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Let (X,d) be a compact metric space, f = (f1, f2,...) be a sequence of continuous mappings
from X to X. Along with the original metric d, we define on X an additional system of metrics

dZL('r?y): maXﬁ d(fOi(x)afOi(y))’ fOiEin"'ofloidXv x??/GXv n € N.

0<i<n

1

For any n € N and ¢ > 0, let N(f,e,n) denote the maximum number of points in X whose
pairwise df-distances are greater than . Such a set of points is called (f, e, n)-separated. Then the
topological entropy of a nonautonomous dynamical system (X, f) is the quantity

o= 1
htop(f) = lim Lim — I N(f, &, 7). (1)
Note that the topological entropy does not depend on the choice of a metric generating the given
topology on X, so definition (1) is correct.
Given a metric space M and a sequence of continuous mappings

f=0Uf), o MxX =X, (2)

we form a function
n= htop(f(:ua : )) (3)

For arbitrary M, X and for any sequence of mappings (2) function (3) belongs to the third
Baire class [4]. In the case when X is a Cantor perfect set [4] or a segment of the real line [5] and
M is the set of irrational numbers on the segment [0; 1] with the metric induced by the standard
metric of the real line, there is a sequence of mappings (2) for which function (3) is everywhere
discontinuous and does not belong to the second Baire class.

A natural question arises on the smallest Baire class to which function (3) belongs in the case

M = [0;1].

Theorem. Let M = X = [0;1], then there exists a sequence of continuous mappings (2) such that
the function (3) is everywhere discontinuous and does not belong to the second Baire class on the
space M.

Proof. Given a continuous function o« : M — M
0, if u=020,

= 1
aln) ,u(l—sin—), if 0<pu<l,
1
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we will construct a sequence of functions
L ollogy (k+4)]
ak(-):max{g,a 82 ()}, k=1,2,...

([-] is the integer part of number) and a sequence of mappings from [0;1]2 to [0; 1]

fE(fl,fQ,...),
“ if 0<e<1—ar(p),
: Q
fo(poz) =420 —1+ag(p), i 1—op(p)<z<1- "“2(“)7

—2x 43 —ag(p), if 1-—

By definition, the function f is continuous on [0; 1]2.
Let E denote the set of those p from [0;1] for which the equality k]im ar(p) = 0 holds. It is
— 00

not empty because it contains zero.

Lemma 1. Let u € E, then
htop(f(“? ' )) =0.

Proof. We recall another formula for calculating the topological entropy of a nonautonomous dy-
namical system [1]. For any ¢ > 0 and n € N, denote by Bf(x,e,n) the open ball {y € X :

dﬁ(w,y) <e}. Aset U C X is called an (f,e,n)-covering if

X C U By(x,e,n).
zcU

Let S(f,e,n) denote the minimum number of elements of an ( f, e, n)-covering, then the topological
entropy can be calculated by the formula

hop(f) = lim Tm ~ n S(f,e,n).

e—>0n—oco N

We fix e > 0 and p € E, then there is a number ko such that ay,(p) < 3 e and for any k > kg
the inequality oy (p1) < ag, (1) holds. Let Uy, C [0;1] be a minimal (f(u, - ), 3¢, ko)-covering of the
interval [0;1]. The set Uy, U {zo}, where f°%0(u, 20) = 1 — ag,(u), due to the inclusion

Fe(ps (1= ag (1), 1]) € [1 =y (), 1],
for k > ko is an (f(u, - ), 3¢, k)-covering of the interval [0; 1], therefore
huop(f (11, -)) < lim + In (|Usy| + 1) = 0.
k—oo k
Lemma 1 is proved. O

Lemma 2. Let p ¢ E, then
hiop(f (1, +)) 2 5 In2.



REPORTS OF QUALITDE, Volume 3, 2024

291

Proof. Let p ¢ E, then there exists a subsequence (ay; (1))72; C (ax(p))3Z; and a number ¢ > 0

such that inf ag.(u) = q.
jen v

For all j € N, k € {2k, ..., 28%1 — 1} and = € [0;1] the equality fx(u,2) = for; (11, ) holds.
Using the affine transformation ¢ we map the square [1 — oy, (1), 1)2 onto the square [0,1]?, and

the mapping fzkj (1, -)‘[1_%]_ (1] becomes the mapping

2z, if 0<z<

I

g(x) =

—_ N

1
2 —2x, if §<$<

For any n € N, consider the set of points of the form

n

Z ;—Z, where ay € {0,1}.
k=1

Using mathematical induction, we prove the equality

n

n ag\ J0, if a, =0,
() -{

P if a, = 1.
Indeed, for n = 1 we have g(0) = 0 and g(1) =1
Let
n
1
a1
2k 2
k=1
then
n n
ar ay
ok L= 9
k=1 k=2
and
a ag (n—1) a ag (n—1) “ Ak+1 0
n n—1 n— 9
)03 =i (S %)
g( 2) g ( ok ) — 9 2k 1
k=1 k=2 k=1 )
Let
n
o5 L
2 2
k=1

then ¢; = 1 and

P55 -0 o) =) - |

k=1 k=1 k=1

Thus, equality (4) is proved.

preimages of two points

By (4), for e < % and n € {1,...,2%*1 — 2k — 1} we have that dg,§§‘+)

if a, =0,

if a, = 1.

0, if a, =0,
1, if a, = 1.

-distance between any
n
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under the mapping fo(gkj ~2)(u, -) is greater than e, and therefore

N(f(lu“v ')757 2kj+1) = 2kj+1 - 2kj>

whence we get

atioohy Lo

hop (F(ps ) > lim Tim :

e—=0j—00

2]€j+1 1 (

Lemma 2 is proved. O

Completion of the proof of the theorem. In the paper [2] it was established that the set E is an
F,s-set and is not a Gs,-set. We use the following statement from [3]: if a functional h : M — R
belongs to the second Baire class, then the intersection of the closures of the sets h(E) and h(M\E)
is nonempty. By Lemmas 1 and 2, we have

Mop(T(B, -)) <0< 2 In2 < huop(F(B\ B -)),

therefore, the function p +— heop(f (1, -)) does not belong to the second Baire class. Theorem is

proved. O
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