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Abstract
We prove theorems on the stability of solutions of one-dimensional stochastic differential

equations controlled by rough paths with arbitrary positive Holder exponent.

1 Introduction
Consider the one-dimensional stochastic differential equation

dYt = f(Yt)dXt, t ∈ R+, (1.1)

where Xt is a random process whose paths are a.s. Holder continuous of order α ∈ (0, 1) and
f : R → R is a deterministic function with bounded continuous derivatives of any order m ∈
{0, . . . , [1/α] + 1}.

In the present paper, we prove that the conditions ensuring the existence and uniqueness of
solutions of Eq. (1.1) also guarantee the continuous dependence of the solutions on the initial data
on any finite interval; the Lyapunov stability of the zero solution of Eq. (1.1) is studied on the
basis of the stability of the zero solution of the corresponding ordinary differential equation (ODE)
dZt = f(Zt)dt. Here a solution of Eq. (1.1) is understood as a solution of a stochastic differential
equation weakly controlled by the corresponding rough path [1]. To define solutions, we need a
number of notions introduced in the papers [1] and [2].

2 Definition of rough paths
Fix some T > 0 and α ∈ (0, 1]. Let V be a finite-dimensional Euclidean space. By Cα([0, T ], V )
and Cα

2 ([0, T ], V ) we denote the sets of functions f : [0, T ] → V and g : [0, T ]2 → V , respectively,
with finite norms

∥f∥α := sup
s,t∈[0,T ], s ̸=t

|ft − fs|
|t− s|α

,

∥g∥α,2 := sup
s,t∈[0,T ],s ̸=t

|gs,t|
|t− s|α

.

Further, for a function of two variables gs,t we write ∥g∥α instead of ∥g∥α,2. For a function ft of
one variable, by fs,t we denote the increment ft − fs.

For an integer non-negative k and finite-dimensional Euclidean spaces V and W , by Ck
b (V,W )

we denote the set of functions h : V →W with finite norm

∥h∥Ck
b
:=

k∑
i=0

∥Dih∥∞,



REPORTS OF QUALITDE, Volume 3, 2024 283

where
∥Dih∥∞ = sup

t∈[0,T ]
|Diht|.

Set n = [1/α]. By C α([0, T ], V ) we denote the set of Holder α-continuous rough paths, i.e., the
set of elements X = (1,X1, . . . ,Xn) such that Xi ∈ Ciα

2 ([0, T ], V ⊗i) for any i = 1, . . . , n, and any
s, u, t ∈ [0, T ] there holds the Cheng identity

Xs,t = Xs,u �Xu,t,

where (
Xs,u �Xu,t

)i
=

i∑
j=0

Xj
s,u ⊗Xi−j

u,t .

Note that the operation � defines multiplication on the tensor algebra T (n)(V ) =
n⊕

i=0
V ⊗i, where

V ⊗0 = R. Thus, an element X : [0, T ]2 → T (n)(V ) is uniquely determined by the values X0,t,
t ∈ [0, T ], because Xs,t = (X0,s)

−1 �X0,t. In what follows, we write Xt instead of X0,t.
A rough path X = (1,X1, . . . ,Xn) is said to be geometric if

Sym (Xi
s,t) =

1

i!
(X1

s,t)
⊗i ∀ i = 1, . . . , n.

The set of geometric rough paths will be denoted by C α
g ([0, T ], V ).

We say that an element X ∈ C α([0, T ], V ) is a rough path over X ∈ Cα([0, T ], V ) if X1
0,t = Xt

for any t ∈ [0, T ].

Definition of weakly controlled rough paths
Let X ∈ Cα([0, T ], V ) and let X = (1,X1, . . . ,Xn) be a rough path over X. Let W be a finite-
dimensional Euclidean space. We say that a function Yt ∈ Cα([0, T ],W ) is weakly controlled by the
rough path X ∈ C α([0, T ], V ) if there exist functions Y (1) : [0, T ] → L(V,W ), . . . , Y (n−1) : [0, T ] →
L(V ⊗(n−1),W ) such that

Ys,t = Y (1)
s X1

s,t + · · ·+ Y (n−1)
s Xn−1

s,t +RY,n
s,t ,

Y
(1)
s,t = Y (2)

s X1
s,t + · · ·+ Y (n−1)

s Xn−2
s,t +RY,n−1

s,t ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Y
(n−2)
s,t = Y (n−1)

s X1
s,t +RY,2

s,t ,

Y
(n−1)
s,t = RY,1

s,t ;

and the norm ∥RY,i∥iα is finite for each of the remainder terms RY,i, i = 1, . . . , n. The function
Y (i) will be called the i-th rough derivative of Y .

Define the Banach space

Dα
X([0, T ],W ) =

{
(Y, Y (1), . . . , Y (n−1)) : Y ∈ Cα([0, T ],W ),

n∑
i=1

∥RY,i∥iα <∞
}

with the seminorm ∥∥(Y, Y (1), . . . , Y (n−1))
∥∥
Dα

X
=

n∑
i=1

∥RY,i∥iα.
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The norm of an element Y = (Y, Y (1), . . . , Y (n−1)) ∈ Dα
X([0, T ],W ) is defined by the formula

∥Y∥Dα
X
:=

n−1∑
i=0

|Y (i)
0 |+

∥∥(Y, Y (1), . . . , Y (n−1))
∥∥
Dα

X
,

where Y (0)
t = Yt.

3 Definition of the integral over rough paths
Let V and W be some finite-dimensional Euclidean spaces,

X = (1,X1, . . . ,Xn) ∈ C α([0, T ], V ), Y ∈ Cα([0, T ],L(V,W )),

(Y, Y (1), . . . , Y (n−1)) ∈ Dα
X([0, T ],L(V,W )).

Take some s, t ∈ [0, T ], s < t, and let P be an arbitrary finite partition of the interval [s, t] by
points.

The rough path integral
t∫
s
Yr dXr is defined as the following limit of integral sums (if the limit

exists, then it is finite and does not depend on the choice of partitions of the interval [s, t] by
points):

t∫
s

Yr dXr := lim
|P|→0

∑
[u,v]∈P

n−1∑
i=0

Y (i)
u Xi+1

u,v .

4 Definition of rough paths on a half-line
Let X : R+ → R; i.e., assume that for each T > 0 the restriction X|[0,T ] belongs to the space
Cβ([0, T ],R), β ∈ ( 1

n+1 ,
1
n ]. For each i ∈ {1, . . . , n} we define Xi

s,t =
(Xs,t)i

i! , s, t ∈ R+. The element
X = (1,X1, . . . ,Xn)R2

+ → T (n)(R) is called a geometric rough path over X. The set of geometric
rough paths is denoted by C β

g (R+,R).
We say that a function Y ∈ Cα(R+,R), 1

n+1 < α < β, is weakly controlled by a geometric
rough path X ∈ C β

g (R+,R) if there exist Y (i) : R+ → R, i ∈ {1, . . . , n − 1}, such that the iα-
Holder norms of RY,i, i ∈ {1, . . . , n}, are finite on each bounded segment R+. We say that a vector
function Y = (Y, Y (1), . . . , Y (n−1)) belongs to the set Dα

X(R+,R) if for each T > 0 its restriction
Y|[0,T ] belongs to the space Dα

X([0, T ],R).

5 Stochastic differential equations weakly controlled
by rough paths with arbitrary positive Holder exponent

Suppose that on a complete probability space (Ω,F , P ) with a flow (Ft)t≥0 of σ-algebras are given
an Ft-adapted random process Xt, t ∈ R+, such that almost all trajectories of Xt belong to the
space Cβ(R+,R), β ∈ ( 1

n+1 ,
1
n ]. Define a process X · = (1,X1

0, · , . . . ,X
n
0, · ) as a random variable a.s.

taking values in C β
g (R+,R) a.s., where Xi

s,t =
(Xs,t)i

i! .
Let Y ∈ Cα([0, T ],R), (Y, Y (1), Y (2), . . . , Y (n−1)) ∈ Dα

X([0, T ],R); f ∈ Cn
b (R,R). Define Zt =

f(Yt). By analogy with the Faà di Bruno’s formula, we set

Z(k) =
k∑

j=1

Djf(Y )Bk,j(Y
(1), . . . , Y (k−j+1)), k = 1, . . . , n− 1, (5.1)
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where the Bk,j(x1, . . . , xk−j+1) – are Bell polynomials.
Consider the stochastic differential equation

dYt = f(Yt)dXt, t ∈ R+. (5.2)

Definition 5.1. Let ξ : Ω → R be an F0-measurable random variable. A solution of Eq. (5.2)
with the initial condition Y0 = ξ is an F-measurable random variable Y = (Y, Y (1), . . . , Y (n−1))
with values in Dα

X(R+,R) a.s., 1
n+1 < α < β, such that the random process Yt is Ft-adapted and

a.s. the equality

Yt = ξ +

t∫
0

f(Ys) dXs

holds for all t ∈ R+, where the rough derivatives of the function f(Y ), occurring in the definition
of the integral on the right-hand side, are determined by formulas (5.1). A solution of Eq. (5.2)
with the initial condition Y0 = ξ is said to be unique if for two arbitrary solutions Y, Y of Eq.
(5.2) with the initial condition Y0 = ξ one has the equality P (Y = Y) = 1.

Consider the ODE
dZt = f(Zt)dt, t ∈ R. (5.3)

Let St = etVf , t ∈ R, be the flow generated by Eq. (5.3), i.e., Zt = StZ0, where the operator
Vf : C(R,R) → C(R,R) acts according to the rule (Vfg)t = f(gt).

The following assertion was proved in [1].

Proposition 5.1 ([1]). Let α, β ∈ ( 1
n+1 ,

1
n ], α < β, X = (1,X1, . . . ,Xn) ∈ C β

g (R+,R) a.s. If
f ∈ Cn+1

b (R,R), then for any F0-measurable random variable ξ : Ω → R there exists a unique
solution Y = (Y, Y (1), . . . , Y (n−1)) of Eq. (1.1) with the initial condition Y0 = ξ, and a.s. one has

Yt = SX0,tξ, Y
(i)
t = Di−1

f f(Yt), i ∈ {1, . . . , n− 1}, t ∈ R+.

6 Continuous dependence of solutions on the initial data
Along with Eq. (5.2), consider the perturbed equation

dYt = f̃(Yt)dXt, t ∈ R+. (6.1)

Theorem 6.1. Let α, β ∈ ( 1
n+1 ,

1
n ], α < β, p ≥ 1, T > 0, X = (1,X1, . . . ,Xn) ∈ C β

g (R+,R) a.s.,
ξ : Ω → R be a F0-measurable random variable; f ∈ Cn+1

b (R,R). If E∥X∥pα,[0,T ] < ∞, then for
any ε > 0 there exists δ = δ(ε, T ) such that for any f̃ ∈ Cn+1

b (R,R) and F0-measurable random
variable ξ̃ : Ω → R such that

∥f̃ − f∥Cn+1
b

+ E|ξ̃ − ξ|p ≤ δ,

there holds the inequality
n−1∑
i=0

E∥Ỹ (i) − Y (i)∥pα,[0,T ] ≤ ε,

where Y = (Y, Y (1), . . . , Y (n−1)) is a solution of Eq. (5.2) with the initial condition Y0 = ξ and
Ỹ = (Ỹ , Ỹ (1), . . . , Ỹ (n−1)) is a solution of Eq. (6.1) with the initial condition Y0 = ξ̃.
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Proof. Assume that the assertion in the theorem does not hold; i.e., there exists an ε0 > 0 such
that for any δk = 1

k , k ∈ N, there exist fk ∈ Cn+1
b (R,R) and F0-measurable random variables

ξk : Ω → R such that

∥fk − f∥Cn+1
b

+ E|ξk − ξ|p ≤ δk,

n−1∑
i=0

E∥Y (i)
k − Y (i)∥pα,[0,T ] ≥ ε0,

where Yk = (Yk, Y
(1)
k , . . . , Y

(n−1)
k ) is a solution of equation

dYt = fk(Yt)dXt, t ∈ R+,

with the initial condition
Y0 =

(
ξk, fk(ξk), Dfk(ξk)fk(ξk), . . .

)
.

Let Sk,t = etVfk be the flow corresponding to the equation dZt = fk(Zt)dt. By Proposition 1 we get

Yt = SXt−X0ξ, Y
(i)
t = Di−1

f f(Yt),

Yk,t = Sk,Xt−X0ξk, Y
(i)
k,t = Di−1

fk
fk(Yk,t).

Without loss of generality we may assume that X0 = 0. Set g(τ) = Sτξ, gk(τ) = Sk,τξk,
ψk(τ) = gk(τ)− g(τ), τ ∈ R. Thus,

∥Yk − Y ∥α,[0,T ] = sup
s ̸=t

|ψk(Xt)− ψk(Xs)|
|t− s|α

= sup
s ̸=t

|(Xt −Xs)Dψk(Xs + θk(Xt −Xs))|
|t− s|α

≤ ∥X∥α,[0,T ]∥Dψk∥∞.

Since E∥X∥pα,[0,T ] <∞, we have

lim
k→∞

E∥Yk − Y ∥pα,[0,T ] = 0.

Take arbitrary i ∈ {1, . . . , n− 1}. Denote

h(y) = Di−1
f f(y), hk(y) = Di−1

fk
fk(y), φk(y) = hk(y)− h(y), y ∈ R.

Then

∥Y (i)
k − Y (i)∥α,[0,T ] = sup

s ̸=t

|hk(Yk,t)− hk(Yk,s)− h(Yt) + h(Ys)|
|t− s|α

= sup
s ̸=t

|(Yk,t − Yk,s)Dφk(Yk,s + θk(Yk,t − Yk,s))|
|t− s|α

+ sup
s ̸=t

|h(Yk,t)− h(Yk,s)− h(Yt) + h(Ys)|
|t− s|α

≤ ∥Yk − Y ∥α,[0,T ]∥Dφk∥∞ + ∥Dh∥∞∥Yk − Y ∥α,[0,T ] + C∥D2h∥∞
(
∥Yk − Y ∥α,[0,T ] + |ξk − ξ|

)
.

Hence,
lim
k→∞

E∥Y (i)
k − Y (i)∥pα,[0,T ] = 0.

Therefore,

lim
k→∞

n−1∑
i=0

E∥Y (i)
k − Y (i)∥α,[0,T ] = 0.

The resulting contradiction completes the proof of the theorem.
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7 Lyapunov stability of solutions on the half-line
Let us proceed to the stability analysis of the zero solution of Eq. (5.2) under the assumption that
f(0) = 0. Additionally, we assume that the function f ∈ Cn+1(R,R) is such that no solution Zt,
t ≥ 0, of Eq. (5.3) has blow-ups. In what follows, the zero solution of Eq. (5.2) is understood as
the solution Y ≡ 0 of Eq. (5.2) with the zero initial condition Y0 = 0.

Definition 7.1. We say that the zero solution of Eq. (5.2) is stable in probability if for any ε1,
ε2 > 0 there exists δ = δ(ε1, ε2) > 0 such that for each F0-measurable random variable ξ : Ω → R,
|ξ| ≤ δ a.s., there holds the inequality

P
(
sup
t≥0

|Yt| ≥ ε1

)
≤ ε2,

where Y = (Y, Y (1), . . . , Y (n−1)) is the solution of Eq. (5.2) with the initial condition Y0 = ξ.
We say that the zero solution of Eq. (5.2) is asymptotically stable in probability if it is stable in
probability and there exists a ∆ > 0 such that for any F0-measurable random variable ξ : Ω → R,
|ξ| ≤ ∆ a.s., one has the convergence in probability Yt

P

t→+∞
// 0 . Let p ≥ 1; we say that the zero

solution of Eq. (5.2) is p-stable if for each ε > 0 there exists a δ = δ(ε) > 0 such that for any
F0-measurable random variable ξ : Ω → R, |ξ| ≤ δ a.s., there holds the inequality sup

t≥0
E|Yt|p ≤ ε.

Theorem 7.1. Let Xt
P

t→+∞
// +∞ and let the expectation E

(
sup

t∈[0,T ]
|Xt|

)
is finite for each T > 0.

If the zero solution of Eq. (5.3) is Lyapunov stable (respectively, asymptotically stable) for t ≥ 0,
then the zero solution of Eq. (5.2) is stable in probability (respectively, asymptotically stable in
probability).

Proof. Without loss of generality, we can assume that X0 = 0. Let Zt be the solution of Eq. (5.3)
with the initial condition Z0 = ξ, then Yt = ZXt . Fix arbitrary ε1, ε2 > 0.

Since Xt
P

t→+∞
// +∞ , for any ε2 > 0 there exists τ = τ(ε2) > 0 such that

P (Xt ≥ 0 ∀ t > τ) ≥ 1− ε2
2
.

Since E
(

sup
t∈[0,τ ]

|Xt|
)

is finite, it follows by the Chebyshev inequality that there exists a constant

M =M(τ, ε2) > 0 such that

P
(
|Xt| ≤M ∀ t ∈ [0, τ ]

)
≥ 1− ε2

2
.

Assume that the zero solution of Eq. (5.3) is Lyapunov stable for t ≥ 0. Then there exists a
δ = δ(ε1,M) > 0 such that for any F0-measurable random variable ξ : Ω → R, |ξ| ≤ δ a.s., one has
the inequality sup

t≥−M
|Zt| ≤ ε1.

Thus, we have

P
(
sup
t≥0

|Yt| > ε1

)
= P

(
sup
t≥0

|ZXt | > ε1

)
≤ P

(
∃ t ≥ 0 : Xt < −M

)
≤ P

(
∃ t ∈ [0, τ ] : Xt < −M

)
+ P

(
∃ t > τ : Xt < 0

)
≤ ε2

2
+
ε2
2

= ε2.

Thus, the zero solution of Eq. (5.2) is stable in probability.
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Consequently, the zero solution of Eq. (5.3) is asymptotically stable for t ≥ 0. Then there exists
a ∆ > 0 such that for any F0-measurable random variable ξ : Ω → R, |ξ| ≤ ∆ a.s., the solution Zt

of Eq. (5.3) with the initial condition Z0 = ξ has the following property: the convergence

Zt t→+∞
// 0

holds with probability 1. Take arbitrary ε1, ε2 > 0. There exists δ = δ(ε1) such that

P
(
|Zt| ≤ ε1 ∀ t ≥ δ

)
= 1.

Since Xt
P

t→+∞
// +∞ , there exists δ1 > 0 such that

P
(
∃ t ≥ δ1 : Xt < δ

)
≤ ε2.

Thus,

P
(
|Yt| ≤ ε1 ∀ t ≥ δ1

)
= P

(
|ZXt | ≤ ε1 ∀ t ≥ δ1

)
= 1− P

(
∃ t ≥ δ1 : |ZXt | > ε1

)
≥ 1− P

(
∃ t ≥ δ1 : Xt < δ

)
≥ 1− ε2.

Hence, Yt P

t→+∞
// 0 , therefore, the zero solution of Eq. (5.2) is asymptotically stable in probability.

The proof of the theorem is complete.
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