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We study a non-linear differential system with mixed boundary conditions on a compact interval
[a, b]

x′(t) = f1(t, x(t), y(t)), t ∈ [a, b],

y′(t) = f2(t, x(t), y(t)), t ∈ [a, b],
(1)

x(a) = x(b), (2)
ϕ(y) = d, (3)

where x : [a, b] → Rp, y : [a, b] → Rq, d ∈ Rq. It is supposed that f1, f2 are continuous as functions
f1 : [a, b]×U ×V → Rp, f2 : [a, b]×U ×V → Rq, where bounded sets U ⊂ Rp, V ⊂ Rq are specified
later (see (4)). We also assume the continuity of ϕ : V → Rq. Continuously differentiable solutions
of problem (1)–(3) are considered. For problem (1)–(3) we will use an approach similar to that
of [2, 3].

For vectors x = col(x1, . . . , xn) ∈ Rn the notation |x| = col(|x1|, . . . , |xn|) is used and the
inequalities between vectors are understood componentwise; the operations max and min for vectors
are understood similarly. I denotes the identity matrix. For a non-negative vector ϱ, we define the
componentwise ϱ-neighbourhood of a point z by putting

Oϱ(z) =
{
ξ ∈ Rn : |ξ − z| ≤ ϱ

}
.

The ϱ-neighbourhood of a set Ω ⊂ Rn is then defined as Oϱ(Ω) =
⋃
z∈Ω

Oϱ(z). The particular sets Ω

and values of ϱ used in the assumptions are specified below in (4), (5).



REPORTS OF QUALITDE, Volume 3, 2024 245

We will use a reduction of the given problem to a family of simpler auxiliary boundary value
problems [2]. Let us fix certain compact convex sets Va ⊂ Rq, Vb ⊂ Rq and U ⊂ Rp, take some
positive vectors ϱU ∈ Rp, ϱV ∈ Rq and put

U = OϱU (U ), V = OϱV (C (Va,Vb)), (4)

where
C (X,Y ) =

{
(1− θ)x+ θy : x ∈ X, y ∈ Y, 0 ≤ θ ≤ 1

}
.

It is convenient to choose the sets U , Va, Vb as some parallelepipeds. We will consider solutions
(x, y) of problem (1)–(3) with values x(a) = x(b) ∈ U , y(a) ∈ Va, y(b) ∈ Vb and range in U × V .

Introduce the notation

δU×V (fk) =
1

2

(
max

[a,b]×U×V
fk − min

[a,b]×U×V
fk

)
, k = 1, 2,

and assume that the positive vectors ϱU , ϱV can be chosen so that

ϱU ≥ b− a

2
δU×V (f1), ϱV ≥ b− a

2
δU×V (f2). (5)

Let f1, f2 satisfy the Lipchitz condition on U , V :∣∣fk(t, x, y)− fk(t, x̃, ỹ)
∣∣ ≤ Kk1|x− x̃|+Kk2|y − ỹ|, k = 1, 2, (6)

for t ∈ [a, b], {x, x̃} ⊂ U , {y, ỹ} ⊂ V , where K11, K12, K21, K22 are positive matrices of dimensions
p × p, p × q, q × p, q × q. We assume that the maximal in modulus eigenvalue of the matrix

K =

(
K11 K12

K21 K22

)
is small enough:

r(Q) < 1, (7)
where Q = 3

10 (b− a)K.
We introduce the vectors of parameters z ∈ Rp, γ ∈ Rq, λ ∈ Rq by formally putting

z = x(a) = x(b), γ = y(a), λ = y(b)

and, instead of problem (1)–(3), consider the following two auxiliary boundary value problems with
periodic and two-point linear separated conditions at a and b:

x′(t) = f1(t, x, y), t ∈ [a, b], (8)
x(a) = z, x(b) = z (9)

and

y′(t) = f2(t, x, y), t ∈ [a, b], (10)
y(a) = γ, y(b) = λ. (11)

As will be seen from statements below, there is a certain relation to the original problem
depending on the choice of the values of z, γ and λ. Let us relate problems (8), (9) and (10), (11)
to the sequences of functions

xm+1(t, z, γ, λ) = z +

t∫
a

f1
(
s, xm(s, z, γ, λ), ym(s, z, γ, λ)

)
ds

− t− a

b− a

b∫
a

f1
(
s, xm(s, z, γ, λ), ym(s, z, γ, λ)

)
ds (12)
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and

ym+1(t, z, γ, λ) = γ +

t∫
a

f2
(
s, xm(s, z, γ, λ), ym(s, z, γ, λ)

)
ds

− t− a

b− a

b∫
a

f2
(
s, xm(s, z, γ, λ), ym(s, z, γ, λ)

)
ds+

t− a

b− a
(λ− γ), (13)

where t ∈ [a, b], m = 0, 1, . . . ,

x0(t, z) = z, y0(t, γ, λ) = γ +
t− a

b− a
(λ− γ).

Theorem 1. Let conditions (5), (6), (7) be fulfilled. Then, for all fixed z ∈ U , γ ∈ Va, λ ∈ Vb:

1. Each of the functions of sequence (12) has range in U , is continuosly differentiable on [a, b],
and satisfies conditions (9). The limit

x∞(t, z, γ, λ) = lim
m→∞

xm(t, z, γ, λ) (14)

exists uniformly in (t, z, γ, λ) ∈ [a, b] × U × Va × Vb. Function (14) satisfies the boundary
condition (9).

2. Each of the functions of sequence (13) has range in V , is continuosly differentiable on [a, b],
and satisfies conditions (11). The limit

y∞(t, z, γ, λ) = lim
m→∞

ym(t, z, γ, λ) (15)

exists uniformly in (t, z, γ, λ) ∈ [a, b] × U × Va × Vb. Function (15) satisfies the boundary
condition (11).

3. The functions x∞( · , z, γ, λ), y∞( · , z, γ, λ) form the unique continuously differentiable solution
of the system of integral equations

x(t) = z +

t∫
a

f1(s, x(s), y(s)) ds−
t− a

b− a

b∫
a

f1(s, x(s), y(s)) ds,

y(t) = γ +
t− a

b− a
(λ− γ) +

t∫
a

f2(s, x(s), y(s)) ds−
t− a

b− a

b∫
a

f2(s, x(s), y(s)) ds.

4. The following error estimate holds:∣∣x∞(t, z, γ, λ)− xm(t, z, γ, λ)
∣∣ ≤ 10

9
α1(t)

{
Qm(Ip+q −Q)−1

(
δU×V (f1)
δU×V (f2)

)}p

1

,

∣∣y∞(t, z, γ, λ)− ym(t, z, γ, λ)
∣∣ ≤ 10

9
α1(t)

{
Qm(Ip+q −Q)−1

(
δU×V (f1)
δU×V (f2)

)}p+q

p+1

,

where
α1(t) = 2(t− a)

(
1− t− a

b− a

)
, t ∈ [a, b],

and {u}p1 = col(u1, u2, . . . , up), {u}p+q
p+1 = col(up+1, up+2, . . . , up+q) for a vector u ∈ Rn.
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The idea of proof is to show that (12), (13) are Cauchy sequences in the Banach spaces
C([a, b],Rp) and C([a, b],Rq), respectively.

Under conditions of Theorem 1, functions (14), (15) are solutions of the Cauchy problems for
the forced systems

x′(t) = f1(t, x(t), y(t)) + ∆U (z, γ, λ), x(a) = z,

y′(t) = f2(t, x(t), y(t)) + ∆V (z, γ, λ), x(a) = γ,

where ∆U : U ×Va×Vb → Rp and ∆V : U ×Va×Vb → Rp are the mappings given by the formulas

∆U (z, γ, λ) = − 1

b− a

b∫
a

f1
(
s, x∞(s, z, γ, λ), y∞(s, z, γ, λ)

)
ds,

∆V (z, γ, λ) =
1

b− a
(λ− γ)− 1

b− a

b∫
a

f2
(
s, x∞(s, z, γ, λ), y∞(s, z, γ, λ)

)
ds.

Theorem 2. Under the assumptions of Theorem 1, the limit functions (14), (15) of sequences (12),
(13) form a solution of the boundary value problem (1)–(3) if and only if the parameters (z, γ, λ)
satisfy the system of p+ 2q equations

∆U (z, γ, λ) = 0, ∆V (z, γ, λ) = 0, Λ(z, γ, λ) = 0, (16)

where
Λ(z, γ, λ) = ϕ(y∞( · , γ, λ))− d. (17)

The proof can be carried out similarly to [1, 2]. The next statement shows that the system of
determining equations (16) determines all possible solutions of the original non-linear boundary
value problem (1)–(3) having range in U × V .

Theorem 3. Let the assumptions of Theorem 1 hold.

1. If there exist some (z∗, γ∗, λ∗) ∈ U × Va × Vb satisfying the system of determining equations
(16), then problem (1)–(3) has a solution (x∗, y∗) such that

x∗(a) = x∗(b) = z∗, y∗(a) = γ∗, y∗(b) = λ∗

and, moreover,
x∗( · ) = x∞( · , z∗, γ∗, λ∗), y∗( · ) = y∞( · , z∗, γ∗, λ∗).

2. If the boundary value problem (1)–(3) has a solution (x∗, y∗) with the range in U × V , then
the system of determining equations (16) is satisfied with

z = x∗(a), γ = y∗(a), λ = y∗(b).

The proof can be carried out by analogy to [1, 2].
The solvability of system (16), under additional conditions, can be proved if a solution of an

approximate determining system

∆U,m(z, γ, λ) = 0, ∆V,m(z, γ, λ) = 0, Λm(z, γ, λ) = 0,

has been found, where m is fixed and ∆U,m, ∆V,m, Λm are defined similarly to (17) with x∞,
y∞ replaced by xm, ym. Practical calculations using Maple confirm the constructiveness of the
proposed approach.
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