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In the present report, the problem on the existence of a solution to the differential equation

u'(t) = f(t,u(r(t)), (1)
satisfying the nonlocal condition

Zﬁlu(tz) = Cp, (2)

is considered.
Below everywhere it is assumed that f : [a,b] xR — R and 7 : [a,b[— [a,b] are continuous
functions,

l; >0 (’i:1,...,m),
t1 = a and t; < tiy1 (izl,...,m—l) if m>2,

cp is a positive constant.
The particular case of (2) is the initial condition

u(a) = cp. (21)

We are mainly interested in the case where the function f has a nonintegrable singularity in
the time variable at the point b, i.e. the case where

b
/|f(t,x)|dt = +o0.

In this case problems of type (1), (2) (including the initial value problem (1), (2;)) have not been
studied previously (see, [1-7] and the references therein). The results below to some extent fill the
existing gap.

Theorem 1. If the condition
f(t,0)=0, f(t,z) <0 for t€la,b], x>0 (3)

holds, then problem (1), (2) has at least one nonnegative solution.
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Remark 1. In Theorem 1, the absolute value of the function f may have an arbitrary order of
growth with respect to the phase variable at infinity. For example, if

f(t,z) =p(t)(en(0) — en()),

where p : [a,b][—]0,400[ is a continuous function, n is a natural number,

e1(x) = exp(z), ext1(x) = expler(r)), k=1,2,...,

then problem (1), (2) has at least one nonnegative solution.

Remark 2. In Theorem 1, the restriction ¢t; = a is unimprovable in some sense. To verify this, we
consider the problem

/() = p(t)|u(r(t))*, (4)
u(ap) = co, (5)

where a < ag < b, A > 1, and p : [a,b] —] — 00, 0[ is a continuous function such that

(=1 [ 1]t = e,

This problem can be obtained from (1), (2) in the case, where
m=1, ti =ao, f(t,z)=p(t)z

It is obvious that all the conditions of Theorem 1 are satisfied except the condition ¢; = a. Never-
theless, problem (4), (5) has no nonnegative solution. Indeed, if we assume that such a solution u
exists, then we obtain

u(t) >0, —u'(t)u (t) = p(t) for a <t <b.

Hence we get a contradiction

aog

A r=(A-1) / (= (tu(@) dt+u'"Ma) > (A= 1) / [p(8)] dt > ¢~

a

Under the conditions of Theorem 1, every nonnegative solution to problem (1), (2) is nonin-
creasing and, therefore, has the limit as t — b. Theorem 2 below contains the sufficient condition
for that limit to be zero. To formulate this theorem, we need to introduce the following notation:

r=co/l1,
folt,z) =min {|f(t,y)]: 0 <z <y <r}.

Theorem 2. If along with (3) the condition
b
/f*(t,w)dt =400 for 0 <z <r
a

holds, then problem (1), (2) has at least one nonnegative solution and the left limit at b of every
such solution is equal to zero.
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We are able to establish sufficient conditions for the uniqueness of a solution to problem (1), (2)
only in the case where the function f is continuous on the set [a, b] x R. More precisely, the following
theorem is valid.

Theorem 3. Let the function f : [a,b] x R — R be continuous and let it satisfy condition (3). If,
moreover, f is nonincreasing and locally Lipschitz in the phase variable, then problem (1), (2) has
a unique nonnegative solution.

An important particular case of (1) is the equation

u'(t) = p(t) folu(r (1)), (6)

where p : [a,b[— R and fp: R — R are continuous functions.
Theorems 1-3 yield the following statements.

Corollary 1. Let
p(t) >0 for a<t<b, fo(0)=0, fo(x) <0 for x> 0. (7)

Then problem (6), (2) has at least one nonnegative solution. And if along with (7) the condition

b

/p(t) dt = 400

a

holds, then the left limit at b of that solution is equal to zero.

Corollary 2. Let conditions (7) be satisfied. If, moreover, p is continuous on [a,b], and fy is
nonincreasing, locally Lipschitz function, then problem (6),(2) has a unique nonnegative solution.

Condition (3) in Theorem 1 is essential and it cannot be replaced by the condition
f(t,0)=0, f(t,z)>0 for t€ [a,b], ze€R.
More precisely, the following propositions are true.

Proposition 1. Let
f(t.2) 2 p(O)|z]* for t € [a,a0), z €R,

where A > 1, a < ag < b, and p : [a,ap] — |0, +00| is a continuous function. If, moreover,

ag

@><@-4x/moﬁ)¢ﬂ

a
then problem (1), (2) has no solution.
Proposition 2. Let
f(t,l') > p(t)|$| fO’f’ te [CL’CLO]’ z €R,
T(t) = ag for t € |a,ap],

where a < ag < b, and p: [a,ag] —]0, 400 s a continuous function such that

ag

/moﬁzy

a

Then problem (1), (2) has no solution.
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At the end, we give the sketch of the proof of our main result.
Sketch of the Proof of Theorem 1. Let n be an arbitrary natural number. Set
bin=b—(b—a)/2n, by, =b—(b—a)/dn, b, =b+1/n, 7,(t) =7(t)+1/n,

50 (t) = 1 for a <t < by,
) (ban — 1)/ (ban — bin)  for bip <t < bay,

on(t)f(t,x) for a <t < by,
for t > bo,,

fult,z) =

and consider the strictly advanced differential equation

u'(t) = fu(t, u(ma(?)))- (8)

We prove:

1. If the conditions of Theorem 1 are satisfied, then for any positive number x Eq. (8) has a
unique solution u,( - ;x), defined on [a, by,], such that u, (by;x) = z;

2. For every n there exists z,, > 0 such that

m
Z Eiun(ti; xn) = Co;,
=1

3. From the sequence (un(-;7,)); 2] we can get a uniformly converging on every closed interval
contained in [a, b subsequence (uy, (- ;2n,)); > whose limit is a solution to (1), (2). O
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