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The differential equation
y′′ = α0p(t)f(t, y, y

′), (1)
where α0 ∈ {−1; 1}, p : [a, ω[→ ]0,+∞[ (−∞ < a < ω ≤ +∞) is a continuous function, f :
[a, ω[×∆Y0 ×∆Y1 → ]0,+∞[ is continuously differentiable, Yi ∈ {0,±∞}, ∆Yi is either [y0i , Yi[

1 or
]Yi, y

0
i ], is considered. We also suppose that the function f satisfies the conditions

lim
t↑ω

πω(t) · ∂f
∂t (t, v0, v1)

f(t, v0, v1)
= γ uniformly by v0 ∈ ∆Y0 , v1 ∈ ∆Y1 , (2)

lim
yk→Yk
yk∈∆Yk

vk · ∂f
∂vk

(t, v0, v1)

f(t, v0, v1)
= σk uniformly by t ∈ [a, ω[, vj ∈ ∆Yj , j ̸= k, k ∈ {0, 1}. (3)

By conditions (2), (3) the function f is in some sense close to regularly varying function by
every variable.

We call the measurable function φ : ∆Y →]0,+∞[ a regularly varying as z → Y of index σ if
for every λ > 0 we have

lim
z→Y
z∈∆Y

φ(λz)

φ(z)
= λσ. (4)

Here Y ∈ {0,±∞}, ∆Y is some one-sided neighbourhood of Y . If σ = 0, such function is called
slowly varying.

It follows from the results of the monograph [5] that regularly varying functions have the next
properties.

R1: The function φ(z) is regularly varying of index σ as z → Y if and only if the next represen-
tation takes place

φ(z) = zσθ(z),

where θ(z) is a slowly varying function as z → Y .

R2: If the function L : ∆Y 0 → ]0,+∞[ is slowly varying as z → Y0, the function φ : ∆Y → ∆Y 0

is regularly varying as z → Y , then the function L(φ) : ∆Y → ]0,+∞[ is slowly varying as
z → Y .

R3: If the function φ : ∆Y → ]0,+∞[ satisfies the condition

lim
z→Y
z∈∆

zφ′(z)

φ(z)
= σ ∈ R,

then φ is regularly varying as z → Y of index σ.
1As Yi = +∞ (Yi = −∞) assume y0

i > 0 (y0
i < 0).
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R4: For every regularly varying as z → Y function φ the property (4) takes place uniformly as
λ ∈ [c, d] for every segment [c, d] ⊂ ]0,+∞[ .

Definition. Solution y of the equation (1) is called Pω(Y0, Y1, λ0) if it is defined on [t0, ω[⊂ [a, ω[
and

lim
t↑ω

y(i)(t) = Yi (i = 0, 1), lim
t↑ω

(y′(t))2

y(t)y′′(t)
= λ0.

For different values of parameter λ0 the class of such solutions contains regularly slowly and
rapidly varying as t ↑ ω functions. Pω(Y0, Y1, λ0)-solutions of the equation (1) are regularly varying
functions as t ↑ ω of index λ0

λ0−1 if λ0 ∈ R \ {0, 1}.
A lot of works (see, for example, [2,3]) have been devoted to the establishing asymptotic repre-

sentations of Pω(Y0, Y1, λ0)-solutions of equations of the form (1), in which f(t, y, y′) ≡ φ0(y)φ1(y
′),

where φ0 and φ1 are regularly varying functions. For more general case as f depends only on y
and y′ asymptotic properties and necessary and sufficient conditions of existence of such solutions
of the equation (1) have been obtained in [1].

We need the next subsidiary notations.

πω(t) =

{
t as ω = +∞,

t− ω as ω < +∞,

Θi(z) = φi(z)|z|−σi (i = 0, 1),

J1(t) =

t∫
A1

ω

(
α0p(τ)|πω(τ)|γ+σ0

∣∣∣λ0 − 1

λ0

∣∣∣σ0
)
dτ,

A1
ω =


a, if

ω∫
a

p(τ)|πω(τ)|γ+σ0 dτ = +∞,

ω, if
ω∫

a

p(τ)|πω(τ)|γ+σ0 dτ < +∞,

J2(t) =
∣∣(1− σ0 − σ1)

∣∣ 1
1−σ0−σ1 sign y01

t∫
B2

ω

|J1(t)|
1

1−σ0−σ1 dτ,

B2
ω =


b, if

ω∫
b

|J1(t)|
1

1−σ0−σ1 dτ = +∞,

ω, if
ω∫
b

|J1(t)|
1

1−σ0−σ1 dτ < +∞.

The following theorem is obtained for the equation (1).

Theorem 1. Let in the equation (1) σ1 ̸= 1. Then for the existence of Pω(Y0, Y1, λ0)-solutions to
the equation (1) in cases λ0 ∈ R \ {0, 1}, it is necessary and if

λ0 ̸= σ1 − 1 or (σ1 − 1)(σ0 + σ1 − 1) > 0,

then also sufficient

πω(t)y
0
1y

0
0λ0(λ0 − 1) > 0, πω(t)α0y

0
1λ0(λ0 − 1) > 0 as t ∈ [a, ω[ ,
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lim
t↑ω

y00|πω(t)|
λ0

λ0−1 = Y0, lim
t↑ω

y01|πω(t)|
1

λ0−1 = Y1,

lim
t↑ω

πω(t)J
′
2(t)

J2(t)
=

λ0

λ0 − 1
, lim

t↑ω

πω(t)J
′
1(t)

J1(t)
=

1− σ0 − σ1
λ0 − 1

.

The next result is devoted to research Pω(Y0, Y1, λ0)-solutions in special and most complex case
λ0 = 0. In this case, such decisions or their first order derivatives will be slowly changing functions
as t ↑ ω, which significantly complicates the study. Therefore, consider the differential equation

y′′ = α0p(t)|y|σ0y′|σ1 exp
(
R
(∣∣ ln |πω(t)yy′|∣∣)), (5)

where α0, p are the same as in a general equation, and R is continuously differentiable, with a
monotone derivative, regularly variable at infinity function return order µ, 0 < µ < 1.

Theorem 2. Let
lim
t↑ω

R(| ln |πω(t)||)J(t)
πω(t) ln |πω(t)|J ′(t)

= 0.

Then, for the existence of Pω(Y0, Y1, 0)-solutions to the equation (5) for which there is a finite or
infinite boundary

lim
t↑ω

πω(t)y
′′(t)

y′(t)
,

the following conditions and inequalities are sufficient and sufficient

lim
t↑ω

y00|J(t)|
1−σ1

1−σ0−σ1 = Y0, lim
t↑ω

y01|I(t)|
1

1−σ1 = Y1,

lim
t↑ω

πω(t)I
′(t)

I(t)
= σ1 − 1, lim

t↑ω

πω(t)J
′(t)

J(t)
= 0,

I(t)

y01(1− σ1)
> 0,

y00y
0
1(1− σ1)J(t)

1− σ0 − σ1
> 0 as t ∈ ]a, ω[ .

In addition, for each such solution, the following asymptotic representations hold as t ↑ ω

y(t)

| exp(R(| ln |πω(t)y(t)y′(t)||))|y(t)|σ0 |
1

1−σ1

=
1− σ0 − σ1

1− σ1
|1− σ1|

1
1−σ1 J(t)[1 + o(1)],

y(t)

y′(t)
=

(1− σ0 − σ1)J(t)

(1− σ1)J ′(t)
[1 + o(1)],

where

I(t) = α0

t∫
Aω

p(τ) dτ, J(t) =

t∫
Bω

|I(τ)|
1

1−σ1 dτ,

the integration limits Aω, Bω are chosen so that the corresponding integrals are either 0, or ∞.

For differential equations of more specific type, one can get more detailed information about
Pω(Y0, Y1, 0)-solutions to the equation (3).

In [4] it was considered the differential equation

y′′ = mtσ1−2 exp(k lnγ t)|y|σ0 |y′|σ1 exp
((
| ln |yy′|

)µ) (6)

on the interval [t0; +∞[ (t0 > 0), where m ∈ ]−∞, 0[ , k ∈ ]0,+∞[ , γ, µ ∈ ]0; 1[ , σ0, σ1 ∈ R, σ0+σ1 ̸=
1, σ1 ̸= 1 is the equation of the form (1), where α0 = signm = −1, p(t) = mtσ1−2 exp(k lnγ t),
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φ0 = |y|σ0 , φ1 = |y|σ1 , R(z) = zµ. This function φ1 satisfies the condition S. Let us consider the
case, when ω = Y0 = Y1 = +∞.

If µ − γ < 0, then for the existence of P+∞(+∞,+∞, 0)-solutions of the equation (6) the
following condition

1− σ0 − σ1 > 0 (7)
is necessary and sufficient.

Moreover, for each such solution the following asymptotic representations take place as t → +∞

y
1−σ0−σ1

1−σ1 exp
( | ln |y(t)y′(t)||µ

σ1 − 1

)
=

1− σ0 − σ1
γk

exp
( k lnγ t

1− σ1

)
ln1−γ t[1 + o(1)],

y(t)

y′(t)
=

(1− σ0 − σ1)γk

(1− σ1)2
lnγ−1 t

t
[1 + o(1)].

Let us now consider the case µ−γ > 0. In this case for µ−γ > 0 for existence of P+∞(+∞,+∞, 0)-
solutions to the equation (6) the condition (7) is necessary and sufficient. Moreover, each such
solution satisfies the next asymptotic representations as t → +∞

y
1−σ0−σ1

1−σ1 exp
( | ln |y(t)y′(t)||µ

σ1 − 1

)
=

1− σ0 − σ1
µ(1− σ1)

exp
( k lnγ t

1− σ1

)
ln1−µ t[1 + o(1)],

y′(t)

y(t)
=

µ

σ0 + σ1 − 1
tσ1−2 lnγ−1 t[1 + o(1)].

In case µ = γ we obtain that for the existence of P+∞(+∞,+∞, 0)-solutions to the equation (6)
the condition (7) together with the condition

(1− σ1 − k)(1− σ1) > 0

is necessary and sufficient. Moreover, each such solution satisfies the next asymptotic representa-
tions as t → +∞

y
1−σ0−σ1

1−σ1 exp
( | ln |y(t)y′(t)||µ

σ1 − 1

)
=

1− σ0 − σ1
µ(1− σ1 − k)

exp
( k lnγ t

1− σ1

)
ln1−µ t[1 + o(1)],

y′(t)

y(t)
=

µ(1− σ1 − k)

(σ0 + σ1 − 1)(1− σ1)
tσ1−2 lnγ−1 t[1 + o(1)].
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