j=1

U0
j (∂j −Nj∂N ) + 〈N ,U〉∂N

=
n∑
j=1

U0
j Dj + U0

n+1Dn+1 =
n+1∑
j=1

U0
j Dj =: DU .

Definition 2.1 For a function ϕ ∈ H1(Ωε) the extended gradient is

DΩε ϕ =
{

D1ϕ, ...,Dnϕ,Dn+1ϕ
}>

=
n+1∑
j=1

(Djϕ)dj, Dn+1ϕ := ∂N ϕ (2.10)

and for a smooth vector field U =
n+1∑
j=1

U0
j d

j ∈ W (Ωε) (see (2.4), (2.6)) the extended

divergence is

divΩε U :=
n+1∑
j=1

DjU
0
j + H 0

C 〈N ,U〉 = −∇∗ΩεU , (2.11)
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since

H 0
Ωε(x) :=

n∑
j=1

∂jNj(x) =
n+1∑
j=1

DjNj(x) =
n∑
j=1

Djνj(X ) = H 0
C (X ),

x ∈ Ωε, X = πS x

and H 0
C (X ) differs from the mean curvature HC (X ) (see (5.15)) by the constant multiplier

H 0
C (X ) = (n− 1)HC (X ).

Lemma 2.2 The classical gradient ∇ϕ :=
{
∂1ϕ, ..., ∂nϕ

}>
, written in the full system of

vectors
{
d j
}n+1

j=1
in (2.3) coincides with the extended gradient DΩε ϕ in (2.10).

Similarly: the classical divergence divU :=
n∑
j=1

∂jUj of a vector field U :=
n∑
j=1

Uje
j ,

written in the full system (2.3), coincides with the extended divergence divU = divΩε U in
(2.11).

The extended gradient and the negative extended divergence are dual D∗Ωε = −divΩε

and div∗Ωε = −DΩε .

The Laplace-Beltrami operator ∆Ωε := divΩεDΩε ϕ = −D∗Ωε
(
DΩεϕ

)
on Ωε, written in

the full system (2.3), acquires the following form

∆Ωεϕ =
n∑
j=1

D2
j ϕ+ ∂2

N ϕ+ H 0
C ∂N ϕ =

n+1∑
j=1

D2
j ϕ+ H 0

C Dn+1ϕ , ϕ ∈ H2(Ωε) . (2.12)

Proof: A similar lemma is proved in [Du10, Lemma 4.3], but definition of the divergence
divΩε is different there. Therefore we expose the full proof below.

That the gradients coincide follows from the choice of the full system (2.3):

∇ϕ :=
{
∂1ϕ, ..., ∂nϕ

}>
=

n∑
j=1

(∂jϕ)ej =
n∑
j=1

(Djϕ+ NjDn+1ϕ)ej

=
n∑
j=1

(Djϕ)d j + (Dn+1ϕ)N =
n+1∑
j=1

(Djϕ)d j = DΩεϕ (2.13)

since

ej = dj + NjN , ∂j = Dj + Nj∂N ,
n∑
j=1

NjDj = 0,
n∑
j=1

(Djϕ)ej =
n∑
j=1

(Djϕ)d j. (2.14)
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By applying (2.6) and (2.14) we proceed as follows:

divU =
n∑
j=1

∂jUj =
n∑
j=1

DjUj +
n∑
j=1

Nj∂N Uj =
n∑
j=1

Dj

[
U0
j + Nj〈N ,U〉

]
+

n∑
j=1

∂N

(
NjUj

)
=

n∑
j=1

DjU
0
j +

n∑
j=1

(DjNj)〈N ,U〉+ Dn+1U
0
n+1

=
n+1∑
j=1

DjU
0
j + H 0

C 〈N ,U〉 = divΩεU . (2.15)

The proved equality and the classical equality ∇∗ = −div, ensure the both claimed
equalities D∗Ωε = −divΩε and div∗Ωε = −DΩε:

(DΩεϕ,U ) = (∇ϕ,U ) = −(ϕ, divU ) = −(ϕ, divΩεU ).

Formula (2.12) for the Laplace-Beltrami operator is a direct consequence of equalities
(2.13), (2.15) and definitions. Indeed, the first n components of the gradient

∇ϕ = DΩεϕ =
n∑
j=1

(Djϕ)d j + (Dn+1ϕ)N

have the property (Djϕ)0 = Djϕ− 〈N ,DΩεϕ〉Nj = Djϕ because (see the third formula in

(2.14)) 〈N ,DΩεϕ〉 =
n∑
j=1

NjDjϕ = 0 and we can write

∆ϕ = div∇ϕ = divΩεDΩεϕ =
n+1∑
j=1

D2
j ϕ+ H 0

C 〈N ,∇ϕ〉

=
n+1∑
j=1

D2
j ϕ+ H 0

C Dn+1ϕ = ∆Ωεϕ. 2

3 CONVEX ENERGIES

Let again Ωε be a layer domain of width 2ε in the direction transversal to the mid-surface
C (cf. § 3).

Any minimizer u of the energy functional

E ε(u) :=

∫
Ωε
〈∇u,∇u〉 dy, u ∈ H1(Ωε) (3.1)

should satisfy

0=
d

dt
E ε(u+ tv)

∣∣∣
t=0

=

∫
Ωε

[〈∇u,∇ v〉+ 〈∇ v,∇u〉] dy

=2Re

∫
Ωε
〈∇u,∇ v〉 dy = −2Re

∫
Ωε
〈div∇u, v〉 dy = −2Re

∫
Ωε
〈∆u, v〉 dy
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for arbitrary v ∈ H̃1(Ωε), which implies

∆u = 0 on Ωε. (3.2)

In other words, (3.2) is the Euler-Lagrange equation associated with the energy func-
tional (7.1).

Similarly, minimizers of the energy functional

E0(u) :=

∫
C

〈∇Cu,∇Cu〉 dσ, u ∈ H1(C )

on the hypersurface C should satisfy the following Laplace-Beltrami equation

∆Cu := divC∇Cu = 0 on C . (3.3)

To treat the dimension reduction problem for the Laplace equation (see [Br1] for a similar
consideration in case of a flat 3D body), we assume, without restricting generality, that Ω1

(i.e., for ε = 1) is still a layer domain. Otherwise we can first change the variable X n =
ε0X̄ n, 0 < X̄ n < 1, where 0 < ε0 < 1 is such that Ωε0 is still a layer domain.

Next we introduce a new coordinate system (cf. (2.6))

x :=
n∑

m=1

xme
m =

n∑
m=1

X md
m + td n+1,

X k := xk −Nk〈N , x〉, k = 1, . . . , n, t = X n+1 := 〈x,N 〉 =
n∑

m=1

xmNm

(3.4)

and define the scalar product of elements as follows (cf. similar in (2.7)):

〈X , Y 〉 :=
n+1∑
j=1

X jY j for X :=
n+1∑
m=1

X md
m, Y :=

n+1∑
m=1

Y md
m.

Then (cf. (2.8)-(2.9))

〈X , Y 〉 =
n+1∑
j=1

X jY j =
n∑
j=1

(xj −Nj〈N , x〉)((yj −Nj〈N , y〉)) + 〈N , x〉〈N , y〉

=
n∑
j=1

xjyj = 〈x, y〉.

In particular,

‖X ‖ :=
n+1∑
j=1

|X j|2 =
n∑
j=1

|xj|2 = ‖x‖. (3.5)

Due to Lemma 2.2 the classical gradient in the energy functional (7.1) can be replaced
by the extended gradient

E ε(u) :=

∫
Ωε
〈DΩεu(y),DΩεu(y)〉 dy =

∫ ε

−ε

∫
C

[
|DCu(X , t)|2 + |∂tu(X , t)|2

]
dσ dt,(3.6)
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where DC := (D1, . . . ,Dn)> is the surface gradient and u ∈ H1(Ωε) is arbitrary, because
Dn+1 = ∂N = ∂t. Here C is the mid surface of the layer domain Ωε = C × (−ε, ε) and dσ
is the surface measure on C .

Due to the representation (7.14) and the new coordinate system (3.4) we can apply the
scaling with respect to the variable t and study the scaled energy. The approach is based on
Γ-convergence (see [Br1, FJM1]) and can be applied to a general energy functional which
is convex and has square growth. The problem we have in mind is the following: Do these
energies defined on thin n-dimensional domains Ωε converge (and in which sense) to an
energy defend on the n − 1 dimensional Hypersurface C (the mid-surface of Ωε) when the
domain Ωε is ”squeezed” infinitely in the transversal direction to C ?

In the next two sections we apply the results developed in the present paper to boundary
value problems for the heat conduction by a hypersurface. In particular we shall show, that if
the thickness of the layer domain Ωε, with the mid-surface C , tends to zero, the functionals
in variational formulation of the linear heat conduction equation, Gamma-converge to the
functional corresponding to some explicit boundary value problem for the Laplace-Beltrami
equation on the mid-surface C .

4 VARIATIONAL REFORMULATION OF HEAT TRANSFER PROBLEMS

Let Ω be a bounded Lipschitz domain in R3 with the piecewise smooth boundary ∂Ω =
CD ∪ C N , where CD and CN are open non-intersecting surfaces CD ∩ CN = ∅ and their
common boundary is a smooth arc. Denote by ν = (ν1, ν2, ν3)> the unit normal on C ,
external with respect to Ω.

We consider the general steady-state, linear heat transfer problem for a medium occu-
pying domain Ω. We assume that on the CD part of the boundary ∂Ω the temperature g is
prescribed, while on the CN part of ∂Ω is prescribed the heat flux q.

We look for a temperature distribution T (x) in Ω, which satisfies the linear heat conduc-
tion equation

div(A (x)∇T )(x) = f(x), x ∈ Ω (4.1)

and boundary conditions

T+(y) = g(y) on CD, (4.2)
−〈ν(y),A +(y)(∇T )+(y)〉 = q(y) on CN , (4.3)

where A is the thermal conductivity, f is the heat source, g is the distribution of temperature
and q is the heat flux. All these quantities are supposed known.

We assume, that A (x) is a bounded measurable and positive definite 3 × 3 matrix-
function (cf. a similar condition (3.38))

〈A (x)ξ, ξ〉 > C‖ξ‖2, x ∈ Ω, ξ ∈ R3.

The following inequality is an obvious consequence of the positive definiteness of A :

(AU ,U ) > C‖U |L2(Ω)‖2

for all 3-vectors U = (U1, U2, U3)> ∈ L2(Ω). Further we assume that the traces A +(y) at
the boundary C exist. Then A + has the same properties as A on Ω, namely, is a bounded,
measurable positive definite matrix function.
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We impose the following natural constraints on the solution T and on the prescribed data
f , g, q:

T ∈ H1(Ω), f ∈ H̃−1(Ω), g ∈ H1/2(CD), q ∈ H−1/2(CN). (4.4)

The existence of the traces 〈ν(y),A +(y)(∇T )+〉 ∈ H−1/2(C3), which is not ensured by the
trace theorem, follows from the Green formula∫

Ω

(div A (x)∇T )(x)ψ(x)dx =

∫
C

〈ν(y),A +(y)(∇T )+(y)〉ψ+(y) dσ

−
∫

Ω

〈A (x)∇T (x),∇ψ(x)〉 dx (4.5)

by the duality between the spaces H1/2(C ) and H̃−1/2(C ) due to the fact that T is a solution
to the equation (4.1). For this we rewrite (4.5) in the form∫

C

〈ν(y),A +(y)(∇T )+(y)〉ψ+(y) dσ =

∫
Ω

f(x)ψ(x)dx+

∫
Ω

〈A (x)∇T (x),∇ψ(x)〉 dx,

and note that ψ ∈ H1(Ω) is arbitrary and, therefore, ψ+ ∈ H1/2(C ) is arbitrary.
First we will reduce the BVP (4.1)–(4.3) to the equivalent BVP with vanishing Dirichlet

data.

Remark 4.1 Let us assume the subsurface CD is smooth and g ∈ Hs(CD), s > 1
2
. There

exists a domain Ω′ with a smooth boundary C ′ := ∂Ω′, with the properties: Ω ⊂ Ω′ and
CD ⊂ C ′. Let g0 ∈ Hs(C ′) be such extension of g which maintains the space.

The Dirichlet BVP
div(A (x)∇G)(x) = 0, x ∈ Ω′,
G+(y) = g0(y) on C ′

(4.6)

has a unique solution

G(x) = W

(
1

2
I +W0

)−1

g0(x), x ∈ Ω′, G ∈ Hs+1/2(Ω′),

where W is the double layer potential for the operator divA (x)∇ and W0 is its direct value
(a singular integral operator) on the surface C ′ I : Hs(C ′) → Hs(C ′) is a unit operator).
Then the BVP

div(A (x)∇T0)(x) = f(x), x ∈ Ω,
T+

0 (y) = 0 on CD,
−〈ν(y),A +(y)(∇T0)+(y)〉 = q0(y) on CN

(4.7)

is an equivalent reformulation of the BVP (4.1)–(4.3), now with vanishing Dirichlet traces.
The solutions and Neumann datae are related as follows:

T0(x) := T (x)−G(x), x ∈ Ω,

q0(y) := q(y)−
(
∂νW

(
1
2
I +W0

)−1
g0
)+

(y), x ∈ C .
(4.8)

Note, that if we require higher smoothness for the Neumann data q ∈ Hr(CN), r > −1/2
and take g ∈ Hr+1(CD) (i.e., s = r+ 1 in (4.6)), the Neumann data in the BVP (4.7) inherits
the same smoothness q0 ∈ Hr(CN).
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Let Ω ⊂ Rn be a domain with a Lipshitz boundary M := ∂Ω and M0 ⊂ ∂Ω-be a
subsurface of the boundary surface which has the non-zero measure. By H̃1(Ω,M0) we
denote a subspace of H1(Ω) of those functions which have vanishing traces on the part of the
boundary

H̃1(Ω,M0) :=
{
ϕ ∈ H1(Ω) : ϕ+(y) = 0 ∀ y ∈M0

}
. (4.9)

This space inherits the standard norm from H1(Ω):

‖ϕ
∣∣H1(Ω) ‖ : =

[
‖ϕ
∣∣L2(Ω) ‖2 +

n∑
j=1

‖∂jϕ
∣∣L2(Ω)‖2

]1/2

.

Consider the functional

Φ(T ) =

∫
Ω

[
1

2
〈A (x)∇T (x),∇T (x)〉+ f(x)T (x)

]
dx+

∫
CN

q(y)T+(y)dσ (4.10)

where f and q satisfy conditions (4.4) and T ∈ H1(Ω) has vanishing traces on CD, i.e.,
T ∈ H̃1(Ω,CD) (see (4.9)).

The second summand in the integral on Ω is understood in the sense of duality between
the spaces H̃−1(Ω) and H1(Ω). Concerning the integral on CN : it is understood in the sense
of duality between the spaces H̃1/2(CN) and H−1/2(CN) because q ∈ H−1/2(CN) and the
conditions T ∈ H̃1(Ω,CD), suppT+ ⊂ CN imply the inclusion T+ ∈ H̃1/2(CN).

Theorem 4.2 The problem (4.1)-(4.3) with vanishing Dirichlet condition T+(y) = g(y) = 0
for all y ∈ CD is reformulated into the following equivalent variational problem: Let f and
q satisfy conditions (4.4) and look for a temperature distribution T ∈ H̃1(Ω,CD) (see (4.9))
which is a stationary point of the functional (4.10).

Proof: Let T (x) be a stationary point of the functional (4.10). Consider the variation

δΦ =
d

dε
Φ(T + εV )|ε=0 =

∫
Ω

[
〈A (x)∇T (x),∇V (x)〉+ f(x)V (x)

]
dx

+

∫
CN

q(y)V +(y)dσ. (4.11)

The trial function V ∈ H1(Ω) is such that T + εV satisfies the boundary conditions. Then
from the equalities T+(y) + V +(y) = 0 = T+(y) on CD follows that T+(y) = V +(y) = 0
on CD, i.e., T and V have the traces vanishing on the part CD of the boundary:

It is clear, that for those V for which the functional Φ(T + εV ) has a stationary point,
we have δΦ = 0. By applying the Gauß theorem to the first summand under the integral on
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Ω in (4.11), we obtain the associated Euler-Lagrange equation∫
Ω

[
− divA (x)∇T (x) + f(x)

]
V (x) dx+

∫
CD

〈ν(y),A +(y)(∇T )+(y)〉V +(y)dσ

+

∫
CN

[
q(y) + 〈ν(y),A +(y)(∇T )+(y)〉

]
V +(y)dσ = 0. (4.12)

Since the trial function V vanishes on CD (see (4.9)), the integral on CD in (4.12) van-
ishes. Now taking arbitrary function V ∈ C∞0 (Ω) (vanishing in the vicinity of the boundary
C ), all summands in (4.12) except the first one vanish and we obtain∫

Ω

[
− divA (x)∇T (x) + f(x)

]
V (x) dx = 0,

which is equivalent to the basic differential equation in (4.1).
Therefore from (4.12) follows that∫

CN

[
q(y) + 〈ν(y),A +(y)(∇T )+(y)〉

]
V +(y) dσ = 0. (4.13)

The trace V + of a trial function in (4.13) is arbitrary, we derive, the boundary condition
(4.3).

Vice versa: Let T be a solution to the mixed problem (4.1)-(4.3) with vanishing Dirichlet
traces T+(y) = g(y) = 0 on C , by taking the scalar product of the basic equation in (4.1)
with the solution T , by applying the Green formulae and the boundary conditions (4.2) with
g = 0, we get the following equality:

0=

∫
Ω

[
− divA (x)∇T (x) + f(x)

]
T (x) dx =

∫
Ω

[
A (x)∇T (x) + f(x)

]
∇T (x) dx

+

∫
CD∪CN

〈ν(y),A +(y)(∇T )+(y)〉T+(y)dσ

=

∫
Ω

[
A (x)∇T (x) + f(x)

]
∇T (x) dx

∫
CN

q(y)T+(y)dσ.

Therefore, T is a stationary point of the functional Φ in (4.10). 2

If CD = C , CN = ∅, the problem (4.1)-(4.3) reduces to the problem with a Dirichlet
boundary condition

T+(y) = 0 on C

and the corresponding functional Φ in variational formulation (see (4.10)) takes the form

ΦD(T ) =
1

2

∫
Ω

[
〈A (x)∇T (x),∇T (x)〉+ f(x)T (x)

]
dx.
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If CD = ∅, CN = C , from (4.1)-(4.3) we get the problem with Neumann boundary condition

−〈A +(y)ν(y), (∇T )+(y) = q(y) on C

and the corresponding functional in variational formulation (see (4.10)) takes the form

ΦN(T ) =
1

2

∫
Ω

[
〈A (x)∇T (x),∇T (x)〉+ f(x)T (x)

]
dx+

∫
C

q(y)T+(y)dσ.

We conclude the section with some auxiliary results on Lebesgue points of integrable
functions which is important in the next section.

Let B(x) be a ball in the Euclidean space B ⊂ Rn centered at x. The derivative of the
integral at x is defined to be

lim
B(x)→x

1

|B(x)|

∫
B(x)

f(y) dy, (4.14)

where |B(x)| denotes the volume (i.e., the Lebesgue measure) of B(x), and B(x) → x
means that the diameter of B(x) tends to 0. Note that∣∣∣∣ 1

|B(x)|

∫
B(x)

f(y) dy − f(x)

∣∣∣∣ =

∣∣∣∣ 1

|B(x)|

∫
B(x)

[f(y)− f(x)] dy

∣∣∣∣
6

1

|B(x)|

∫
B(x)

|f(y)− f(x)| dy. (4.15)

The points x for which the right hand side tends to zero are called the Lebesgue points of f .

Theorem 4.3 (Lebesgue Differentiation Theorem, Lebesgue 1910.) For an integrable func-
tion f ∈ L1(Ω) the derivative of the integral (4.14) exists and is equal to f(x) at almost every
point x ∈ Ω.

Moreover, almost every point x ∈ Ω is a Lebesgue point of f (see (4.15)).

Corollary 4.4 If g ∈ L2(Ω), f ∈ L2(Ω× (−1, 1)), then

lim
ε→0

1

2ε

∫ t+ε

t−ε
(g(·), f(·, τ)))Ωdτ = (g(·), f(·, t)))Ω (4.16)

for almost all t ∈ (−1, 1).

Proof: It is clear, that g · f ∈ L1(Ω × (−1, 1)) and for the function h(t) := (g(·), f(·, t))Ω
the inclusion h ∈ L1((−1, 1)) is true. Thence we can apply Theorem 4.3 to the function h(t)
and get (4.16). 2
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5 HEAT TRANSFER IN THIN LAYERS

Let C be a C2 smooth orientable surface in R3 given by a single chart (immersion)

θ : ω → C , ω ⊂ R2

and let ν(X ), X ∈ C be the unit normal vector field on C with the fixed orientation. Chart is
supposed to be single just for convenience and multi-chart case can be considered similarly.
Denote by Ωε the layer domain i.e. the set of all points in R3 in the distance less then ε from
C . Then for sufficiently small ε the map Θ : C × (−ε, ε)→ Ωε

Θ(X , t) = X + tν(X ) = θ(x) + tν(θ(x)), x ∈ ω

is C1 homeomorphism and Θ(C × {0}) = C .
As noted above we can extend unit normal vector field to the entire Ωε properly by

assuming
ν(X + tν(X )) = ν(X ), X ∈ C , −ε < t < ε.

If ε is sufficiently small, the boundary M ε := ∂Ωε is represented as the union of three
C1-smooth surfaces M ε = Mε,D ∪M−

ε,N ∪M +
ε,N , where Mε,D = ∂C × [−ε, ε] is the lateral

surface, M +
ε,N = C ×{+ε} is the upper surface and M−

ε,N = C ×{−ε} is the lower surface
of the of the boundary M ε of layer domain Ωε.

In the present section will be considered the heat conduction problem by an ”isotropic”
medium, governed by the BVP (cf. (1.4) for ∆Ωε)

∆ΩεT (X , t) = f(X , t), (X , t) ∈ C × (−ε, ε),
T+(X , t) = 0, (X , t) ∈ ∂C × (−ε, ε),

(∂tT )+(X , −+ε) = q−
+

ε (X ), X ∈ C .

(5.1)

The case of an ”anisotropic” medium will be treated in a forthcoming publication.
We impose the following constraints

T ∈ H1(Ωε), q−
+

ε ∈ H̃2(C ), f ∈ L2(Ω1),

0 is the Lebesgue point for the function f̃(t) :=

∫
C

|f(X , t)|2dσ
(5.2)

(see (4.15) and note that ‖f̃
∣∣L1(−1, 1)‖ 6 ‖f

∣∣L2(Ω1)‖2). The latter constraint implies that
f̃(0) exists and, due to Theorem 4.3,

lim
ε→0

1

ε

∫ ε

−ε
f̃(t)dt =

1

ε

∫ ε

−ε

∫
C

|f(X , t)|2dσdt = f̃(0).

The formulated BVP (5.1) governs a heat transfer in the body Ωε when there are thermal
sources or sinks in Ωε. The temperature on the lateral surface ∂C × (−ε, ε) is zero, the heat
fluxes are fixed on the upper and lower surfaces C −+ := C ×{−+ε). It is well known, that the
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boundary value problem (5.1) as well as it’s equivalent problem (1.6)-(1.8) have the unique
solution T ∈ H1(Ωε) (respectively, T0 ∈ H1(Ωε); see, e.g., [?]).

The energy functional associated with the problem (5.1) reads (cf. Theorem 7.1)

E(Tε) : =

ε∫
−ε

∫
C

[
1

2
(DCT

2(X , τ) +
1

2ε2
(∂τT

2(X , τ) + F (X , τ)Tε(X , τ)

]
dσdτ, (5.3)

F (X , t) := f(X , t)− 1

4ε

(
(t+ ε)2∆C q

+
ε (X )− (t− ε)2∆C q

−
ε (X )

)
− H 0

C

2ε

(
(t+ ε)q+

ε (X )− (t− ε)q−ε (X )
)
− 1

2ε

(
q+
ε (X )− q−ε (X )

)
, (5.4)

(X , t) ∈ C × (−ε, ε).

More generally, we consider the non-linear functional

Eε(T ) =

∫
Ωε

[K0(DΩεT (x), T (x)) + Fε(x)T (x)] dx, (5.5)

where K0(DΩεT, T ) is strictly convex and has quadratic estimate. In the case of the func-
tional (5.3),

K0(DΩεT, T ) =
1

2
〈DΩεT,DΩεT 〉 =

1

2
(DΩεT )2 =

1

2
(DCTε)

2(X , τ) +
1

2ε2
(∂τTε)

2(X , τ),(5.6)

and it is clear that the kernel is strictly convex because the quadratic function F (x) = x2 is
strictly convex [θx1 + (1− θ)x2]2 < θx2

1 + (1− θ)x2
2 for all x1, x2 ∈ R, x1 6= x2, 0 < θ < 1.

The kernel has a trivial quadratic estimate, because is a quadratic function.

A nice proof of the next Lemma 6.14 is exposed in [?, Example 3.6]

Lemma 5.1 Let Ω be a domain in Rn with the Lipshitz boundary M := ∂Ω and M0 ⊂M
be a subsurface of non-zero measure. Then the inequality

‖ϕ
∣∣L2(Ω)‖ 6 C‖∇ϕ

∣∣L2(Ω)‖ = C

[
n∑
j=1

‖∂jϕ
∣∣L2(Ω)‖2

]1/2

(5.7)

holds for all functions ϕ ∈ H̃1(Ω,M0) and the constant C is independent of ϕ.

Now we perform the scaling of the variable t = ετ ,−1 < τ < 1, and study the following
functionals in the scaled domain Ω1 = C × (−1, 1)

Eε (Tε) =

∫ 1

−1

∫
C

[
K0

(
DCTε,

1

ε
∂tTε, Tε

)
+ FεTε

]
dσdτ (5.8)
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where DC = (D1, D2, D3), D4 = ∂t. The functionals Eε (Tε) are related to the original
functional E (T ) by the equality

Eε (Tε)=
1

ε
E (T ) , where Tε(X , t) = T (X 1,X 2,X 3, εt) , and (5.9)

Fε(X , t)=F (X , εt) = f(X , εt)− ε

4

(
(t+ 1)2∆C q

+
ε (X )− ε

4
(t− 1)2∆C q

−
ε (X )

)
−H 0

C (X )

2

(
(t+ 1)q+

ε (X )− (t− 1)q−ε (X )
)
− 1

2ε

(
q+
ε (X )− q−ε (X )

)
, (5.10)

(X , t) ∈ C × (−ε, ε).
Lemma 5.2 Let Fε be uniformly bounded in L2(Ω1)

sup
ε<ε0

‖Fε|L2(Ω1)‖ <∞. (5.11)

Then the energy functional Eε(T ) in (5.8) is correctly defined on the space H̃1(Ω1, ∂C ×
(−1, 1)), is strictly convex and has the following quadratic estimate

Eε(θT1 + (1− θ)T2) < θEε(T1) + (1− θ)Eε(T2), 0 < θ < 1

C1

∫
Ω1

K0

(
DCT,

1

ε
∂tT, T

)
dσdt− C2 6 Eε(T )

6 C3

1 +

∫
Ω1

K0

(
DCT,

1

ε
∂tT, T

)
dσdt

 ,
∀T1, T2, T ∈ H̃1(Ω1, ∂C × (−1, 1))

(5.12)

for some positive constants C1, C2 and C3 not depending on ε.

Proof: Let us decompose the functional Eε(T ) in (5.8) into the sum of non-linear and linear
parts

Eε(T ) = E
(1)
ε (T ) + E

(2)
ε (T )

E(1)
ε (T ) :=

∫
Ω1

K0

(
DCT,

1

ε
∂tT, T

)
dx,

E
(2)
ε (T ) :=

∫
Ω1

Fε(x)T (x)dx.

(5.13)

By the conditions imposed on K0 in (5.5), the first (non-linear) functional E(1)
ε (T ) is

strictly convex and has a quadratic estimate:

C0
1

∫
Ω1

(
〈DCTj,DCTj〉+

1

ε2
j

|∂tTj|2
)
dx− C0

2 6 E(1)
ε (T )

6 C0
3

1 +

∫
Ω1

(
〈DCTj,DCTj〉+

1

ε2
j

|∂tTj|2
)
dx

 . (5.14)
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On the other handE(2)
ε (T ) is linear and, therefore, strictly convex (see the first inequality

in (5.12)). Thus, we only have to prove the two-sided quadratic estimate in (5.12) for the
linear functional E(2)

ε (T ). Due to Lemma 5.1 and the equality (2.13) we can write:

|E(2)
ε (T )| 6

∣∣∣∣∫
Ω1

Fε(x)T (x)dx

∣∣∣∣ 6 ‖Fε|L2(Ω1)‖ ‖T |L2(Ω1)‖ 6M‖∇T |L2(Ω1)‖

6M
(1

η
+ η‖∇T |L2(Ω1)‖2

)
6M

(1

η
+ η‖DΩ1T |L2(Ω1)‖2

)
. (5.15)

Choosing η = 1 in (5.15) and taking into account (5.14) we get the right inequality in the
second line of (5.12), whereas taking η sufficiently small we obtain

Eε(T ) > |E(1)
ε (T )| − |E(2)

ε (T ) > C1‖DΩεT |L2(Ωε)‖2 − C2. 2

Let Fj = Fεj , 0 < εj ≤ 1, lim
j→∞

εj = 0 and Fεj be uniformly bounded (see (5.11)).

Further let Tj = Tεj ∈ H̃1(Ω1, ∂C × (−1, 1)), j = 1, 2, . . . be the sequence of functions
with ”finite energy”:

sup
j
Eεj(Tj) < +∞. (5.16)

Then from (5.14)–(5.15) we get

C0
1‖DΩ1Tj|L2(Ω1)‖2 =

∫
Ω1

(
1

2
〈DCTj,DCTj〉+

1

2ε2
j

|∂tTj|2
)
dx

=C0
1Eεj(Tj)− C0

1

∫
Ω1

Fj(X , t)Tj(X , t)dσdt

6C0
2

(
1 + ‖Fj|L2(Ω1)‖‖Tj|L2(Ω1)‖

)
6C0

3

(
1 + ‖DΩ1Tj|L2(Ωε)‖2

) 1
2
, (5.17)

since, due to Lemma 5.1,

‖Tj|L2(Ω1)‖ 6 C0‖DΩ1Tj|L2(Ω1)‖. (5.18)

Consequently,

sup
j
‖DΩ1Tj|L2(Ω1)‖ = sup

j

(∫
Ω1

(
1

2
〈DCTj,DCTj〉+

1

2ε2
j

|∂tTj|2
)
dx

)1/2

< +∞.(5.19)

From (5.17)-(5.19) follows

sup
j

∫
Ω1

|Tj|2 dx <∞, sup
j

∫
Ω1

|DCTj|2 dx <∞, sup
j

1

ε2
j

∫
Ω1

|∂tTj|2 dx <∞. (5.20)

Note, that if Tj are the scaled solutions to problem (1.3), then from the Euler-Lagrange
equation, associated with the functional (see (4.12)), follows that Eεj(Tj) = 0 and therefore
conditions (5.20) are satisfied.
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Due to (5.20) the sequence {Tj}∞j=1 is uniformly bounded in H̃1(Ω1, ∂C ×(−1, 1)) and a

weakly converging subsequence (say {Tj}∞j=1 itself) to a function T in H̃1(Ω1, ∂C ×(−1, 1))
can be extracted.

The functional
H(T ) =

∫
Ω1

|∂tT |2 dx

is convex and continuous in H̃1(Ω1, ∂C × (−1, 1)); then it is weakly lower semi-continuous
and ∂tT = 0 a.e., because∫

Ω1

|∂tT |2 dx = H(T ) ≤ lim
j

inf H(Tj) = lim
j

inf

∫
Ω1

|∂tTj|2 dx = 0.

(see the last inequality in (5.20)). Hence T (X , t) is independent of t, i.e.

T (X , t) = T (X ), X ∈ C , −1 ≤ t ≤ 1. (5.21)

Let the following conditions are fulfilled

fε(X , t) := f(X , εt) →
ε→0

f 0(X ) in L2(Ω1), (5.22)

q−
+

ε ∈ H2(C ) are uniformly bounded (with respect to ε) in H2(C ), and

lim
ε→0

q+
ε = lim

ε→0
q−ε = q0, in L2(C ), (5.23)

and

1

2ε
(q+
ε − q−ε ) →

ε→0
q1 in L2(C ). (5.24)

From (5.22)- (5.24) follows in particular, that

Fj(X , t)→ F (X , 0) in L2(Ω1). (5.25)

Set

E(0)(T ) =

{
E(1)(T ) + E(2)(T ) for T ∈P(C );
+∞, for T 6∈P(C ).

(5.26)

where P(C ) is defined in (1.12), and

E(1)(T ) :=
1

2

∫
Ω1

〈(DΩ1T )(x, t), (DΩ1T )(x, t)〉dσ dt

=

∫
C

〈(DCTC )(X ), (DCTC )(X )〉dσ, (5.27)

E(2)(T ) :=

∫
Ω1

F (X , 0)T (X , t)dσ dt

= 2

∫
C

(
f 0(X )−H 0

C q0(X )− q1(X )
)
TC (X )dσ. (5.28)
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Let us check that the Eεj sequence Γ-convergs to E(0) in H̃1(Ωε, ∂C × (−1, 1)). Indeed, we
have

Eεj(Tj) = E(1)
εj

(Tj) + E(2)
εj

(Tj),

where

E(1)
εj

(Tj) =

∫
Ω1

(
1

2
〈DCTj,DCTj〉+

1

2ε2
j

|∂tTj|2
)
dx, E(2)

εj
(Tj) =

∫
Ω1

FjTjdx.

The functional E(1)(T ) is convex and continuous and so it is weakly lower semicontin-
uous in H̃1(Ωε, ∂C × (−1, 1)), therefore

lim inf
j
E(1)
εj

(Tj) > lim inf
j
E(1)(Tj) > E(1)(T ).

Sequence E(2)
εj (Tj) converges to E(2)(T ), because Fj(X , t) → F (X , 0) and Tj ⇀ T in

L2(Ω1). Consequently
lim inf

j
Eεj(Tj) > E(0)(T ).

This proves lim inf inequality for the sequence Eεj .
Note, that

E(2)(T ) =

∫
C

1∫
−1

F (X , 0)T (X , t)dt dσ = 2

∫
C

F (X , 0)TC (X )dσ.

To show that the lower bound is reached i.e. to build a recovery sequence Tj we fix TC ∈
H1 (C ) and set T (X , t) = TC (X ) , X ∈ C , t ∈ (−1, 1). Define recovery sequence as
Tj(x, t) = T (x, t) = TC (x) Then ∂tTj = ∂tT = 0 and

lim
j→∞

Eεj(Tj) = lim
j→∞

E(1)
εj

(T ) + lim
j→∞

E(2)
εj

(T ) = E(1)(T ) + E(2)(T ) = E(0)(T ).

We have proved the following result.

Theorem 5.3 If conditions (5.22)- (5.24) are fulfilled then the functional in (5.8) Γ-converges
to the functional E(0)(T ) defined in (1.13) as ε→ 0.

Now we are able to prove the main Theorem 1.1 formulated in the introduction.
Proof of Theorem 1.1: The first part of the Theorem i.e. Γ-convergence of the functional

(1.13) to the functional E(0) defined by (1.13), is proved in Theorem 5.3.
The concluding assertion, that the BVP (1.14) is an equivalent reformulation of the min-

imization problem with the energy functional (1.13), is explained in Theorem 7.1. 2
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Chapter 4

MELLIN CONVOLUTION
EQUATIONS IN THE BESSEL
POTENTIAL SPACES

In the present chapter we expose investigations of Mellin convolution equations in the Bessel
potential spaces, published in the papers [DD16, Du13]. Such equations are important while
investigating boundary value problems (BVPs) for elliptic equations on surfaces and domains
with Lipschitz boundary and will be applied in the next chapter to the investigations of BVPs
for the Laplace-Beltrami amd L’ame equations on surfaces.

1 INTRODUCTION

It is well-known that various boundary value problems for PDE in planar domains with
angular points on the boundary, e.g. Lamé systems in elasticity (cracks in elastic media,
reinforced plates), Maxwell’s system and Helmholtz equation in electromagnetic scattering,
Cauchy–Riemann systems, Carleman–Vekua systems in generalized analytic function theory
etc. can be studied with the help of the Mellin convolution equations of the form

Aϕ(t) := c0ϕ(t) +
c1

πi

∞∫
0

ϕ(τ) dt

τ − t
+

∞∫
0

K
( t
τ

)
ϕ(τ)

dτ

τ
= f(t), (1.1)

with the kernel K satisfying the condition
∞∫

0

tβ−1|K (t)| dt <∞, 0 < β < 1, (1.2)

which makes it a bounded operator in the weighted Lebesgue space
Lp(R+, tγ), provided 1 6 p 6∞, −1 < γ < p− 1, β := (1 + γ)/p (cf. [Du79]).

In particular, integral equations with fixed singularities in the kernel

c0(t)ϕ(t) +
c1(t)

πi

∞∫
0

ϕ(τ) dt

τ − t
+

n∑
k=0

ck+2(t)tk−r

πi

∞∫
0

τ rϕ(τ) dτ

(τ + t)k+1
= f(t), 0 6 t 6 1, (1.3)
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where 0 6 r 6 k are of type (1.1) after localization, i.e. after “freezing” the coefficients.
The Fredholm theory and the unique solvability of equations (1.1) in the weighted

Lebesgue spaces were accomplished in [Du79]. This investigation was based on the fol-
lowing observation: if 1 < p <∞,−1 < γ < p−1, β := (1 +γ)/p, the following mutually
invertible exponential transformations

Zβ : Lp(R+, tγ) −→ Lp(R+),

Zβϕ(ξ) := e−βξϕ(e−ξ), ξ ∈ R := (−∞,∞),

Z−1
β : Lp(R) −→ Lp(R+, tγ),

Z−1
β ψ(t) := t−βψ(− ln t), t ∈ R+ := (0,∞),

(1.4)

transform the equation (1.1) from the weighted Lebesgue space f, ϕ ∈ Lp(R+, tγ) into the
Fourier convolution equation W 0

Aβ
ψ = g, ψ = Zβϕ, g = Zβf ∈ Lp(R) of the form

W 0
Aβ
ψ(x)=c0ψ(x) +

∞∫
−∞

K1(x− y)ϕ(y) dy,

K1(x)=e−βx
[ c1

1− e−x
+ K (e−x)

]
.

Note that the symbol of the operator W 0
Aβ

, viz. the Fourier transform of the kernel

Aβ(ξ) :=c0 +

∞∫
−∞

eiξxK1(x) dx

:=c0 − ic1 cot π(β − iξ) +

∞∫
−∞

e(iξ−β)xK (e−x) dx, ξ ∈ R (1.5)

is a piecewise continuous function. Let us recall that the theory of Fourier convolution opera-
tors with discontinuous symbols is well developed, cf. [Du75a, Du75b, Du77, Du78, Th85].
This allows one to investigate various properties of the operators (1.1), (1.3). In particular,
Fredholm criteria, index formula and conditions of unique solvability of the equations (1.1)
and (1.3) have been established in [Du79].

Similar integral operators with fixed singularities in kernel arise in the theory of singular
integral equations with the complex conjugation

a(t)ϕ(t) +
b(t)

πi

∫
Γ

ϕ(τ) dt

τ − t
+
e(t)

πi

∫
Γ

ϕ(τ) dt

τ − t
= f(t), t ∈ Γ

and in more general R-linear equations

a(t)ϕ(t) + b(t)ϕ(t) +
c(t)

πi

∫
Γ

ϕ(τ) dt

τ − t
+
d(t)

πi

∫
Γ

ϕ(τ) dt

τ − t
+
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+
e(t)

πi

∫
Γ

ϕ(τ) dt

τ − t
+
g(t)

πi

∫
Γ

ϕ(τ) dt

τ − t
= f(t), t ∈ Γ,

if the contour Γ possesses corner points. Note that a complete theory of such equations is
presented in [DL85, DLS95].

Let t1, . . . , tn ∈ Γ be the corner points of a piecewise-smooth contour Γ, and let Lp(Γ, ρ)

denote the weighted Lp-space with a power weight ρ(t) :=
n∏
j=1

|t − tj|γj . Assume that the

parameters p and βj := (1 + γj)/p satisfy the conditions

1 < p <∞, 0 < βj < 1, j = 1, . . . , n.

If the coefficients of the above equations are piecewise-continuous matrix functions, one can
construct a function A~β(t, ξ), t ∈ Γ, ξ ∈ R, ~β := (β1, . . . , βn), called the symbol of the
equation (of the related operator). It is possible to express various properties of the equation
in terms of A~β:

• The equation is Fredholm in Lp(Γ, ρ) if and only if its symbol is elliptic., i.e. iff
inf(t,ξ)∈Γ×R | A~β(t, ξ)| > 0;

• To an elliptic symbol A~β(t, ξ) there corresponds an integer valued index
indA~β(t, ξ), the winding number, which coincides with the Fredholm index of the
corresponding operator modulo a constant multiplier.

For more detailed survey of the theory and various applications to the problems of elas-
ticity we refer the reader to [Du75a, Du75b, Du77, Du79, Du82, Du84a, Du84b, Du86,
Sc85].

Similar approach to boundary integral equations on curves with corner points based on
Mellin transformation has been exploited by M. Costabel and E. Stephan [Co83, CS84].

However, one of the main problems in boundary integral equations for elliptic partial
differential equations is the absence of appropriate results for Mellin convolution opera-
tors in the Bessel potential spaces, cf. [Du82, Du84b, Du86] and recent publications on
nano-photonics [BCC12a, BCC12a, GB10]. Such results are needed to obtain an equivalent
reformulation of boundary value problems into boundary integral equations in the Bessel po-
tential spaces. Nevertheless, numerous works on Mellin convolution equations seem to pay
almost no attention to the mentioned problem.

The first arising problem is the boundedness results for Mellin convolution operators in
the Bessel potential spaces. The conditions on kernels known so far are very restrictive. The
following boundedness result for the Mellin convolution operator can be proved

Proposition 1.1 Let 1 < p <∞ and letm = 1, 2, . . . be an integer. If a function K satisfies
the condition

1∫
0

t
1
p
−m−1|K (t)| dt+

∞∫
1

t
1
p
−1|K (t)| dt <∞, (1.6)

then the Mellin convolution operator (see (1.1))

A = M0
A1/p

: H̃s
p(R+) −→ Hs

p(R+)

Γ-CONVERGENCE R.Duduchava et all ,
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with the symbol (see (1.5))

A1/p(ξ) := c0 + c1 cothπ
( i
p

+ ξ
)

+

∞∫
0

t
1
p
−iξK (t)

dt

t
, ξ ∈ R, (1.7)

is bounded for any 0 6 s 6 m.

Note that the condition

Kβ :=

∞∫
0

tβ−1|K (t)| dt <∞ (1.8)

ensures that the operator

M0
a : Lp(R+, tγ) −→ Lp(R+, tγ)

is bounded, while the norm of the Mellin convolution

M0
aβ
ϕ(t) :=

∞∫
0

K
( t
τ

)
ϕ(τ)

dτ

τ
(1.9)

admits the estimate ‖M0
aβ
‖ 6 Kβ .

The above-formulated result has very restricted application. For example, the operators

Nαϕ(t)=
sinα

π

∞∫
0

t ϕ(τ) dτ

t2 + τ 2 − 2tτ cosα
,

N ∗αϕ(t)=
sinα

π

∞∫
0

τ ψj(τ) dτ

t2 + τ 2 − 2tτ cosα
, (1.10)

Mαϕ(t)=
1

2π

∫
R+

[τ cosα− t]ϕ(τ) dτ

t2 + τ 2 − 2t τ cosα
, −π < α < π,

which we encounter in boundary integral equations for elliptic boundary value problems (see
[BDKT13]), as well as the operators

Nm,kϕ(t) :=
tk

πi

∞∫
0

τm−kϕ(τ) dτ

(τ + t)m+1
, k = 0, . . . ,m,

represented in (1.3), do not satisfy the conditions (1.6). In particular, Nα satisfies condition
(1.6) only for m = 1 andNm,k only for m = k. Although, as we will see below in Theorem
3.4, all operatorsNα,N ∗α andNm,k are bounded in the Bessel potential spaces in the setting
(??) for all s ∈ R.
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Here we introduce admissible kernels, which are meromorphic functions on the complex
plane C, vanishing at the infinity

K (t) :=
∑̀
j=0

dj
t− cj

+
∞∑

j=`+1

dj
(t− cj)mj

, j = 0, 1, . . . ,

c0, . . . , c` ∈ R, 0 < αk := arg ck < 2π, k = `+ 1, `+ 2, . . . .

(1.11)

K (t) have poles at c0, c1, . . . ∈ C \ {0} and complex coefficients dj ∈ C. The Mellin
convolution operator

Km
c ϕ(t) :=

1

π

∞∫
0

τm−1ϕ(τ) dτ

(t− c τ)m
. (1.12)

with the kernel

K m
c (t) :=

1

(t− c)m
, 0 < arg c < 2π

(see Definition ??) turns out to be bounded in the Bessel potential spaces (see Theorem 3.4).
In order to study Mellin convolution operators in the Bessel potential spaces, we use

the “lifting” procedure, performed with the help of the Bessel potential operators Λs
+ and

Λs−r
− , which transform the initial operator M0

a into the lifted operator Λs−r
− M0

aΛ
−s
+ acting

already on a Lebesgue Lp spaces. However, the lifted operator is neither Mellin nor Fourier
convolution and to describe its properties, one has to study the commutants of the Bessel
potential operators and Mellin convolutions with meromorphic kernels. It turns out that the
Bessel potentials alter after commutation with Mellin convolutions and the result depends
essentially on poles of the meromorphic kernels. These results allows us to show that the
lifted operator Λs−r

− MaΛ
−s
+ belongs to the Banach algebra of operators generated by Mellin

and Fourier convolution operators with discontinuous symbols. Since such algebras have
been studied before [Du87], one can derive various information (Fredholm properties, index,
the unique solvability) about the initial Mellin convolution equation M0

aϕ = g in the Bessel
potential spaces in the settings ϕ ∈ H̃s

p(R+), g ∈ H̃s−r
p (R+) and in the settings ϕ ∈ H̃s

p(R+),
g ∈ Hs−r

p (R+).

The results of the present work is already applied in [DTT14] to the investigation of some
boundary value problems studied before by Lax–Milgram Lemma in [BCC12a, BCC12a].
Note that the present approach is more flexible and provides better tools for analyzing the
solvability of the boundary value problems and the asymptotic behavior of their solutions.

It is worth noting that the obtained results can also be used to study Schrödinger oper-
ator on combinatorial and quantum graphs. Such a problem has attracted a lot of attention
recently, since the operator mentioned above possesses interesting properties and has various
applications, in particular, in nano-structures (see [Ku04, Ku05] and the references there).
Another area for application of the present results are Mellin pseudodifferential operators on
graphs. This problem has been studied in [1], but in the periodic case only. Moreover, some
of the results can be applied in the study of stability of approximation methods for Mellin
convolution equations in the Bessel potential spaces.

The present paper is organized as follows. In the first section we observe Mellin and
Fourier convolution operators with discontinuous symbols acting on Lebesgue spaces. Most
of these results are well known and we recall them for convenience. In the second section
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we define Mellin convolutions with admissible meromorphic kernels and prove their bound-
edness in the Bessel potential spaces. In Section ?? is proved the key result on commutants
of the Mellin convolution operator (with admissible meromorphic kernel) and a Bessel po-
tential. In Section ?? we enhance results on Banach algebra generated by Mellin and Fourier
convolution operators by adding explicit definition of the symbol of a Hankel operator, which
belong to this algebra. In Sections 5 the obtained results are applied to describe Fredholm
properties and the index of Mellin convolution operators with admissible meromorphic ker-
nels in the Bessel potential spaces.

2 MELLIN CONVOLUTION AND THE BESSEL POTENTIAL OPERATORS

Let N be a positive integer. If there arises no confusion, we write A for both scalar and
matrix N × N algebras with entries from A. Similarly, the same notation B is used for the
set of N -dimensional vectors with entries from B. It will be usually clear from the context
what kind of space or algebra is considered.

The integral operator (1.1) is called Mellin convolution. More generally, if a ∈ L∞(R) is
an essentially bounded measurable N ×N matrix function, the Mellin convolution operator
M0

a is defined by

M0
aϕ(t) := M−1

β aMβϕ(t) =
1

2π

∞∫
−∞

a(ξ)

∞∫
0

( t
τ

)iξ−β
ϕ(τ)

dτ

τ
dξ,

ϕ ∈ S(R+),

where S(R+) is the Schwartz space of fast decaying functions on R+, whereas Mβ and M−1
β

are the Mellin transform and its inverse, i.e.

Mβψ(ξ) :=

∞∫
0

tβ−iξψ(t)
dt

t
, ξ ∈ R,

M−1
β ϕ(t) :=

1

2π

∞∫
−∞

tiξ−βϕ(ξ) dξ, t ∈ R+.

The function a(ξ) is usually referred to as a symbol of the Mellin operator M0
a. Further, if

the corresponding Mellin convolution operator M0
a is bounded on the weighted Lebesgue

space Lp(R+, tγ) of N -vector functions endowed with the norm

∥∥ϕ | Lp(R+, tγ)
∥∥ :=

[ ∞∫
0

tγ|ϕ(t)|p dt
]1/p

,

then the symbol a(ξ) is called a Mellin Lp,γ multiplier.
The transformations

Zβ : Lp(R+, tγ) −→ Lp(R), Zβϕ(ξ) := e−βtϕ(e−ξ), ξ ∈ R,
Z−1
β : Lp(R) −→ Lp(R+, tγ), Z−1

β ψ(t) := t−βψ(− ln t), t ∈ R+,
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arrange an isometrical isomorphism between the corresponding Lp-spaces. Moreover, the
relations

Mβ = FZβ, M−1
β = Z−1

β F−1,

M0
a = M−1

β aMβ = Z−1
β F−1aFZβ = Z−1

β W 0
aZβ,

−1 < γ < p− 1, β :=
1 + γ

p
. 0, β < 1,

(2.1)

where F and F−1 are the Fourier transform and its inverse,

Fϕ(ξ) :=

∞∫
−∞

eiξxϕ(x) dx, F−1ψ(x) :=
1

2π

∞∫
−∞

e−iξxψ(ξ) dξ, x ∈ R ,

show a close connection between Mellin M0
a and Fourier

W 0
aϕ := F−1aFϕ, ϕ ∈ S(R),

convolution operators, as well as between the corresponding transforms. Here S(R) denotes
the Schwartz class of infinitely smooth functions, decaying fast at the infinity.

An N ×N matrix function a(ξ), ξ ∈ R is called a Fourier Lp-multiplier if the operator
W 0
a : Lp(R) −→ Lp(R) is bounded. The set of all Lp-multipliers is denoted by Mp(R).

From (2.1) immediately follows the following

Proposition 2.1 (See [Du79]) Let 1 < p < ∞. The class of Mellin Lp,γ-multipliers coin-
cides with the Banach algebra Mp(R) of Fourier Lp -multipliers for arbitrary −1 < γ <
p− 1 and is independent of the parameter γ.

Thus, a Mellin convolution operator M0
a in (2.1) is bounded in the weighted Lebesgue

space Lp(R+, tγ) if and only if a ∈Mp(R).

It is known, see, e.g. [Du79], that the Banach algebra Mp(R) contains the algebra V1(R)
of all functions with bounded variation provided that

β :=
1 + γ

p
, 1 < p <∞, −1 < γ < p− 1. (2.2)

As it was already mentioned, the primary aim of the present paper is to study Mellin
convolution operators M0

a acting in the Bessel potential spaces,

M0
a : H̃s

p(R+) −→ Hs
p(R+). (2.3)

The symbols of these operators are N × N matrix functions a ∈ CM0
p(R), continuous on

the real axis R with the only one possible jump at infinity. We commence with the definition
of the Besseel potential spaces and Bessel potentials, arranging isometrical isomorphisms
between these spaces and enabling the lifting procedure, writing a Fredholm equivalent op-
erator (equation) in the Lebesgue space Lp(R+) for the operator M0

a in (2.3).
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For s ∈ R and 1 < p < ∞, the Bessel potential space, known also as a fractional
Sobolev space, is the subspace of the Schwartz space S′(R) of distributions having the finite
norm ∥∥ϕ | Hs

p(R)
∥∥ :=

[ ∞∫
−∞

∣∣F−1
(
1 + |ξ|2

)s/2
(Fϕ)(t)

∣∣p dt]1/p

<∞.

For an integer parameter s = m = 1, 2, . . . , the space Hs
p(R) coincides with the usual

Sobolev space endowed with an equivalent norm

∥∥ϕ |Wm
p (R)

∥∥ :=

[ m∑
k=0

∞∫
−∞

∣∣∣dkϕ(t)

dtk

∣∣∣p dt]1/p

.

If s < 0, one gets the space of distributions. Moreover, H−sp′ (R) is the dual to the space
Hs
p(R+), provided p′ := p

p−1
, 1 < p <∞. Note that Hs

2(R) is a Hilbert space with the inner
product

〈ϕ, ψ〉s =

∫
R

(Fϕ)(ξ)(Fψ)(ξ)(1 + ξ2)s dξ, ϕ, ψ ∈ Hs(R).

By rΣ we denote the operator restricting functions or distributions defined on R to the subset
Σ ⊂ R. Thus Hs

p(R+) = r+(Hs
p(R)), and the norm in Hs

p(R+) is defined by∥∥f | Hs
p(R+)

∥∥ = inf
`

∥∥`f | Hs
p(R)

∥∥,
where `f stands for any extension of f to a distribution in Hs

p(R).

Further, we denote by H̃s
p(R+) the (closed) subspace of Hs

p(R) which consists of all
distributions supported in the closure of R+.

Notice that H̃s
p(R+) is always continuously embedded in Hs

p(R+), and if s ∈ (1/p −
1, 1/p), these two spaces coincide. Moreover, Hs

p(R+) may be viewed as the quotient-space
Hs
p(R+) := Hs

p(R)/H̃s
p(R−), R− := (−∞, 0).

Let a ∈ L∞,loc(R) be a locally boundedm×mmatrix function. The Fourier convolution
operator (FCO) with the symbol a is defined by

W 0
a := F−1aF .

If the operator
W 0
a : Hs

p(R) −→ Hs−r
p (R)

is bounded, we say that a is an Lp-multiplier of order r and use ”Lp-multiplier” if the order
is 0. The set of all Lp-multipliers of order r (of order 0) is denoted by Mr

p(R) (by Mp(R),
respectively).

For an Lp-multiplier of order r, a ∈Mr
p(R), the Fourier convolution operator (FCO) on

the semi-axis R+ is defined by the equality

Wa = r+W
0
a : H̃s

p(R+) −→ Hs−r
p (R+) (2.4)
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and the Hankel operator by the equality

Ha = r+VW
0
a : H̃s

p(R+) −→ Hs−r
p (R+), V ψ(t) := ψ(−t), (2.5)

where r+ := rR+ : Hs
p(R) −→ Hs

p(R+) is the restriction operator to the semi-axes R+.
Note that the generalized Hörmander’s kernel of a FCO Wa depends on the difference of
arguments Ka(t− τ), while the Hörmander’s kernel of a Hankel operator r+VW

0
a depends

of the sum of the arguments Ka(t+ τ).
We did not use in the definition of the class of multipliers Mr

p(R) the parameter s ∈ R.
This is due to the fact that Mr

p(R) is independent of s: if the operator Wa in (2.5) is bounded
for some s ∈ R, it is bounded for all other values of s. Another definition of the multiplier
class Mr

p(R) is written as follows: a ∈ Mr
p(R) if and only if λ−ra ∈ Mp(R) = M0

p(R),
where λr(ξ) := (1 + |ξ|2)r/2. This assertion is one of the consequences of the following
theorem.

Theorem 2.2 Let 1 < p <∞. Then:
1. For any r, s ∈ R, γ ∈ C, Im γ > 0 the convolution operators (ΨDOs)

Λr
γ = Wλrγ : H̃s

p(R+) −→ H̃s−r
p (R+),

Λr
−γ = r+W

0
λr−γ

` : Hs
p(R+) −→ Hs−r

p (R+),

λr
−+γ

(ξ) := (ξ−+γ)r, ξ ∈ R, Im γ > 0,

(2.6)

where ` : Hs
p(R+) −→ Hs

p(R) is an extension operator and r+ is the restriction from
the axes R to the semi-axes R+, arrange isomorphisms of the corresponding spaces.
The final result is independent of the choice of an extension `.

2. For arbitrary operator A : H̃s
p(R+) −→ Hs−r

p (R+) of order r, the following diagram
is commutative

H̃s
p(R+) A // Hs−r

p (R+)

Λs−r
−γ
��

Lp(R+)
Λs−r
−γ AΛ−sγ

//

Λ−sγ

OO

Lp(R+)

. (2.7)

The diagram (2.6) provides an equivalent lifting of the operator A of order r to the
operator Λs−r

−γ AΛ−sγ : Lp(R+) −→ Lp(R+) of order 0.

3. For any bounded convolution operatorWa : H̃s
p(R+) −→ Hs−r

p (R+) of order r and for
any pair of complex numbers γ1, γ2 such that Im γj > 0, j = 1, 2, the lifted operator

Λµ
−γ1

WaΛ
ν
γ2

= Waµ,ν : H̃s+ν
p (R+) −→ Hs−r−µ

p (R+),

aµ,ν(ξ) := (ξ − γ1)µa(ξ)(ξ + γ2)ν
(2.8)

is again a Fourier convolution.
In particular, the lifted operatorWa0 in Lp-spaces, Λs−r

−γ WaΛ
−s
γ : Lp(R+) −→ Lp(R+)

has the symbol

as−r,−s(ξ) = λs−r−γ (ξ)a(ξ)λ−sγ (ξ) =
(ξ − γ
ξ + γ

)s−r a(ξ)

(ξ + i)r
.
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4. The Hilbert transform SR+ = iK1
1 = W− sign is a Fourier convolution operator and

Λs
−γ1
K1

1Λ
−s
γ2

= Wi gs−γ1,γ2
sign, (2.9)

where

gs−γ1,γ2
(ξ) :=

(
ξ − γ1

ξ + γ2

)s
. (2.10)

Proof: For the proof of items 1-3 we refer the reader to [Du79, Lemma 5.1] and [DS93,
ES81]. The item 4 is a consequence of the proved items 2 and 3 (see [Du79, Du13]).

Remark 2.3 The class of Fourier convolution operators is a subclass of pseudodifferential
operators (ΨDOs). Moreover, for integer parameters m = 1, 2, . . . the Bessel potentials
Λm
−+

= Wλm
−+γ

, which are Fourier convolutions of order m, are ordinary differential operators
of the same order m:

Λm
−+γ

= Wλm
−+γ

=
(
i
d

dt−
+γ
)m

=
m∑
k=0

(
m

k

)
ik(−+γ)m−k

dk

dtk
. (2.11)

These potentials map both spaces (cf. (2.6))

Λm
−+γ

: H̃s
p(R+) −→ H̃s−r

p (R+),

: Hs
p(R+) −→ Hs−m

p (R+),
(2.12)

but the mappings are not isomorphisms because the inverses Λ−m
−+γ

are bounded only for one
pair of spaces, indicated in (2.6).

Remark 2.4 For any pair of multipliers a ∈Mr
p(R), b ∈Ms

p(R) the corresponding convo-
lution operators on the half axes W 0

a and W 0
b have the property W 0

aW
0
b = W 0

bW
0
a = W 0

ab.
For the corresponding Wiener-Hopf operators on the half axes a similar equality

WaWb = Wab (2.13)

holds if and only if either the function a(ξ) has an analytic extension in the lower half plane,
or the function b(ξ) has an analytic extension in the upper half plane (see [Du79]).

Note that, actually (2.8) is a consequence of (2.13).

3 MELLIN CONVOLUTIONS WITH ADMISSIBLE
MEROMORPHIC KERNELS

Now we consider kernels K (t), exposed in (1.11), which are meromorphic functions on
the complex plane C, vanishing at infinity, having poles at c0, c1, . . . ∈ C \ {0} and complex
coefficients dj ∈ C.

Definition 3.1 We call a kernel K (t) in (1.11) is admissible iff:
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(i) K (t) has only a finite number of poles c0, . . . , c` which belong to the positive semi-
axes, i.e., arg c0 = · · · = arg c` = 0;

(ii) The corresponding multiplicities are one m0 = · · · = m` = 1;
(iii) The remainder points c`+1, c`+2, . . . do not condense to the positive semi-axes and their

real parts are bounded uniformly

lim
j−→∞

cj 6∈ [0,∞), sup
j=`+1,`+2,...

Re cj 6 K <∞. (3.1)

(iv) K (t) is a kernel of an operator, which is a composition of finite number of operators
with admissible kernels.

Example 3.2 The function

K (t) = exp
( 1

t− c

)
, Re c < 0 or Im c 6= 0

is an example of the admissible kernel which also satisfies the condition of the next Theorem
3.4. Other examples of operators with admissible kernels (which also satisfies the condition
of the next Theorem 3.4) are operators which we encounter in (1.3), in (1.10) and in (2.4)
and, in general, any finite sum in (1.11).

Example 3.3 The function

K (t) =
ln t− c1c2

t− c1c2

, Im c1 6= 0, Im c2 6= 0

is another example of the admissible kernel and represnts the composition of operators
c2K

1
c1

K1
c2

(see (2.10)) with admissible kernels which also satisfies the condition of the next
Theorem 3.4. More trivial examples of operators with admissible kernels (which also sat-
isfies the condition of the next Theorem 3.4) are operators which we encounter in (1.3), in
(1.10) and in (2.4) and, in general, any finite sum in (1.11).

Theorem 3.4 Let conditions

β :=
1 + γ

p
, 1 < p <∞, −1 < γ < p− 1. (3.2)

hold, K (t) in (1.11) be an admissible kernel and

Kβ :=
∞∑
j=0

2mj |dj| |cj|β−mj <∞. (3.3)

Then the Mellin convolution M0
aβ

in (1.9) with the admissible meromorphic kernel K (t) in
(1.11) is bounded in the Lebesgue space Lp(R+, tγ) and its norm has the estimate ‖M0

aβ
|

L (Lp(R+, tγ))‖ 6MKβ with some M > 0.

We can drop the constant M and replace 2mj by 2
mj
2 in the estimate (3.3) provided

Re cj < 0 for all j = 0, 1, . . . .
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Proof: The first ` + 1 summands in the definition of the admissible kernel (1.11) corre-
spond to the Cauchy operators

A0ϕ(t) =
∑̀
j=0

dj
π

∞∫
0

ϕ(τ) dτ

t− cjτ
, cj > 0, j = 0, 1, . . . , `,

and their boundedness property in the weighted Lebesgue space

A0 : Lp(R+, tγ) −→ Lp(R+, tγ) (3.4)

under constraints (2.2) is well known (see [Kh57] and also [GK79]). Therefore we can ignore
the first ` summands in the expansion of the kernel K (t) in (1.11). To the boundedness of
the operator M0

a`β
with the remainder kernel

K `(t) :=
∞∑

j=`+1

dj
(t− cj)mj

, cj 6= 0, j = 0, 1, . . . ,

0 < αk := arg ck < 2π, k = `+ 1, `+ 2, . . .

(see (1.11)), we apply the estimate (1.8)

∥∥M0
a`β
| L (Lp(R+, tγ))

∥∥ 6 ∞∫
0

tβ−1|K `(t)| dt 6
∞∑

j=`+1

|dj|
∞∫

0

tβ−1dt

|t− cj|mj
. (3.5)

Now note that

|t− cj|−mj =
(
t2 + |cj|2 − 2 Re cjt

)−mj
2 6

(t2 + |cj|2

2

)−mj
2

6 2mj(t+ |cj|)−mj for all t > 2K = 2 sup |Re cj| > 0.

due to the constraints (3.1). On the other hand,

|t− cj|−mj 6M(t+ |cj|)−mj for all 0 6 t 6 2K

and a certain constant M > 0. Therefore

|t− cj|−mj 6M2mj(t+ |cj|)−mj for all 0 < t <∞. (3.6)

Next we recall the formula from [GR94, Formula 3.194.4]
∞∫

0

(3.7)

tβ−1 dt

(t+ c)m
= (−1)m−1

(
βdir0o

mdir0o

)
πcβ−m

sin πβ
, −π < arg c < π, Re β < 1, (3.8)(

β − 1

m− 1

)
:=

(β − 1) · · · (β −m+ 1)

(m− 1)
,

(
β − 1

0

)
:= 1
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to calculate the integrals. By inserting the estimate (3.6) into (3.5) and applying (3.7), we get

∥∥M0
a`β
| L (Lp(R+, tγ))

∥∥ 6 ∞∑
j=`+1

|dj|
∞∫

0

tβ−1dt

|t− cj|mj

6M0

∞∑
j=`+1

2mj |dj|
∞∫

0

tβ−1dt

(t+ |cj|)mj

6
πM0

sinπβ

∞∑
j=`+1

2mj |dj|
∣∣∣∣( β − 1

mj − 1

)∣∣∣∣cβ−mjj

6M
∞∑

j=`+1

2mj |dj|c
β−mj
j = MKβ, M :=

πM0

sin πβ
, (3.9)

since (see (3.7)) ∣∣∣∣( β − 1

mj − 1

)∣∣∣∣ 6 1,

where Kβ is from (3.3). The boundedness (3.4) and the estimate (3.9) imply the claimed
estimate ∥∥M0

aβ
| L (Lp(R+, tγ))

∥∥ 6MKβ.

If Re cj < 0 for all j = 0, 1, . . ., we have

1

|t− cj|mj
=
(
t2 + |c|2 − 2 Re cjt

)−mj
2 6

(
t2 + |c|2

)−mj
2 6 2

mj
2

(
t + |cj|

)−mj
valid for all t > 0 and a constant M does not emerge in the estimate.

Let us find the symbol (the Mellin transform of the kernel) of the operator (2.10) for
0 < arg c < 2π, m = 1, 2, . . . (see (2.9), (2.10)). For this we apply formula (3.7):

MβK
m
c (ξ) =

∞∫
0

tβ−iξ−1K m
c (t) dt =

1

π

∞∫
0

tβ−iξ−1

(t+ (−c))m
dt

=

(
β − iξ − 1

m− 1

)
(−1)m−1(−c)β−iξ−m

sinπ(β − iξ)

=

(
β − iξ − 1

m− 1

)
(−1)m−1e−iπ(β−iξ−m)cβ−iξ−m

sin π(β − iξ)
,

since if −π < arg(−c) < π and 0 < arg c < 2π, then −c = e−πic. In particular,

MβK
1
c (ξ) =

e−iπ(β−iξ−1)c β−iξ−1

sin π(β − iξ)
, 0 < arg c < 2π, (3.10a)

MβK
1
−d(ξ) =

d β−iξ−1

sin π(β − iξ)
, −π < arg d < π, (3.10b)

MβK
1
−1(ξ) =

1

sin π(β − iξ)
, ξ ∈ R. (3.10c)
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Now let us find the symbol of the Cauchy singular integral operator K1
1 = −iSR+ (see

(??), (??)). For this we apply Plemeli formula and formula (3.7):

MβK
1

1 (t) :=

∞∫
0

tβ−iξ−1K 1
1 (t) dt = − 1

π

∞∫
0

tβ−iξ−1 dt

t− 1

= lim
ε−→0

1

2π

∞∫
0

[ tβ−iξ−1

t+ ei(π−ε)
+

tβ−iξ−1

t+ e−i(π−ε)

]
dt

= lim
ε−→0

ei(π−ε)(β−iξ−1) + e−i(π−ε)(β−iξ−1)

2 sinπ(β − iξ)
= cotπ(β − iξ).

For an admissible kernel with poles arg c0 = arg c` = 0 (and, therefore, m0 = · · · =
m` = 1) and 0 < arg cj < 2π, j = `+ 1, . . . we get

MβK (ξ) = cot π(β − iξ)
∑̀
j=0

djc
β−iξ−1
j

+
1

sin π(β − iξ)

∞∑
j=`+1

dj

(
β − iξ − 1

mj − 1

)
(−1)mj−1e−iπ(β−iξ−mj)c

β−iξ−mj
j . (3.11)

Theorem 3.5 If K is an admissible kernel the corresponding Mellin convolution operator
with the kernel K

Kϕ(t) :=

∫ ∞
0

K

(
t

τ

)
ϕ(τ)

dτ

τ
,

K : H̃s
p(R+) −→ Hs

p(R+),

(3.12)

is bounded for all 1 < p <∞ and s ∈ R.
The condition on the parameter p can be relaxed to 1 6 p 6∞, provided the admissible

kernel K in (1.11) has no poles on positive semi-axes αj = arg cj 6= 0 for all j = 0, 1, . . . .

Proof: Due to the representation (1.11), we have to prove the theorem only for a model
kernel

K m
c (t) :=

1

π(t− c)m
, c 6= 0, 0 < arg c < 2π, m = 1, 2, . . . . (3.13)

The respective Mellin convolution operator Km
c (see (2.10)) is bounded in Lp(R+) for all

1 6 p 6∞ for arbitrary 0 < | arg c| < π (cf. (1.2)).
To accomplish the boundedness result of Km

c in Lp(R+) we need to consider the case
arg c = 0 (i.e., c ∈ (0,∞)) and, therefore, m = 1 (see Definition ??). Then the operator K1

c
coincides with the ”dilated” Cauchy singular integral operator with a constant multiplier

K1
cϕ(t) :=

1

π

∞∫
0

ϕ(τ)dτ

t− c τ
= − i

c
(SR+ϕ)

( t
c

)
, (3.14)
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where

SR+ϕ(t) :=
1

πi

∞∫
0

ϕ(τ) dτ

τ − t
, (3.15)

and is bounded in Lp(R+) for all 1 < p <∞ (cf., e.g., [Du79, GK79]).
Now let 0 6 arg c < 2π and m = 1. Then, if ϕ ∈ C∞0 (R+) is a smooth function with

compact support and k = 1, 2, . . ., integrating by parts we get

dk

dtk
K1
cϕ(t) =

1

π

∞∫
0

dk

dtk
1

t− c τ
ϕ(τ) dτ =

(−c)−k

π

∞∫
0

dk

dτ k
1

t− c τ
ϕ(τ) dτ

=
c−k

π

∞∫
0

1

t− c τ
dkϕ(τ)

dτ k
dτ = c−k

(
K1
c

dk

dtk
ϕ
)

(t). (3.16)

For m = 2, 3, . . . and 0 < arg c < 2π we get similarly

d

dt
Km
c ϕ(t) =

1

π

∞∫
0

d

dt

τm−1

(t− c τ)m
ϕ(τ) dτ

=
m−1∑
j=0

(−c)−1−j

π

∞∫
0

d

dτ

τm−1−j

(t− c τ)m−j
ϕ(τ) dτ

= −
m−1∑
j=0

(−c)−1−j

π

∞∫
0

τm−1−j

(t− c τ)m−j
d

dτ
ϕ(τ) dτ

= −
m−1∑
j=0

(−c)−1−j
(
Km−j
c

d

dt
ϕ
)

(t)

and, recurrently,

dk

dtk
Km
c ϕ(t) = (−1)k

m−1∑
j=0

(−c)−k−jγkj
(
Km−j
c

dk

dtk
ϕ
)

(t), k = 1, 2, . . . , (3.17)

γ1
j = j + 1, γk0 = 1, γkj :=

j∑
r=0

γk−1
r , j = 0, 1, . . . ,m, k = 1, 2, . . . .

Recall now that for an integer s = n the spaces Hn
p (R+), H̃n

p (R+) coincide with the
Sobolev spaces Wn

p (R+), W̃n
p (R+), respectively (these spaces are isomorphic and the norms

are equivalent) and C∞0 (R+) is a dense subset in W̃n
p (R+) = H̃n

p (R+). Then, using the
equalities (3.15), (3.17) and the boundedness of the operators Km−j

c (see (3.13)–(3.15)), we
proceed as follows:∥∥Km

c ϕ | Hn
p (R+)

∥∥ =
n∑
k=0

∥∥∥ dk
dtk

Km
c ϕ | Lp(R+)

∥∥∥ =
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=
n∑
k=0

m−1∑
j=0

|c|−k−jγkj
∥∥∥Km−j

c

dk

dtk
ϕ | Lp(R+)

∥∥∥
6M

n∑
k=0

∥∥∥ dk
dtk

ϕ | Lp(R+)
∥∥∥ = M

∥∥ϕ | Hn
p (R+)

∥∥,
whereM > 0 is a constant, and the boundedness (3.12) follows for s = 0, 1, 2, . . . . The case
of arbitrary s > 0 follows by the interpolation between the spaces Hm

p (R+) and H0
p(R+) =

Lp(R+), also between the spaces H̃m
p (R+) and H̃0

p(R+) = Lp(R+).
For s < 0 the boundedness (3.12) follows by duality: the adjoint operator to Km

c is

Km,∗
c ϕ(t) :=

1

π

∞∫
0

tm−1ϕ(τ) dτ

(τ − c t)m
=

m∑
j=1

ωjK
j
c−1ϕ(t),

for some constant coefficients ω1, . . . , ωm. The operator Km,∗
c has the admissible kernel and,

due to the proved part of the theorem is bounded in the space setting Km,∗
c : H̃−sp′ (R+) −→

H−sp′ (R+), p′ := p/(p− 1), since −s > 0. The initial operator Km
c : H̃s

p(R+) −→ Hs
p(R+) is

dual to Km,∗
c and, therefore, is bounded as well.

Corollary 3.6 Let 1 < p < ∞ and s ∈ R. A Mellin convolution operator M0
a with an ad-

missible kernel described in Definition ?? (also see Example 3.3 and Theorem 3.4 is bounded
in the Bessel potential spaces

M0
a : H̃s

p(R+) −→ Hs
p(R+).

The bounddness property

M0
a : Hs

p(R+) −→ Hs
p(R+).

does not hold in general for even a simplest Mellin convolution operatorKc, except the case
when the spaces H̃s

p(R+ and Hs
p(R+) can be identified, i.e., except the case 1/p − 1 < s <

1/p. Indeed, to check this consider a smooth function with a compact support ϕ ∈ C∞0 (R+

which is constant on the unit interval: ϕ(t) = 1 for 0 < t < 1. Obviously, ϕ ∈ Hs
p(R+) and

ϕ 6∈ H̃s
p(R+ for all s > 1/p. Then,

Kcϕ(t) =
1

π

∞∫
0

ϕ(τ) dτ

t− c τ
=

1

π

1∫
0

dτ

t− c τ
+

1

π

∞∫
1

ϕ(τ) dτ

t− c τ
= c−1 ln τ + ϕ0(t),

where ϕ0 ∈ Hs
p(R+) ∩ C∞(R+), while the first summand ln τ does not belong to Hs(R+)

since all functions in this space are continuous and uniformly bounded for s > 1/p.
We can prove the following very partial result, which has important practical applica-

tions.
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Theorem 3.7 Let 1 < p < ∞, c ∈ C and Xs
p(R+) denote one of the spaces Hr

p(R+) or
Wr

p(R+), while X̃s
p(R+) denote one of the spaces H̃r

p(R+) or W̃r
p(R+).

If
1

p
− 1 < r <

1

p
+ 1, the operator

Ac := cKc − c−1Kc−1 : Xr
p(R+) −→ Xr

p(R+),

: X̃r
p(R+) −→ X̃r

p(R+)
(3.18)

is bounded while for
1

p
− 2 < r <

1

p
the operator

A#
c := Kc −Kc−1 : Xr

p(R+) −→ Xr
p(R+),

: X̃r
p(R+) −→ X̃r

p(R+),
(3.19)

is bounded.

Proof: If
1

p
− 1 < r <

1

p
the spaces H̃r

p(R+ and Hr
p(R+) can be identified and the bounded-

ness (3.18), (3.19) follows from Theorem 3.5.

Now let
1

p
< r <

1

p
+ 1 Due to (2.12) the following diagrams

Hr
p(R+)

Ac // Hr
p(R+)

Λ1
−1

��
Hr−1
p (R+)

Λ1
−1AcΛ

−1
−1

//

Λ−1
−1

OO

Hr−1
p (R+)

,

H̃r
p(R+)

Ac // H̃r
p(R+)

Λ1
1
��

H̃r−1
p (R+)

Λ1
1AcΛ

−1
1

//

Λ−1
1

OO

H̃r−1
p (R+)

(3.20)

are commutative. The diagrams (3.20) provide equivalent lifting of the operatorAc from the
spaces Hr

p(R+) and H̃r
p(R+) to the operator A+

c := Λ1
1AcΛ

−1
1 in the space H̃r−1

p (R+) and
the operator A−c := Λ1

−1AcΛ
−1
−1 in the space Hr−1

p (R+). On the other hand, Λ1
−+1 = i∂t−+I

(see (2.11)) and it can be checked easily, using the integration by parts, that ∂tAc = −A#
c ∂t.

Then,

A−
+

c = Λ1
−+1AcΛ

−1
−+1 = (i∂t−+I)AcΛ

−1
−+1 = (−+Ac −A#

c )Λ−1
1 +A#

c (i∂t−+I)Λ−1
−+1

= (−+Ac −A#
c )Λ−1

1 +A#
c

Since
1

p
− 1 < r − 1 <

1

p
and the embeddings

Λ−1
−1Hr−1

p (R+) = Hr
p(R+) ⊂ Hr−1

p (R+),

Λ−1
1 H̃r−1

p (R+) = H̃r
p(R+) ⊂ H̃r−1

p (R+)
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are continuous, the operators

A−c = (−Ac −A#
c )Λ−1

1 +A#
c : Hr−1

p (R+) −→ Hr−1
p (R+),

A+
c = (Ac −A#

c )Λ−1
1 +A#

c : H̃r−1
p (R+) −→ H̃r−1

p (R+)

are bounded. Then, according the commutative diagrams (3.20), the operatorAc in (3.18) is
bounded for Xr

p = Hr
p. For Xr

p = Wr
p the boundedness is proved similarly or, alternatively,

with the help of the interpolation theorems (see below Corollary ?? for similar arguments).

Now let
1

p
− 2 < r <

1

p
. Then

1

p′
− 1 = −1

p
< −r < 1

p′
+ 1 = 2− 1/p, p′ :=

p

p− 1
. (3.21)

The pair of the operator Kc and −c−1Kc−1 are adjoint to each other. Therefore, the
operator

Ac := cKc − c−1Kc−1 : Xr
p(R+) −→ Xr

p(R+),

: X̃r
p(R+) −→ X̃r

p(R+)
(3.22)

is the adjoint to the operatorA#
c in (3.19). Since the parameters {−r, p′} satisfy the condition

of the first part of the present theorem (see (3.21), the operator Ac in (3.22) is bounded and
jaustifies the boundedness of the adjoint operatorA#

c in (3.19).

The next result is crucial in the present investigation. Note that, the case arg c = 0 is
essentially different and will be considered in Theorem 5.4 below.

Theorem 3.8 Let 0 < arg c < 2π and 0 < arg(−c γ) < π. Then

Λs
−γK

1
cϕ = c−sK1

cΛ
s
−c γϕ, ϕ ∈ H̃r

p(R+), (3.23)

where c−s = |c|−se−is arg c.

Proof: First of all note, that due to the mapping properties of the Bessel potential operators
(see (2.6)) and the mapping properties of a Mellin convolution operator with an admissible
kernel both operators

Λs
−γK

1
c : H̃r

p(R+) −→ Hr−s
p (R+),

K1
cΛ

s
−c γ : H̃r

p(R+) −→ Hr−s
p (R+)

(3.24)

are correctly defined and bounded for all s ∈ R, 1 < p <∞, since −π < arg(−γ) < 0 and
0 < arg(−c γ) < π.

Second, let us consider the positive integer values s = n = 1, 2, . . .. Then, with the help
of formulae (2.11) and (3.15) it follows that:

Λn
−γK

1
cϕ =

(
i
d

dt
− γ
)n

K1
cϕ =

n∑
k=0

(
n

k

)
ik(−γ)n−k

dk

dtk
K1
cϕ
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=
n∑
k=0

(
n

k

)
ik(−γ)n−kc−k

(
K1
c

dk

dtk
ϕ
)

(t) =

= c−nK1
c

( n∑
k=0

(
n

k

)
ik (−c γ)n−k

dk

dtk
ϕ

)
(t) =

= c−nK1
cΛ

n
−c γϕ, ϕ ∈ H̃r

p(R+)

and we have proven formula (3.23) for positive integers s = n = 1, 2, . . ..
For negative s = −1,−2, . . . formulae (3.23) follows if we apply the inverse operator

Λ−n−γ and Λ−n−cγ to the proved ope–rator equality

Λn
−γK

1
c = c−nK1

cΛ
n
−c γ

for positive n = 1, 2, . . . from the left and from the right, respectively. We obtain

K1
cΛ
−n
−cγ = c−nΛ−n−γK

1
c or Λ−n−γK

1
c = cnK1

cΛ
−n
−cγ

and (3.23) is proved also for a negative s = −1,−2, . . ..
In order to derive formula (3.23) for non-integer values of s, we can confine ourselves

to the case −2 < s < −1. Indeed, any non-integer value s ∈ R can be represented in the
form s = s0 + m, where −2 < s0 < −1 and m is an integer. Therefore, if for s = s0 + m
the operators in (3.24) are correctly defined and bounded, and if the relations in question are
valid for −2 < s0 < −1, then we can write

Λs
−γK

1
c = Λs0+m

−γ K1
c = c−mΛs0

−γK
1
cΛ

m
−c γ = c−s0−mK1

cΛ
s0
−c γΛ

m
−c γ

= c−s0−mK1
cΛ

s0+m
−c γ = c−sK1

cΛ
s
−c γ.

Thus let us assume that −2 < s < −1 and consider the expression

Λs
−γK

1
cϕ(t) =

1

2π2
r+

∞∫
−∞

e−iξt(ξ − γ)s
∞∫

0

eiξy
∞∫

0

ϕ(τ)

y − cτ
dτ dy dξ, (3.25)

where r+ is the restriction to R+. It is clear that the integral in the right-hand-side of (3.25)
exists. Indeed, if ϕ ∈ L2, then K1

cϕ ∈ L2 ∩ C∞ and Λs
−γK

1
cϕ ∈ H−s ∩ C∞ ⊂ L2 ∩ C∞.

Now consider the function e−izt(z − γ)seizy, z ∈ C. Since Imγ 6= 0, s < −1, then for
sufficiently small ε > 0 this function is analytic in the strip between the lines R and R + iε
and vanishes at the infinity for all finite t ∈ R and for all y > 0. Therefore, the integration
over the real line R in the first integral of (3.25) can be replaced by the integration over the
line R + iε, i.e.

Λs
−γK

1
cϕ(t) =

1

2π2
r+

∞∫
−∞

e−iξt+εt(ξ + iε− γ)s
∞∫

0

eiξy−εy
∞∫

0

ϕ(τ)

y − cτ
dτ dy dx. (3.26)

Let us use the density of the set C∞0 (R+) in H̃s
p(R+). Thus for all finite t ∈ R and for

all functions ϕ ∈ C∞0 (R) with compact supports the integrand in the corresponding triple
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integral for (3.26) is absolutely integrable. Therefore, for such functions one can use Fubini-
Tonelli theorem and change the order of integration in (3.26). Thereafter, one returns to the
integration over the real line R and obtains

Λs
−γK

1
cϕ(t) =

1

2π2
r+

∞∫
0

ϕ(τ)

∞∫
0

1

y − cτ

∞∫
−∞

eiξ(y−t)(ξ − γ)sdξ dy dτ, (3.27)

In order to study the expression in the right-hand side of (3.27), one can use a well known
formula

∞∫
−∞

(β + ix)−νe−ipx dx =

0 for p > 0,

−2π(−p)ν−1eβ p

Γ(ν)
for p < 0,

Re ν > 0, Reβ > 0,

[GR94, Formula 3.382.6]. It can be rewritten in a more convenient form–viz.,

∞∫
−∞

eiµ ξ(ξ − γ)s dξ =


0 if µ < 0, Im γ > 0,
2π µ−s−1e−

π
2
si+µγi

Γ(−s)
if µ > 0, Im γ > 0.

(3.28)

Applying (3.28) to the last integral in (3.27), one obtains

Λs
−γK

1
cϕ(t) =

e−
π
2
si

πΓ(−s)
r+

∞∫
0

ϕ(τ) dτ

∞∫
t

ei(y−t)γdy

(y − t)1+s(y − cτ)

=
e−

π
2
si

πΓ(−s)
r+

∞∫
0

ϕ(τ) dτ

∞∫
0

y−s−1eiγ ydy

y + t− cτ
, (3.29)

where the integrals exist since −s− 1 > −1 and 0 < arg γ < π (i.e., Im γ > 0).
Let us recall the formula

∞∫
0

xν−1e−µx dx

x+ β
= βν−1eβ µΓ(ν)Γ(1− ν, βµ),

Re ν > 0, Reµ > 0, | arg β| < π

(3.30)

(cf. [GR94, formula 3.383.10]). Due to the conditions 0 < arg c < 2π, t > 0, τ > 0 we
have | arg(t − cτ)| < π and, therefore, we can apply (3.30) to the equality (3.29). Then
(3.29) acquires the following final form:

Λs
−γK

1
cϕ(t) =

e−
π
2
si

π
r+

∞∫
0

e−iγ(t−cτ)Γ(1 + s,−iγ(t− cτ))ϕ(τ) dτ

(t− cτ)1+s
. (3.31)
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Consider now the reverse composition K1
cΛ

s
−c γϕ(t). Changing the order of integration

in the corresponding expression (see (3.27) for a similar motivation), one obtains

K1
cΛ

s
−c γϕ(t) :=

1

2π2
r+

∞∫
0

1

t− c y

∞∫
−∞

e−iξ y(ξ − c γ)s
∞∫

0

eiξ τϕ(τ)dτ dξ dy

=
1

2π2
r+

∞∫
0

ϕ(τ)

∞∫
0

1

t− c y

∞∫
−∞

eiξ(τ−y)(ξ − c γ)sdξ dy dτ. (3.32)

In order to compute the expression in the right-hand side of (3.32), let us recall formula 3.382.7
from [GR94]:

∞∫
−∞

(β − ix)−νe−ipx dx =

0 for p < 0,

2π pν−1e−β p

Γ(ν)
for p > 0,

Re ν > 0, Reβ > 0

and rewrite it in a form more suitable for our consideration–viz.,
∞∫

−∞

eiµ ξ(ξ + ω)s dξ =


0 µ > 0, Imω > 0,
2π (−µ)−s−1e

π
2
si−µωi

Γ(−s)
µ < 0, Imω > 0,

Re s < 0, µ ∈ R, ω, s ∈ C.
(3.33)

Using (3.33), we represent (3.32) in the form

K1
cΛ

s
−c γϕ(t) =

e
π
2
si

πΓ(−s)
r+

∞∫
0

ϕ(τ) dτ

∞∫
τ

e−ic γ(y−τ) dy

(y − τ)s+1(t− c y)

= − e
π
2
si

πcΓ(−s)
r+

∞∫
0

ϕ(τ) dτ

∞∫
0

y−s−1e−icγ y dy

y + τ − c−1t
,

(3.34)

where the integrals exist since −s− 1 > −1 and −π < arg(c γ) < 0 (i.e., Im c γ < 0).
Due to the conditions 0 < arg c < 2π, t > 0, τ > 0 we have | arg(τ − c−1t)| < π,

Therefore, we can apply formula (3.30) to (3.34) and get the following representation:

K1
cΛ

s
−c γϕ(t) = −c

−1e
π
2
si

π
r+

∞∫
0

e−icγ(c−1t−τ)Γ(1 + s,−icγ(c−1t− τ))ϕ(τ) dτ

(τ − c−1t)1+s

=
cse−

π
2
si

π
r+

∞∫
0

e−iγ(t−c τ)Γ(1 + s,−iγ(t− c τ))ϕ(τ) dτ

(t− c τ)1+s
. (3.35)

If we multiply (3.35) by c−s we get precisely the expression in (3.31) and, therefore,
Λs
−γK

1
cϕ(t) = c−sK1

cΛ
s
−c γϕ(t), which proves the claimed equality (3.23) for −2 < s < −1

and accomplishes the proof. �
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Corollary 3.9 Let 0 < arg c < 2π and 0 < arg γ < π. Then for arbitrary γ0 ∈ C such that
0 < arg γ0 < π and −π < arg(c γ0) < 0, one has

Λs
−γK

1
c = c−sWg−γ,−γ0

K1
cΛ

s
−c γ0

, (3.36)

where

gs−γ,−γ0
(ξ) :=

(
ξ − γ
ξ − γ0

)s
.

If, in addition, 1 < p < ∞ and 1/p − 1 < r < 1/p then equality (3.36) can be
supplemented as follows:

Λs
−γK

1
c = c−s

[
K1
cWgs−γ,−γ0

+ T
]

Λs
−c γ0

, (3.37)

where T : H̃r
p(R+) → Hr

p(R+) is a compact operator, and if c is a real negative number,
then c−s := |c|−se−πsi.

PROOF. It follows from equalities e4.2.13 and (3.23) that

Λs
−γK

1
c = Λs

−γΛ
−s
−γ0

Λs
−γ0

K1
c = c−sWg−γ,−γ0

K1
cΛ

s
−c γ0

and (3.36) is proved. If 1 < p <∞ and 1/p− 1 < r < 1/p, then the commutator

T := Wgs−γ,−γ0
K1
c −K1

cWgs−γ,−γ0
: H̃r

p(R+)→ Hr
p(R+)

of Mellin and Fourier convolution operators is correctly defined and bounded. It is compact
for r = 0 and all 1 < p < ∞ (see [Du74, Du87]). Due to Krasnoselsky’s interpolation
theorem (see [Kr60] and also [?, Sections 1.10.1 and 1.17.4]), the operator T is compact in
all Lr-spaces for 1/p− 1 < r < 1/p. Therefore, the equality (3.36) can be rewritten as

Λs
−γK

1
c = c−s

[
K1
cWgs−γ,−γ0

+ T
]

Λs
−c γ0

,

and we are done.

Remark 3.10 The assumption 1/p − 1 < r < 1/p in (3.37) cannot be relaxed. Indeed, the
operator Wgs−γ,−γ0

K1
c = Λs

−γΛ
−s
−γ0

K1
c : H̃r

p(R+) → Hr
p(R+) is bounded for all r ∈ R

(see (3.24)). But the operator K1
cWgs−γ,−γ0

: H̃r
p(R+) → Hr

p(R+) is bounded only for
1/p− 1 < r < 1/p because the function gs−γ,−γ0

(ξ) has an analytic extension into the lower
half-plane but not into the upper one.
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4 A LOCAL PRINCIPLE

In the present section we expose well known, but slightly modified local principle from
[Si65], which we apply intensively.

Let B1(Ω)and B2(Ω) be Banach spaces of functions on a domain Ω ⊂ Rn and multi-
plication by uniformly bounded C∞(Ω)-functions are bounded operators in both spaces. If

Ω = Rn, we consider one point compactification Ω :=
•

Rn of Ω = Rn.
Let x ∈ Ω and consider the class of multiplication operators by functions

∆x :=
{
vI : v ∈ C∞(Ω), v(t) = 1 for |t− x| < ε1, v(x) > 0

and v(t) = 0 for |t− x| > ε2

} (4.1)

where ε2 > ε1 > 0 are not fixed and vary from function to function. ∆x is, obviously, a
localizing class in the algebra of bounded linear operators L (B1(Ω),B2(Ω)) and {∆x}x∈Ω

is a covering class. Indeed, for a system {vxI}x∈Ω we consider the related covering

Ω =
⋃
x∈Ω

Ux, Ux := {y ∈ Ω : vx(y) = 1} .

The set Ω is compact and there exists a finite covering system Ω =
⋃N
j=1 Uxj . The corre-

sponding sum is strictly positive

inf
y∈Rn

g(y) > 1 for g(y) :=
N∑
j=1

vxj(y) (4.2)

and the multiplication operator
∑N

j=1 vxjI = gI has the inverse g−1I . Thus, the system of
localizing classes {∆x}x∈Ω is covering.

Most probably we would have to deal with the quotient space L ′
0(B1(Ω),B2(Ω)) :=

L (B1(Ω),B2(Ω))/C (B1(Ω),B2(Ω)) of linear bounded operators with respect to the com-
pact operators.

Definition 4.1 A quotient class [A] ∈ L ′(B1(Ω),B2(Ω)) is called ∆x-invertible if there
exists a quotient class [Rx] ∈ L ′(B2(Ω),B1(Ω)) and vx ∈ ∆x such that the operator
equalities [RxAvxI1] = [vxI1] and [vxARx] = [vxI2] holds, where I1 and I2 are the identity
operators in the spaces B1(Ω) and B2(Ω).

Consider a pair of operators

Aj : B1(Ωj)→ B2(Ωj), j = 1, 2, (4.3)

in the same pairs of function spaces B1(Ω1), B2(Ω1) and B1(Ω2), B2(Ω2) defined on dif-
ferent domains Ω1,Ω2 ⊂ Rn. For this we assume that for any pair of points x1 ∈ Ω1 and
x2 ∈ Ω2 there exist there exists a local diffeomorphism of neighbourhoods

β : ω(x1)→ ω(x2), xj ∈ ω(xj) ⊂ Ωj, j = 1, 2. (4.4)
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The operators
β∗ϕ(x) := ϕ(β(x)), β−1

∗ ψ(y) := ψ(β−1
( y))

are inverses to each-other and map the spaces

β∗ : Bj(ω2)→ Bj(ω1), β−1
∗ : Bj(ω1)→ Bj(ω2).

Definition 4.2 (Quasi localization) Let multiplication by uniformly bounded C∞ functions
on corresponding closed domains Ω1 and Ω1 are bounded operators in all respective spaces
B2(Ω1) and B1(Ω2), B2(Ω2).

Two classes from the quotient spaces [A1], [A2] ∈ L ′(B1,B2) (see (4.3)) are called
locally quasi equivalent at x1 ∈ Ω1 and x2 ∈ Ω2, if

inf
v1
x1
,v2
x1
∈∆x1

‖‖[v1
x1

][A1 − β∗A2β
−1
∗ ]‖‖ = inf

v1
x1
,v2
x1
∈∆x1

‖‖[A1 − β∗A2β
−1
∗ ][v2

x1
I]‖‖ = 0, (4.5)

where the norm in the quotient space L ′(B1,B2) = L (B1,B2)/C (B1,B2) coincides
with the essential norm

‖[A]‖ := ‖‖A‖‖ := inf
T∈C (B1,B2)

‖A+ T‖.

Such an equivalence we denote as follows [A1]
∆x1∼ β

∆x2∼ [A2] or also [A1]
x1∼ β

x2∼ [A2].
If Ω1 = Ω2 = Ω and β(x) = x is the identity map, the equivalence at the point x ∈ Ω is

denoted as follows [A1]
∆x∼ [A2] or also [A1]

x∼ [A2].

Definition 4.3 Let A, B1(Ω) and B2(Ω) be the same as in Definition 4.1. An operator
A : B1(Ω) → B2(Ω) is called of local type if v1Av2I : B1(Ω) → B2(Ω) is compact
for all v1, v2 ∈ C∞(Ω), provided supp v1 ∩ supp v2 = ∅ (see [Se66]); Or, equivalently, if
vA−AvI : B1(Ω)→ B2(Ω) is compact for all v ∈ C∞(Ω) (see [Se66]).

Proposition 4.4 (Localization principle) Let A, Bj(Ωk), j, k = 1, 2, be a group of four
function spaces as in Definition 4.2 and

A : B1(Ω1)→ B2(Ω1), Bx : B1(Ω2)→ B2(Ω2), x ∈ Ω1,

be operators of local type.

If the quasi equivalence [A]
x∼ βx

y∼ [Bx] holds for some diffeomorphism βx : ω(x)→
ω(y(x)), y(x) ∈ Ω2, then [A] is locally invertible at x ∈ Ω1 if and only if [Bx] is locally
invertible at y(x).

If the quasi equivalence [A]
x∼ βx

y(x)∼ [Bx] holds for all x ∈ Ω1 and [Bx] ∈ L ′(B1(Ω2),B2(Ω2))
are locally invertible at y(x) ∈ Ω2 for all y(x) ∈ Ω, than the quotient class [A] is globally
invertible (i.e., A : B1(Ω1)→ B2(Ω1) is a Fredholm operator).

Remark 4.5 If in the foregoing Proposition 4.4 we drop the condition that A and Bx are of
local type, then from the left (from the right) quasi equivalence and the left invertibility of
[Bx] ∈ L ′(B1(Ω2),B2(Ω2)) at y(x) ∈ Ω2 for all y(x) ∈ Ω, follows the global invertibility
of the quotient class [A] from the left (from the right), i.e., the existence of the left (of the
right) regularizer for the operator A : B1(Ω1)→ B2(Ω1)).
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5 ALGEBRA GENERATED BY MELLIN AND FOURIER CONVOLUTION OPERATORS

Let
•

R := R ∪ {∞} denote one point compactification of the real axes R and R :=

R ∪ {−+∞}-the two point compactification of R. By C(
•

R) (by C(R), respectively) we
denote the space of continuous functions g(x) on R which have the equal limits at the infinity

g(−∞) = g(+∞) (limits at the infinity can be different g(−∞) 6= g(+∞). By PC(
•

R)is

denoted the space of piecewise-continuous functions on
•

R, having the limits a(t−+0) at all

points t ∈
•

R, including the infinity.
Unlike the operators W 0

a and M0
a (see Section 1), possessing the property

W 0
aW

0
b = W 0

ab, M0
aM

0
b = M0

ab for all a, b ∈Mp(R), (5.1)

the composition of the convolution operators on the semi-axes Wa and Wb cannot be com-
puted by the rules similar to (5.1). Nevertheless, the following propositions hold.

Proposition 5.1 ([Du79],§ 2) Let 1 < p < ∞ and a, b ∈ Mp(R+) ∩ PC(
•

R) be scalar Lp-
multipliers, piecewise-continuous on R including infinity. Then the commutant [Wa,Wb] :=
WaWb −WbWa of the operators Wa and Wb is a compact operator in the Lebesgue space
[Wa,Wb] : Lp(R+) 7−→ Lp(R+).

Moreover, if, in addition, the symbols a(ξ) and b(ξ) of the operators Wa and Wb have no
common discontinuity points, i.e., if[

a(ξ + 0)− a(ξ + 0)
][
b(ξ + 0)− b(ξ + 0)

]
= 0 for all ξ ∈

•

R,

then T = WaWb −Wab is a compact operator in Lp(R+).

Note that the algebra of N ×N matrix multipliers M2(R) coincides with the algebra of
N × N matrix functions essentially bounded on R. For p 6= 2, the algebra Mp(R) is rather
complicated. There are multipliers g ∈ Mp(R) which are elliptic, i.e. ess inf |g(x)| > 0,
but 1/g 6∈Mp(R). In connection with this, let us consider the subalgebra PCMp(R) which
is the closure of the algebra of piecewise-constant functions on R in the norm of multipliers
Mp(R) ∥∥a |Mp(R)

∥∥ :=
∥∥W 0

a | Lp(R)
∥∥.

Note that any function g ∈ PCMp(R) ⊂ PC(R) has limits g(x−+0) for all x ∈ R, including
the infinity. Let

CMp(R) := C(R) ∩ PCM0
p(R), CM0

p(
•

R) := C(
•

R) ∩ PCMp(R),

where functions g ∈ CMp(R) (functions h ∈ C(
•

R)) might have jump only at the infinity
g(−∞) 6= g(+∞) (are continuous at the infinity h(−∞) = h(+∞)).

PCMp(R) is a Banach algebra and contains all functions of bounded variation as a sub-
set for all 1 < p < ∞ (Stechkin’s theorem, see [Du79, Section 2]). Therefore, cothπ(iβ +
ξ) ∈ CMp(R) for all p ∈ (1,∞).
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Proposition 5.2 ([Du79], § 2) If g ∈ PCMp(R) is an N × N matrix multiplier, then its
inverse g−1 ∈ PCMp(R) if and only if it is elliptic, i.e. detg(x−+0) 6= 0 for all x ∈ R. If
this is the case, the corresponding Mellin convolution operator M0

g : Lp(R+) 7−→ Lp(R+)

is invertible and (M0
g)
−1 = M0

g−1 .

Moreover, any N × N matrix multiplier b ∈ CM0
p(
•

R) can be approximated by polyno-
mials

rn(ξ) :=
m∑

j=−m

cm

(ξ − i
ξ + i

)m
, rm ∈ CM0

p(R),

with constantN×N matrix coefficients, whereas anyN×N matrix multiplier g ∈ CM0
p(R)

having a jump discontinuity at infinity can be approximated by N × N matrix functions
d cothπ(iβ + ξ) + rm(ξ), 0 < β < 1.

Due to the connection between the Fourier and Mellin convolution operators (see Intro-
duction, (??)), the following is a direct consequence of Proposition 3.2.

Corollary 5.3 The Mellin convolution operator

A = M0
Aβ

: Lp(R, tγ),

in (2.2) with the symbol Aβ(ξ) in (??) is invertible if and only if the symbol is elliptic,

inf
ξ∈R

∣∣detAβ(ξ)
∣∣ > 0 (5.2)

and the inverse is then written as A−1 = M0
A −1

1/p

.

The Hilbert transform on the semi-axis

SR+ϕ(x) :=
1

πi

∞∫
0

ϕ(y) dy

y − x
(5.3)

is the Fourier convolution SR+ = W−sign on the semi-axis R+ with the discontinuous symbol
−signξ (see [Du79, Lemma 1.35]), and it is also the Mellin convolution

SR+ = M0
sβ

= ZβW
0
sβ

Z−1
β , (5.4)

sβ(ξ) := coth π(iβ + ξ) =
eπ(iβ+ξ) + e−π(iβ+ξ)

eπ(iβ+ξ)e−π(iβ+ξ)
= −i cotπ(βıξ), ξ ∈ R

(cf. (??) and (1.7)). Indeed, to verify (5.4) rewrite SR+ in the following form

SR+ϕ(x) :=
1

πi

∞∫
0

ϕ(y)

1− x
y

dy

y
=

∞∫
0

K
(x
y

)
ϕ(y)

dy

y
,
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where K(t) := (1/πi)(1− t)−1. Further, using the formula

∞∫
0

tz−1

1− t
dt = π cotπz, Re z < 1,

cf. [GR94, formula 3.241.3], one shows that the Mellin transform MβK(ξ) coincides with
the function sβ(ξ) from (5.4).

Next Theorem 5.4 is an enhancement of Theorem 2.4.

Theorem 5.4 Let 1 < p < ∞ and s ∈ R. For arbitrary γj ∈ C, Im γj > 0 (j=1,2) the
Hilbert transform

K1
1 = −iS+

R = −iW−sign = Wisign : H̃s
p(R+) −→ Hs

p(R+) (5.5)

(see (3.14), (3.15) and (5.3); the case c = 1, arg c = 0, Theorem 3.8). K1
1 is a Fourier

convolution operator and

Λs
−γ1

K1
1Λ
−s
γ2

= Wisigngs−γ1,γ2
: Lp(R+) −→ Lp(R+), (5.6)

where gs−γ1,γ2
(ξ) is defined in (2.10).

Proof: Formula (5.6) follows from (2.8) and (5.5).

We need certain results concerning the compactness of Mellin and Fourier convolutions
in Lp-spaces. These results are scattered in literature. For the convenience of the reader,
we reformulate them here as Propositions 5.5–5.9. For more details, the reader can consult
[Co69, Du79, Du87].

Proposition 5.5 ([Du87], Proposition 1.6) Let 1 < p < ∞, a ∈ C(
•

R+), b ∈ CM0
p(
•

R) and
a(0) = a(∞) = b(∞) = 0. Then the operators aM0

b ,M
0
b aI : Lp(R+) −→ Lp(R+) are

compact.

Proposition 5.6 ([Du79], Lemma 7.1 and [Du87], Proposition 1.2) Let

1 < p < ∞, a ∈ C(
•

R+), b ∈ CM0
p(
•

R) and a(∞) = b(∞) = 0. Then the operators
aWb,Wb aI : Lp(R+) −→ Lp(R+) are compact.

Proposition 5.7 ([Du87], Lemma 2.5, Lemma 2.6 and [Co69]) Assume that 1 < p < ∞.
Then

1. If g ∈ CM0
p(
•

R) and g(∞) = 0, the Hankel operator Hg : Lp(R+) −→ Lp(R+) is
compact;

2. If functions a ∈ C(
•

R), b ∈ CM0
p(R), c ∈ C(R+) fulfill one of the conditions

(i) c(0) = b(+∞) = 0 and a(ξ) = 0 for all ξ > 0,

(ii) c(0) = b(−∞) = 0 and a(ξ) = 0 for all ξ < 0,
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(iii) c(0) = b(−+∞) = a(0) = 0,

the operators cWaM
0
b , cM

0
bWa, WaM

0
b cI, M

0
bWa cI : Lp(R+) → Lp(R+) are all

compact.

Proof: Let us comment on item 1 which is actually well known. The kernel k(x+ y) of the
operator Ha is approximated by the Laguerre polynomials km(x + y) = e−x−ypm(x + y),
m = 1, 2, . . . , where pm(x+y) are polynomials of orderm so that the corresponding Hankel
operators converge in norm ‖Ha −Ham| |L (Lp(R+))‖
longrightarrow0, where am = Fkm are the Fourier transforms of the Laguerre polynomi-
als (see, e.g. [GF74]). Since

|km(x+ y)| =
∣∣e−x−ypm(x+ y)

∣∣ 6 Cme
−xe−yxmym, m = 1, 2, . . . ,

for some constant Cm, the condition on the kernel

∞∫
0

[ ∞∫
0

|km(x+ y)|p′ dy
]p/p′

dx <∞, p′ :=
p

p− 1
,

holds and ensures the compactness of the operator Ham : Lp(R+) −→ Lp(R+). Then the
limit operator Ha = lim

m−→∞
Ham is compact as well.

Items (i) and (ii) are proved in [Du87].
The item (iii) follows from (i) and (ii) and the representation cWaM

0
b = cWχ−aM

0
b +

cWχ+aM
0
b , where χ−+ are the characteristic functions of the semi-axes R−+ .

Proposition 5.8 ([Du79], Lemma 7.1 and [Du87], Proposition 1.2) Let

1 < p < ∞, a ∈ C(
•

R+), b ∈ CM0
p(
•

R) and a(∞) = b(∞) = 0. Then the operators
aWb,Wb aI : Lp(R+) −→ Lp(R+) are compact.

Proposition 5.9 ([Du79], Lemma 7.4 and [Du87], Lemma 1.2) Let 1 < p < ∞ and let a
and b satisfy at least one of the conditions

(i) a ∈ C(R+), b ∈M0
p(R) ∩ PC(R),

(ii) a ∈ PC(R+), b ∈ CM0
p(R).

Then the commutants [aI,Wb] and [aI,M0
b ] are compact operators in the space Lp(R+).

Remark 5.10 Note that, if both, a symbol b and a function a, have jumps at finite points, the
commutants [aI,Wb] and [aI,M0

b ] are not compact. Only jumps of a symbol at the infinity
does not matter.

Proposition 5.11 ([Du87]) The Banach algebra, generated by the Cauchy singular integral
operator SR+ and the identity operator I on the semi-axis R+, contains Fourier convolution
operators with symbols having discontinuity of the jump type only at zero and at the infinity

and Mellin convolution operators with continuous symbols on
•

R (including the uinfinity).
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Moreover, the Banach algebra Fp(R+) generated by the Cauchy singular integral oper-
ators with “shifts”

ScR+ϕ(x) :=
1

πi

∞∫
0

e−ic(x−y)ϕ(y) dy

y − x
= W−sign(ξ−c)ϕ(x) for all c ∈ R

and by the identity operator I on the semi-axis R+ over the field of N × N complex valued
matrices coincides with the Banach algebra generated by Fourier convolution operators with
piecewise-constant N ×N matrix symbols contains all Fourier convolution Wa and hankel
Hb operators with N ×N matrix symbols (multipliers) a, b ∈ PCMp(R).

Let us consider the Banach algebra Ap(R+) generated by Mellin convolution and Fourier
convolution operators, i.e. by the operators

A :=
m∑
j=1

M0
aj
Wbj , (5.7)

and there compositions, in the Lebesgue space Lp(R+). Here M0
aj

are Mellin convolution

operators with continuous N × N matrix symbols aj ∈ CMp(
•

R), Wbj are Fourier convo-
lution operators with N × N matrix symbols bj ∈ CMp(R \ {0}) := CMp(R

− ∪ R+
).

The algebra of N × N matrix Lp-multipliers CMp(R \ {0}) consists of those piecewise-
continuous N × N matrix multipliers b ∈ Mp(R) ∩ PC(R) which are continuous on the
semi-axis R− and R+ but might have finite jump discontinuities at 0 and at the infinity.

This and more general algebras were studied in [Du87] and also in earlier works [Du74,
Du86, Th85].

Remark 5.12 If in (5.7) we admit more general symbols aj ∈ CMp(R) which have different
limits at the infinity aj(−∞) 6= aj(+∞), this will not be a generalization.

Indeed, if aj ∈ CMp(R) has different limits at the infinity aj(−∞) 6= aj(+∞) we can
represent

aj(ξ) = a0
j(ξ) + aj(−∞)

1− cothπ
(
i
p

+ ξ
)

2
+ aj(+∞)

1 + coth π
(
i
p

+ ξ
)

2
,

a0
j(−+∞) = 0

and the corresponding Mellin operator is written as follows

M0
aj

= M0
a0
j

+
aj(−∞)

2
[I − SR+ ] +

aj(−∞)

2
[I + SR+ ]

= M0
a0
j

+
aj(−∞)

2
[I −W−sign] +

aj(−∞)

2
[I +W−sign]

(see (??) and (3.15)). Therefore, the discontinuity at the infinity of the symbols of Mellin con-
volution operators is taken over in Fourier convolution operators and we can even assume
in (5.7) that a0

j(−+∞) = 0 for all j = 1, . . . ,m.
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In order to keep the exposition self-contained and to improve formulations from [Du87],
the results concerning the Banach algebra generated by the operators (5.7) are presented here
with some modification and the proofs.

Note that the algebra Ap(R+) is actually a subalgebra of the Banach algebra Fp(R+)
generated by the Fourier convolution operators Wa with piecewise-constant symbols a(ξ)
in the space Lp(R+) (cf. Proposition 5.9). Let S(Lp(R+)) denote the ideal of all compact
operators in Lp(R+). Since the quotient algebra Fp(R+)/S(Lp(R+)) is commutative in the
scalar case N = 1, the following is true.

Corollary 5.13 The quotient algebra Ap(R+)/S(Lp(R+)) is commutative in the scalar case
N = 1.

To expose the symbol of the operator (5.7), consider the infinite clockwise oriented “rect-
angle” R := Γ1 ∪ Γ−2 ∪ Γ+

2 ∪ Γ3, where (cf. Figure 1)

Γ1 := {∞} × R, Γ−
+

2 := R+ × {−+∞}, Γ3 := {0} × R.

(0, ξ)

(∞, ξ)

Γ3

Γ1

Γ−2 (η,−∞) Γ+
2(η,+∞)

(∞,−∞)

(0,+∞)(0,−∞)

(∞,+∞)

Fig. 1. The domain R of definition of the symbol A s
p (ω).

The symbol Ap(ω) of the operatorA in (5.7) is a function on the set R, viz.

Ap(ω) :=



m∑
j=1

aj(ξ)(bj)p(∞, ξ), ω = (∞, ξ) ∈ Γ1,

m∑
j=1

aj(∞)bj(η), ω = (η,+∞) ∈ Γ+
2 ,

m∑
j=1

aj(∞)bj(−η), ω = (η,−∞) ∈ Γ−2 ,

m∑
j=1

aj(ξ)(bj)p(0, ξ), ω = (0, ξ) ∈ Γ3.

(5.8)
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The symbol Ap(ω), when ω = (∞, ξ) ranges through the infinite interval Γ1 (see Fig. 1) fills
the gap between the values

m∑
j=1

aj(∞)bj(−∞) and
m∑
j=1

aj(∞)bj(+∞)

and when ω = (0, ξ) ranges through the infinite interval Γ3 (see Fig. 1) it fills the gap
between the values

m∑
j=1

aj(ξ)bj(0− 0) and
m∑
j=1

aj(ξ)bj(0 + 0).

The connecting function gp(∞, ξ) in (5.8) for a piecewise continuous function g ∈ PC(R)
is defined as follows

gp(x, ξ) :=
g(x+ 0) + g(x− 0)

2
+
g(x+ 0)− g(x− 0)

2i
cot π

(1

p
− iξ

)
= eiπ

g+x +g−x
2

cosπ
(

1
p
− g+

x +g−x
2
− iξ

)
sin π

(
1
p
− iξ

) , ξ ∈ R, (5.9)

g−
+

x :=
1

πi
ln g(x−+0), Re g−

+

x =
1

π
arg g(x−+0), x ∈

•

R := R ∪ {∞}.

The function gp(∞, ξ) fills up the discontinuity (the jump) of g(ξ) at∞ between g(−∞) and
g(+∞) with an oriented arc of the circle such that from every point of the arc the oriented
interval [g(−∞), g(+∞)] is seen under the angle π/p. Moreover, the oriented arc lies above
the oriented interval if 1/2 < 1/p < 1 (i.e., if 1 < p < 2) and the oriented arc is under the
oriented interval if 0 < 1/p < 1/2 (i.e., if 2 < p <∞). For p = 2 the oriented arc coincides
with the oriented interval (see Figure 2).

g(−∞) g(−∞) g(−∞)

g(+∞) g(+∞) g(+∞)

1 < p < 2 2 < p <∞ p = 2

Figure 2: Arc condition

A similar geometric interpretation is valid for the function gp(t, ξ), which connects the
point g(t− 0) with g(t+ 0) at the point t where g(ξ) has a jump discontinuity.

To make the symbol Ap(ω) continuous, we endow the rectangle R with a special topol-
ogy. Thus let us define the distance on the curves Γ1, Γ−

+

2 , Γ3 and on R by

ρ(x, y) :=
∣∣∣ arg

x− i
x+ i

− arg
y − i
y + i

∣∣∣ for arbitrary x, y ∈ R.
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In this topology, the length |R| of R is 6π, and the symbol Ap(ω) is continuous everywhere
on R. The image of the function detAp(ω), ω ∈ R (detBp(ω)) is a closed curve in the
complex plane. It follows from the continuity of the symbol at the angular points of the
rectangle R where the one-sided limits coincide. Thus

Ap(−+∞,∞) =
∑m

j=1 aj(∞)bj(+−∞),

Ap(−+∞, 0) =
∑m

j=1[aj(∞)bj(0+−0).

Hence, if the symbol of the corresponding operator is elliptic, i.e. if

inf
ω∈R

∣∣detAp(ω)
∣∣ > 0, (5.10)

the increment of the argument (1/2π) arg Ap(ω) when ω ranges through R in the positive di-
rection is an integer, is called the winding number or the index and it is denoted by inddetAp.

Theorem 5.14 Let 1 < p <∞ and let A be defined by (5.7). The operator A : Lp(R+) −→
Lp(R+) is Fredholm if and only if its symbol Ap(ω) is elliptic. If A is Fredholm, the index of
the operator has the value

IndA = −inddetAp. (5.11)

The operator A is locally invertible at 0 ∈ R+ if and only if its symbol A s
p (ω), defined

in (5.8), is elliptic on Γ1, i.e.

inf
ω∈Γ1

∣∣det A s
p (ω)

∣∣ = inf
ξ∈R

∣∣det A s
p (ξ,∞)

∣∣ > 0.

Proof: Note that our study is based on a localization technique. For more details concerning
this approach we refer the reader to [Du79, Du84a, GK79, Si65].

Let us apply the Gohberg–Krupnik local principle to the operator A in (5.9), “freezing”
the symbol of A at a point x ∈ R := R ∪ {−∞} ∪ {+∞}. For x ∈ R and ` ∈ N, ` ≥ 1, let
C`
x(R) denote the set of all `-times differentiable non-negative functions which are supported

in a neighborhood of x ∈ R and are identically one everywhere in a smaller neighborhood of
x. For x ∈ {−∞} ∪ {+∞} ∪ {∞}, the functions from the corresponding classes C`

+∞(R)

and C`
−∞(R) vanish on semi-infinite intervals [−∞, c) and (−c,∞], respectively, for certain

c > 0 and are identically one in smaller neighborhoods. It is easily seen that the system of
localizing classes {C`

x(R)}x∈R is covering in the algebras C(R), Mp(R), respectively (cf.
[Du79, Du84a, DS08, GK79]).

Let us now consider a system of localizing classes {Lω,x}(ω,x)∈R×R+ in the quotient
algebra Ap(R+)/S(Lp(R+)). These localizing classes depend on two variables, viz. on
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ω ∈ R and x ∈ R+. In particular, the class Lω,x contains the operator Λω,x,

Λω,x :=



[
h0M

0
vξ
Wg∞

]
=
[
h0M

0
vξ

]
if ω = (ξ,∞) ∈ Γ1, x = 0;[

hxM
0
v
−+∞
Wg∞

]
=
[
hxM

0
v
−+∞
Wg−

+∞

]
if ω = (−+∞,∞) ∈ Γ−

+

2 ∩ Γ1, x ∈ R+;[
h∞M

0
v
−+∞
Wgη

]
=
[
h∞M

0
v
−+∞
Wg−

+ η

]
if ω = (−+∞, η) ∈ Γ−

+

2 , x =∞;[
h∞M

0
vξ
Wg0

]
=
[
M0

vξ
Wg0

]
if ω = (ξ, 0) ∈ Γ3, x =∞,

(5.12)

where hx ∈ C1
x(R+), vξ ∈ C1

ξ (R+), gη ∈ C1
η(R+), and [A] ∈

Ap(R+)/S(Lp(R+)) denotes the coset containing the operator A ∈ Ap(R+).
To verify the equalities in (5.12), one has to show that the difference between the opera-

tors in the square brackets is compact.
Consider the first equality in (5.12): The operator

h0Wg∞ − h0I = h0W(g∞−1) = h0Wg0

is compact, since both functions h0 and 1− g∞ = g0 have compact supports, so Proposition
5.5 applies.

To check the second equality in (5.12), let us note that hx(0) = 0, v−+∞(+−∞)

= 0 and g−+∞(ξ) = 0 for all +− ξ > 0. From the fourth part of Proposition 5.7 we con-
clude that for any x ∈ R+ the operator hxM0

v
−+∞
Wg

−+∞
is compact. This leads to the claimed

equality since[
hxM

0
v
−+∞
Wg∞

]
=
[
hxM

0
v
−+∞
{Wg−∞ +Wg+∞}

]
=
[
hxM

0
v
−+∞
Wg−

+∞

]
.

The third identity in (5.12) can be verified analogously. Concerning the fourth identity in
(5.12): one can replace h∞ by 1 because the difference h∞Wg0 −Wg0 = (1 − h∞)Wg0 =
h0Wg0 is compact due to Proposition 5.5.

Now consider other properties of the system {Lω,x}(ω,x)∈R×R+ . Propositions 5.5–5.8
imply that [

hxM
0
vξ
Wg∞

]
= 0 for all (ξ, η, x) ∈ R× R× R+ \R× R+.

Therefore, the system of localizing classes {Lω,x}(ω,x)∈R×R+ is covering: for a given system
{Λω,x}(ω,x)∈R×R+ of localizing operators one can select a finite number of points (ω1, x1) =

(ξ1, η1, x1), . . . , (ωs, xs) = (ξs, ηs, xs) ∈ R and add appropriately chosen terms [hxs+jM
0
vξs+j

Wgs+j ] =

0 with (ξs+j, ηs+j, xs+j)) ∈ R× R× R+ \ (R× R+), j = 1, 2, . . . , r so, that the equality

r∑
j=1

s∑
k=1

[
cxjM

0
aξj
Wbηk

]
=
[
cM0

aWb

]
(5.13)
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holds and the functions c ∈ C(R+), a ∈ CMp(R), b ∈ CMp(R) are all elliptic. This implies
the invertibility of the coset [cM0

aWb] in the quotient algebra Ap(R+)/S(Lp(R+)) and the
inverse coset is [cM0

aWb]
−1 = [c−1M0

a−1Wb−1 ].
Note that the choice of a finite number of terms in (5.13) is possible due to the Borel–

Lebesgue lemma and the compactness of the sets R and R+ (two point and one point com-
pactification of R and of R+, respectively).

Moreover, localization in the quotient algebra Ap(R+)/S(Lp(R+)) leads to the follow-
ing local representatives of the cosets containing Mellin and Fourier convolution operators
with symbols a, b ∈ CMp(R):

[M0
a]

M0
vξ0∼ [M0

a(ξ0)] = [a(ξ0)I] if ξ0 ∈ R, (5.14a)

[M0
a]

vx0I∼ [M0
a∞ ] if x0 ∈ R+, x0 6= 0, (5.14b)

[M0
a]

v∞I∼ [M0
a] if x0 =∞, (5.14c)

[M0
a]

v0I∼ [M0
a] if x0 = 0, (5.14d)

[Wb]
Wvη0∼ [Wb(η0)] = [b(η0)I] if η0 ∈ R \ {0}, (5.14e)

[Wb]
Wv0∼ [Wb0 ] = [M0

bp(0,·)] if η = 0, (5.14f)

[Wb]
Wv∞∼ [Wb∞(∞,·)] = [M0

bp(∞,·)] if η0 =∞, (5.14g)

[Wb]
vx0I∼ [Wb∞ ] = [M0

bp(∞,·)] if x0 ∈ R+, (5.14h)

[Wb]
v∞I∼ [Wb] if x0 =∞, (5.14i)

where
g∞(ξ) := g(+∞)+g(−∞)

2
+ g(+∞)−g(−∞)

2
signξ

= g(−∞)χ−(ξ) + g(+∞)χ+(ξ),

g0(ξ) := g(0+0)+g(0−0)
2

+ g(0+0)+g(0−0)
2

signξ
= g(0− 0)χ−(ξ) + g(0 + 0)χ+(ξ),

(5.15)

and χ−+ (ξ) := (1/2)(1−+signξ). Note that in the equivalency relations (5.14e)–(5.14g) we
used the identities, cf. (5.3) and (5.9),

Wg∞ = g(−∞)−g(+∞)
2

− g(−∞)−g(+∞)
2

SR+ = Mgp(∞,·),

Wg0 = g(0+0)+g(0−0)
2

− g(0+0)−g(0−0)
S R+ = Mgp(0,·),

which means that the Fourier convolution operators with homogeneous of order 0 sym-
bols g∞(ξ) and g0(ξ) are, simultaneously, Mellin convolutions with the symbols gp(∞, ξ),
gp(0, ξ).

Using the equivalence relations (5.14a)–(5.14h) and the compactness of the correspond-
ing operators, cf. Propositions 5.5–5.7, one finds easily the following local representatives
of the operator (coset) A ∈ Ap(R+)/SLp(R+) (see (5.9) for the operator A):

[A]
Λ(ξ0,∞),0∼

[ m∑
j=1

M0
aj(ξ0)W(bj)∞

]
=
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=
[ m∑
j=1

M0
aj(ξ0)(bj)p(∞,·)

]
Λ(ξ0,∞),0∼

[ m∑
j=1

M0
aj(ξ0)(bj)p(∞,ξ0)

]
=

=
[
Ap(ξ0,∞)I

]
if ω = (ξ0,∞) ∈ Γ1, x0 = 0, (5.16a)

[A]
Λ(−+∞,∞),x0∼

[ m∑
j=1

M0
aj(−+∞)W(bj)∞

]
=
[ m∑
j=1

M0
aj(−+∞)(bj)p(∞,·)

]
=

=
[
M0

Ap(−+∞,·)
] Λ(−+∞,∞),x0∼

[
Ap(−+∞,∞)I

]
(5.16b)

if ω = (−+∞,∞) ∈ Γ−
+

2 ∩ Γ1, 0 < x0 <∞;

[A]
Λ(−+∞,−+ η0),∞
∼

[ m∑
j=1

M0
aj(−+∞)Wbj(−+ η0)

]
=
[ m∑
j=1

aj(−+∞)bj(+− η0)I
]

=

=
[
Ap(−+∞,+− η0)I

]
if η0 > 0, ω = (−+∞,+− η0) ∈ Γ−

+

2 , x0 =∞;(5.16c)

[A]
Λ(ξ0,0),∞∼

[ m∑
j=1

M0
aj
Wb0j

]
=

=
[ m∑
j=1

aj(ξ0)M(bj)p(0,·)

]
Λ(ξ0,0),∞∼

[ m∑
j=1

aj(ξ0)(bj)p(0, ξ0)
]

=

=
[
Ap(ξ0, 0)I

]
if ω = (ξ0, 0) ∈ Γ3, x0 =∞; (5.16d)

[A]
Λ(−+∞,η),∞
∼

[ m∑
j=1

M0
aj(−+∞)Wbj(0)

]
=
[ m∑
j=1

aj(−+∞)bj(0)I
]

=

=
[
Ap(−+∞, 0)I

]
if ω = (−+∞, 0) ∈ Γ3, x0 =∞. (5.16e)

It is remarkable that the local representatives (5.16a)–(5.16e) are just the quotient classes of
multiplication operators by constant N × N matrices [Ap(ξ0, η0)I]. If detAp(ξ0, η0) = 0,
these representatives are not invertible, both locally and globally. On the other hand, they
are globally invertible if detAp(ξ0, η0) 6= 0. Thus, the conditions of the local invertibility for
all points ω0 = (ξ0, η0) ∈ R and the global invertibility of the operators under consideration
coincide with the ellipticity condition for the symbol inf

(ξ0,η0)∈R
detAp(ξ0, η0) 6= 0.

The index IndA is a continuous integer-valued multiplicative function IndAB = IndA+
IndB defined on the group of Fredholm operators of Ap(R+). On the other hand, the index
function inddetAp defined on Lp-symbols Ap possesses the same property inddetApBp =
inddetAp + inddetBp, see explanations after (5.10). Moreover, the set of operators (5.9) is
dense in the algebra Ap(R+) and the corresponding set of their symbols is dense in the al-
gebraC(R) of all continuous functions on R. For p = 2 these algebras even coincide. There-
fore, there is an algebraic homeomorphism between the quotient algebra Ap(R+)/S(Lp(R+))
and the algebra of their symbols which is a dense subalgebra of C(R). Hence, two various
index functions can be only connected by the relation IndA = M0inddetAp with an integer
constant M0 independent of A ∈ Ap(R+)/S(Lp(R+)). Since for any Fourier convolution
operator A = Wa the index formula is IndA = −inddetAp [Du74, Du75a, Du79], the
constant M0 = −1, and the index formula (5.11) is proved.

Concerning the concluding assertion of the theorem: A is, after lifting to Lp-space,
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locally equivalent at 0 to the Mellin convolution operator M0
A s
p (∞,ξ), which commutes with

the dilation
M0

aVλ = VλM
0
a, Vλϕ(t) := ϕ(λt) for all λ > 0

and, therefore, is locally invertible at 0 if and only if is globally invertible (see [Du77, Du79,
Si65]) and this is the case iff inf

ξ∈R
|A s

p (∞, ξ)| > 0.

Remark 5.15 Let us emphasize that the formula (5.11) does not contradict the invertibility
of “pure Mellin convolution” operators M0

a : Lp(R+) −→ Lp(R+) with an elliptic matrix
symbol a ∈ CM0

p(R), inf
ξ∈R
|a(ξ)| > 0, stated in Proposition 1.1, even if inda 6= 0.

In fact, computing the symbol of M0
a by formula (5.8), one obtains

(M0
a)p(ω) :=


a(ξ), ω = (ξ,∞) ∈ Γ1,

a(+∞), ω = (+∞, η) ∈ Γ+
2 ,

a(−∞), ω = (−∞, η) ∈ Γ−2 ,

a(ξ), ω = (ξ, 0) ∈ Γ3.

Noting that on the sets Γ1 and Γ3 the variable ω runs in opposite direction, the increment of
the argument [arg det(M0

a)p(ω)]R = 0 is zero, implying IndM0
a = 0.

In contrast to the above, the pure Fourier convolution operators
Wb : Lp(R+) −→ Lp(R+) with elliptic matrix symbol b ∈ CM0

p(R),
inf
ξ∈R
|bp(ξ, η)| > 0 can possess non-zero indices. Since

bp(ω) :=


bp(∞, ξ), ω = (ξ,∞) ∈ Γ1,

b(−η), ω = (+∞, η) ∈ Γ+
2 ,

b(η), ω = (−∞, η) ∈ Γ−2 ,

b(0), ω = (ξ, 0) ∈ Γ3,

one arrives at the well-known formula

IndWb = −indbp.

Moreover, in the case where the symbol b(−∞) = b(+∞) is continuous, one has bp(ξ, η) =
b(ξ). Thus the ellipticity of the corresponding operator leads to the formula

indbp = inddetb.

If Ap(ω) is the symbol of an operator A of (5.7), the set R(Ap) := {Ap(ω) ∈ C :
ω ∈ R} coincides with the essential spectrum of A. Recall that the essential spectrum
σess(A) of a bounded operator A is the set of all λ ∈ C such that the operator A − λI is
not Fredholm in Lp(R+) or, equivalently, the coset [A− λI] is not invertible in the quotient
algebra Ap(R+)/S(Lp(R+)). Then, due to Banach theorem, the essential norm ‖‖A‖‖ of
the operator A can be estimated as follows

sup
ω∈ω
|Ap(ω)| 6 ‖‖A‖‖ := inf

T∈S(Lp(R+))

∥∥(A + T) | L (Lp(R+))
∥∥. (5.17)
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The inequality (5.17) enables one to extend continuously the symbol map (5.8)

[A] −→ Ap(ω), [A] ∈ Ap(R+)/S(Lp(R+)) (5.18)

on the whole Banach algebra Ap(R+). Now, applying Theorem 5.14 and atandard methods,
cf. [Du87, Theorem 3.2], one can derive the following result.

Corollary 5.16 Let 1 < p < ∞ and A ∈ Ap(R+). The operator A : Lp(R+) −→ Lp(R+)
is Fredholm if and only if it’s symbol Ap(ω) is elliptic. If A is Fredholm, then

IndA = −indAp.

Corollary 5.17 The set of maximal ideals of the commutative Banach quotient algebra
Ap(R+)/S(Lp(R+)) generated by scalar N = 1 operators in (5.7), is homeomorphic to
R, and the symbol map in (5.8), (5.18) is a Gelfand homeomorphism of the corresponding
Banach algebras.

Proof: The proof is based on Theorem 5.14 and Corollary 5.16 and if similar to [Du87,
Theorem 3.1]. The details of the proof is left to the reader.

Remark 5.18 All the above results are valid in a more general setting viz., for the Ba-
nach algebra PAN×N

p,α (R+) generated in the weighted Lebesgue space ofN -vector-functions
LNp (R+, xα) by the operators

A :=
m∑
j=1

[
d1
jM

0
a1
j
Wb1j

+ d2
jM

0
a2
j
Hc1j

+ d3
jW

0
b2j
Hc2j

]
(5.19)

when coefficients d1
j , d

2
j , d

3
j ∈ PCN×N(R) are piecewise-continuousN×N matrix functions,

symbols of Mellin convolution operators M0
a1
j
, M0

a2
j
, Winer–Hopf (Fourier convolution) op-

erators Wb1j
, Wb2j

and Hankel operators Hc1j
, Hc2j

are N × N piecewise-continuous matrix
Lp-multipliers akj , b

k
j , c

k
j ∈ PCN×NMp(R).

The spectral set Σ(PAN×N
p,α (R+)) of such Banach algebra (viz., the set where the sym-

bols are defined, e.g. R for the Banach algebra AN×N
p (R+) investigated above) is more so-

phisticated and described in the papers [Du77, Du78, Du87, Th85]. Let CAp,α(R+)S(Lp(R+))
be the sub-algebra of PAp,α(R+) = PA1×1

p,α (R+) generated by scalar operators (5.19)
with continuous coefficients cj, hj ∈ C(R) and scalar piecewise-continuous Lp-multipliers)
aj, bj, dj, gj ∈ PCMp(R). The quotient-algebra
CAp,α(R+)S(Lp(R+)) with respect to the ideal of all compact operators is a commutative
algebra and the spectral set Σ(PAp,α(R+)) is homeomorphic to the set of maximal ideals.

We will not elaborate more on further details concerning the Banach algebra PAN×N
p,α (R+),

since the result exposed above are sufficient for the purpose of this and subsequent papers
dealing with the BVPs in domains with corners at the boundary.
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6 MELLIN CONVOLUTION OPERATORS IN THE BESSEL POTENTIAL SPACES. THE
BOUNDEDNESS AND LIFTING

As it was already mentioned, the primary aim of the present paper is to study Mellin
convolution operators M0

a acting in the Bessel potential spaces,

M0
a : H̃s

p(R+) −→ Hs
p(R+). (6.1)

The symbols of these operators are N × N matrix functions a ∈ CM0
p(R), continuous on

the real axis R with the only possible jump at infinity.

Theorem 6.1 Let s ∈ R and 1 < p <∞.
If conditions of Theorem 3.8 hold, the Mellin convolution operator between the Bessel

potential spaces

K1
c : H̃r

p(R+)→ Hr
p(R+) (6.2)

is lifted to the equivalent operator

Λs
−γK

1
cΛ
−s
γ = c−sK1

cWgs−cγ,γ
: Lp(R+)→ Lp(R+), (6.3)

where c−s = |c|−se−is arg c and the function gs−cγ,γ is defined in (2.10).
If conditions of Corollary 3.9 hold, the Mellin convolution operator between the Bessel

potential spaces (6.2) is lifted to the equivalent operator

Λs
−γK

1
cΛ
−s
γ = c−sWgs−γ,−γ0

K1
cWgs−cγ0,γ

= c−sK1
cWgs−γ,−γ0

gs−cγ0,γ
+ T

: Lp(R+)→ Lp(R+), (6.4)

where T : Lp(R+)→ Lp(R+) is a compact operator.

Proof: The equivalent operator after lifting is

Λs
−γK

1
cΛ
−s
γ : Lp(R+)→ Lp(R+)

(see Theorem 2.2). To proceed we need two formulae

Λs
−cγΛ

−s
γ = Wgs−cγ,γ

, Wgs−γ,−γ0
Wgs−cγ0,γ

= Wgs−γ,−γ0
gs−cγ0,γ

. (6.5)

The first one holds because 0 < arg γ < π (see (2.8)) and the second one holds because
gs−γ,−γ0

(ξ) has a smooth, uniformly bounded analytic extension in the complex lower half
plane (see (2.13)).

If conditions of Theorem 3.8 hold, we apply formula (3.24), the first formula in (6.5)
and derive the equality in (6.3):

Λs
−γK

1
cΛ
−s
γ = c−sK1

cΛ
s
−cγΛ

−s
γ = c−sK1

cWgs−cγ,γ
.

If conditions of Corollary 3.9 hold, we apply formulae (3.36), (3.37), both formula in
(6.5) and derive the equality in (6.4):

Λs
−γK

1
cΛ
−s
γ = c−sWgs−γ,−γ0

K1
cΛ

s
−cγΛ

−s
γ = c−sWgs−γ,−γ0

K1
cWgs−cγ0,γ

= c−sK1
cWgs−γ,−γ0

Wgs−cγ0,γ
+ T.
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Remark 6.2 The case of operator K1
1 is not covered by the foregoing Theorem 6.1, where

arg c 6= 0. This case is essentially different as underlined in Theorem 5.4 because K1
1 is a

Hilbert transform K1
1 = −πiSR+ = πiWsign and K1

1 between the Bessel potential spaces
(6.2) is lifted to the equivalent Fourier convolution operator

Λs
−γK

1
1Λ
−s
γ = Wπigs−γ,γsign : Lp(R+)→ Lp(R+), (6.6)

as it follows from Theorem 5.4.

Theorem 6.3 Let cj, dj ∈ C, 0 < arg cj < 2π, 0 < arg γ < π, −π < arg(cjγ) < 0 for
j = 1, . . . ,m and 0 < arg(cjγ) < π for j = m+ 1, . . . , n.

The Mellin convolution operator between the Bessel potential spaces

A =
n∑
j=1

djK
1
cj

: H̃r
p(R+)→ Hr

p(R+) (6.7)

is lifted to the equivalent operator

Λs
−γAΛ−sγ =

m∑
j=0

djc
−s
j K1

cj
Wgs−cjγ,−γ

+
n∑

j=m+1

djc
−s
j Wgs−γ,−γj

K1
cj
Wgs−cjγj ,γ

(6.8a)

=
m∑
j=0

djc
−s
j K1

cj
Wgs−cjγ,γ

+
n∑

j=m+1

djc
−s
j K1

cj
Wgs−γ,−γj

gs−cjγj ,γ
+ T, (6.8b)

in the Lp(R+) space, where c−s = |c|−se−is arg c and γj are such that 0 < arg γj < π,
−π < arg(cj γj) < 0 for j = m+ 1, . . . , n. T : Lp(R+)→ Lp(R+) is a compact operator.

Proof: The proof is a direct consequence of Theorem 6.1.

Theorem 6.4 Let s ∈ R and 1 < p <∞.
If conditions of Theorem 3.8 hold, the Mellin convolution operator between the Bessel

potential spaces

K2
c : H̃r

p(R+)→ Hr
p(R+) (6.9)

is lifted to the equivalent operator

Λs
−γK

2
cΛ
−s
γ = c−s

[
K2
c − sc−1K1

c

]
Wgs−cγ,γ

+ s γ c−sK1
cW(ξ+γ)−1gs−1

−cγ,γ
, (6.10)

in Lp(R+) space, where c−s = |c|−se−is arg c and the function gs−cγ,γ is defined in (2.10) and
the last summand in (6.10)

T := s γ c−sK1
cWgs−1

−cγ,γ
Λ−1
γ : Lp(R+)→ Lp(R+), (6.11)

is a compact operator.
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If conditions of Corollary 3.9 hold, the Mellin convolution operator between the Bessel
potential spaces (6.9) is lifted to the equivalent operator in Lp(R+) space

Λs
−γK

2
cΛ
−s
γ = (6.12)

= c−sWgs−γ,−γ0
[K2

c − sc−1K1
c ]Wgs−cγ0,γ

+ s γ c−sWgs−γ,−γ0
K1
cW(ξ+γ)−1gs−1

−cγ0,γ

= c−s [K2
c − sc−1K1

c ]Wgs−γ,−γ0
gs−c γ0,γ

+ s γ c−sK1
cW(ξ−cγ0)−1gs−cγ0,−γ0

gs−γ,γ
+ T,

where T : Lp(R+)→ Lp(R+) is a compact operator.

Proof: Let conditions of Theorem 3.8 hold (that means Im γ > 0 and Im c γ < 0. Then

1

(t− c)2
= lim

ε→0

1

2εi

[
1

t− c− εi
− 1

t− c+ εi

]
and we have

Λs
−γK

2
cΛ
−s
γ = lim

ε→0

1

2εi
Λs
−γ
[
K1
c+εi −K1

c−εi
]
Λ−sγ

= lim
ε→0

1

2εi

[
(c+ εi)−sK1

c+εiΛ
s
−(c+εi)γ − (c− εi)−sK1

c−εiΛ
s
−(c−εi)γ

]
Λ−sγ

= lim
ε→0

{
(c+ εi)−s − (c− εi)−s

2εi
K1
c+εiΛ

s
−(c+εi)γ

−(c− εi)−s 1

2εi

[
K1
c+εi −K1

c−εi
]
Λs
−(c−εi)γ

−(c− εi)−sK1
c−εi

1

2εi

[
Λs
−(c+εi)γ −Λs

−(c−εi)γ
]}

Λ−sγ

= −s c−s−1K1
cΛ

s
−c γΛ

−s
γ + c−sK2

cΛ
s
−c γΛ

−s
γ

+c−sK1
c lim
ε→0

F−1 (ξ − c γ − εγi)s − (ξ − c γ + εγi)s

2εi
FΛ−sγ

= c−s
[
K2
c − sc−1K1

c

]
Wgs−cγ,γ

+ s γ c−sK1
cΛ

s−1
−c γΛ

−s
γ

= c−s
[
K2
c − sc−1K1

c

]
Wgs−cγ,γ

+ s γ c−sK1
cW(ξ+γ)−1gs−1

−cγ,γ

Formula (6.10) is proved.
Formula (6.12) is derived from (6.10) as in Theorem 6.1.

Remark 6.5 The case of operators Kn
c , n = 3, 4, . . ., can be treated similarly as in Corol-

lary 6.4: with the help of perturbation the operator Kn
c can be represented in the form

Kn
cϕ = lim

ε→0
Kc1,ε,...,cn,εϕ, ∀ϕ ∈ H̃r

p(R+)

Kc1,ε,...,cn,εϕ(t) :=

∫ ∞
0

Kc1,ε,...,cn,ε

(
t

τ

)
ϕ(τ)

dτ

τ
=

n∑
j=1

dj(ε)K
1
cj,ε
ϕ(t),
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Kc1,ε,...,cm,ε(t) :=
1

(t− c1,ε) · · · (t− cn,ε)
=

n∑
j=1

dj(ε)

t− cj,ε
, (6.13)

cj,ε = c(1 + εeiωj), ωj ∈ (−π, π), arg cj,ε, arg cj,ε γj 6= 0, j = 1, . . . ,m.

The points ω1, . . . , ωn ∈ (−π, π] are pairwise different, i.e., ωj 6= ωk for j 6= k (we remind
that arg c 6= 0 because n = 3, 4, . . .). By equating the numerators in the formula (6.13) we
find the coefficients d1(ε), . . . , dn−1(ε).

Since the operators K3
c ,K

4
c , . . . encounter in applications rather rarely, we have con-

fined ourselves with the exact formulae only for the operators K1
c and K2

c .

7 MELLIN CONVOLUTION OPERATORS IN THE BESSEL POTENTIAL SPACES. FRED-
HOLM PROPERTIES

Let us write the symbol of a model operator

A := d0I +Wa0 +
n∑
j=1

WajK
1
cj
Wbj , (7.1)

acting in the Bessel potential spaces H̃s
p(R+) → Hs

p(R+), compiled of the identity I , of
Fourier Wa0 , . . . ,Wan , Wb1 , . . . ,Wbn and Mellin K1

c1
, . . . ,K1

cn convolution operators.

We assume that a0, . . . , an, b1, . . . , bn ∈ CMp(R\{0}), c1, . . . , cn ∈ C and, if s 6
1

p
−1

or s >
1

p
, the functions a1(ξ), . . . , an(ξ) have bounded analytic extensions in the lower

half plane Im ξ < 0, while the functions b1(ξ), . . . , bn(ξ) have bounded analytic extensions
in the upper half plane Im ξ > 0 to ensure the proper mapping properties of the operator

A : H̃s
p(R+)→ Hs

p(R+). For
1

p
− 1 < s <

1

p
such constraints are not necessary.

Now we describe the symbol A s
p (ω) of the operator A. For this we lift the operator

A : H̃s
p(R+)→ Hs

p(R+) to the Lp-setting and apply equality (2.13):

Λs
−γAΛ−sγ : Lp(R+)→ Lp(R+), (7.2)

Λs
−γAΛ−sγ = d0Λ

s
−γΛ

−s
γ + Λs

−γWa0Λ
−s
γ +

n∑
j=1

WajΛ
s
−γK

1
cj

Λ−sγ Wbj

= d0W( ξ−γξ+γ )
s +Wa0(ξ)( ξ−γξ+γ )

s +
n∑
j=1

WajK
1
cj
W( ξ−cγξ+γ )

sWbj (7.3)

(see Theorem ??, diagram (2.7)) if conditions of Theorem 3.8 hold (see (6.4)) and to the
operator

Λs
−γAΛ−sγ = d0W( ξ−γξ+γ )

s +Wa0(ξ)( ξ−γξ+γ )
s +

n∑
j=1

WajK
1
cj
W(

ξ−γ
ξ−γ0

)s
( ξ−cγ0
ξ+γ )

sWbj + T, (7.4)
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where T : Lp(R+) → Lp(R+) is a compact operator, if conditions of Corollary ?? hold
(see (6.5)).

The symbol of the lifted operator (7.2)– (7.4) in Lp(R+)-space we declare the symbol of
the operator A in the Bessel potential space. This symbol, written according formulae (5.8)
and (5.9), has the form:

A s
p (ω) := d0I

s
p (ω) + W s

a0,p
(ω) +

n∑
j=1

W 0
aj ,p

(ω)K 1,s
cj ,p

(ω)W 0
bj ,p

(ω), (7.5)

where I s
p (ω), W s

a0,p
(ω), W 0

aj ,p
(ω), K 1,s

cj ,p
(ω) and W 0

bj ,p
(ω) are the symbols of the operators

W( ξ−γξ−γ )
s in Lp (of I in Hs

p), of Wa0(ξ)( ξ−γξ−γ )
s in Lp (of Wa0 in Hs

p), of Waj in Lp (and in Hs
p)

of K1
cj
W( ξ−cγξ−γ )

s in Lp (of K1
cj

in Hs
p), of Wbj in Lp (and in Hs

p).

Now it suffices to expose the symbols I s
p (ω), W s

a0,p
(ω), W 0

aj ,p
(ω) and K 1,s

cj ,p
(ω) of the

operators I , Wa0 , Waj(j = 1, 2, . . . , n) and K1
c separately (the symbol W 0

bj ,p
(ω) of Wbj(j =

1, 2, . . . , n) is written analogously):

I s
p (ω) :=


gs−γ,γ,p(∞, ξ), ω = (ξ,∞) ∈ Γ1,(
η − γ
η + γ

)−
+s

, ω = (+∞, η) ∈ Γ−
+

2 ,

eπsi, ω = (ξ, 0) ∈ Γ3,

(7.6a)

W s
a,p(ω) :=


asp(∞, ξ), ω = (ξ,∞) ∈ Γ1,

a(+−η)

(
η − γ
η + γ

)−
+s

, ω = (+∞, η) ∈ Γ−
+

2 ,

eπsiap(0, ξ), ω = (ξ, 0) ∈ Γ3,

(7.6b)

W 0
a,p(ω) :=


ap(∞, ξ), ω = (ξ,∞) ∈ Γ1,

a(+−η), ω = (+∞, η) ∈ Γ−
+

2 ,

ap(0, ξ), ω = (ξ, 0) ∈ Γ3,

(7.6c)

K 1,s
c,p (ω) :=


c−se−iπ( 1

p
−iξ−1)c

1
p
−iξ−1

sin π(1
p
− iξ)

, ω = (ξ,∞) ∈ Γ1, , ω = (ξ, 0) ∈ Γ3

0, ω = (−+∞, η) ∈ Γ−
+

2 for arg c 6= 0,

(7.6d)

K 1,s
1,p (ω) :=


−i cot π(1

p
− iξ), ω = (ξ,∞) ∈ Γ1, ,

−+1, ω = (−+∞, η) ∈ Γ−
+

2 ,

i cotπ(1
p
− iξ), ω = (ξ, 0) ∈ Γ3,

(7.6e)

asp(∞, ξ) := e2πsia(∞)+a(−∞)
2

− e2πsia(∞)−a(−∞)
2i

cot π
(

1
p
− iξ

)
,
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ap(x, ξ) := a(x+0)+a(x−0)
2

− a(x+0)−a(x−0)
2i

cotπ
(

1
p
− iξ

)
, x = 0,∞,

gs−γ,γ,p(∞, ξ) := e2πsi+1
2
− e2πsi−1

2i
cot π

(
1
p
− iξ

)
= eπsi

sinπ

(
1
p
−s−iξ

)
sinπ

(
1
p
−iξ
) ,

ξ ∈ R, η ∈ R+,

where
0 < arg c < 2π, −π < arg(c γ) < 0, 0 < arg γ < π

and cs = |c|seis arg c, (−c)δ = |c|δeiδ(arg c−+π) for c, δ ∈ C; the sign ”-” is chosen for π <
arg c < 2π and the sign ”+” is chosen for 0 < arg c < π.

Note that, we got the equal symbol K 1,s
c,p (ω) of the operator K1

cj
in the cases (7.3) and

(7.4) because the functions

gs−γ,−γ0
(ξ)gs−cγ0,γ

(ξ) :=

(
ξ − γ
ξ − γ0

)s(
ξ − cγ0

ξ + γ

)s
and gs−cγ,γ(ξ) :=

(
ξ − cγ
ξ + γ

)s
have equal limits at infinity gs−cγ,γ(−+∞) = gs−γ,−γ0

(−+∞)gs−cγ0,γ
(−+∞) = 1 and

gs−cγ,γ(0) = gs−γ,−γ0
(0)gs−cγ0,γ

(0) = (−c)s.
If a(−∞) = 1 and a(+∞) = e2παi, then a−∞ = 0, a+

∞ = 2α and the symbol asp(∞, ξ)
acquires the form:

asp(∞, ξ) = eπ(s+α)i
sin π

(
1
p
− s+ α− iξ

)
cos π

(
1
p
− iξ

) . (7.6f)

Note that, the Mellin convolution operator

K1
−1ϕ(t) :=

∞∫
0

ϕ(τ) dτ

t+ τ
= M0

M 1
p

K 1
−1
, M 1

p
K 1
−1(ξ) =

πd β−iξ−1

sin π(β − iξ)

(see (3.10b)), which we encounter in applications, has a rather simple symbol in the Bessel
potential space Hs

p(R+) (see (7.6b), where c = −1 = eiπ):

K 1,s
−1,p(ω) :=


e−πsi

sin π(β − iξ)
, ω = (ξ,∞) ∈ Γ1 ∪ Γ3,

0, ω = (−+∞, η) ∈ Γ−
+

2 , .

Theorem 7.1 Let 1 < p <∞, s ∈ R. The operator

A : H̃s
p(R+) −→ Hs

p(R+), (7.7)

defined in (7.1), is Fredholm if and only if its symbol A s
p (ω) defined in (7.5) and (7.6a)–

(7.6f), is elliptic.
If A is Fredholm, the index of the operator has the value

IndA = −inddetA s
p .
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Proof: Let cj, dj ∈ C, 0 < arg cj < 2π. Lifting the operator A to the Lp(R+) space we get

Λs
−γAΛ−sγ = d0Λ

s
−γΛ

−s
γ + Λs

−γWa0Λ
−s
γ +

n∑
j=1

WajΛ
s
−γK

1
cj

Λ−sγ Wbj , (7.8)

where c−s = |c|−se−is arg c and γj are such that 0 < arg γj < π, −π < arg(cj γj) < 0 for
j = m+ 1, . . . , n.

To derive (7.8) we have applied the following property of convolution operators Λs
−γWaj =

WajΛ
s
−γ and WbjΛ

s
γ = Λs

γWbj , Λ
−
+s

−+γ
= W

λ
−
+s

−+γ

, which are based on the analytic extension

properties of the symbols λs−γ, a1(ξ), . . . , an(ξ) in the lower half plane Im ξ < 0 and of
symbols λ−sγ , b1(ξ), . . . , bn(ξ) in the upper half plane Im ξ > 0 (see (2.6)).

The model operators I , K1
c and Wa Lifted to the space Lp(R+) acquire the form

Λs
γIΛ

−s
γ = Wgs−γ,γ

, Λs
γWakΛ

−s
γ = Wakg

s
−γ,γ

,

Λs
γK

1
cΛ
−s
γ =


c−sK1

cWgs−c γ,γ
for − π < arg(c γ) < 0,

c−sK1
cWgs− γ,−γ0

gs−c γ0,γ
+ T for 0 < arg(c γ) < π,

−π < arg(c γ0)| < 0,

(7.9)

where T is a compact operator. Here, as above, 0 < arg c < 2π, 0 < arg γ < π, 0 <
arg γ0 < π and either−π < arg(c γ) < 0 or, if−π < arg(c γ) < 0, then−π < arg(c γ0)| <
0. Here c−s = |c|−se−is arg c.

Therefore the operator Λs
−γAΛ−sγ in (7.8) is rewritten as follows:

Λs
−γAΛ−sγ = d0Wgs−γ,γ

+Wa0gsγ,γ +
m∑
j=1

c−sj WajK
1
cj
Wgs−cjγ,γ

Wbj

+
n∑

j=m+1

c−sj WajK
1
cj
Wgs−γ,−γj

gs−cjγj ,γ
Wbj + T : Lp(R+) −→ Lp(R+), (7.10)

where T is a compact operator and we ignore it when writing the symbol of A.
We declare the symbol of the lifted operator Λs

−γAΛ−sγ (see (7.10)) in the Lebesgue
space Lp(R+) as the symbol of the initial operator A : H̃s

p(R+)→ Hs
p(R+) in (7.1).

The function gs−γ,γ ∈ C(R) is continuous on R, but has different limits at the infinity

gs−γ,γ(−∞) = 1, gs−γ,γ(+∞) = e2πsi, gs−γ,γ(0) = eπsi, (7.11a)

while the functions gs−γ,−γ0
, gs−cγ,γ, g

s
−cγ0,γ

∈ C(R) are continuous on R including the infin-
ity

gs−c γ,γ(−+∞) = gs−γ,−γ0
(−+∞) = gs−c γ0,γ

(−+∞) = 1,

gs−γ,−γ0
(0)gs−c γ0,γ

(0) =

(
−γ
−γ0

)s(−cγ0

γ

)s
= (−c)s ,

gs−c γ,γ(0) = (−c)s if 0 < arg c < 2π.

(7.11b)
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In the Lebesgue space Lp(R+), the symbols of the first two operators in (7.10), are
written according the formulae (5.8)–(5.9) by taking into account the equalities (7.11a) and
(7.11a). The symbols of these operators have, respectively, the form (7.6a) and (7.6b).

The symbols of operators Wa1 , . . . ,Wan and Wb1 , . . . ,Wbn are written with the help of
the formulae (5.8)–(5.9) and have the form (7.6c).

The lifted Mellin convolution operators

Λs
γK

1
cj

Λ−sγ : Lp(R+) −→,Lp(R+)

are of mixed type and comprise both the Mellin convolution operators K1
cj

= M0
K 1
cj ,p

(ξ),

where the symbol K 1
cj ,p

(ξ) := M1/pK
1
cj

(ξ) is defined in (3.10b) and (3.10c), and the Fourier
convolution operatorsWgs−cj γ0,γ

andWgs− γ,−γ0
gs−cj γ0,γ

. The symbol of the operators Λs
γK

1
cj

Λ−sγ
from (7.9) in the Lebesgue space Lp(R+) is found according formulae (5.8)–(5.9), has the
form (7.6d) and is declared the symbol of K1

cj
: H̃s

p(R+) → Hs
p(R+). The symbols of

Fourier convolution factors Wgs−cj γ0,γ
and Wgs− γ,−γ0

gs−cj γ0,γ
, which contribute the symbol of

K1
cj

= M0
K 1
cj ,p

are written again according formulae (5.8)–(5.9) by taking into account the
equalities (7.11a) and (7.11b).

To the lifted operator applies Theorem 6.3 and gives the result formulated in Theorem
7.1.

Corollary 7.2 Let 1 < p <∞, s ∈ R. The operator

A : H̃s
p(R+) −→ Hs

p(R+),

defined in (5.17), is locally invertible at 0 ∈ R+ if and only if its symbol A s
p (ω), defined in

(7.5) and (7.6a)–(7.6f), is elliptic on Γ1, i.e.

inf
ω∈Γ1

∣∣det A s
p (ω)

∣∣ = inf
ξ∈R

∣∣det A s
p (ξ,∞)

∣∣ > 0.

Proof:

For the definition of the Sobolev–Slobodeckij (Besov) spaces Ws
p(Ω) = Bsp,p(Ω), W̃s

p(Ω) =

B̃sp,p(Ω) for an arbitrary domain Ω ⊂ Rn, including the half axes R+, we refer to the mono-
graph [?].

Corollary 7.3 Let 1 < p <∞, s ∈ R. If the operator A : H̃s
p(R+) −→ Hs

p(R+), defined in
(5.17), is Fredholm (is invertible) for all a ∈ (s0, s1) and p ∈ (p0, p1), where −∞ < s0 <
s1 <∞, 1 < po < p1 <∞, then

A : W̃s
p(R+) −→Ws

p(R+), s ∈ (s0, s1), p ∈ (p0, p1) (7.12)

is Fredholm and has the equal index

IndA = −inddetA s
p . (7.13)

(is invertible, respectively) in the Sobolev–Slobodeckij (Besov) spaces Ws
p = Bsp,p.
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Proof: First of all recall that the Sobolev–Slobodeckij (Besov) spaces Ws
p = Bsp,p emerge

as the result of interpolation with the real interpolation method between the Bessel potential
spaces

(
Hs0
p0

(Ω),Hs1
p1

(Ω)
)
θ,p

= Ws
p(Ω), s := s0(1− θ) + s1θ,(

H̃s0
p0

(Ω), H̃s1
p1

(Ω)
)
θ,p

= W̃s
p(Ω), p := 1

p0
(1− θ) + 1

p1
θ, 0 < θ < 1.

(7.14)

If A : H̃s
p(R+) −→ Hs

p(R+) is Fredholm (or is invertible) for all s ∈ (s0, s1) and
p ∈ (p0, p1), it has a regularizer R (has the inverse A−1 = R, respectively), which is
bounded in the setting

R : Ws
p(R+) −→ W̃s

p(R+)

due to the interpolation (7.14) and

RA = I + T1, AR = I + T2,

where T1 and T2 are compact in H̃s
p(R+) and in Hs

p(R+), respectively (T1 = T2 = 0 if A
is invertible).

Due to the Krasnoselskij interpolation theorem (see [?]), T1 and T2 are compact in
W̃s

p(R+) and in Ws
p(R+), respectively for all s ∈ (s0, s1) and p ∈ (p0, p1) and, therefore, A

in (7.12) is Fredholm (is invertible, respectively).
The index formulae (7.13) follows from the embedding properties of the Sobolev–Slobodeckij

and the Bessel potential spaces by standard well-known arguments.
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Chapter 5

BVPs FOR THE LAPLACE-BELTRAMI
EQUATIONS ON SURFACES WITH
LIPSCHITZ BOUNDARY

In the present chapter we present results on boundary value problems for the Laplace-
Beltrami equation on a surface with the Lipschitz boundary C in a non-classical setting,
when solutions are sought in the Bessel potential spaces Hs

p(C ), 1/p < s < 1 + 1/p,
1 < p < ∞. The Fredholm and unique solvability criteria is found. By the localization the
problem is reduced to the investigation of Model Dirichlet, Neumann and mixed boundary
value problems for the Laplace equation in a planar angular domain Ωα ⊂ R2 of magnitude
α. Results are presented on the model Dirichlet, Neumann, Mixed Dirichlet-Neumann and
impedance boundary value problems in a non-classical setting. The problems are investi-
gated by the potential method and reduced to locally equivalent 2 × 2 systems of Mellin
convolution equations with meromorphic kernels on the semi-infinite axes R+ in the Bessel
potential spaces. Such equations were studied recently by R. Duduchava in [Du15] and V.
Didenko & R. Duduchava in [DD16].

1 INTRODUCTION AND FORMULATION OF THE PROBLEMS

Many problems in mathematical physics e.g., cracks in elastic media, electromagnetic
scattering by surfaces etc., are reformulated in the form of a boundary value problem for
an elliptic partial differential equation in domains and surfaces with angular points at the
boundary. In the recent paper [BDKT13] investigation of such BVPs are reduced with the
help of localization to the investigation of a family of model problems in plane with finite
number of angular points on the boundary of magnitude αj ∈ (0, 2π), j = 1, . . . ,m are
reduced to the investugation of the associated model BVPs in angles with vertex at 0 and the
same magnitude.

Consider a hypersurface C ⊂ R3 with the Lipschitz boundary Γ and by MΓ denote the
the angular points (the knots) of Γ. Let ν := (ν1, ν2, ν3)> be the normal vector field on the
surface C ,
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Fig. 1

On C we consider the mixed BVP
∆Cu(t) = f(t), t ∈ C ,

u+(s) = g(s), on ΓD,

(∂νΓ
u)+(s) = h(s), on ΓN ,

(1.1)

where ∆C is the Laplace-Beltrami operator

∆C := D2
1 + D2

2 + D2
3

and Dj := ∂j − νj∂ν , j = 1, 2, 3, are the Günter’s tangential derivatives on the surface
(cf. Chapter 1, § 3). νΓ := (νΓ,1, νΓ,2, νΓ,3)> is the normal vector field to the boundary Γ,
tangential to S and ∂νΓ

= νΓ,1D1 + νΓ,2D2 + νΓ,3D3 is the normal derivative.
Problem (1.1) is considered in the non-classical setting

u ∈ Hs
p(C ), f ∈ H̃s−2

p,0 (C ), g ∈ Hs−1/p
p (ΓD), h ∈ Hs−1−1/p

p (ΓN), (1.2)

Γ = ΓD ∪ ΓN , 1 < p <∞, s >
1

p
.

Note that, the upper constraint in
1

p
< s < 1 +

1

p
is necessary to ensure an invariant

definition of the Bessel potential and Besov spaces on non-smooth boundary Γ, while the
lower constraint ensures the existence of the Dirichlet trace u+ and, together with the Green
formulae, also the existence of the Neumann trace (∂νu)+ of a solution on the boundary.
These constraints can not be relaxed.

For the definitions of the Bessel potential Hs
p(C ), H̃s

p(S ), Hr
p(C ), H̃r

p(R+) and Sobolev-
Slobodečkii W̃r

p(R+) etc. spaces for r ∈ R, 1 < p < ∞ we refer to the classical source
[Tr92] and also [Du01, DS93, Hr83, Ta96].

Here we define only the space H̃−1
p,0(C ) mentioned above. Let H̃−1

0 (C ) be a subspace of
H̃−1(C ), orthogonal to

H̃−1
p,0(C ) :=

{
f ∈ H−1

0 (C ) : 〈f, ϕ〉 = 0 for all ϕ ∈ C1
0(C )

}
.

H̃−1
Γ (C ) consists of those distributions on C , belonging to H̃−1(C ) which have their supports

just on Γ and H̃−1(C ) is decomposed into the direct sum of the subspaces:

H̃−1(C ) = H̃−1
Γ (C )⊕ H̃−1

0 (C ).
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The space H̃−1
Γ (C ) is non-empty (see [HW08, § 5.1] and excluding it from H̃−1(C ) is nec-

essary to make BVPs uniquely solvable (cf. [HW08] and the next Theorem 1.1).
Let

H̃−rp,0(C ) = H̃−1
0 (C )

⋂
H̃−1

0 (C ), r >
1

p
.

Theorem 1.1 (Theorem 2.1, Remark 2.2 and Remark 2.3, [DTT14]) . The BVP (1.1) has
a unique solution in the classical weak setting:

u ∈ H1(C ), f ∈ H̃−1
0 (C ), g ∈ H1/2(Γ), h ∈ H−1/2(Γ). (1.3)

A natural question is raied: why we investigate BVP (1.1) in the non-classical setting,
when in the classical setting the solvability result is easily obtainable. Besides that this is
an interesting mathematical problem, in many cases, for example in approximation methods,
it is important to know a maximal smoothness of a solution. From the solvability results in
non-classical setting it is possible to conclude smoothness property of a solution.

To formulate the appropriate main theorems of the present work we need the following
definition.

Definition 1.2 The BVP (1.1) in the setting (1.2) (the BVP (1.10), the BVP (1.11)) is Fred-
holm if the homogeneous problem f = g = 0 (f = h = 0, respectively) has a finite number
of solutions and the BVP has a solution if and only if the data f, g, h satisfy a finite number
of orthogonality conditions.

Next is the main theorem of the present chapter.

Theorem 1.3 The BVP on a surface (1.1) in the non-classical setting (1.2) is Fredholm if
and only if the following holds:

i. If at cj ∈MD collide the Dirichlet conditions, then

ei2π(s−1/p) sin2 π(s− iξ) + e−i2πs sin2(αj − π)(1/p− s− 1− iξ) 6= 0 (1.4)
for all ξ ∈ R.

ii. If at cj ∈MN collide the Neumann conditions, then

ei2π(s−1/p) sin2 π(s− iξ) + e−i2πs sin2(αj − π)(1/p− s− iξ) 6= 0 (1.5)
for all ξ ∈ R.

iii. If at cj ∈MN collide the Dirichlet and Neumann conditions, then

e4πi/p sin2 π(2/p− iξ − s) + cos2[(π − αj)(2/p− iξ − s)] 6= 0 (1.6)
for all ξ ∈ R.

If conditions (1.4), (1.5) and (1.6) hold (i.e. the BVP (1.1), (1.2) is Fredholm), the subset
(1/p,∞)× (1,∞) of the Euclidean plane R2, where the pairs (s, p) range, decomposes into
an infinite union Ro ∪R1 ∪ · · · of non-intersecting connected subsets of regular pairs, for
which the BVP (1.1) is Fredholm in the setting (1.2).

If the connected subset R0 contains the point (1, 2) (i.e. s = 1, p = 2) then BVP (1.1) is
uniquely solvable in the setting (1.2) for all pairs (s, p) ∈ R0.
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The formulated theorem is proved at the end of the last § 4. Theorem is proved based on
a local principle, which reduces the proof to the investigation of model problems: Dirichlet,
Neumann and Mixed BVPs on a model domain, which is an angle of magnitude α. We will
investigate model Dirichlet, Neumann and Mixed BVPs in § 3-5. Next we formulate what is
a model domain and model BVPs.

To the set of knots MΓ we add all those smoothness points on Γ where the Dirichlet and
Neumann boundary conditions collide.

0

x = (t cos α, t sin α)>

ν(x) = (− sin α, cos α)>

x = (t, 0)>

ν(x) = (0,−1)>

α Ωα

R+

Rα

Fig. 2

With the BVP (1.1) we associate at all knots cj ∈ MΓ the model domain Ωαj (see Fig.
2), which represents the angle of magnitude αj and the corresponding boundary is a model
curve:

Γαj := ∂Ωαj = R+ ∪ Rαj , R+ = [0,∞),

Rαj := {eiαjt = (t cos αj, t sin αj) : t ∈ R+}.
(1.7)

ν denotes the unit normal vector field on the boundary Γαj := ∂Ωαj = R+ ∪ Rαj

ν(t) = (ν1(t), ν2(t))> =

{
(0,−1)> for t ∈ R+

(− sin αj, cos αj) for t ∈ Rαj

(1.8)

and ∂ν := ν1∂1 + ν2∂2-the corresponding normal derivative.
The set of knots MΓ we divide in three subsets: MΓ = MD ∪MN ∪MDN , where MD

consists of all knots cj where Dirichlet conditions collide and αj 6= π; MN consists of all
knots cj where Neumenn conditions collide and αj 6= π; MDN consists of all knots cj where
Dirichlet and Neumenn conditions collide and here αj can be arbitrary 0 < αj < 2π.

Consider the following model BVPs, associated with the BVP (1.1).
The Model Dirichlet BVP{

∆u(t) = f(t), t ∈ Ωαj ,

u+(s) = g(s), on Γαj = R+ ∪ Rαj ,
(1.9)
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u ∈ Hs
p(Ωαj), f ∈ H̃s−2

p,0 (Ωαj), g ∈ Hs−1/p
p (Γαj), 1 < p <∞, s >

1

p

at a knot cj ∈MD (where Dirichlet conditions collide).
The Model Neumann BVP{

∆u(t) = f(t), t ∈ Ωαj ,

(∂νu)+(s) = h(s), on Γαj = R+ ∪ Rαj ,
(1.10)

u ∈ Hs
p(Ωαj), f ∈ H̃s−2

p,0 (Ωαj), h ∈ Hs−1−1/p
p (Γαj), 1 < p <∞, s >

1

p

at a knot cj ∈MN (where the Neumann conditions collide).
The model Mixed BVP

∆u(t) = f(t), t ∈ Ωαj ,

u+(s) = g(s), on R+,

(∂νu)+(s) = h(s), on Rαj ,

(1.11)

u ∈ Hs
p(Ωαj), f ∈ H̃s−2

p,0 (Ωαj), g ∈ Hs−1/p
p (R+), h ∈ Hs−1−1/p

p (Rαj),

1 < p <∞, s >
1

p

at a knot cj ∈MDN (where the Dirichlet and Neumann conditions collide).

Theorem 1.4 (Local Principle, [BDKT13]) The initial mixed boundary value problem (1.1)
in the non-classical setting is Fredholm if and only if the boundary value problems (1.9),
(1.10) and (1.11) are Fredholm in the non-classical setting for all knots cj ∈MΓ.

As a particular case of Theorem 1.1 we get the following.

Corollary 1.5 The boundary value problems (1.9), (1.10) and (1.11) have unique solutions
in the classical weak setting p = 2, s = 1.

Results for the model mixed BVP (1.11) was obtained in [DT18, DT19] (Fredholm cri-
teria, the unique solability). Similar results for the BVPs with mixed impedance conditions
are proved in [?].

The purpose of the present paper is to write the criteria of the solvability of the BVP on a
surface (1.1) in the non-classical setting (1.2). For this we need to study first model Dirichlet
(1.9) and the model Neumann (1.10) boundary value problems.

Investigations of the boundary integral equations run into difficulties due to the absence
of results on Mellin convolution equations in the Bessel potential space setting ϕ ∈ H̃s

p(R+),
f ∈ Hs

p(R+). In the recent papers [?] L. Castro & D. Kapanadze reduce BVPs (1.9) and
(1.10) in the H1+ε(Ωα) space settings to equivalent Wiener-Hopf −+ Hankel operators, by
manipulating with the even and odd extensions and the reflection operators. The obtained
equations were investigated in L2(R+) space and, in the last paper [?], in the special potential
space, defined by Mellin transforms.
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In a series of papers [?] P.A. Krutitskii investigated Boundary value problems for the
Helmholtz equation in a planar 2D domain Ω outer to a finite number of domains and cuts,
with Dirichlet, Neumann, mixed and impedance conditions on the boundary and faces of
cuts. Unique solvability was proved in classical strong setting u ∈ C1(Ω) ∩ C2(Ω) by
reducing the problems to boundary Fredholm integral equations. Singularities at the tips of
cuts were described as well.

In the present paper we apply the potential method and reduce investigation of BVPs
(1.9) and (1.10) to the investigation of simpler equivalent systems.

The paper is organized as follows.First we recall auxiliary materials on potential oper-
ators and representation of solutions to BVPs in model domains (see In §,2) and then on
Mellin convolution operators in the Bessel potential spaces ( In §,3). Then we prove criteria
of Fredholmi proprty and unique solvability of model Dirichlet problem (see §, 4) nad of
model Neumann problem (see §, 5). In conclusion, at the end of the last § 4, we prove the
main Theorem 1.1.

2 POTENTIAL OPERATORS

It is well known that the Laplace operator ∆ has the Fundamental solution K∆

K∆(x) :=
1

2π
ln |x|, ∆K∆(x) = δ(x), x ∈ R2,

which is used to define the standard double layer W∆, the single layer V ∆ and the Newton
N∆ potentials on the angle Ωα:

V ∆ϕ(x) :=
1

2π

∫
Γα

ln |x− τ |ϕ(τ)dσ,

W∆ϕ(x) :=
1

2π

∫
Γα

∂ν(τ) ln |x− τ |ϕ(τ)dσ,

N∆ϕ(x) :=
1

2π

∫
Ωα

ln |x− y|ϕ(y) dy, x ∈ Ωα.

(2.1)

For the standard properties of these potentials we refer to [Du01].
Any solution u ∈ Hs

p(Ωα) to the BVP (1.9) (and also of the BVP (1.10)) is represented
as follows

u(x) = N∆f(x) +W∆u
+(x)− V ∆[∂νu]+(x) x ∈ Ωα (2.2)

(see [?, Du01]), where u+ and [∂νu]+ are the Dirichlet and the Neumann traces of the solu-
tion u on the boundary Γα (cf. Fig. 2, Formulae (1.7) and (1.8)).

Let us recall the Plemelji formulae

(W∆ϕ)−+ (t) = −+
1

2
ϕ(t) +W∆,0ϕ(t), (∂ν∆(t)V ∆ψ)−

+
)(t) = +−

1

2
ψ(t) +W ∗

∆,0ψ(t),

(∂ν∆(t)W∆ψ)−+ (t) = V ∆,+1ψ(t), (V ∆ϕ)−+ (t) = V ∆,−1ϕ(t) t ∈ Γα := ∂Ωα,
(2.3)
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where the pseudodifferential operators (ΨDO)

V ∆,−1ϕ(t) :=
1

2π

∫
Γα

ln |t− τ |ϕ(τ)dσ,

W∆,0ϕ(t) :=
1

2π

∫
Γα

∂ν(τ) ln |t− τ |ϕ(τ)dσ,

W ∗
∆,0ϕ(t) :=

1

2π

∫
Γα

∂ν(t) ln |t− τ |ϕ(τ)dσ,

V ∆,+1ϕ(t) :=
1

2π

∫
Γα

∂ν(t)∂ν(τ) ln |t− τ |ϕ(τ)dσ, t ∈ Γα

(2.4)

of orders−1, 0, 0 and +1, are associated with the layer potentials of the Helmholtz equation.
The operator V ∆,−1 has weakly singular kernel and the integral exists in the Lebesgue sense,
while the operators W∆,0 and W ∗

∆,0 have singular kernel of order −1 and the integrals
exists in the Cauchy Mean Value sense. V ∆,+1nis a hypersingular integral operator and it
is interpreted in [DT18, § 1]. The standard mapping property is listed below (see [?, Du01,
HW08] for details):

V ∆,−1 : Hs
p(Γα) −→ Hs+1

p (Γα),

W∆,0 : Hs
p(Γα) −→ Hs

p(Γα),

W ∗
∆,0 : Hs

p(Γα) −→ Hs
p(Γα),

V ∆,+1 : Hs
p(Γα) −→ Hs−1

p (Γα), s ∈ R, 1 < p <∞.

(2.5)

Next we will write some pseudodifferential operators (PsDOs) in explicit form for the
later use in §§ 3-5. For this consider the pull back operator Jα : Hs

p(Rα) → Hs
p(R+) and

its inverse J−1 : Hs
p(R+)→ Hs

p(Rα) are defined as follows

Jαϕ(t) = ϕ(t cos α, t sin α), t ∈ R+,

J−1
α ψ(x1, x2) = ψ

(√
x2

1 + x2
2

)
, (x1, x2)> ∈ Rα.

(2.6)

First let us consider the PsDOs rR+V ∆,+1rRα . By applying the equality

∂ν(x)∂ν(y) ln |x− y| = −∂2
ν(y) ln |x− y| = −δ(x− y) + ∂2

`(y) ln |x− y|,

proved similarly to (5.7), we get:

V ∆,+1ϕ(t) :=

∫
Γα

∂ν(t)∂ν(τ) ln |t− τ |ϕ(τ)dσ = −ϕ(t) +

∫
Γα

∂2
`(τ) ln |t− τ |ϕ(τ)dσ

= −ϕ(t)−
∫

Γα

∂`(τ) ln |t− τ |∂`(τ)ϕ(τ)dσ, t ∈ Γα.

By using the parametrization x = (x1, x2)> = (t, 0)> of R+, the parametrization y =
(y1, y2)> = (τ cos α, τ sin α)> of Rα, recalling that Rα is oriented from −∞ to 0, using the
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equality

∂ν(x) =


− lim

(x1,x2)→t,0
∂x2 for x on R+,

lim
(x1,x2)→(t cos α,t sin α)

[− sin α ∂x1 + cos α ∂x2 ] for x on Rα.
(2.7)

snd the equalities

∂`(y) = − cos α ∂y1 − sin α ∂y2 , ln |x− y| = 1

2
ln
[
(x1 − y1)2 + (x2 − y2)2

]
(2.8)

for t ∈ R+, y ∈ Γα, we proceed as follows:

W∆,0ϕ(x) =
1

2π

∫
Γα

∂ν(y) ln |(x1, x2)− (y1, y2)|ϕ(y)dσ

= − 1

2π

∫ ∞
0

∂y2 ln
√

(x1 − y1)2 + (x2 − y2)2

∣∣∣
y=(τ,0)

ϕ(τ)dτ

+
1

2π

∫ ∞
0

[− sin α ∂y1 + cos α ∂y2 ] ln
√

(x1 − y1)2 + (x2 − y2)2

∣∣∣
y=(τ cos α,τ sin α)

ϕ1(τ)dτ

=
1

2π

∫ ∞
0

x2ϕ(τ)dτ

(x1 − τ)2 + x2
2

+
1

2π

∫ ∞
0

(x1 sin α− x2 cos α)ϕ1(τ)dτ

(x1 − τ cos α)2 + (x2 − τ sin α)2
. (2.9)

Here ϕ1(τ) := ϕ(τ cos α, τ sin α) because in the second summand we have changed first
the orientation (Rα is oriented from∞ to 0), than variables and have reduced integration on
Rα to integration on R+. Note, that the first integral summand in (2.9) vanishes if we restrict
variable x = (x1, x2)> = (t, 0)> to the axes R+ (because x2 = 0) and, vice versa, the second
integral summand in (2.9) vanishes if we restrict variable x = (x1, x2)> = (t cos α, t sin α)>

to the axes Rα (because then x1 sin α− x2 cos α = t sin α cos α− t sin α cos α = 0) and
the integrals differ only in sign:

rR+W∆,0rRαϕ(t) = −JαrRαW∆,0rR+ϕ(t) =
sin α

2π

∫ ∞
0

t ϕ1(τ) dτ

t2 + τ 2 − 2tτ cos α

=
1

4πi

∫ ∞
0

[
eiα

t− eiατ
− e−iα

t− e−iατ

]
ϕ1(τ) dτ

=
1

4i

[
eiαKeiα − e−iαKe−iα

]
ϕ1(t), ϕ1(t) := (Jαϕ)(t), t ∈ R+, (2.10)

where Jα is the pull back operator (see (2.6)) and rR+ and rRα are the restriction operators
to the spaces on the corresponding subsets R+ and Rα.

By a similar calculation for the dual operatorW ∗
∆,0 we get the following:

rRαW
∗
∆,0rR+ϕ(t) = −JαrR+W ∗

∆,0rR+ϕ(t) =
sin α

2π

∫ ∞
0

τ ϕ(τ) dτ

t2 + τ 2 − 2tτ cos α

=
1

4πi

∫ ∞
0

[
1

t− eiατ
− 1

t− e−iατ

]
ϕ(τ) dτ
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=
1

4i
[Keiα −Ke−iα ]ϕ(t), t ∈ R+. (2.11)

For the singular integral operatorsW∆,0 and its dualW ∗
∆,0 we have proved the following

(see (2.10), (2.11)):

rR+W∆,0rRαϕ(t) = −JαrRαW∆,0rR+ϕ(t) =
1

4i

[
eiαKeiα − e−iαKei(2π−α)

]
ϕ(t), (2.12a)

rRαW
∗
∆,0rR+ϕ(t) = −JαrR+W ∗

∆,0rR+ϕ(t) =
1

4i
[Keiα −Kei(2π−α) ]ϕ(t), t ∈ R+,(2.12b)

rR+W∆rR+ = rRαW∆rRα = rR+W ∗
∆rR+ = rRαW

∗
∆rRα = 0, (2.12c)

where Jα is the pull back operator (see (2.6)) and rR+ and rRα are the restriction operators
to the spaces on the corresponding subsets R+ and Rα.

By using the equality (2.7) we proceed as follows

∂ν(t) ∂ν(y)K∆(t− y) = ∂ν(x)∂ν(y)K∆(x− y)
∣∣∣
x=(t,0)
y=(τ cos α,τ sin α)

= −∂x2(− sin α ∂y1 + cos α ∂y2)K∆(x− y)
∣∣∣
x=(t,0)
y=(τ cos α,τ sin α)

=
{
− sin α ∂y1∂y2 + cos α ∂2

y2

}
K∆(x− y)

∣∣∣
x=(t,0)
y=(τ cos α,τ sin α)

= [cos α∆K∆(x− y)− ∂y1 {cos α ∂y1 + sin α ∂y2}K∆(x− y)]
∣∣∣
x=(t,0)
y=(τ cos α,τ sin α)

=
[
cos αδ(x− y) + ∂y1∂`(y)K∆(x− y)

] ∣∣∣
x=(t,0)
y=(τ cos α,τ sin α)

=

[
cos α δ(0) +

1

4π
∂`(y)∂y1 ln

[
(x1 − y1)2 + (x2 − y2)2

]] ∣∣∣
x=(t,0)
y=(τ cos α,τ sin α)

=

[
cos α δ(0)− 1

2π
∂`(y)

x1 − y1

2π[(x1 − y1)2 + (x2 − y2)2]

] ∣∣∣
x=(t,0)
y=(τ cos α,τ sin α)

Now integrating by parts (see (??)) we continue as follows:

rR+V ∆,+1rRαv(t)=
1

2π
rR+

∫
Rα

(x1 − y1)∂`(y)v(y)dσ

(x1 − y1)2 + (x2 − y2)2

∣∣∣
x=(t,0)
y=(τ cos α,τ sin α)

= − 1

2π

∫ ∞
0

t− τ cos α

t2 + τ 2 − 2tτ cosα
(Jα∂`v)(τ)dτ

= − 1

4π

∫ ∞
0

[
1

t− eiατ
+

1

t− e−iατ

]
(Jα∂`v)(τ)dτ,
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=
1

4
[Keiα +Ke−iα ] ∂τv1(t), t ∈ R+, (2.13)

since (Jα∂`v)(τ) = −(∂τv1)(τ), where v1 := Jαv. Kc is the Mellin convolution operator
(see [Du79, Du84b, Du86, Du82] and Chapterv 4, § 2):

K1
cφ(t) :=

1

π

∞∫
0

φ(τ) dτ

t− c τ
, 0 < arg c < 2π, φ ∈ Lp(R+). (2.14)

The formula

JαrRαV ∆,+1rR+w(t) = −1

4
[Keiα +Ke−iα ] (∂τw)(t), t ∈ R+ (2.15)

is proved similarly.
Now we look to the singular integral operators rRα∂`V ∆,−1rR+ and rR+∂`V ∆,−1rRα .

We proceed as in (2.13):

JαrRα∂`V ∆,−1rR+w(t) =
1

2π
JαrRα

∫
R+

∂`(x) ln |x− y|w(y)dσ
∣∣∣
x=(t cos α,t sin α))
y=(τ,0)

= − 1

2π
JαrRα

∫
R+

cos α(x1 − τ) + x2 sin α

(x1 − τ)2 + x2
2

w(τ) dτ
∣∣∣
x=(t cos α,t sin α)

= − 1

2π

∫ ∞
0

cos α(t cos α− τ) + t sin2 α

(t cosα− τ)2 + t sin2 α
w(τ)dτ

= − 1

2π

∫ ∞
0

t− τ cosα

(t cosα− τ)2 + t2 sin2 α
w(τ)dτ

= − 1

4π

∫ ∞
0

[
1

t− eiατ
+

1

t− e−iατ

]
w(τ)dτ,

= −1

4
[Keiα +Ke−iα ]w(t), t ∈ R+. (2.16)

The formulae

rR+∂`V ∆,−1rRαw(t) =
1

4
[Keiα +Ke−iα ]Jαw(τ), t ∈ R+ (2.17)

is proved similarly.

3 MELLIN CONVOLUTION EQUATION IN BESSEL POTENTIAL SPACES

99 Let us recall from [DD16] results on the Fredholm properties of operators

A := d0I +
n∑
j=1

djK
1
cj

: H̃s
p(R+)→ Hs

p(R+), (3.1)
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where K1
c1
, . . . ,K1

cn are admissible Mellin convolution operators and d0, . . . , dn are m×m
constant matrix coefficients. H̃s

p(R+) and Hs
p(R+) are the spaces of m-vector functions.

To this end consider the infinite clockwise oriented “rectangle” R := Γ1∪Γ−2 ∪Γ+
2 ∪Γ3,

where (cf. Figure 3)

Γ1 := {+∞}× R, Γ−
+

2 := R+ × {−+∞}, Γ3 := {0} × R.

(0, ξ)

(∞, ξ)

Γ3

Γ1

Γ−2 (η,−∞) Γ+
2(η,+∞)

(∞,−∞)

(0,+∞)(0,−∞)

(∞,+∞)

Fig. 3. The domain R of definition of the symbol A s
p (ω).

According to [DD16, formulae (52)-(53d)] the symbol A s
p (ω) of the operator A is

A s
p (ω) := d0I

s
p (ω) +

n∑
j=1

djK
1,s
cj ,p

(ω), (3.2)

where

I s
p (ω) :=


gs−γ,γ,p(∞, ξ), ω = (∞, ξ) ∈ Γ1,(
−+η − γ
−+η + γ

)s
, ω = (η, −+∞) ∈ Γ−

+

2 ,

eπsi, ω = (0, ξ) ∈ Γ3, ξ, η ∈ R,

(3.3a)

gs−γ,γ,p(∞, ξ) :=
e2πsi + 1

2
+
e2πsi − 1

2i
cotπ

(1

p
− iξ

)
= eπsi

sin π
(

1
p

+ s− iξ
)

sin π
(

1
p
− iξ

) , ξ ∈ R,

K 1,s
c,p (ω) :=



−e
−iπ( 1

p
−iξ)c

1
p
−iξ−s−1

sin π(1
p
− iξ)

, ω = (∞, ξ) ∈ Γ1,

0, ω = η, −+∞) ∈ Γ−
+

2 ,

−e
−iπ( 1

p
+s−iξ)c

1
p
−iξ−s−1

sin π(1
p
− iξ)

, ω = (0, ξ) ∈ Γ3,

(3.3b)
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where
0 < arg c < 2π, c−s = |c|−sei(2π−arg c)s, cγ = |c|γeiγ arg c. (3.3c)

The function detA s
p (ω) is continuous on the rectangle R. The statement is easy to verify

analyzing the symbols in (3.2), (3.3a)-(3.3b) and taking into account that

I s
p (−∞,−∞) = 1, I s

p (0,−∞) = I s
p (0,+∞) = eπsi, I s

p (+∞,+∞) = e2πsi,

K 1,s
−1,p(−∞,−∞) = K 1,s

−1,p(0,−∞) = K 1,s
−1,p(0,+∞) = K 1,s

−1,p(+∞,+∞) = 0,

gs−γ,γ,p(∞,−∞) = 1, gs−γ,γ,p(∞,+∞) = e2πsi.

Therefore, the image of the function detA s
p (ω) is a closed curve in the complex plane and,

if the symbol is elliptic
inf
ω∈R

∣∣detA s
p (ω)

∣∣ > 0,

the increment of the argument (1/2π) arg A s
p (ω) when ω ranges through R in the direction

of orientation, is an integer. It is called the winding number or the index of the curve Γ :=
{z ∈ C : z = detAp(ω), ω ∈ R} and is denoted by ind detA s

p .

Propositions 3.1-3.3, exposed below, are well known and will be applied in the next
section in the proof of the main theorems.

Proposition 3.1 ([Du15] and Theorem 5.4, [DD16]) Let 1 < p <∞, s ∈ R. The operator

A : H̃s
p(R+) −→ Hs

p(R+) (3.4)

defined in (3.1) is Fredholm if and only if its symbol A s
p (ω) defined in (3.2), (3.3a)– (3.3b),

is elliptic. If A is Fredholm, then

IndA = −inddetA s
p .

The operator A in (3.4) is locally invertible at 0 if and only if it is globally invertible.
The operator A in (3.4) is locally invertible at 0 if and only if its symbol A s

p (ω) is elliptic
on the set Γ1 only, infω∈Γ1

∣∣detA s
p (ω)

∣∣ > 0.

Proposition 3.2 ([Du15], Corollary 6.3) Let 1 < p < ∞, s ∈ R and let A be defined
by (3.1). If the operator A : H̃s

p(R+) −→ Hs
p(R+) is Fredholm (is invertible) for all

s ∈ (s0, s1) and p ∈ (p0, p1), where −∞ < s0 < s1 < ∞, 1 < po < p1 < ∞, then A is
Fredholm (is invertible, respectively) in the Sobolev-Slobodečkii space setting

A : W̃s
p(R+) −→Ws

p(R+), for all s ∈ (s0, s1) and p ∈ (p0, p1)

and has the same index
Ind A = −ind det A s

p .
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Proposition 3.3 ([?, ?]) Let two pairs of parameter-dependent Banach spaces Bs
1 and Bs

2,
s1 < s < s2, have intersections Bs′

j ∩ Bs′′
j dense in Bs′

j and in Bs′′
j for all j = 1, 2,

s′, s′′ ∈ (s1, s2).
If a linear bounded operator A : Bs

1 → Bs
2 is Fredholm for all s ∈ (s1, s2), it has the

same kernel and co-kernel for all values of this parameter s ∈ (s1, s2).
In particular, if A : Bs

1 → Bs
2 is Fredholm for all s ∈ (s1, s2) and is invertible for only

one value s0 ∈ (s1, s2), it is invertible for all values of this parameter s ∈ (s1, s2).

4 MODEL DIRICHLET BVP

In the present section we derive an equivalent boundary integral equation for the model
Dirichlet problem (1.9) and investigate it. For this we need the following auxiliary result.

Let Cs
0(Γα) denote the set of Hölder continuous functions with with exponent s and

compact supports. It is well known that Cs
0(Γα) is a dense subset of Hs

p(Γα) for 0 < s <
1 + 1/p.

Lemma 4.1 Let 1 < p < ∞, −1 − 1

p
< s < 1 +

1

p
, g0 ∈ Cs

0(Γα), g0(0) = 1, is a fixed

function. Let us consider the linear functional

F0(ϕ) := lim
ε→0

1

2ε

∫
Γα,ε

ψ(τ)dσ, ψ ∈ Hs
p(Γα),

where Γα,ε is the intersection of Γα with the circle of radius ε centered at the vertex 0 ∈ Γα.

Then for arbitrary ϕ ∈ Hs
p(Γα) and ψ ∈Ws

p(Γα) the following representations hold:

ϕ = F0(ϕ)g0 + ϕ+ + ϕα, ϕ+ ∈ H̃s
p(R+), ϕα ∈ H̃s

p(Rα),

ψ = F0(ψ)g0 + ψ+ + ψα, ψ+ ∈ W̃s
p(R+), ψα ∈ W̃s

p(Rα),

F0(ϕ+) = F0(ϕα) = F0(ψ+) = F0(ψα) = 0.

(4.1)span

Proof: Easy to check that for ϕ ∈ Cs
0(Γα) holds F0(ϕ) = ϕ(0) and, since g0(0) = 1, we get

ϕ+(0) = 0, ϕα(0) = 0. The inclusions ϕ+ ∈ H̃s
p(R+), ϕα ∈ H̃s

p(Rα) follow automatically.
Since the subset Cs

0(Γα) is dense in Hs
p(Γα) (also in Ws

p(Γα)) and F0 is a linear bounded
functional in Hs

p(Γα) (also in Ws
p(Γα)), the both representations in (4.1) remain valid for

arbitrary function ϕ ∈ Hs
p(Γα) (for arbitrary function ψ ∈Ws

p(Γα)).

We remind that the Dirichlet trace u+ = g ∈ Ws−1/p
p (Γα) is a known function and let

(∂νu)+ = ψ ∈Ws−1−1/p
p (Γα) denote the unknown Neuman’s trace. Then the representation

formula (2.2) for a solution to the Dirichlet BVP (1.9) has the following form

u = N∆f +W∆g − V ∆ψ. (4.2)
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By applying the Plemelji Formulae (2.3) to (4.2) we get

(∂νu)+ = ψ = (∂νN∆f)+ + V ∆,+1g +
1

2
ψ −W ∗

∆,0ψ, ψ ∈ Γα

and rewrite the obtained equality as follows:

1

2
ψ +W ∗

∆,0ψ = G,

G := (∂νN∆f)+ + V ∆,+1g, ψ, G ∈Ws−1−1/p
p (Γα).

(4.3)

Since I = rR+ + rRα , applying the equalities (2.12c) we rewrite the equation (4.3) as
follows:

1

2
ψ + rR+W ∗

∆,0rRαψ + rRαW
∗
∆,0rR+ψ = G,

G, ψ ∈Ws−1−1/p
p (Γα).

(4.4)

Now we recall the representation (2.12b), restrict equation (4.4) to R+ by applying rR+ ,
which gives us the first equation in (4.5) below. Then restrict equation (4.4) to Rα and apply
the pull back operator Jα and its inverse (see (2.6)) and get the second equation in (4.5).
Thus, we get the system of two equations on the half axes with two unknown functions:

1

2
ψ1 + (rR+W ∗

∆,0rRαJ
−1
α )ψ2 + F0(ψ)g2 = G1,

1

2
ψ2 + (JαrRαW

∗
∆,0rR+)ψ1 + F0(ψ)g1 = G2,

(4.5)

g1 := rR+W ∗
∆,0rRαg0, g2 := JαrRαW

∗
∆,0rR+g0,

ψ1 := rR+ψ, ψ2 := JαrRαψ, G1 := rR+G, G2 := JαrRαG, (4.6)

ψ1, ψ2,∈ W̃s−1−1/p
p (R+), g1, g2, G1, G2 ∈Ws−1−1/p

p (R+).

Since one dimentional operator F0(·) does not influence Fredholm property of the system
(4.5), the system 

1

2
ψ1 + (rR+W ∗

∆,0rRαJ
−1
α )ψ2 = G1,

1

2
ψ2 + (JαrRαW

∗
∆,0rR+)ψ1 = G2,

(4.7)

ψ1, ψ2,∈ W̃s−1−1/p
p (R+), G1, G2 ∈Ws−1−1/p

p (R+)

is Fredholm-equivalent to the system (4.6).
Due to the formula (2.12b) the system (4.7) of boundary integral equation coincides with

the following system of integral equations of Mellin type:
ψ1 −

1

2i

[
K1

eiα −K1
ei(2π−α)

]
ψ2 = G1,

ψ2 +
1

2i

[
K1

eiα −K1
ei(2π−α)

]
ψ1 = G2,

(4.8)
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ψ1, ψ2,∈ W̃s−1−1/p
p (R+), G1, G2 ∈Ws−1−1/p

p (R+).

Theorem 4.2 Let 1 < p <∞,
1

p
< s < 1 +

1

p
.

The model Dirichlet boundary value problem in the non-classical setting (1.9) is Freholm
if and only if the system of boundary integral equation (4.8) is Fredholm.

Now we can prove the main teorem of the present section.

Theorem 4.3 The Model Dirichlet BVP in the non-classical setting (1.9) is Fredholm (and
the system of boundary integral equation (4.8) is Fredholm) if and only if the following holds:

ei2π(s−1/p) sin2 π(s− iξ) + e−i2πs sin2(α− π)(1/p− s− 1− iξ) 6= 0 ∀ ξ ∈ R. (4.9)

If the condition (4.9) holds, the semi-strip (1/p,∞)× (0, 1) of the Euclidean plane R2,
where the pairs (s, 1/p) range, decomposes into an infinite union R0 ∪ R1 ∪ · · · of non-
intersecting connected subsets of regular pairs, for which the BVP (1.9) is Fredholm.

If the point (1, 1/2) (i.e. s = 1, p = 2) belongs to the connected subset R0, then BVP
(1.9) is uniquely solvable for all pairs (s, 1/p) ∈ R0.

The same unique solvability holds for the system of integral equations (4.5).

Proof: Let us investigate the Fredholm properties of the system (4.8). An equivalent task is
to study the Fredholm property of the corresponding operator

Dα = I − 1

2i
d[K1

eiα −K1
ei(2π−α) ] : W̃s−1−1/p

p (R+)→Ws−1−1/p
p (R+). (4.10a)

For this it suffices, due to Proposition 3.2, to prove the same theorem for the operator

Dα = I − 1

2i
d[K1

eiα −K1
ei(2π−α) ] : H̃s−1−1/p

p (R+)→ Hs−1−1/p
p (R+). (4.10b)

Here d is the 2× 2 constant matrix

d :=

[
0 1
−1 0

]
. (4.11)

The symbol of the operatorDα in (4.10b) on the set Γ1, according to the formulae (3.3a)-
(3.3c), reads:

Ds−1−1/p
α,p (∞, ξ) = (4.12)

=

 eiπ(s−1/p) sinπ(s− iξ)
sin π(1/p− iξ)

−e−iπs sin(α− π)(1/p− s− 1− iξ)
sin π(1/p− iξ)

e−iπs
sin(α− π)(1/p− s− 1− iξ)

sin π(1/p− iξ)
eiπ(s−1/p) sin π(s− iξ)

sin π(1/p− iξ)

 ,
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since

I s−1−1/p
p (∞, ξ) = e2π(s−1−1/p)i

sin π
(

1/p+ s− 1− 1/p− iξ
)

sin π
(

1/p− iξ
)

= eiπ(s−1/p)
sin π

(
s− iξ

)
sin π

(
1/p− iξ

) ; (4.13)

1

2i

[
K 1,s−1−1/p

eiα,p
(∞, ξ)−K 1,s−1−1/p

ei(2π−α),p (∞, ξ)
]

= −e−iπ(1/p−iξ) e
iα(1/p−s−1−iξ) − ei(2π−α)(1/p−s−1−iξ)

2i sin π(1/p− iξ)

= e−iπs
ei(α−π)(1/p−s−1−iξ) − e−i(α−π)(1/p−s−1−iξ)

2i sin π(1/p− iξ)

= e−iπs
sin(α− π)(1/p− s− 1− iξ)

sin π(1/p− iξ)
.

Since det Ds−1−1/p
p (∞, ξ) coincides with the function in (4.9), due to Proposition 3.1

the operator in (4.10b) is locally Fredholm and, therefore, globally Fredholm if the condition
(4.9) holds.

The determinant of the symbol

det Ds−1−1/p
p (∞, ξ) = ei2π(s−1/p) sin2 π(s− iξ) + e−i2πs sin2(α− π)(1/p− s− 1− iξ)

is a periodic function with respect to the parameters s and 1/p and vanishes on curves which
divide the strip (1,∞) × (0, 1) ⊂ R2 into connected subsets R0,R1, . . .. Due to Corollary
1.5 the BVP (1.9) is uniquely solvable for s = 1 and p = 2. Then, due to Proposition 3.3,
BVP (1.9) is uniquely solvable for all pairs (s, 1/p) ∈ R0, provided (1, 1/2) ∈ R0.

5 MODEL NEUMANN BVP

In the present section we will derive equivalent boundary integral equations for the model
Neumann problem (1.10) and investigate it.

If the Neuman’s trace (∂νu)+ = h ∈ W
s−1− 1

p
p (Γα) is known and u+ = ϕ ∈ W

s− 1
p

p (Γα)
denotes the unknown Dirichlet trace, the representation formula for a solution to BVP (1.10)
has the following form

u = N∆f +W∆ϕ− V ∆h. (5.1)

By applying the Plemelji Formulae (2.5) to (5.1) we get

u+ = ϕ = (N∆f)+ +
1

2
ϕ+W∆,0ϕ− V ∆,−1h, ϕ ∈ Γα.
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Since I = rR+ + rRα , rewrite the obtained equation as follows:

1

2
ϕ− rR+W∆,0rRαϕ− rRαW∆,0rR+ϕ = H,

H := (∂νN∆f)+ − V ∆,−1h, ϕ, H ∈Ws−1/p
p (Γα).

(5.2)

By using the representation (4.1), similarly to (4.4)–(4.6) the equation (5.2) is rewritten as
an equivalent system of boundary integral equations on the semi-axes R+:

1

2
ϕ1 − rR+W∆,0rRαϕ2 − F0(ϕ)h2 = H1,

1

2
ϕ2 − JαrRαW∆,0rR+ϕ1 − F0(ϕ)h1 = H2,

(5.3)

h1 := rR+W∆,0rRαg0, h2 := JαrRαW∆,0rR+g0,

ϕ1 := rR+ϕ, ϕ2 := JαrRαϕ, H1 := rR+H, H2 := JαrRαH,

ϕ1, ϕ2 ∈ W̃s−1/p
p (R+) h1, h2, H1, H2 ∈Ws−1/p

p (R+).

Due to the formula (2.12a) the system (5.3) of boundary integral equation coincides with the
following system of integral equations of Mellin type:

ψ1 −
1

2i

[
eiαKeiα − e−iαKei(2π−α)

]
ψ2 = G1,

ψ2 +
1

2i

[
eiαKeiα − e−iαKei(2π−α)

]
ψ1 = G2,

(5.4)

ψ1, ψ2,∈ W̃s−1−1/p
p (R+), G1, G2 ∈Ws−1−1/p

p (R+).

Theorem 5.1 Let 1 < p <∞,
1

p
< s < 1 +

1

p
.

The model Neumann boundary value problem in the non-classical setting (1.10) is Fre-
holm if and only if the system of boundary integral equation (5.4) is Fredholm.

Now we can prove the main theorem of the present section.

Theorem 5.2 The Model Neumann BVP in the non-classical setting (1.10) is Fredholm (and
the system of boundary integral equation (5.4) is Fredholm) if and only if the following holds:

ei2π(s−1/p) sin2 π(s− iξ) + e−i2πs sin2(α− π)(1/p− s− iξ) 6= 0 ∀ ξ ∈ R. (5.5)

If the condition (5.5) holds, the subset (1/p,∞) × (1,∞) of the Euclidean plane R2,
where the pairs (s, p) range, decomposes into an infinite union Ro ∪ R1 ∪ · · · of non-
intersecting connected subsets of regular pairs, for which the BVP (1.10) is Fredholm.

If the point (1, 2) (i.e. s = 1, p = 2) belongs to the connected subset R0, then BVP
(1.10) is uniquely solvable for all pairs (s, p) ∈ R0.

The same unique solvability holds for the system of integral equations (5.3).
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Proof: Let us investigate the Fredholm properties of the system (5.4). An equivalent task is
to study the Fredholm property of the corresponding operator

Nα = I − 1

2i
d
[
eiαKe5.iα − e−iαKe5.i(2π−α)

]
: W̃s−1−1/p

p (R+)→Ws−1−1/p
p (R+), (5.6a)

For this it suffices, due to Proposition 3.2, to prove the same theorem for the operator

Nα = I − 1

2i
d
[
eiαKe5.iα − e−iαKe5.i(2π−α)

]
: H̃s−1−1/p

p (R+)→ Hs−1−1/p
p (R+). (5.6b)

Here the 2× 2 matrix d is defined in (4.11).

The symbol of the operatorDα in (5.6b) on the set Γ1, according to the formulae (3.3a)-
(3.3c), reads:

Ds−1−1/p
α,p (∞, ξ) = (5.7)

=

 eiπ(s−1/p) sin π(s− iξ)
sin π(1/p− iξ)

−e−iπs sin(α− π)(1/p− s− iξ)
sin π(1/p− iξ)

e−iπs
sin(α− π)(1/p− s− iξ)

sinπ(1/p− iξ)
eiπ(s−1/p) sin π(s− iξ)

sin π(1/p− iξ)

 ,
since

1

2i

[
eiαK 1,s−1−1/p

e5.iα,p
(∞, ξ)− e−iαK 1,s−1−1/p

e5.i(2π−α),p(∞, ξ)
]

= −e−iπ(1/p−iξ) e5.
iα(1/p−s−iξ) − ei(2π−α)(1/p−s−iξ)

2i sin π(1/p− iξ)

= e−iπs
e5.i(α−π)(1/p−s−iξ) − e−i(α−π)(1/p−s−iξ)

2i sinπ(1/p− iξ)

= e−iπs
sin(α− π)(1/p− s− iξ)

sin π(1/p− iξ)

and for I s−1−1/p
p (∞, ξ) see (4.13).

Since det N s−1−1/p
p (∞, ξ) coincides with the function in (5.5), due to Proposition 3.1

the operator in (5.6a) is locally Fredholm and, therefore, globally Fredholm if the condition
(5.5) holds.

The determinant of the symbol

det N s−1−1/p
p (∞, ξ) = ei2π(s−1/p) sin2 π(s− iξ) + e−i2πs sin2(α− π)(1/p− s− iξ)

is a periodic function with respect to the parameters s and 1/p and vanishes on curves which
divide the strip (1,∞) × (0, 1) ⊂ R2 into connected subsets R0,R1, . . .. Due to Corollary
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1.5 the BVP (1.10) is uniquely solvable for s = 1 and p = 2. Then, due to Proposition 3.3,
BVP (1.10) is uniquely solvable for all pairs (s, 1/p) ∈ R0, provided (1, 1/2) ∈ R0.

Proof of Theorem 1.3: Due to the local principle, Theorem 1.4, the BVP (1.1) is Fredholm
if all local representatives (the corresponding BVPs (1.9)–(1.11)) at the knots cj ∈ M =
MD ∪MN ∪MDN are Fredholm. Due to Theorems 4.3, Theorem 5.2 proved above and
Theorem 0.3 proved in [DT19] Conditions (1.4), (1.5) and (1.6) are necessary and sufficient
for the corresponding Dirichlet, Neumann and mixed BVPs are Fredholm in appropreate
settings.

The determinants of the symbols in (1.4), (1.5) and (1.6) are periodic function with re-
spect to the parameters s and 1/p and vanishes on curves which divide the strip (1,∞) ×
(0, 1) ⊂ R2 into connected subsets R0,R1, . . .. Due to Theorem 1.1 the BVP (1.1) is
uniquely solvable for s = 1 and p = 2. Then, due to Proposition 3.3, BVP (1.1) is uniquely
solvable for all pairs (s, 1/p) ∈ R0, provided (1, 1/2) ∈ R0.
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asymptotique des coques minces. C.R. Acad. Sci. Paris, Sé r. 11, 311, 1990, 909-916.

Γ-CONVERGENCE R.Duduchava et all ,



168 Bibliography December 11, 2018

[Sa92] Sanchez-Palencia, Asymptotic and spectral properties of a class of singular-stiff problems, J.
Math. Pures AppL 71, 1992, 379-406.

[Sc77] M. Schechter, Modern methods in partial differential equations. An introduction, McGraw-
Hill Inc., New York 1977.

[Sc85] R. Schneider, Integral equations with piecewise continuous coefficients in Lp-spaces with
weight. J. Integral Equations 9 (1985), No. 2, 135–152.

[Se66] R.T. Seeley, Singular integrals and boundary value problems American Journal of Mathemat-
ics 88, 1966, 781-809.

[Si65] I. B. Simonenko, A new general method of investigating linear operator equations of singular
integral equation type. I. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 567–586.

[Ta92] M. Taylor, Analysis on Morrey spaces and applications to Navier-Stokes and other evolution
equations, Comm. Partial Differential Equations 17 (1992), 1407-1456.

[Ta96] M. Taylor, Partial Differential Equations, Vol. I-III, Springer-Verlag, 1996.
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