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In the paper, necessary conditions of optimality of the delay parameter containing in the phase
coordinates, the initial vector and initial function, the control function are obtained for the quasi-
linear neutral optimization problem with the discontinuous initial condition.

Let Rn be the n-dimensional vector space of points x = (x1, . . . , xn)T ; let I = [t0, t1] be a
fixed interval and let σ > 0, τ2 > τ1 > 0 be given numbers,with t0 + max{σ, τ2} < t1. Suppose
that O ⊂ Rn, U ⊂ Rr are compact and convex sets. Further, the n × n-dimensional matrix
function A(t, x) is continuous on the set I × O and continuously differentiable with respect to
xi, i = 1, 2, . . . , n; the n-dimensional function f(t, x, y, u) is continuous on the set I × O2 × U and
continuously differentiable with respect to x, y, u. We denote by Φ and Ω the sets of continuously
differentiable initial functions φ(t) ∈ O, t ∈ I1 = [τ̂ , t0], where τ̂ = t0 −max{σ, τ2} and measurable
control functions u(t) ∈ U , t ∈ I, respectively.

To each element

w = (τ, x0, φ(t), u(t)) ∈W = (τ1, τ2)×O × Φ× Ω

we assign the quasi-linear controlled neutral functional-differential equation

ẋ(t) = A(t, x(t))ẋ(t− σ) + f
(
t, x(t), x(t− τ), u(t)

)
, t ∈ I (1)

with the discontinuous initial condition

x(t) = φ(t), t ∈ [τ̂ , t0), x(t0) = x0. (2)

The condition (2) is called the discontinuous initial condition because in general φ(t0) ̸= x0. Dis-
continuity at the initial moment may be related to the instant change in a dynamical process
(changes of investment, environment and so on).

Definition 1. Let w ∈W , a function x(t) = x(t;w) ∈ O, t ∈ [τ̂ , t1] is called a solution of equation
(1) with condition (2) or a solution corresponding to the element w if it satisfies condition (2) and
is absolutely continuous on the interval I and satisfies equation (1) almost everywhere on I.



REPORTS OF QUALITDE, Volume 3, 2024 269

Let the scalar-valued functions qi(τ, x0, x), i = 0, 1, . . . , l, be continuously differentiable on
[τ1, τ2]×O2.

Definition 2. An element w = (τ, x0, φ(t), u(t)) ∈ W is said to be admissible if there exists the
corresponding solution x(t) = x(t;w), satisfying the conditions

qi(τ, x0, x(t1)) = 0, i = 1, 2, . . . , l. (3)

By W0 we denote the set of admissible elements.

Definition 3. An element w0 = (τ0, x00, φ0(t), u0(t)) ∈W0 is said to be optimal if for an arbitrary
element w ∈W0 the inequality

q0(τ0, x00, x0(t1)) ≤ q0(τ, x0, x(t1)) (4)

holds, where x0(t) = x(t;w0).

(1)–(4) is called the quasi-linear neutral optimization problem with the discontinuous initial
condition.

Theorem 1. Let w0 = (τ0, x00, φ0(t), u0(t)) ∈ W0 be an optimal element and let x0(t) be the
corresponding solution, with

t0 + τ0 ̸∈ {t1 − σ, t1 − 2σ, . . . }

and the function u0(t) is continuous at the point t0+τ0. Then there exist a vector π = (π0, . . . , πl) ̸=
0, with π0 ≤ 0, and a solution (χ(t), ψ(t)) of the systemχ̇(t) = −ψ(t)

{ ∂

∂x

[
A[t]ẋ0(t− σ)

]
+ fx[t]

}
− ψ(t+ τ0)fy[t+ τ0],

ψ(t) = χ(t) + ψ(t+ σ)A[t+ σ], t ∈ I

with the initial condition

χ(t1) = ψ(t1) = πQ0x, χ(t) = ψ(t) = 0, t > t1,

where

Q = (q0, q1, . . . , ql)T , Q0x =
∂Q(τ0, x00, x0(t1))

∂x
,

∂

∂x

[
A[t]ẋ0(t− σ)

]
=

∂

∂x

[
A(t, x)ẋ0(t− σ)

]
x=x0(t)

, A[t] = A(t, x0(t)),

fy[t] = fy
(
t, x0(t), x0(t− τ0), u0(t)

)
,

such that the following conditions hold:

– the condition for the delay τ0

πQ0τ = ψ(t0 + τ0)
[
f
(
t0 + τ0, x0(t0 + τ0), x00, u0(t0 + τ0)

)
− f

(
t0 + τ0, x0(t0 + τ0), φ0(t0), u0(t0 + τ0)

)]
+

t1∫
t0

ψ(t)fy[t]ẋ0(t− τ0) dt;

– the condition for the initial vector x00(
πQ0x0 + χ(t0)

)
x00 = max

x0∈O

(
πQ0x0 + χ(t0)

)
x0;
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– the condition for the initial function φ0(t)

t0∫
t0−σ

ψ(t+ σ)A[t+ σ]φ̇0(t) dt+

t0∫
t0−τ0

ψ(t+ τ0)fy[t+ τ0]φ0(t) dt

= max
φ(t)∈Φ

t0∫
t0−σ

ψ(t+ σ)A[t+ σ]φ̇(t) dt+

t0∫
t0−τ0

ψ(t+ τ0)fy[t+ τ0]φ(t) dt;

– the condition for the control function u0(t)

t1∫
t0

ψ(t)fu[t]u0(t) dt = max
u(t)∈Ω

t1∫
t0

ψ(t)fu[t]u(t) dt.

Theorem 1 is proved by the scheme given in [2] on the basis of the representation formula of a
solution [1]. The case when A(t, x) = A(t) and Q does not depend on the parameter τ is considered
in [3]. Now we consider a particular case of the problem (1)–(4):

ẋ(t) = A(t)ẋ(t− σ) +B(t)x(t) + C(t)x(t− τ) +D(t)u(t), t ∈ I, (5)
x(t) = φ(t), x(t0) = x0, (6)

qi(τ, x(t1)) = 0, i = 1, 2, . . . , l, (7)
q0(τ, x(t1)) → min . (8)

Here A(t), B(t), C(t) and D(t) are the continuous matrix functions with dimensions n × n and
n× r, respectively; φ(t) is a fixed initial function; x0 is a fixed initial vector. In this case we have
w = (τ, u(t)) ∈W = (τ1, τ2)× Ω and w0 = (τ0, u0(t));

Q(τ, x) = (q0(τ, x), . . . , ql(τ, x))T , Q0x =
∂Q(τ0, x0(t1))

∂x
.

Theorem 2. Let w0 = (τ0, u0(t)) be an optimal element for problem (5)–(8) and let x0(t) be the
corresponding solution, with

t0 + τ0 ̸∈ {t1 − σ, t1 − 2σ, . . . }

and the function u0(t) is continuous at the point t0+τ0. Then there exist a vector π = (π0, . . . , πl) ̸=
0 with π0 ≤ 0, and a solution (χ(t), ψ(t)) of the system{

χ̇(t) = −ψ(t)B(t)− ψ(t+ τ0)C(t+ τ0),

ψ(t) = χ(t) + ψ(t+ σ)A(t+ σ), t ∈ I

with the initial condition

χ(t1) = ψ(t1) = πQ0x, χ(t) = ψ(t) = 0, t > t1,

such that the following conditions hold:

– the condition for the delay τ0

πQ0τ = ψ(t0 + τ0)C(t0 + τ0)[x0 − φ(t0)] +

t1∫
t0

ψ(t)C(t)ẋ0(t− τ0) dt;
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– the condition for the control function u0(t)

t1∫
t0

ψ(t)D(t)u0(t) dt = max
u(t)∈Ω

t1∫
t0

ψ(t)D(t)u(t) dt.
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