Regularly Varying Solutions of Differential Equations of the Second Order with Nonlinearities of Exponential Types

A. Vorobiova

Odessa I. I. Mechnikov National University, Odessa, Ukraine E-mail: alla.vorobyova@stud.onu.edu.ua

The differential equation

$$y'' = \alpha_0 p(t) f(t, y, y'),$$
 (1)

where $\alpha_0 \in \{-1; 1\}$, $p : [a, \omega[\to]0, +\infty[(-\infty < a < \omega \le +\infty))$ is a continuous function, $f : [a, \omega[\times \Delta_{Y_0} \times \Delta_{Y_1} \to]0, +\infty[$ is continuously differentiable, $Y_i \in \{0, \pm\infty\}$, Δ_{Y_i} is either $[y_i^0, Y_i]^1$ or $[Y_i, y_i^0]$, is considered. We also suppose that the function f satisfies the conditions

$$\lim_{t\uparrow\omega} \frac{\pi_{\omega}(t) \cdot \frac{\partial f}{\partial t}(t, v_0, v_1)}{f(t, v_0, v_1)} = \gamma \text{ uniformly by } v_0 \in \Delta_{Y_0}, \quad v_1 \in \Delta_{Y_1}, \tag{2}$$

$$\lim_{\substack{y_k \to Y_k \\ y_k \in \Delta_{Y_1}}} \frac{v_k \cdot \frac{\partial f}{\partial v_k}(t, v_0, v_1)}{f(t, v_0, v_1)} = \sigma_k \text{ uniformly by } t \in [a, \omega[, v_j \in \Delta_{Y_j}, \ j \neq k, \ k \in \{0, 1\}. \tag{3}$$

By conditions (2), (3) the function f is in some sense close to regularly varying function by every variable.

We call the measurable function $\varphi : \Delta_Y \to]0, +\infty[$ a regularly varying as $z \to Y$ of index σ if for every $\lambda > 0$ we have

$$\lim_{\substack{z \to Y\\ \varphi \in \Delta_Y}} \frac{\varphi(\lambda z)}{\varphi(z)} = \lambda^{\sigma}.$$
(4)

Here $Y \in \{0, \pm \infty\}$, Δ_Y is some one-sided neighbourhood of Y. If $\sigma = 0$, such function is called slowly varying.

It follows from the results of the monograph [5] that regularly varying functions have the next properties.

 R_1 : The function $\varphi(z)$ is regularly varying of index σ as $z \to Y$ if and only if the next representation takes place

$$\varphi(z) = z^{\sigma}\theta(z),$$

where $\theta(z)$ is a slowly varying function as $z \to Y$.

R₂: If the function $L : \Delta_{Y^0} \to]0, +\infty[$ is slowly varying as $z \to Y_0$, the function $\varphi : \Delta_Y \to \Delta_{Y^0}$ is regularly varying as $z \to Y$, then the function $L(\varphi) : \Delta_Y \to]0, +\infty[$ is slowly varying as $z \to Y$.

 R_3 : If the function $\varphi: \Delta_Y \to]0, +\infty[$ satisfies the condition

$$\lim_{\substack{z \to Y \\ z \in \Delta}} \frac{z\varphi'(z)}{\varphi(z)} = \sigma \in \mathbb{R},$$

then φ is regularly varying as $z \to Y$ of index σ .

¹As $Y_i = +\infty$ $(Y_i = -\infty)$ assume $y_i^0 > 0$ $(y_i^0 < 0)$.

 R_4 : For every regularly varying as $z \to Y$ function φ the property (4) takes place uniformly as $\lambda \in [c, d]$ for every segment $[c, d] \subset [0, +\infty]$.

Definition. Solution y of the equation (1) is called $P_{\omega}(Y_0, Y_1, \lambda_0)$ if it is defined on $[t_0, \omega] \subset [a, \omega]$ and

$$\lim_{t \uparrow \omega} y^{(i)}(t) = Y_i \ (i = 0, 1), \quad \lim_{t \uparrow \omega} \frac{(y'(t))^2}{y(t)y''(t)} = \lambda_0.$$

For different values of parameter λ_0 the class of such solutions contains regularly slowly and rapidly varying as $t \uparrow \omega$ functions. $P_{\omega}(Y_0, Y_1, \lambda_0)$ -solutions of the equation (1) are regularly varying functions as $t \uparrow \omega$ of index $\frac{\lambda_0}{\lambda_0 - 1}$ if $\lambda_0 \in \mathbb{R} \setminus \{0, 1\}$.

A lot of works (see, for example, [2,3]) have been devoted to the establishing asymptotic representations of $P_{\omega}(Y_0, Y_1, \lambda_0)$ -solutions of equations of the form (1), in which $f(t, y, y') \equiv \varphi_0(y)\varphi_1(y')$, where φ_0 and φ_1 are regularly varying functions. For more general case as f depends only on yand y' asymptotic properties and necessary and sufficient conditions of existence of such solutions of the equation (1) have been obtained in [1].

We need the next subsidiary notations.

$$\begin{split} \pi_{\omega}(t) &= \begin{cases} t & \text{as } \omega = +\infty, \\ t - \omega & \text{as } \omega < +\infty, \end{cases} \\ \Theta_{i}(z) &= \varphi_{i}(z)|z|^{-\sigma_{i}} \ (i = 0, 1), \end{cases} \\ J_{1}(t) &= \int_{A_{\omega}^{1}}^{t} \left(\alpha_{0}p(\tau)|\pi_{\omega}(\tau)|^{\gamma+\sigma_{0}} \left|\frac{\lambda_{0} - 1}{\lambda_{0}}\right|^{\sigma_{0}}\right) d\tau, \\ A_{\omega}^{1} &= \begin{cases} a, & \text{if } \int_{a}^{\omega} p(\tau)|\pi_{\omega}(\tau)|^{\gamma+\sigma_{0}} d\tau = +\infty, \\ & \omega, & \text{if } \int_{a}^{\omega} p(\tau)|\pi_{\omega}(\tau)|^{\gamma+\sigma_{0}} d\tau < +\infty, \end{cases} \\ J_{2}(t) &= \left|(1 - \sigma_{0} - \sigma_{1})\right|^{\frac{1}{1 - \sigma_{0} - \sigma_{1}}} \operatorname{sign} y_{1}^{0} \int_{B_{\omega}^{2}}^{t} |J_{1}(t)|^{\frac{1}{1 - \sigma_{0} - \sigma_{1}}} d\tau, \end{cases} \\ B_{\omega}^{2} &= \begin{cases} b, & \text{if } \int_{b}^{\omega} |J_{1}(t)|^{\frac{1}{1 - \sigma_{0} - \sigma_{1}}} d\tau = +\infty, \\ & \omega, & \text{if } \int_{b}^{\omega} |J_{1}(t)|^{\frac{1}{1 - \sigma_{0} - \sigma_{1}}} d\tau = +\infty. \end{cases} \end{split}$$

The following theorem is obtained for the equation (1).

Theorem 1. Let in the equation (1) $\sigma_1 \neq 1$. Then for the existence of $P_{\omega}(Y_0, Y_1, \lambda_0)$ -solutions to the equation (1) in cases $\lambda_0 \in R \setminus \{0, 1\}$, it is necessary and if

$$\lambda_0 \neq \sigma_1 - 1 \text{ or } (\sigma_1 - 1)(\sigma_0 + \sigma_1 - 1) > 0,$$

then also sufficient

$$\pi_{\omega}(t)y_{1}^{0}y_{0}^{0}\lambda_{0}(\lambda_{0}-1) > 0, \quad \pi_{\omega}(t)\alpha_{0}y_{1}^{0}\lambda_{0}(\lambda_{0}-1) > 0 \quad as \ t \in [a,\omega[,$$

$$\begin{split} \lim_{t\uparrow\omega} y_0^0 |\pi_\omega(t)|^{\frac{\lambda_0}{\lambda_0 - 1}} &= Y_0, \quad \lim_{t\uparrow\omega} y_1^0 |\pi_\omega(t)|^{\frac{1}{\lambda_0 - 1}} = Y_1, \\ \lim_{t\uparrow\omega} \frac{\pi_\omega(t)J_2'(t)}{J_2(t)} &= \frac{\lambda_0}{\lambda_0 - 1}, \quad \lim_{t\uparrow\omega} \frac{\pi_\omega(t)J_1'(t)}{J_1(t)} = \frac{1 - \sigma_0 - \sigma_1}{\lambda_0 - 1} \end{split}$$

The next result is devoted to research $P_{\omega}(Y_0, Y_1, \lambda_0)$ -solutions in special and most complex case $\lambda_0 = 0$. In this case, such decisions or their first order derivatives will be slowly changing functions as $t \uparrow \omega$, which significantly complicates the study. Therefore, consider the differential equation

$$y'' = \alpha_0 p(t) |y|^{\sigma_0} y'|^{\sigma_1} \exp\left(R\left(\left|\ln\left|\pi_\omega(t)yy'\right|\right|\right)\right),\tag{5}$$

where α_0 , p are the same as in a general equation, and R is continuously differentiable, with a monotone derivative, regularly variable at infinity function return order μ , $0 < \mu < 1$.

Theorem 2. Let

$$\lim_{t\uparrow\omega}\frac{R(|\ln|\pi_{\omega}(t)||)J(t)}{\pi_{\omega}(t)\ln|\pi_{\omega}(t)|J'(t)} = 0$$

Then, for the existence of $P_{\omega}(Y_0, Y_1, 0)$ -solutions to the equation (5) for which there is a finite or infinite boundary

$$\lim_{t\uparrow\omega}\frac{\pi_{\omega}(t)y''(t)}{y'(t)}\,,$$

the following conditions and inequalities are sufficient and sufficient

$$\begin{split} \lim_{t\uparrow\omega} y_0^0 |J(t)|^{\frac{1-\sigma_1}{1-\sigma_0-\sigma_1}} &= Y_0, \quad \lim_{t\uparrow\omega} y_1^0 |I(t)|^{\frac{1}{1-\sigma_1}} &= Y_1, \\ \lim_{t\uparrow\omega} \frac{\pi_\omega(t)I'(t)}{I(t)} &= \sigma_1 - 1, \quad \lim_{t\uparrow\omega} \frac{\pi_\omega(t)J'(t)}{J(t)} &= 0, \\ \frac{I(t)}{y_1^0(1-\sigma_1)} &> 0, \quad \frac{y_0^0 y_1^0(1-\sigma_1)J(t)}{1-\sigma_0-\sigma_1} &> 0 \quad as \ t \in]a, \omega[t] \end{split}$$

In addition, for each such solution, the following asymptotic representations hold as $t \uparrow \omega$

$$\begin{aligned} \frac{y(t)}{|\exp(R(|\ln|\pi_{\omega}(t)y(t)y'(t)||))|y(t)|^{\sigma_0}|^{\frac{1}{1-\sigma_1}}} &= \frac{1-\sigma_0-\sigma_1}{1-\sigma_1} |1-\sigma_1|^{\frac{1}{1-\sigma_1}} J(t)[1+o(1)],\\ \frac{y(t)}{y'(t)} &= \frac{(1-\sigma_0-\sigma_1)J(t)}{(1-\sigma_1)J'(t)} [1+o(1)], \end{aligned}$$

where

$$I(t) = \alpha_0 \int_{A_\omega}^t p(\tau) d\tau, \quad J(t) = \int_{B_\omega}^t |I(\tau)|^{\frac{1}{1-\sigma_1}} d\tau,$$

the integration limits A_{ω} , B_{ω} are chosen so that the corresponding integrals are either 0, or ∞ .

For differential equations of more specific type, one can get more detailed information about $P_{\omega}(Y_0, Y_1, 0)$ -solutions to the equation (3).

In [4] it was considered the differential equation

$$y'' = mt^{\sigma_1 - 2} \exp(k \ln^{\gamma} t) |y|^{\sigma_0} |y'|^{\sigma_1} \exp\left(\left(|\ln|yy'|\right)^{\mu}\right)$$
(6)

on the interval $[t_0; +\infty[(t_0 > 0)]$, where $m \in]-\infty, 0[, k \in]0, +\infty[, \gamma, \mu \in]0; 1[, \sigma_0, \sigma_1 \in \mathbb{R}, \sigma_0 + \sigma_1 \neq 1, \sigma_1 \neq 1$ is the equation of the form (1), where $\alpha_0 = \text{sign } m = -1, p(t) = mt^{\sigma_1 - 2} \exp(k \ln^{\gamma} t)$,

 $\varphi_0 = |y|^{\sigma_0}, \ \varphi_1 = |y|^{\sigma_1}, \ R(z) = z^{\mu}$. This function φ_1 satisfies the condition S. Let us consider the case, when $\omega = Y_0 = Y_1 = +\infty$.

If $\mu - \gamma < 0$, then for the existence of $P_{+\infty}(+\infty, +\infty, 0)$ -solutions of the equation (6) the following condition

$$1 - \sigma_0 - \sigma_1 > 0 \tag{7}$$

is necessary and sufficient.

Moreover, for each such solution the following asymptotic representations take place as $t \to +\infty$

$$y^{\frac{1-\sigma_0-\sigma_1}{1-\sigma_1}} \exp\left(\frac{|\ln|y(t)y'(t)||^{\mu}}{\sigma_1-1}\right) = \frac{1-\sigma_0-\sigma_1}{\gamma k} \exp\left(\frac{k\ln^{\gamma}t}{1-\sigma_1}\right)\ln^{1-\gamma}t[1+o(1)]$$
$$\frac{y(t)}{y'(t)} = \frac{(1-\sigma_0-\sigma_1)\gamma k}{(1-\sigma_1)^2} \frac{\ln^{\gamma-1}t}{t} [1+o(1)].$$

Let us now consider the case $\mu - \gamma > 0$. In this case for $\mu - \gamma > 0$ for existence of $P_{+\infty}(+\infty, +\infty, 0)$ solutions to the equation (6) the condition (7) is necessary and sufficient. Moreover, each such
solution satisfies the next asymptotic representations as $t \to +\infty$

$$y^{\frac{1-\sigma_0-\sigma_1}{1-\sigma_1}} \exp\left(\frac{|\ln|y(t)y'(t)||^{\mu}}{\sigma_1-1}\right) = \frac{1-\sigma_0-\sigma_1}{\mu(1-\sigma_1)} \exp\left(\frac{k\ln^{\gamma}t}{1-\sigma_1}\right)\ln^{1-\mu}t[1+o(1)],$$
$$\frac{y'(t)}{y(t)} = \frac{\mu}{\sigma_0+\sigma_1-1} t^{\sigma_1-2}\ln^{\gamma-1}t[1+o(1)].$$

In case $\mu = \gamma$ we obtain that for the existence of $P_{+\infty}(+\infty, +\infty, 0)$ -solutions to the equation (6) the condition (7) together with the condition

$$(1 - \sigma_1 - k)(1 - \sigma_1) > 0$$

is necessary and sufficient. Moreover, each such solution satisfies the next asymptotic representations as $t\to+\infty$

$$y^{\frac{1-\sigma_0-\sigma_1}{1-\sigma_1}} \exp\left(\frac{|\ln|y(t)y'(t)||^{\mu}}{\sigma_1-1}\right) = \frac{1-\sigma_0-\sigma_1}{\mu(1-\sigma_1-k)} \exp\left(\frac{k\ln^{\gamma}t}{1-\sigma_1}\right) \ln^{1-\mu}t[1+o(1)],$$
$$\frac{y'(t)}{y(t)} = \frac{\mu(1-\sigma_1-k)}{(\sigma_0+\sigma_1-1)(1-\sigma_1)} t^{\sigma_1-2} \ln^{\gamma-1}t[1+o(1)].$$

References

- M. A. Belozerova and G. A. Gerzhanovskaya, Asymptotic representations of solutions of second order differential equations with nonlinearities close to regularly varying. (Russian) *Mat. Stud.* 44 (2015), no. 2, 204–214.
- [2] M. O. Bilozerova, Asymptotic representations of solutions of second order differential equations with non-linearities which, to some extent, are close to the power ones. (Ukrainian) Nauk. Visn. Chernivets'kogo Univ., Mat. 374 (2008), 34-43.
- [3] V. M. Evtukhov and M. A. Belozerova, Asymptotic representations of solutions of second-order essentially nonlinear nonautonomous differential equations. (Russian) Ukraïn. Mat. Zh. 60 (2008), no. 3, 310–331; translation in Ukrainian Math. J. 60 (2008), no. 3, 357–383.
- [4] G. A. Gerzhanovskaya, Properties of slowly varying solutions to essentially nonlinear second order differential equations. (Ukrainian) Bukovyn. Mat. Zh. 5 (2017), no. 3–4, 39–46.
- [5] E. Seneta, *Regularly Varying Functions*. Lecture Notes in Mathematics, Vol. 508. Springer-Verlag, Berlin-New York, 1976.