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1 Introduction

Let J = [0, 1], ∥x∥ = max{|x(t)| : t ∈ J} be the norm in C(J), while ∥x∥L1 =
1∫
0

|x(t)|dt is the

norm in L1(J).
We discuss the singular fractional differential equation

Dαx(t) + µ f
(
t, x(t), Dβx(t)

)
= 0, (1.1)

depending on the real parameter µ. Here α ∈ (1, 2], β ∈ (0, α−1], f satisfies the local Carathéodory
conditions on J× (0,∞)×R, lim

x→0+
f(t, x, y) = ∞ for a.e. t ∈ J and y ∈ R, and Dγ is the Riemann–

Liouville fractional derivative of order γ.
Together with equation (1.1) the boundary conditions

x(0) = 0, x(1) = 0, (1.2)
max

{
x(t) : t ∈ J

}
= A (1.3)

are considered, where A > 0 is given.
We are looking for a value of the parameter µ in (1.1) for which problem (1.1)–(1.3) has a

positive solution.

Definition. We say that x : J → R is a positive solution of problem (1.1)–(1.3) if

(a) x,Dβx ∈ C(J), Dαx ∈ L1(J), x > 0 on (0, 1),

(b) x satisfies the boundary conditions (1.2), (1.3),

(c) there exists µ∗ > 0 such that (1.1) for µ = µ∗ holds for a.e. t ∈ J .

The special case of (1.1) (for α = 2, β = 1) is the differential equation

x′′(t) = µf(t, x(t), x′(t)).

The existence result for solutions of this equation satisfying the boundary conditions (1.2), (1.3)
was given in [1].

The Riemann–Liouville fractional derivative Dγx of order γ > 0, γ ̸∈ N, of a function x : J → R
is defined as [3, 4]

Dγx(t) =
dn

dtn

t∫
0

(t− s)n−γ−1

Γ(n− γ)
x(s)ds,
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where n = [γ] + 1 and [γ] means the integral part of γ. If γ ∈ N, then Dγx(t) = x(γ)(t). The
Riemann–Liouville fractional integral Iγx of order γ > 0 of a function x : J → R is given as

Iγx(t) =

t∫
0

(t− s)γ−1

Γ(γ)
x(s)ds

and I0 is the identity operator. Γ is the Euler gamma function.
We work with the following growth conditions for the function f in (1.1):

(H1) There exists m > 0 such that

f(t, x, y) ≥ m(1− t)2−α for a.e. t ∈ J and all (x, y) ∈ (0,∞)× R.

(H2) For a.e. t ∈ J and all (x, y) ∈ (0,∞)× R,

f(t, x, y) ≤ ϕ(t)g(x) + ρ(t)
(
p(x) + w(|y|)

)
,

where ϕ, ρ ∈ L1(J), g ∈ C(0,∞), p, w ∈ C[0,∞) are positive, g is nonincreasing, p, w are
nondecreasing and

lim
κ→0+

κ

1∫
0

ϕ(t)g(κt(1− t))dt = 0, lim
v→∞

w(v)

v
= 0.

The existence results for problem (1.1)–(1.3) are proved by the combination of the regularization
and sequential techniques with the Leray–Schauder degree method.

2 Preliminaries
Let α, β be from (1.1) and

G(t, s) =


(t(1− s))α−1 − (t− s)α−1

Γ(α)
if 0 ≤ s ≤ t ≤ 1,

(t(1− s))α−1

Γ(α)
if 0 ≤ t ≤ s ≤ 1.

Then for h ∈ L1(J)
1∫

0

G(t, s)h(s)ds = −Iαh(t) + Iαh(t)
∣∣
t=1

tα−1,

and

Dβ

1∫
0

G(t, s)h(s)ds = −Iα−βh(t) + tα−β−1

1∫
0

(1− s)α−1

Γ(α− β)
h(s)ds (2.1)

since
Dβtα−1 =

tα−β−1Γ(α)

Γ(α− β)
.

Let X = {x ∈ C(J) : Dβx ∈ C(J)}. X is a Banach space equipped with the norm

∥x∥∗ = max
{
∥x∥, ∥Dβx∥

}
.
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Lemma 2.1. Let h ∈ L1(J). Then

x(t) =

1∫
0

G(t, s)h(s)ds (2.2)

is the unique solution in X of the equation

Dαx(t) + h(t) = 0, (2.3)

satisfying the Dirichlet condition (1.2).

Proof. By [2, Lemma 2.2], x is the unique solution of problem (2.3), (1.2) in C(J). Since α−β ≥ 1,
Iα−βh ∈ C(J). Hence (2.1) and (2.2) give Dβx ∈ C(J). Consequently, x ∈ X.

Lemma 2.2. Let m > 0 be from (H1), h ∈ L1(J), h(t) ≥ m(1− t)2−α for a.e. t ∈ J and let

K =
m

2Γ(α− 1)
.

Then
1∫

0

G(t, s)h(s)ds ≥ Kt(1− t) for t ∈ J.

3 Regular problems
For n ∈ N, let

fn(t, x, y) =


f(t, x, y) if x ≥ 1

n
,

f
(
t,
1

n
, y
)

if x <
1

n

for a.e. t ∈ J and y ∈ R. Then fn satisfies the local Carathéodory conditions on J × R2.
We now discuss the regular fractional differential equation

Dαx(t) + µfn
(
t, x(t), Dβx(t)

)
= 0 (3.1)

together with the boundary conditions (1.2) and

max
{
x(t) : t ∈ J

}
= λA, (3.2)

where A > 0 is from (1.3) and λ ∈ (0, 1].

Lemma 3.1. Let (H1) and (H2) hold and let K > 0 be from Lemma 2.2. Then there exists a
positive constant P independent of λ ∈ (0, 1] such that for solutions x of problem (3.1), (1.2), (3.2)
with µ = µx in (3.1) the estimates

∥Dβx∥ < P, 0 < µx ≤ 4A

K

hold and x > 0 on (0, 1).
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Let Y = X × R and an operator L acting on Y × [0, 1] be given by the formula

L(x, µ, λ)(t) = µ

1∫
0

G(t, s)
(
m(1− λ)(1− s)2−α + λfn

(
s, x(s), Dβx(s)

))
ds,

where m > 0 is from (H1).

Lemma 3.2. Let (H1) hold. Then L : Y × [0, 1] → X and L is a completely continuous operator.

Let A > 0 be from (1.3), K > 0 from Lemma 2.2 and P > 0 from Lemma 3.1. Let

Ω =
{
(x, µ) ∈ Y : ∥x∥ < A+ 1, ∥Dβx∥ < P, |µ| < 4A

K
+ 1

}
and “deg” stand for the Leray–Schauder degree, I be the identical operator on Y , θ = (0, 0) ∈ Y .

Lemma 3.3. Let (H1) and (H2) hold. Then problem (3.1), (1.2), (1.3) has at least one positive
solution.

Sketch of the proof.

Step 1. Let K : Ω× [0, 1] → Y ,

K(x, µ, λ) =
(
L(x, µ, λ),Λ(x, µ, λ)

)
,

where Λ : Y × [0, 1] → R,

Λ(x, µ, λ) = λ
(
max

{
x(t) : t ∈ J

}
+min

{
x(t) : t ∈ J

})
+ (1− λ)x

(1
2

)
+ µ.

K is a compact operator. Since K(x, µ, λ) ̸= (x, µ) for (x, µ) ∈ ∂Ω, λ ∈ [0, 1] and K( · , · , 0) is an
odd operator, we conclude from the Borsuk antipodal theorem and the homotopy property that
deg (I − K( · , · , 0),Ω, θ) ̸= 0 and

deg
(
I − K( · , · , 1),Ω, θ

)
̸= 0. (3.3)

Step 2. Let H : Ω× [0, 1] → Y ,

H(x, µ, λ) =
(
L(x, µ, 1), Φ(x, µ, λ)

)
,

where Φ : Ω× [0, 1] → R,

Φ(x, µ, λ) = max
{
x(t) : t ∈ J

}
+min

{
x(t) : t ∈ J

}
− λA+ µ,

and A > 0 is from (1.3). H is a compact operator and if H(x∗, µ∗, 1) = (x∗, µ∗) for some (x∗, µ∗) ∈ Ω,
then x∗ is a positive solution of problem (3.1), (1.2), (1.3) for µ = µ∗ in (3.1). Since H(x, µ, λ) ̸=
(x, µ) for (x, µ) ∈ ∂Ω and λ ∈ [0, 1], we conclude from H( · , · , 0) = K( · , · , 1), the homotopy
property and (3.3) that

deg
(
I −H( · , · , 1),Ω, θ

)
̸= 0.

Hence there exists a fixed point (x0, µ0) ∈ Ω of H( · , · , 1). Therefore x0 is a positive solution of
problem (3.1), (1.2), (1.3) for µ = µ0 in (3.1).



REPORTS OF QUALITDE, Volume 3, 2024 261

4 Problem (1.1)–(1.3)
Theorem 4.1. Let (H1) and (H2) hold. Then problem (1.1)–(1.3) has at least one positive solution.

Sketch of the proof. By Lemmas 3.1 and 3.3, for each n ∈ N there exists a positive solution xn ∈ X
of problem (3.1), (1.2), (1.3) for µ = µn in (3.1), xn > 0 on (0, 1), ∥xn∥ = A, ∥Dβxn∥ < P and
0 < µn ≤ 4A/K. Hence the sequence {(xn, µn)} is bounded in X × R. We begin by proving that
{µn} has a positive lower bound ∆ > 0 and the sequences {xn} {Dβxn} are equicontinuous on
J . Consequently, {(xn, µn)} is relatively compact in Y . Without loss of generality we can assume
that {(xn, µn)} is convergent in Y and let (x, ρ) ∈ Y be its limit. Then ρ ≥ ∆, x(t) ≥ ∆Kt(1− t),
∥Dβx∥ ≤ P , x satisfies the boundary condition (1.2), (1.3) and

lim
n→∞

fn
(
t, xn(t), D

βxn(t)
)
= f

(
t, x(t), Dβx(t)

)
for a.e. t ∈ J.

Letting n → ∞ in the equality

xn(t) = µn

1∫
0

G(t, s)fn
(
s, xn(s), D

βxn(s)
)

ds,

we get

x(t) = ρ

1∫
0

G(t, s)f
(
s, x(s), Dβx(t)

)
ds, t ∈ J,

by the Lebesgue dominated convergence theorem. Consequently, x is a positive solution of problem
(1.1)–(1.3) for µ = ρ in (1.1).

Example. Let r1, r2 ∈ L1(J) and q1 ∈ C(J) be nonnegative, q2 ∈ C(J) be positive, ν, τ ∈ (0, 1)
and

f(t, x, y) = r1(t) +
q1(t)

xν
+ q2(t)e

x + r2(t)|y|τ for a.e. t ∈ J, x > 0, y ∈ R.

Then f satisfies the local Carathéodory conditions on J × (0,∞) × R, and the conditions (H1),
(H2). Hence, by Theorem 4.1, there exists a positive solution of the problem

Dαx(t) + µ
(
r1(t) +

q1(t)

(x(t))ν
+ q2(t)e

x(t) + r2(t)|Dβx(t)|τ
)
= 0,

x(0) = 0, x(1) = 0, max
{
x(t) : t ∈ J

}
= A, A > 0.
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