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We study a non-linear differential system with mixed boundary conditions on a compact interval
[a,b]

2'(t) = ft,x(t),y(t), t € [a,], )
y'(t) = falt,z(t),y(t), t € [a,b],

z(a) = x(b), (2)

o(y) = d, (3)

where z : [a,b] = RP, y : [a,b] — R?, d € R%. It is supposed that fi, fo are continuous as functions
f1:]a,b]xUxV = RP| fy:]a,b] xU xV — RY, where bounded sets U C RP, V' C R? are specified
later (see (4)). We also assume the continuity of ¢ : V' — R?. Continuously differentiable solutions
of problem (1)—(3) are considered. For problem (1)—(3) we will use an approach similar to that
of [2,3].

For vectors x = col(x1,...,2,) € R™ the notation |z| = col(|x1],...,|x,|) is used and the
inequalities between vectors are understood componentwise; the operations max and min for vectors
are understood similarly. I denotes the identity matrix. For a non-negative vector g, we define the
componentwise p-neighbourhood of a point z by putting

Oyz) = (€ €R: [€— 2] < o).
The p-neighbourhood of a set 2 C R™ is then defined as €,(2) = |J O,(z). The particular sets {2

2€Q
and values of p used in the assumptions are specified below in (4), (5).
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We will use a reduction of the given problem to a family of simpler auxiliary boundary value
problems [2]. Let us fix certain compact convex sets ¥, C RY, %, C R? and % C RP, take some
positive vectors oy € RP, oy € R? and put

U= 0 (%), V=0o(¢Ya%)) (4)
where
CX,Y)={(1-0z+0y: vz€X, yeV, 0<0<1}.

It is convenient to choose the sets %, ¥, ¥, as some parallelepipeds. We will consider solutions
(z,y) of problem (1)—(3) with values z(a) = z(b) € %, y(a) € ¥, y(b) € ¥, and range in U x V.
Introduce the notation

1
5 S ~ i k=1,2
uxv (fx) 5 <[a,bI]I>1<aUX><ka [a,b?xnr?xvfk>’ 2,

and assume that the positive vectors oy, oy can be chosen so that

b—a b—a
duxv(fi), ov >

Let f1, fo satisfy the Lipchitz condition on U, V:
‘fk(taxay) - fk(tagvg)‘ < Kkl‘x - 5’ + KkZ‘y - 37‘7 k=1,2, (6)

for t € [a,b], {z,2} C U, {y,y} C V, where K11, K12, K21, K22 are positive matrices of dimensions
DPXP,PXq qgXxXp, qgxq. We assume that the maximal in modulus eigenvalue of the matrix

K1 K9\ .
K = is small enough:
<K21 Koo &

oU > duxv(f2)- (5)

r(@) <1, (7)
where Q = 3 (b—a)K.
We introduce the vectors of parameters z € RP, v € R?, A € R? by formally putting
z=u(a) =x(b), v=yla), A=yb)

and, instead of problem (1)—(3), consider the following two auxiliary boundary value problems with
periodic and two-point linear separated conditions at a and b:

a'(t) = fit,z,y), t € [a,], (8)
z(a) =z, z(b) == 9)
and
y'(t) = folt, @, y), t€[ab], (10)
yla) =, y(b) =X (11)

As will be seen from statements below, there is a certain relation to the original problem
depending on the choice of the values of z, v and A. Let us relate problems (8), (9) and (10), (11)
to the sequences of functions

t
I‘m+1(t,2,’)/7 )‘) =z +/f1 (5,$m(5727% A)vym(sazufy; )‘)) ds

a
b

/fl(s,xm(s,z,'y,A),ym(s,z,'y,)\)) ds (12)

a

t—a
b—a
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and

t
Y1 (b 2,7, \) = 7 + / Jo (5, 2m (5 2,79 N)s v (5, 2,7, ) ds

b
t—a
0 [ a2 N 5,27 ) ds 4 0 (=), (13

a

where t € [a,b], m =0,1,...,

t—a
l’o(t,Z):Z, yO(t777A) = b—aO\_W

Theorem 1. Let conditions (5), (6), (7) be fulfilled. Then, for all fixed z € U, v € Va, X € Y-

1. Each of the functions of sequence (12) has range in U, is continuosly differentiable on [a,b],
and satisfies conditions (9). The limit

Too(t, 2,7, A) = lm zp,(t, 2,7, \) (14)

m—0o0
exists uniformly in (t,z,7v,\) € la,b] X % X V4 X ¥,. Function (14) satisfies the boundary

condition (9).

2. Each of the functions of sequence (13) has range in V, is continuosly differentiable on [a,b],
and satisfies conditions (11). The limit

yOO(t72777)‘): ]'gn ym(t7z777)‘) (15)

exists uniformly in (t,z,7v,\) € la,b] X % X Vg4 X %,. Function (15) satisfies the boundary
condition (11).

3. The functions oo (-, 2,7, A), Yoo+, 2,7, A) form the unique continuously differentiable solution
of the system of integral equations

t

_z+/f15x ds—Z:Z/flsx (s))ds,
t b
v0) =7+ 2 =+ [ Bl ue)ds - ;=5 [ fsa().go)ds

4. The following error estimate holds:

10 m —1 (duxv(fi) 8
|xoo(t,z,7, A) =z (t, 2,7, )\)‘ < 9 ai(t) {Q (Ip+q — Q) ' <5va(f2)> }1 ’

10 —1 (0Ux o
Yoo (t, 2,7, A) = Ym (£, 2,7, A)| < > o (t) {Qm(fp+q -Q)! <6ZXZE£;> }pH ’

where

on(t) =2(t —a) (1 - Z“‘), t € [a,b],

—a

and {u} = col(uy,uz, ..., up), {u}gi(f = col(Upt1, Upt2, - - -, Uptq) for a vector u € R™.
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The idea of proof is to show that (12), (13) are Cauchy sequences in the Banach spaces
C([a,b],RP) and C([a,b], RY), respectively.

Under conditions of Theorem 1, functions (14), (15) are solutions of the Cauchy problems for
the forced systems

2'(t) = fult,z(t),y(t) + Au(z,7, ), 2(a) =z,
y'(t) = fot, 2(1), y (1) + Av (2,7, A), z(a) =7,
where Ay : U X Vo X ¥ — RP and Ay : % X ¥y X ¥, — RP are the mappings given by the formulas

b
1
AU(Z,’}/, )‘) = _b—(l/fl (87x00(87z7’77 A)vyoo(sazafﬁ )‘)) dS,

1

b
1
AV(Z/'Y? )‘) = m ()‘ _7) - b_a/f2(87x00(372777)‘)7yoo(sazf‘)/?)‘)) ds.

Theorem 2. Under the assumptions of Theorem 1, the limit functions (14), (15) of sequences (12),
(13) form a solution of the boundary value problem (1)—(3) if and only if the parameters (z,v, \)
satisfy the system of p + 2q equations

AU(Z7 77 A) = 07 A‘/('27 77 A) = 07 A(Z777 A) = 07 (16>

where
A(2777 >‘) = ¢(yoo('7'77 )‘)) —d. (17)

The proof can be carried out similarly to [1,2]. The next statement shows that the system of
determining equations (16) determines all possible solutions of the original non-linear boundary
value problem (1)—(3) having range in U x V.

Theorem 3. Let the assumptions of Theorem 1 hold.

1. If there exist some (zx, Va, Ax) € U X Vo X Wy, satisfying the system of determining equations
(16), then problem (1)—(3) has a solution (x«,y«) such that

Ti(a) = Tu(b) = 20, yula) =7, yu(0) = A

and, moreover,
Tu( ) = Too (5 2, Y Ax)y - Us(0) = Yoo (-5 2, Yoy Ak)-

2. If the boundary value problem (1)—(3) has a solution (x.,ys) with the range in U x V, then
the system of determining equations (16) is satisfied with

z=wx(a), v=yla), A=y.(b).

The proof can be carried out by analogy to [1,2].
The solvability of system (16), under additional conditions, can be proved if a solution of an
approximate determining system

AU7m(Z,’)/, )\) =0, AV,m(za77 >‘) =0, Am('z?f% >‘) =0,

has been found, where m is fixed and Ay, Ay, Ay, are defined similarly to (17) with z,
Yoo Teplaced by ., ym. Practical calculations using Maple confirm the constructiveness of the
proposed approach.
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