On Non-Belonging to the Second Baire Class of the Topological Entropy of One Family of Non-Autonomous Dynamical Systems on an Interval Continuously Depending on a Real Parameter

Alexandr N. Vetokhin^{1,2}

¹Lomonosov Moscow State University, Moscow, Russia ²Bauman Moscow State Technical University, Moscow, Russia *E-mail:* anveto27@yandex.ru

Let (X, d) be a compact metric space, $f \equiv (f_1, f_2, ...)$ be a sequence of continuous mappings from X to X. Along with the original metric d, we define on X an additional system of metrics

$$d_n^f(x,y) = \max_{0 \le i \le n-1} d(f^{\circ i}(x), f^{\circ i}(y)), \quad f^{\circ i} \equiv f_i \circ \dots \circ f_1 \circ \mathrm{id}_X, \quad x, y \in X, \quad n \in \mathbb{N}.$$

For any $n \in \mathbb{N}$ and $\varepsilon > 0$, let $N(f, \varepsilon, n)$ denote the maximum number of points in X whose pairwise d_n^f -distances are greater than ε . Such a set of points is called (f, ε, n) -separated. Then the *topological entropy* of a nonautonomous dynamical system (X, f) is the quantity

$$h_{\text{top}}(f) = \lim_{\varepsilon \to 0} \lim_{n \to \infty} \frac{1}{n} \ln N(f, \varepsilon, n).$$
(1)

Note that the topological entropy does not depend on the choice of a metric generating the given topology on X, so definition (1) is correct.

Given a metric space \mathcal{M} and a sequence of continuous mappings

$$f \equiv (f_1, f_2, \dots), \quad f_k : \mathcal{M} \times X \to X,$$
 (2)

we form a function

$$\mu \mapsto h_{\text{top}}(f(\mu, \,\cdot\,)). \tag{3}$$

For arbitrary \mathcal{M} , X and for any sequence of mappings (2) function (3) belongs to the third Baire class [4]. In the case when X is a Cantor perfect set [4] or a segment of the real line [5] and \mathcal{M} is the set of irrational numbers on the segment [0; 1] with the metric induced by the standard metric of the real line, there is a sequence of mappings (2) for which function (3) is everywhere discontinuous and does not belong to the second Baire class.

A natural question arises on the smallest Baire class to which function (3) belongs in the case $\mathcal{M} = [0; 1]$.

Theorem. Let $\mathcal{M} = X = [0; 1]$, then there exists a sequence of continuous mappings (2) such that the function (3) is everywhere discontinuous and does not belong to the second Baire class on the space \mathcal{M} .

Proof. Given a continuous function $\alpha : \mathcal{M} \to \mathcal{M}$

$$\alpha(\mu) = \begin{cases} 0, & \text{if } \mu = 0, \\ \mu \left(1 - \sin \frac{1}{\mu}\right), & \text{if } 0 < \mu \leqslant 1, \end{cases}$$

we will construct a sequence of functions

$$\alpha_k(\cdot) = \max\left\{\frac{1}{k}, \alpha^{\circ[\log_2(k+4)]}(\cdot)\right\}, \ k = 1, 2, \dots$$

 $([\cdot]$ is the integer part of number) and a sequence of mappings from $[0;1]^2$ to [0;1]

$$f \equiv (f_1, f_2, \dots),$$

$$f_k(\mu, x) = \begin{cases} x, & \text{if } 0 \leq x \leq 1 - \alpha_k(\mu), \\ 2x - 1 + \alpha_k(\mu), & \text{if } 1 - \alpha_k(\mu) < x \leq 1 - \frac{\alpha_k(\mu)}{2} \\ -2x + 3 - \alpha_k(\mu), & \text{if } 1 - \frac{\alpha_k(\mu)}{2} < x \leq 1. \end{cases}$$

By definition, the function f_k is continuous on $[0; 1]^2$.

Let **E** denote the set of those μ from [0, 1] for which the equality $\lim_{k \to \infty} \alpha_k(\mu) = 0$ holds. It is not empty because it contains zero.

Lemma 1. Let $\mu \in \mathbf{E}$, then

$$h_{\rm top}(f(\mu,\,\cdot\,))=0.$$

Proof. We recall another formula for calculating the topological entropy of a nonautonomous dynamical system [1]. For any $\varepsilon > 0$ and $n \in \mathbb{N}$, denote by $B_f(x, \varepsilon, n)$ the open ball $\{y \in X : d_n^f(x, y) < \varepsilon\}$. A set $U \subset X$ is called an (f, ε, n) -covering if

$$X \subset \bigcup_{x \in U} B_f(x, \varepsilon, n).$$

Let $S(f, \varepsilon, n)$ denote the minimum number of elements of an (f, ε, n) -covering, then the topological entropy can be calculated by the formula

$$h_{\text{top}}(f) = \lim_{\varepsilon \to 0} \overline{\lim_{n \to \infty} \frac{1}{n}} \ln S(f, \varepsilon, n).$$

We fix $\varepsilon > 0$ and $\mu \in \mathbf{E}$, then there is a number k_0 such that $\alpha_{k_0}(\mu) < \frac{1}{2}\varepsilon$ and for any $k \ge k_0$ the inequality $\alpha_k(\mu) \le \alpha_{k_0}(\mu)$ holds. Let $U_{k_0} \subset [0; 1]$ be a minimal $(f(\mu, \cdot), \frac{1}{2}\varepsilon, k_0)$ -covering of the interval [0; 1]. The set $U_{k_0} \cup \{x_0\}$, where $f^{\circ k_0}(\mu, x_0) = 1 - \alpha_{k_0}(\mu)$, due to the inclusion

$$f_k(\mu, [1 - \alpha_{k_0}(\mu), 1]) \subset [1 - \alpha_{k_0}(\mu), 1],$$

for $k > k_0$ is an $(f(\mu, \cdot), \frac{1}{2}\varepsilon, k)$ -covering of the interval [0, 1], therefore

$$h_{\text{top}}(f(\mu, \cdot)) \leq \lim_{k \to \infty} \frac{1}{k} \ln \left(|U_{k_0}| + 1 \right) = 0.$$

Lemma 1 is proved.

Lemma 2. Let $\mu \notin \mathbf{E}$, then

$$h_{\text{top}}(f(\mu, \cdot)) \ge \frac{1}{2} \ln 2.$$

Proof. Let $\mu \notin \mathbf{E}$, then there exists a subsequence $(\alpha_{k_j}(\mu))_{j=1}^{\infty} \subset (\alpha_k(\mu))_{k=1}^{\infty}$ and a number q > 0 such that $\inf_{j \in \mathbb{N}} \alpha_{k_j}(\mu) = q$.

For all $j \in \mathbb{N}$, $k \in \{2^{k_j}, \ldots, 2^{k_j+1}-1\}$ and $x \in [0,1]$ the equality $f_k(\mu, x) = f_{2^{k_j}}(\mu, x)$ holds. Using the affine transformation φ we map the square $[1 - \alpha_{k_j}(\mu), 1]^2$ onto the square $[0, 1]^2$, and the mapping $f_{2^{k_j}}(\mu, \cdot)|_{[1-\alpha_{k_j}(\mu), 1]}$ becomes the mapping

$$g(x) = \begin{cases} 2x, & \text{if } 0 \le x \le \frac{1}{2}, \\ 2 - 2x, & \text{if } \frac{1}{2} < x \le 1. \end{cases}$$

For any $n \in \mathbb{N}$, consider the set of points of the form

$$\sum_{k=1}^{n} \frac{a_k}{2^k}, \text{ where } a_k \in \{0, 1\}.$$

Using mathematical induction, we prove the equality

$$g^{n}\left(\sum_{k=1}^{n} \frac{a_{k}}{2^{k}}\right) = \begin{cases} 0, & \text{if } a_{n} = 0, \\ 1, & \text{if } a_{n} = 1. \end{cases}$$
(4)

Indeed, for n = 1 we have g(0) = 0 and $g(\frac{1}{2}) = 1$. Let

$$\sum_{k=1}^{n} \frac{a_k}{2^k} < \frac{1}{2} \,,$$

then

$$\sum_{k=1}^n \frac{a_k}{2^k} = \sum_{k=2}^n \frac{a_k}{2^k}$$

and

$$g^{n}\left(\sum_{k=1}^{n}\frac{a_{k}}{2^{k}}\right) = g^{(n-1)}\left(2\sum_{k=2}^{n}\frac{a_{k}}{2^{k}}\right) = g^{(n-1)}\left(\sum_{k=1}^{n-1}\frac{a_{k+1}}{2^{k}}\right) = \begin{cases} 0, & \text{if } a_{n} = 0, \\ 1, & \text{if } a_{n} = 1. \end{cases}$$

Let

$$\sum_{k=1}^n \frac{a_k}{2^k} \ge \frac{1}{2} \,,$$

then $a_1 = 1$ and

$$g^{n}\left(\sum_{k=1}^{n}\frac{a_{k}}{2^{k}}\right) = g^{(n-1)}\left(2 - 2\sum_{k=1}^{n}\frac{a_{k}}{2^{k}}\right) = g^{(n-1)}\left(1 - \sum_{k=1}^{n-1}\frac{a_{k+1}}{2^{k}}\right) = \begin{cases} 0, & \text{if } a_{n} = 0, \\ 1, & \text{if } a_{n} = 1. \end{cases}$$

Thus, equality (4) is proved.

By (4), for $\varepsilon < \frac{1}{q}$ and $n \in \{1, \ldots, 2^{k_j+1} - 2^{k_j} - 1\}$, we have that $d_{2^{k_j}+n}^{f(\mu, \cdot)}$ -distance between any preimages of two points

$$\varphi^{(-1)} \Big(\sum_{k=1}^{n} \frac{a_k}{2^k}, 0 \Big) \text{ and } \varphi^{(-1)} \Big(\sum_{k=1}^{n} \frac{a_k}{2^k} + \frac{1}{2^n}, 0 \Big)$$

under the mapping $f^{\circ(2^{k_j}-2)}(\mu, \cdot)$ is greater than ε , and therefore

$$N(f(\mu, \cdot), \varepsilon, 2^{k_j+1}) \ge 2^{k_j+1} - 2^{k_j}$$

whence we get

$$h_{\text{top}}(f(\mu, \cdot)) \ge \lim_{\varepsilon \to 0} \overline{\lim_{j \to \infty}} \frac{1}{2^{k_j + 1}} \ln(2^{2^{k_j + 1} - 2^{k_j}}) = \frac{1}{2} \ln 2.$$

Lemma 2 is proved.

Completion of the proof of the theorem. In the paper [2] it was established that the set \mathbf{E} is an $F_{\sigma\delta}$ -set and is not a $G_{\delta\sigma}$ -set. We use the following statement from [3]: if a functional $h: \mathcal{M} \to \mathbb{R}$ belongs to the second Baire class, then the intersection of the closures of the sets $h(\mathbf{E})$ and $h(\mathcal{M} \setminus \mathbf{E})$ is nonempty. By Lemmas 1 and 2, we have

$$h_{\text{top}}(f(\mathbf{E},\,\cdot\,)) \leqslant 0 < \frac{1}{2} \ln 2 \leqslant h_{\text{top}}(f(\mathcal{B} \setminus \mathbf{E},\,\cdot\,)),$$

therefore, the function $\mu \mapsto h_{top}(f(\mu, \cdot))$ does not belong to the second Baire class. Theorem is proved.

References

- S. Kolyada and E. Snoha, Topological entropy of nonautonomous dynamical systems. *Random Comput. Dynam.* 4 (1996), no. 2-3, 205–233.
- [2] A. N. Sharkovsky, Attractors of Trajectories and their Basins. (Russian) Naukova Dumka, Kiev, 2013.
- [3] A. N. Vetokhin, The Baire class of maximal lower semicontinuous minorants of Lyapunov exponents. (Russian) *Differ. Uravn.* **34** (1998), no. 10, 1313–1317; translation in *Differential Equations* **34** (1998), no. 10, 1313–1317 (1999).
- [4] A. N. Vetokhin, The exact Baire class of topological entropy of nonautonomous dynamical systems. (Russian) Mat. Zametki 106 (2019), no. 3, 333–340; translation in Math. Notes 106 (2019), no. 3-4, 327–333.
- [5] A. N. Vetokhin, Topological entropy of a continuous family of smooth time-varying dynamical systems on an interval does not belong to the second Baire class. (Russian) *Differ. Uravn.* 56 (2020), no. 1, 133–136; translation in *Differ. Equ.* 56 (2020), no. 1, 131–134.