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1 Introduction
The work [4] is devoted to the study of the main issues of the theory of differential equations with
impulse action. In [2], conditions are established that guarantee the hyperbolicity of systems of
differential equations with impulse action. The obtained hyperbolicity conditions allow us to study
the existence of bounded solutions of inhomogeneous multidimensional systems of differential equa-
tions with impulse perturbation. In [1], sufficient conditions for the existence of an asymptotically
stable invariant toroidal manifold of linear extensions of a dynamical system on a torus are obtained
in the case of a matrix of the system that commutes with its integral. The proposed approach is
applied to the study of the stability of invariant sets of a certain class of discontinuous dynamical
systems. In [3], a review of the most modern methods for studying the stability of solutions of
impulse differential equations and their application to impulse control problems is carried out. The
exponential stability of a trivial torus is proved for one class of nonlinear extensions of dynamical
systems on a torus. The obtained results are applied to the study of the stability of toroidal sets of
impulsive dynamical systems. The concept of an impulsive non-autonomous dynamical system is
introduced. For it, the existence and properties of an impulsive attracting set are investigated. The
obtained results are applied to the study of the stability of a two-dimensional impulsive-perturbed
Navier–Stokes system. In all the above works, the foundations of the qualitative theory of differ-
ential equations with impulsive action are outlined. In essence, the foundations of the qualitative
theory of impulsive systems were laid, which are based on the qualitative theory of differential
equations, methods of asymptotic integration of such equations, the theory of difference equations
and generalized functions. At the same time, the issues of the existence of solutions of weakly
nonlinear impulsive systems have not yet been fully investigated.

2 Setting of the problem and the main results
Consider a system of differential equations that is subject to impulse action when an angular
variable passes through ϕ fixed set Γ on a torus Tm:

dϕ

dt
= ω,

dx

dt
= A(ϕ)x+ f(ϕ, x), ϕ * Γ,

△x
∣∣
ϕ∈Γ = B(ϕ)x+ I(ϕ, x), △x

∣∣
ϕ∈Γ = a,

(2.1)

where x ∈ Rn, ϕ ∈ Tm and a – constant m-dimensional vectors, Γ(m−1) is a dimensional manifold
defined by the equation ⟨k, ϕ⟩ = 0 (mod 2π) and k = (k1, . . . , km) is an integer vector such that
⟨k, ϕ⟩ = 0 (mod 2π).

The last condition ensures that the angular phase variable belongs to the ϕ(t) set Γ at the
moment of the pulse action both at t − 0, and at t + 0. A(ϕ) and B(ϕ) are continuous, 2π are
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square matrices that are periodic in each component ϕi, the functions f(ϕ, x) and I(ϕ, x), defined
for all ϕ ∈ Tm, are continuous (piecewise continuous with discontinuities of the first kind in ϕ),
2π-periodic in ϕ and satisfy the Lipschitz condition uniformly with respect to ϕ ∈ Tm:∥∥f(ϕ, x′)− f(ϕ, x′′)

∥∥+
∥∥I(ϕ, x′)− I(ϕ, x′′)

∥∥ ≤ N∥x′ − x′′∥ (2.2)

for each x′ ∈ Rn.
Let us denote by the ϕt(ϕ) solution of the system

dϕ

dt
= ω, ϕ * Γ, △x

∣∣
ϕ∈Γ = a. (2.3)

Let us find out under what condition the trajectory of this solution densely fills the torus
everywhere Tm. Any continuous trajectory ϕ = ωt + ϕ0 crosses the manifold Γ at equal time
intervals β = 2π

⟨k,ω⟩ .
Consider the trajectory of system (2.3) passing through the point ϕt = ϕt(0). The next point

of intersection of it with Γ will be 2π
⟨k,ω⟩ω. After the first jump we get a point 2π

⟨k,ω⟩ω + a.
Let us call a section of motion consisting of one continuous arc and one jump one stroke of

motion. The starting points of individual strokes of motion are, as we see, the points S( 2π
⟨k,ω⟩ω+ a)

where S is an integer.
We obtain the following statement.

Lemma 2.1. Any continuous trajectory ϕt(ϕ) of system (2.3) is closed if and only if the coordinates
of the vector D = 1

⟨k,ω⟩ ω + 1
2π a are rational.

Before formulating the main result related to system (2.1), consider the following system of
equations: 

dϕ

dt
= ω,

dx

dt
= A(ϕ)x+ f(ϕ), ϕ * Γ,

△x
∣∣
ϕ∈Γ = B(ϕ)x+ I(ϕ), △x

∣∣
ϕ∈Γ = a

(2.4)

in which A(ϕ), B(ϕ), ω, a, Γ – the same as in system (2.1); f(ϕ) and I(ϕ) – continuous (piecewise
continuous with discontinuities of the first kind along ϕ ), 2π-periodic in ϕ function.

Let us denote by I(t, τ, ϕ) the normalized fundamental matrix of the system
dx

dt
= A(ϕt(ϕ))x, t ̸= ti(ϕ),

△x
∣∣
t=ti

= B(ϕt(ϕ)).

(2.5)

Note that, as shown in [4], I(t, τ, ϕ) the system of differential equations dx
dt = A(ϕt(ϕ))x associated

with the matricant Ωt
τ (ϕ) as follows:

I(t, τ, ϕ) = Ωt
ti(ϕ)

Π
[
(E +Bi−k+1)Ω

ti−k+1(ϕ)
ti−k(ϕ)

]
, ti(ϕ) ≤ t ≤ ti+1(ϕ).

In the following, we assume that I(t, τ, ϕ) satisfies the inequality

|I(t, τ, ϕ)| ≤ Ke−γ(t−τ), t ≥ τ. (2.6)

Lemma 2.2. Let in the system of equations (2.4) the functions f(x) and I(ϕ) be periodic, continuous
(piecewise continuous on τm). A(ϕ) and B(ϕ) are continuous on τm 2π- periodic matrices. If the
matrix I(t, τ, ϕ) satisfies estimate (2.6), then the system of equations (2.4) has an asymptotically
stable invariant set

x = u(ϕ), u(ϕ+ 2π) = u(ϕ),
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where u(ϕ) is a piecewise-continuous function with discontinuities of the first kind on the set Γ such
that for some constant C we obtain the inequality:

∥U(ϕ)∥ ≤ C ·max
{
max
ϕ∈τm

∥f(ϕ)∥, max
ϕ∈τm

∥I(ϕ)∥
}
.

Thus, the function u(ϕ) defines the invariant set of the system of equations (2.4). The asymp-
totic stability of this set is ensured by inequality (2.6).

Let us note some special cases of systems (2.5) for which the fundamental matrix Y (t, τ, ϕ)
implies estimate (2.6).

Inequality (2.6) is also satisfied if A and B are constant matrices that commute with each
other, and are non-degenerate and the real parts of all eigenvalues E + B of the matrix ∧ =

A+ ⟨k,ω⟩
2π ln(E +B) are negative.

So, based on the results obtained, we obtain the following theorem.

Theorem. Let the system of equations (2.1) be such that inequalities (2.2) and (2.6) are satisfied.
Then we can specify a positive number N0 such that for all 0 ≤ N ≤ N0 the system of equations
(2.1) has an asymptotically stable invariant set x = u(ϕ), u(ϕ + 2π) = u(ϕ), where u(ϕ) is a
piecewise-continuous function with discontinuities of the first kind on the set Γ such that

△U
∣∣
ϕ∈Γ = B(ϕ)u(ϕ) + I(ϕ, u(ϕ)).
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Consider the equation
y(n) = p(x, y, y′, . . . , y(n−1))|y|k sign y, (1)

where n ≥ 2, k > 1, and p is a positive continuous function that is Lipschitz-continuous in its last
n variables. Also consider a special case of (1), namely,

y(n) = p0|y|k sign y (2)

with p0 > 0.
Immediate calculations show that equation (2) has positive solutions with exact power-law

behavior, namely,
y(x) = C(x∗ − x)−α (3)

defined on (−∞, x∗) with

α =
n

k − 1
, C =

(α(α+ 1) · · · (α+ n− 1)

p0

) 1
k−1

, (4)

and arbitrary x∗ ∈ R.
We discuss the problem posed by I. Kiguradze (see [9, Problem 16.4]) on asymptotic behavior

of all positive non-extensible (so-called “blow-up”) solutions to equations (2) and (1).
For n = 2 (see [9]), n = 3, 4 (see [1,2], [3, 5.1]), it appears that if p(x, y1, y2, . . . , yn−1) tends to

p0 as x → x∗ − 0, y0 → ∞, . . . , yn−1 → ∞, then all such solutions to equation (1) (and equation
(2)) have the following power-law asymptotic behavior:

y(x) = C(x∗ − x)−α(1 + o(1)), x → x∗ − 0, (5)

with α and C defined by (4).
For equation (1) with any n and some additional assumptions on the function p, the existence

of solutions with power-law asymptotic behavior is proved, for 5 ≤ n ≤ 11, the existence of an
(n− 1)-parametric family of such solutions is obtained (see [3, 5.1]).

It is also proved that for weakly super-linear equations (2) (see [5]) and (1) (see [6]) Kiguradze’s
conjecture on the power-law asymptotic behavior of all blow-up solutions is true.

Theorem 1 ( [6]). Suppose that p ∈ C(Rn+1) ∩ Lipy0,...,yn−1(Rn) and p → p0 > 0 as x → x∗,
y0 → ∞, . . . , yn−1 → ∞. Then for any integer n > 4 there exists Kn > 1 such that for any real
k ∈ (1,Kn), any solution to equation (1) tending to +∞ as x → x∗−0 has the power-law asymptotic
behavior (5).
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In the case n ≥ 12, even if we deal with equation (2), another type of asymptotic behavior of
singular solutions appears (see [4, 6, 8, 10]).

Theorem 2 ([8]). For any n ≥ 12, there exists kn > 1 such that equation (2) has a solution y(x)
with

y(j)(x) = p
− 1

k−1

0 (x∗ − x)−α−jhj(log(x
∗ − x)), j = 0, 1, . . . , n− 1, (6)

where all hj are periodic positive non-constant functions on R.

If we have stronger nonlinearity, then the power-law asymptotic behavior becomes atypical.
The following theorem generalizes the results of [7].

Theorem 3. If 12 ≤ n ≤ 100000, then there exists kn > 1 such that at any point x0 ∈ R the
set of initial data of asymptotically power-law solutions to equation (2) has zero Lebesgue measure
whenever k > kn.

In order to study the blow-up solutions to equation (2) having the vertical asymptote x = x∗,
we use the substitutions

x∗ − x = e−t, y = (C + v)eαt (7)

with C defined by (4) to transform equation (2) with p0 = 1 to another one, which can be reduced
to the first-order system

dV

dt
= AαV + Fα(V ), (8)

where Aα is a constant n× n matrix with eigenvalues satisfying the equation

n−1∏
j=0

(λ+ α+ j) =
n−1∏
j=0

(1 + α+ j), (9)

and Fα is a mapping from Rn to Rn satisfying

∥Fα(V )∥ = O(∥V ∥2) and ∥F ′
α,V (V )∥ = O(∥V ∥) as V → 0.

In order to study equation (1), the same substitution as (7) of variables is used, and a more
complicated system than (8) with an additional term G(t, V ) appears (see [3]).

The proof of Theorem 3 is based on the following statement.

Lemma. If there is no purely imaginary root to equation (9), but there exists at least one root not
equal to 1 and having positive real part, then for any x0 ∈ R, the set of initial data of asymptotically
power-law solutions to equation (2) has zero Lebesgue measure whenever k > kn.

Remark. The occurrence of the order 12 for equation (2) in Theorems 2 and 3 is explained by
the fact that all roots but one (λ = 1) to equation (9) with n < 12 have negative real parts,
which implies the existence of an (n− 1)-parametric family of solutions with power-law asymptotic
behavior (5) of solutions to equation (1). Equation (9) with n = 12 and some α has a pair of
complex-conjugate purely imaginary roots, which implies the appearance of a solution of the form
(6) to equation (2). The order 100000 appearing in Theorem 3 is not final. It is possible to continue
the calculations and obtain the same result for equations of order higher than 100000. The previous
result (see [7]) was obtained for 12 ≤ n ≤ 203.
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Open problems
• Is there any blow-up solution to equation (2) with asymptotic behavior other than (5) and (6) ?

• Is there any blow-up solution with non-power-law asymptotic behavior to equation (2) with
strong power-law nonlinearity when 5 ≤ n ≤ 11 ?

• Is it possible to find exactly a constant K∗
n > 1 such that for any k ∈ (1,K∗

n) all blow-up
solutions to (2) have power-law asymptotic behavior (5), while other blow-up solutions appear
whenever k > K∗

n ?
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1 Introduction
Consider an extremum problem for the parabolic mixed problem

ut = (a(x)ux)x + b(x)ux + h(x)u, (x, t) ∈ QT = (0, 1)× (0, T ), T > 0, (1.1)
u(0, t) = φ(t), ux(1, t) = ψ(t), 0 < t < T, (1.2)

u(x, 0) = 0, 0 < x < 1, (1.3)

where the real functions a, b and h are smooth in QT , 0 < a0 ≤ a(x) ≤ a1 < ∞, φ ∈ W 2
2 (0, T ),

ψ ∈W 2
2 (0, T ). Here W 2

2 (0, T ) is the Sobolev space of weakly differentiable functions with the norm

‖y‖2
Wk

2 (0,T )
=

T∫
0

( k∑
j=0

(y(k)(t))
2
)
dt.

We study the control problem with a pointwise observation: by controlling the temperature φ
at the left end of the segment (the function ψ is assumed to be fixed), we try to make at some
point x0 ∈ (0, 1) the temperature u(x0, t) close to the given function z ∈ W 1

2 (0, T ) over the entire
time interval (0, T ). This problem arises in the model of climate control in industrial greenhouses
[4,5]. Note that extremal problems for parabolic equations were considered in [11,13–16] (as usual,
problems with final or distributed observation). But the results and methods of investigation are
not similar to our methods.

Continuing the research in [1–3, 6–10], we consider some special quality functional, which is in
demand in applications, providing, among other things, uniform proximity of the solution and the
objective function, implemented by the norm in the space W 1

2 (0, T ). Since in applied problems the
control and observation time T is sufficiently large, the influence of the initial function is relatively
small and can be neglected, setting the initial function equal to zero.
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As in [12, p. 6], we denote by V 1,0
2 (QT ) Banach space of functions u ∈W 1,0

2 (QT ) (Sobolev space
of functions with the norm ‖u‖2

W 1,0
2 (QT )

=
∫
QT

(u2x + u2) dx dt) with the finite norm

‖u‖
V 1,0
2 (QT )

= sup
0≤t≤T

‖u( · , t)‖L2(0,1) + ‖ux‖L2(QT )

such that t 7→ u( · , t) is a continuous mapping from [0, T ] to L2(0, 1). Let W̃ 1
2 (QT ) be the set of all

functions η ∈W 1
2 (QT ), satisfying the conditions η( · , T ) = 0, η(0, · ) = 0.

Definition 1.1. A function u ∈ V 1,0
2 (QT ), satisfying the condition u(0, t) = φ(t) and the equality

∫
QT

(
a(x)uxηx − b(x)uxη − h(x)uη − uηt

)
dx dt = a(1)

T∫
0

ψ(t)η(1, t) dt

for all η ∈ W̃ 1
2 (QT ), is called a weak solution to problem (1.1)–(1.3).

2 Main results
Theorem 2.1. If φ,ψ ∈ W 2

2 (0, T ) and φ(0) = ψ(0) = 0, then problem (1.1)–(1.3) has a unique
weak solution u ∈ V 1,0

2 (QT ) with ut ∈ V 1,0
2 (QT ), and the inequality

‖u‖
V 1,0
2 (QT )

+ ‖ut‖V 1,0
2 (QT )

≤ C1

(
‖φ‖W 2

2 (0,T ) + ‖ψ‖W 2
2 (0,T )

)
(2.1)

holds with some constant C1, independent of φ and ψ.

Denote by Φ ⊂W 2
2 (0, T ) � nonempty set of control functions φ satisfying the condition φ(0) = 0,

and let Z ⊂W 1
2 (0, T ) be � nonempty set of objective functions z satisfying the condition z(0) = 0.

Consider the functional

J [z, φ] =
∥∥uφ(x0, t)− z(t)

∥∥2
W 1

2 (0,T )
, φ ∈ Φ, z ∈ Z, (2.2)

where uφ is the solution to problem (1.1)–(1.3) with the given control function φ. Considering the
function z to be fixed, we have the following minimization problem

m[z,Φ] = inf
φ∈Φ

J [z, φ]. (2.3)

Theorem 2.2. If the set Φ is closed, convex and bounded in W 2
2 (0, T ), then for any z ∈ Z there

exists a unique function φ0 ∈ Φ such that

m[z,Φ] = J [z, φ0]. (2.4)

Definition 2.1. We will say that problem (1.1)–(1.3), (2.3) is densely controllable from the set Φ
to the set Z (see [8, 16]), if for all z ∈ Z the equality

m[z,Φ] = 0 (2.5)

holds.

Theorem 2.3. Problem (1.1)–(2.2) is densely controllable from the set Φ = {φ ∈ W 2
2 (0, T ) :

φ(0) = 0} to the set Z = {z ∈W 1
2 (0, T ) : z(0) = 0}.
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3 Proofs
Proof of Theorem 2.1. By results of [8], we can prove that under assumptions of φ ∈ W 2

1 (0, T ),
ψ ∈ W 2

1 (0, T ) there exists a unique solution u ∈ V 1,0
2 (QT ) of problem (1.1)–(1.3). This solution

satisfies the estimate
‖u‖

V 1,0
2 (QT )

≤ C2

(
‖φ‖W 1

2 (0,T ) + ‖ψ‖W 1
2 (0,T )

)
. (3.1)

The function v = ut is a solution to the problem

vt = (a(x)vx)x + b(x)vx + h(x)v, (x, t) ∈ QT , (3.2)
v(0, t) = φ′(t), vx(1, t) = ψ′(t), 0 < x < 1, t > 0, (3.3)

v(x, 0) = 0, 0 < x < 1. (3.4)

Using the results of [8], under assumptions of φ′ ∈W 2
1 (0, T ), ψ′ ∈W 2

1 (0, T ) there exists a solution
v ∈ V 1,0

2 (QT ) of problem (3.2)–(3.4). This solution satisfies the estimate

‖v‖
V 1,0
2 (QT )

≤ C2

(
‖φ′‖W 1

2 (0,T ) + ‖ψ′‖W 1
2 (0,T )

)
.

Therefore,
‖ut‖V 1,0

2 (QT )
≤ C2

(
‖φ‖W 2

2 (0,T ) + ‖ψ‖W 2
2 (0,T )

)
. (3.5)

Combining estimates (3.1) and (3.5), we obtain the required inequality (2.1).

The proof of Theorem 2.2 is based on the following lemma concerning the best approximation
in Hilbert spaces.

Lemma 3.1 ([4]). Let A be a convex closed set in a Hilbert space H. Then for any x ∈ H there
exists a unique element y ∈ A such that

‖x− y‖ = inf
z∈A

‖x− z‖.

Proof of Theorem 2.2. Denote

B =
{
y = uφ(x0, · ) : φ ∈ Φ

}
⊂W 1

2 (0, T ).

By the convexity of Φ the set B is a convex subset in W 1
2 (0, T ). The set Φ is bounded and closed

in W 1
2 (0, T ) and by estimate (2.1) we obtain that B is a bounded and closed set in W 1

2 (0, T ). Now
we apply Lemma 3.1 to the case H = W 1

2 (0, T ), A = B, x = z ∈ Z ⊂ H. By Lemma 3.1 there
exists a unique function y ∈ B such that

m[z,Φ] = ‖y − z‖2W 1
2 (0,T ).

So, y = uφ0(x0, · ) for some φ0 ∈ Φ such that

m[z,Φ] = J [z, φ0].

Now we can prove that such φ0 ∈ Φ is unique by the same technique of maximum principle and
unique continuation theorems as in [8].

Proof of Theorem 2.3. For uφ(x0, 0) = z(0) = 0 we have the representation

uφ(x0, t)− z(t) =

t∫
0

(uφt(x0, τ)− z′(τ)) dτ, 0 ≤ t ≤ T. (3.6)
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It follows from (3.6) that

∥∥uφ(x0, · )− z( · )
∥∥2
L2(0,T )

=

T∫
0

( t∫
0

(
uφt(x0, τ)− z′(τ)

)
dτ

)2

dt ≤
T∫
0

t
∥∥vφ′(x0, · )− z′( · )

∥∥2
L2(0,t)

dt

≤ T 2

2

∥∥vφ′(x0, · )− z′( · )
∥∥2
L2(0,T )

. (3.7)

So, from (3.6) and (3.7) we have

J [z, φ] =
∥∥uφ(x0, · )− z( · )

∥∥2
W 1

2 (0,T )

=
∥∥uφ(x0, · )− z( · )

∥∥2
L2(0,T )

+
∥∥uφt(x0, · )− z′( · )

∥∥2
L2(0,T )

≤
(
1 +

T 2

2

)∥∥vφ′(x0, · )− z′( · )
∥∥2
L2(0,T )

. (3.8)

Now, by the results of [8] and [9], problem (3.2)–(3.4) is densely controllable from W 1
2 (0, T ) to

L2(0, T ). Therefore, for an arbitrary z′ ∈ L2(0, T ) we have

inf
φ′∈W 1

2 (0,T )

∥∥vφ′(x0, · )− z′( · )
∥∥2
L2(0,T )

= 0. (3.9)

Now, by (3.8), (3.9),

inf
φ∈W 2

2 (0,T )
J [z, φ] ≤

(
1 +

T 2

2

)
inf

φ′∈W 1
2 (0,T )

∥∥vφ′(x0, · )− z′( · )
∥∥2
L2(0,T )

= 0.
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Consider a second-order differential equation of neutral type with constant delays

(y − pyτ )
′′ + q(t)f(yσ) = 0, yρ(t) ≡ y(t− ρ), t ∈ [t0,+∞), (1)

where 0 < p < 1, τ, σ > 0, q ∈ C[t0,+∞), q > 0.

Denote ρ ≡ max{τ, σ}.

Definition 1. The solution to equation (1) is the function y ∈ C[t0 − ρ,+∞), satisfying this
equation, such that y − pyτ ∈ C2[t0,+∞).

Definition 2. The solution y of equation (1) is called oscillatory if for any t1 > t0 there exists
t2 > t1 such that y(t2) = 0.

Definition 3. We will say that a function f such that f ′(y) > 0, y ∈ R, and yf(y) > 0, y ̸= 0,
satisfies:

- the superlinear condition, if for any ε > 0 the inequalities hold:

0 <

+∞∫
ε

dy

f(y)
< +∞, 0 < −

−ε∫
−∞

dy

f(y)
< +∞;

- the sublinear condition, if for any ε > 0 the inequalities hold:

0 <

ε∫
0

dy

f(y)
< +∞, 0 < −

0∫
−ε

dy

f(y)
< +∞.

In the case p = τ = σ = 0 and f(y) = |y|γ sgn y, equation (1) is an Emden–Fowler type equation

y′′ + q(t)|y|γ sgn y = 0. (2)

The following criteria for the oscillation of all its solutions are known.

Theorem A (Atkinson [2]). If q ∈ C[0,+∞), q > 0 and γ = 2n − 1, n ∈ N, n > 1, then all
solutions to equation (2) are oscillatory iff

+∞∫
0

tq(t) dt = +∞.
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Theorem B (Belohorec [3]). If qj ∈ C[0,+∞), qj > 0 and γj = pj/rj ∈ (0, 1), where pj, rj –
natural, odd and j ∈ N, then all solutions of the equation y′′ +

n∑
j=1

qj(t)y
γj = 0 are oscillatory iff

+∞∫
0

n∑
j=1

tγjqj(t) dt = +∞.

A strengthening of Atkinson’s theorem for all real γ > 1 was proven in [4], the oscillation of
solutions of high-order Emden–Fowler type equations was studied in [5]. A more general case of
equation (2) was considered in [1].

In [6] criteria for the oscillation of all solutions of equation (1) in the cases of superlinearity
and sublinearity of the function f are proved. The following results complement and clarify these
criteria.

Lemma 1. Let y be the solution of equation (1) such that y > 0 for every t ≥ t0 ≥ 0 and z = y−pyτ .
Then for every t ≥ t1, where t1 ≥ t0 + ρ is sufficiently large, one of the conditions holds:

1) z′′ ≤ 0, z′ > 0, z < 0;

2) z′′ ≤ 0, z′ > 0, z > 0.

Moreover, the first condition is satisfied when lim
t→+∞

y(t) = 0. Otherwise, the second condition is
true.

Lemma 2. For every continuous function φ, defined on the segment [t0− ρ, t0], equation (1) has a
solution y, extendable to the interval [t0,+∞) and satisfying the initial conditions y(t) = φ(t) for
t ∈ [t0 − ρ, t0].

Theorem 1. Let the function f ∈ C1(R) be superlinear. Then:

1) if
+∞∫
t0

tq(t) dt = +∞, then all not vanishing at infinity solutions to equation (1) are oscillatory;

2) if all solutions to equation (1) are oscillatory, then
+∞∫
t0

tq(t) dt = +∞.

Proof. 1) Let y be a non-vanishing non-oscillatory solution to equation (1). Then, due to yf(y) >
0, without loss of generality we can assume that y > 0 for all t ≥ t0 ≥ 0. By Lemma 1 for
z = y − pyτ ≥ y we have z′′ ≤ 0, z′ > 0, z > 0 for all t ≥ t1.

Then
0 = z′′(t) + q(t)f(yσ(t)) ≥ z′′(t) + q(t)f(zσ(t)).

Let
w(t) =

tz′(t)

f(zσ(t))
≥ 0.

We obtain

w′(t) + tq(t) ≤ z′(t)

f(zσ(t))
− tf ′(zσ(t))z

′(t)

[f(zσ(t))]2
z′σ(t) ≤

z′(t)

f(zσ(t))
.
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Let’s integrate the inequality

w(t)− w(t1) +

t∫
t1

sq(s) ds ≤
t∫

t1

z′(s)

f(zσ(s)
ds ≤

t∫
t1

z′σ(s)

f(zσ(s)
ds,

w(t)− w(t1) +

t∫
t1

sq(s) ds ≤
zσ(t)∫

zσ(t1)

dv

f(v)
,

t∫
t1

sq(s) ds ≤ w(t1) +

∞∫
zσ(t1)

dv

f(v)
= const < +∞.

Tending t to infinity, we arrive at a contradiction.

2) See [6].

Remark. The divergence of the integral
+∞∫
0

tq(t) dt does not guarantee (contrary to the statement

from [6]) the oscillation of all solutions to equation (1). For example, the function y(t) = e−t is a
particular solution to the equation(

y − 1

2
y1

)′′
+
(e
2
− 1

)
e2t−3y31 = 0,

and lim
t→+∞

y(t) = 0 and
+∞∫
0

tq(t) dt = +∞, where q(t) ≡ t(e/2− 1)e2t−3.

Theorem 2. Let the function f ∈ C(R) be sublinear and f(uv) > f(u)f(v) for uv > 0. Then:

1) if
+∞∫
t0

f(t)q(t) dt = +∞, then all not vanishing at infinity solutions to equation (1) are

oscillatory;

2) if all solutions to equation (1) are oscillatory, then
+∞∫
t0

f(t)q(t) dt = +∞.

Proof. 1) Let y be a non-vanishing non-oscillatory solution to equation (1). Then, due to yf(y) >
0, without loss of generality we can assume that y > 0 for all t ≥ t0 ≥ 0. By Lemma 1 for
z = y − pyτ ≥ y we have z′′ ≤ 0, z′ > 0, z > 0 for all t ≥ t1.

We have
0 = z′′(t) + q(t)f(yσ(t)) ≥ z′′(t) + q(t)f(zσ(t)).

Since

z(t) = z(t1) +

t∫
t1

z′(s) ds ≥ z′(t)(t− t1),

then
f(zσ(t)) ≥ f(z′σ(t)(t− σ − t1)).

For any λ ∈ (0; 1), if t2 ≥ t1 is sufficiently large, t− σ − t2 ≥ λt for all t ≥ t2. Therefore,

f
(
z′σ(t)(t− σ − t1)

)
≥ f(λz′σ(t)t) ≥ f(λz′σ(t))f(t)
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and
z′′(t)

f(λz′σ(t))
+ q(t)f(t) ≤ 0.

Integrating the resulting inequality, we obtain

t∫
t2

z′′(s)

f(λz′σ(s))
ds+

t∫
t2

q(s)f(s) ds ≤ 0,

t∫
t1

q(s)f(s) ds ≤ −
t∫

t2

z′′(s)

f(λz′σ(s))
ds ≤ −

t∫
t2

z′′(s)

f(λz′(s))
ds,

t∫
t2

q(s)f(s) ds ≤
λz′(t2)∫
λz′(t)

dv

λf(v)
=

λz′(t2)∫
0

dv

λf(v)
−

λz′(t)∫
0

dv

λf(v)
.

Then, by the property of sublinearity of the function f we have

t∫
t2

q(s)f(s) ds ≤ const < +∞.

Tending t to infinity, we arrive at a contradiction.

2) See [6].

Theorem 3. If the function f ∈ C(R) is sublinear, σ > τ and
+∞∫
t0

q(t) dt = +∞, then all solutions

to equation (1) are oscillatory.

Proof. Let y be a non-oscillating solution to (1). Then, due to yf(y) > 0, without loss of generality
we can assume that y > 0 for all t ≥ t0 ≥ 0.

Let us show that both cases described in Lemma 1 are impossible.

1) If z > 0 for all t ≥ t1, where t1 ≥ t0 + ρ, we have

z = y − pyτ ≥ y.

Due to f ′ ≥ 0 and equation (1), we obtain

z′′(t) + q(t)f(zσ(t)) ≤ 0.

Integrating this inequality on the interval [t1, t], we get

t∫
t1

q(s)f(zσ(s)) ds ≤ z′(t1),

t∫
t1

q(s) ds ≤ z′(t1)

f(zσ(t1))
≤ z′(t1)

f(z(t1))
= const < +∞.

Tending t to infinity, we come to a contradiction.
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2) If z < 0 for all t ≥ t1 ≥ t0 + ρ, then

z(t) = y(t)− pyτ (t) < −pyτ (t),

yσ(t) < −zσ−τ (t)

p
.

Then, since f is increasing, from equation (1) we have

z′′(t) + q(t)f
(
− zσ−τ (t)

p

)
≤ 0.

Let us integrate this inequality on the interval [t− σ + τ, t].

z′σ−τ (t)− z′(t) +

t∫
t−σ+τ

q(s)f
(
− zσ−τ (t)

p

)
p ds ≤ 0.

Taking into account the fact that z is positive and increasing, we have

−z′σ−τ (t)
/
f
(
− zσ−τ (t)

p

)
+

t∫
t−σ+τ

q(s) ds ≤ 0.

Let w(t) ≡ −zσ−τ (t)/p. Integrating the inequality on [t2, t3], we obtain

p

w(t3)∫
w(t2)

dw

f(w)
+

t3∫
t2

t∫
t−σ+τ

q(s) ds dt ≤ 0,

t3∫
t2

t∫
t−σ+τ

q(s) ds dt ≤ p

w(t2)∫
0

dt

w(t)
− p

w(t3)∫
0

dt

w(t)
,

t3∫
t2

t∫
t−σ+τ

q(s) ds dt ≤ p

w(t2)∫
0

dt

w(t)
.

Due to the sublinearity of the function f , we get
∞∫

t2

t∫
t−σ+τ

q(s) ds dt < +∞,

which contradicts the condition
∞∫
t0

q(t)dt = +∞.
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We study the problem of constructing solutions [3, 4, 7]

z( · , ε) ∈ C1
{
[0, T ] \ {τ(ε)}I

}
∩ C[0, T ], z(t, · ) ∈ C[0, ε0]

of the autonomous boundary value problem for the equation

z′(t, ε) = Az(t, ε) + εZ(z(t, ε), ε), ℓz( · , ε) = 0, (1)

which are continuous at t = τ(ε). At the point t = τ(ε): 0 < τ(ε) < T , its τ(0) := τ0 the solution
of the boundary value problem (1) might have a limited discontinuity of first derivative [3,7]. The
solution of the boundary value problem (1) is found in a small neighbourhood of the solution

z0(t) ∈ C
{
[0, T ] \ {τ0}I

}
∩ C[0, T ]

of the generating boundary value problem

z′0(t) = Az0(t), ℓz0( · ) = 0. (2)

At the point t = τ0, the solution of the boundary value problem (2) might have a limited disconti-
nuity of the derivative. Here, A ∈ Rn×n is a constant matrix, Z(z, ε) is a nonlinear vector function,
piecewise analytic in the unknown z in a small neighbourhood of the solution of the generating
problem (2) and piecewise analytic in a small parameter ε on the interval [0, ε0]. In addition,

ℓz( · , ε) :=

(
z(0, ε)− z(T, ε)

z(τ(ε) + 0, ε)− z(τ(ε)− 0, ε)

)
= 0, ℓz0( · ) :=

(
z0(0)− z0(T )

Z0(τ0 + 0)− z0(τ0 − 0)

)
= 0

are linear bounded vector functionals. The condition for the solvability of the autonomous nonlinear
boundary value problem (1) with switchings leads to the equation

F0(c0, τ0) := PQ∗
r
ℓK
[
Z(z0(s, c0), 0); τ0

]
( · ) = 0. (3)

The necessary conditions for the existence of a solution to the autonomous nonlinear boundary
value problem (1) with switchings in the critical case are given by the following lemma.
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Lemma. Suppose that there is the critical case (2) for the generating boundary value problem. In
this case, the generating problem (2) has a one-parameter family of solutions z0(t, c0). Suppose
that an autonomous nonlinear boundary value problem (1) with switchings at non-fixed times in the
neighbourhood of the generating solution z0(t, c0) has the solution

z( · , ε) ∈ C
{
[0, T ] \ {τ(ε)

}
I
} ∩ C[0, T ], z(t, · ) ∈ C[0, ε0].

Under these conditions, the equality (3) holds.

The equation (3), will be further called the equation for the generating constants of the boundary
value problem (1) with switchings in the critical case. Let us assume that the equation for the
generating constants (3) of the boundary value problem (1) with switchings has real roots. Fixing
one of the real solutions

c∗0 ∈ Rr, τ∗0 ∈ R

of the equation (3) we get the problem of constructing a solution of the nonlinear boundary value
problem (1) in a small neighbourhood of the solution z0(t, c

∗
0) = Xr(t) c

∗
0, c∗0 ∈ Rr, of the generating

boundary value problem (2). The traditional condition for the solvability of a boundary value
problem (1) with switchings in a small neighbourhood of the solution of the generating problem is
the requirement [3]

PB∗
0
PQ∗

r
̸= 0, B0 := F ′

č0(c
∗
0, τ

∗
0 ) ∈ Rr×(r+1), č0 :=

(
c0 τ0

)∗
, (4)

where PB∗
0
: Rr → N(B∗

0) is an orthoprojector matrix [3]. The solution of the boundary value
problem (1) with switchings is given by

z(t, ε) := z0(t, c
∗
0) + u1(t, ε) + · · ·+ uk(t, ε) + · · · , τ(ε) = τ∗0 + ξ1(ε) + ξ2(ε) + · · ·+ ξk(ε) + · · · .

The nonlinear vector function Z(z(t, ε), ε) is analytical with respect to the unknown z(t, ε) in a
small neighbourhood of the solution of the generating boundary value problem (2) and the constant
τ∗0 , therefore in the given neighbourhood there exist an expansion

Z(z(t, ε), ε) = Z0(z0(t, c
∗
0), ε) + Z1

(
z0(t, c

∗
0), u1(s, ε), ε

)
+ Z2

(
z0(t, c

∗
0), u1(s, ε), u2(s, ε), ε

)
+ · · · .

The first approximation to the solution of the nonlinear periodic boundary value problem (1) in
the critical case

z1(t, ε) = z0(t, c
∗
0) + u1(t, ε), τ1(ε) = τ∗0 + ξ1(ε),

u1(t, ε) = Xr(t)c1(ε) + εG
[
Z0(z0(s, c

∗
0), z

′
0(s, c

∗
0), ε); τ

∗
0

]
(t)

determines the solution of the nonlinear periodic boundary value problem of the first approximation

u′1(t, ε) = Au1(t, ε) + εZ0(z0(t, c
∗
0), ε), ℓu1( · , ε) = 0.

The matrix B0, which is the key matrix in the study of the boundary value problem (1), takes the
form

B0 = PQ∗
r
ℓK
[
A0(s)Xr(s); 1

]
( · ); A0(t) =

∂Z(z(t, ε), ε)

∂z(t, ε)

∣∣∣∣z(t,ε)=z0(t,c∗0)
ε=0

.

The second approximation to the solution of the nonlinear periodic boundary value problem (1),
in the critical case

z2(t, ε) := z0(t, c
∗
0) + u1(t, ε) + u2(t, ε), τ2(ε) = τ∗0 + ξ1(ε) + ξ2(ε),
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determines the solution of the nonlinear periodic boundary value problem of the second approxi-
mation

u′2(t, ε) = Au2(t, ε) + εZ1(z0(t, c
∗
0), u1(t, ε), ε), ℓu2( · , ε) = 0.

The condition of solvability of the boundary value problem of the second approximation

F1(c1(ε), ξ1(ε)) := PQ∗
d
ℓK
[
Z1

(
z0(s, c

∗
0), u1(s, ε), z

′
0(s, c

∗
0), u1(s, ε), ε

)
; ξ1(ε)

]
( · ) = 0

is the linear equation

F1(c1(ε), ξ1(ε)) = B0 č1(ε) + γ1(ε) = 0, č1(ε) :=
(
c1(ε) ξ1(ε)

)∗
,

which has solutions in case (4), where

γ1(ε) := F1(č1(ε))−B0 č1(ε).

Indeed, let us denote the vector-functions

v(t, ε, µ) := z0(t, c
∗
0) + µu1(t, ε) + · · ·+ µk uk(t, ε) + · · · ,

g(ε, µ) := τ∗0 + µ ξ1(ε) + µ2 ξ2(ε) + · · ·+ µk ξk(ε) + · · · ,

while

F1(c1(ε), ξ1(ε)) = PQ∗
d
ℓK
[
Z1(z0(s, c

∗
0), u1(s, ε), ε); ξ1(ε)

]
( · )

= PQ∗
d
ℓK
[
Z ′
µ(v(t, ε, µ), ε); g

′
µ(ε, µ)

]
( · )
∣∣∣
µ=0

= PQ∗
d
ℓK
[
A0(s)u1(s, ε); ξ1(ε)

]
( · ),

therefore
B0 := F ′

č1(ε)
(č1(ε)) ∈ Rr×(r+1).

Thus, under the condition (4), we obtain at least one solution to the first approximation boundary
value problem

z1(t, ε) := z0(t, c
∗
0) + u1(t, ε), τ1(ε) = τ∗0 + ξ1(ε), č1(ε) = −B+

0 γ1(ε),

u1(t, ε) = Xr(t)c1(ε) + εG
[
Z1(z0(s, c

∗
0), u

′
1(s, ε), ε); ξ1(ε)

]
(t).

The conditions for solvability of boundary value problems of the following approximations

Fj(čj(ε)) := PQ∗
d
ℓK
[
Zj(z0(s, c

∗
0), u1(t, ε), . . . , uj(s, ε), ξj(ε), ε)

]
( · ) = 0

are linear equations
Fj(čj(ε)) = B0 čj(ε) + γj(ε) = 0, j = 1, 2, . . . , k,

where
B0 = F ′(čj(ε)), γj(ε) := F (čj(ε))−B0 čj(ε), j = 1, 2, . . . , k.

In the case (4), the last equation has solutions. The sequence of approximations to the solution of
the nonlinear periodic boundary value problem (1) in the critical case is determined by the iterative
scheme

z1(t, ε) = z0(t, c
∗
0) + u1(t, ε), τ1(ε) = τ∗0 + ξ1(ε), č1(ε) = −B+

0 γ1(ε),

u1(t, ε) = Xr(t)c1(ε) + εG
[
Z1(z0(s, c

∗
0), u

′
1(s, ε), ε); ξ1(ε)

]
(t);

z2(t, ε) = z0(t, c
∗
0) + u1(t, ε) + u2(t, ε), τ2(ε) = τ∗0 + ξ1(ε) + ξ2(ε),

u2(t, ε) = Xr(t)c2(ε) + εG
[
Z2(z0(s, c

∗
0), u1(s, ε), u2(s, ε), ε); ξ2(ε)

]
(t);

zk+1(t, ε) = z0(t, c
∗
0) + u1(t, ε) + · · ·+ uk+1(t, ε),

τk+1(ε) = τ∗0 + ξ1(ε) + · · ·+ ξk+1(ε),

uk+1(t, ε) = Xr(t) ck+1(ε) + εG
[
Zk(z0(s, c

∗
0), u1(s, ε), . . . , uk(s, ε), ε); ξk(ε)

]
(t),

k = 0, 1, 2, . . . .

(5)
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Theorem. Suppose that there is the critical case of the generating boundary value problem (2). In
this case, the generating problem (2) has a family of solutions

z0(t, c0) = Xr(t) c0, c0 ∈ Rr.

In the case of (4) in the small neighbourhood of the generating solution z0(t, c
∗
0) and the constant

τ∗0 the problem (1) with switchings has at least one solution. The sequence of approximations to the
solution

z( · , ε) ∈ C
{
[0, T ] \ {τ(ε)}I

}
∩ C[0, T ], z(t, · ) ∈ C[0, ε0]

of the autonomous boundary value problem (1) with switchings is determined by an iterative scheme
(5). If there exist constants 0 < γ < 1, and 0 < δ < 1 such that inequalities hold

∥u1(t, ε)∥ ≤ γ∥z0(t, c∗0)∥, ∥uk+1(t, ε)∥ ≤ γ∥uk(t, ε)∥,
|ξ1(ε)| ≤ δ |τ∗0 |, |ξk+1(ε)| ≤ δ |xik(ε)|, k = 1, 2, . . . ,

(6)

then the iterative scheme (5) converges to the solution of the autonomous boundary value problem
(1) with switchings.

The obtained iterative scheme is applied to find approximations to the periodic solution of the
equation with switchings at non-fixed moments of time, which models a nonisothermal chemical
reaction [1, 2].

The obtained convergence condition (6) of the iterative scheme (5) allows us to estimate the
interval of values of the small parameter ε ∈ [0, ε0], 0 ≤ ε∗ ≤ ε0, for which the convergence of the
iterative scheme (5) is preserved, different from similar estimates [5, 6].
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We consider the following differential equation

y′′ = α0p(t) exp
(
R0(y, y

′) + exp(R1(y, y
′))

)
, (1)

where α0 ∈ {−1; 1}, p : [a, ω[→ ]0,+∞[ (−∞ < a < ω ≤ +∞), the functions Rk : ∆Y0 × ∆Y1 →
]0,+∞[ (k ∈ {0, 1}) are continuously differentiable, Yi ∈ {0,±∞}, ∆Yi is either [y0i , Yi[

1 or ]Yi, y
0
i ].

We also suppose the functions Rk satisfy the conditions

lim
(y0,y1)→(Y0,Y1)

(y0,y1)∈∆Y0
×∆Y1

Rk(y0, y1) = +∞, (2)

lim
yi→Yi
yi∈∆Yi

yi
∂Rk(y0,y1)

∂yi

Rk(y0, y1)
= γki uniformly by yj ̸= yi (k, i, j ∈ {0, 1}). (3)

Here functions Rk (k ∈ {0, 1}) are in some sense near to regularly varying functions, that
are useful for investigations of equations of such a type. Theory of such a functions and their
properties are described in the book [4]. Functions that satisfy conditions (2), (3) can be written,
for example, as |y0|γk0 |y1|γk1 exp(lnµ |y0y1|), |y0|γk0 |y1|γk1 lnµ1 |y0y1| ln ln |y0y1|, 0 < µ < 1, µ1 ∈ R.
Differential equations of the second order, containing both power and exponential nonlinearities
in the right-hand side, play an important role in the development of the qualitative theory of
differential equations. Such equations also have many applications in practice. This happens, for
example, when studying the distribution of the electrostatic potential in the cylindrical volume of
the plasma of combustion products. The corresponding equation can be reduced to the following

y′′ = α0p(t)e
σy|y′|λ.

In the works by Evtukhov V. M. and Drik N. G. (see, for example, [3]) under certain conditions
for the p function, results were obtained about the asymptotic behavior of all correct solutions of
this equation. Partial case of the equation (1) was studied in [2].

The solution y to the equation (1) is called Pω(Y0, Y1, λ0)-solution, if

y(i) : [t0, ω[→ ∆Yi , [t0, ω[⊂ [a, ω[ , lim
t↑ω

y(i)(t) = Yi (i = 0, 1), lim
t↑ω

(y′(t))2

y′′(t)y(t)
= λ0.

1As Yi = +∞ (Yi = −∞) assume y0
i > 0 (y0

i < 0).
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The aim of the work is to establish the necessary and sufficient conditions for the existence to
the equation (1) Pω(Y0, Y1, λ0)-solutions and asymptotic representation as t ↑ ω for such solutions
and its first order derivatives in cases λ0 ∈ R \ {0, 1}.

To present the results, we introduce the next subsidiary notations.

πω(t) =

{
t as ω = +∞,

t− ω as ω < +∞,

and for every monotone continuously differentiable function y : [t0, ω[→ ∆Y0 such that

lim
t↑ω

y(t) = Y0, lim
t↑ω

y′(t) = Y1,

Φ0(y(t)) =

y(t)∫
Y0

exp
(
−R0

(
τ, y′(t(τ))

)
− exp

(
R1(τ, y

′(t(τ)))
))

dτ,

where t(y) is the inverse function for y(t),

Φ1(y) =

y∫
Y0

Φ0(τ)

τ
dτ, Z1 = lim

y→Y0
y∈∆Y0

Φ1(y),

I(t) = α0(λ0 − 1)

t∫
B0

ω

πω(τ)p(τ) dτ, B0
ω =


a as

ω∫
a

πω(τ)p(τ) dτ = +∞,

ω as
ω∫

a

πω(τ)p(τ) dτ < +∞,

I1(t) =

t∫
B1

ω

λ0I(τ)

(λ0 − 1)πω(τ)
dτ, B1

ω =


a as

ω∫
a

λ0I(τ)

(λ0 − 1)πω(τ)
dτ = +∞,

ω as
ω∫

a

λ0|I(τ)|
(λ0 − 1)πω(τ)

dτ < +∞.

Remark. It follows from the conditions (2), (3), that functions Φ0 and Φ1 are rapidly varying as
y → Y0 (Y0 ∈ ∆Y0) and

lim
y→Y0
y∈∆Y0

Φ′′
0(y) · Φ0(y)

(Φ′
0(y))

2
= 1, lim

y→Y0
y∈∆Y0

Φ′′
1(y) · Φ1(y)

(Φ′
1(y))

2
= 1.

The following theorem is obtained.

Theorem 1. Let λ0 ∈ R \ {0, 1}, γ10, γ11 ̸= 0. Then the conditions

πω(t)y
0
1y

0
0λ0(λ0 − 1) > 0, πω(t)y

0
1α0(λ0 − 1) > 0 as t ∈ [a;ω[ ,

y01 · lim
t↑ω

|πω(t)|
1

λ0−1 = Y1, lim
t↑ω

I1(t) = Z1,

lim
t↑ω

I(t)

Φ0(Φ
−1
1 (I1(t)))

= 1, lim
t↑ω

I ′1(t)πω(t)

Φ′
1(Φ

−1
1 (I1(t)))Φ

−1
1 (I1(t))

=
λ0

λ0 − 1
,

lim
t↑ω

πω(t)I
′
1(t)

I1(t)
= ∞, lim

t↑ω

I ′(t)πω(t)Φ0(Φ
−1
1 (I1(t)))

Φ′
0(Φ

−1
1 (I1(t)))Φ

−1
1 (I1(t))I(t)

=
λ0

λ0 − 1
,
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are necessary and sufficient for the existence of Pω(Y0, Y1, λ0)-solutions to the equation (1). More-
over, the equation (1) has a one-parametric family of solutions in case (λ0 − 1)β < 0 and two-
parametric family of solutions in cases(

(1 < λ0 < 3) ∧ (β > 0)
)
∨ (λ0 > 3) ∧ (β < 0).

For every such solution the next asymptotic representations take place as t ↑ ω

y(t) = Φ−1
1 (I1(t))[1 + o(1)], y′(t) =

λ0

(λ0 − 1)
· Φ

−1
1 (I1(t))

πω(t)
[1 + o(1)].

The differential equation
y′′ = α0p(t) exp(R0(y, y

′)), (4)

where α0 ∈ {−1; 1}, p : [a, ω[→ ]0,+∞[ (−∞ < a < ω ≤ +∞), the function R : ∆Y0 × ∆Y1 →
]0,+∞[ is continuously differentiable, Yi ∈ {0,±∞}, ∆Yi is either [y0i , Yi[ 1 or ]Yi, y0i ], was considered
in [1] and it is the equation of type (1), where γ10 = γ11 = 0.

In this case we have

Φ0(y) =

y∫
Y0

exp
(
−R(τ, y′(t−1(τ)))

)
dτ,

where t−1(y) is the inverse function for y(t),

Φ1(y) =

y∫
Y0

Φ0(τ)

τ
dτ, Z1 = lim

y→Y0
y∈∆Y0

Φ1(y).

For the equation (4) the next result is valid.

Theorem 2. Let γ0λ0 + γ1 ∈ R \ {0, λ0}. Then the conditions

πω(t)y
0
1y

0
0λ0(λ0 − 1) > 0, πω(t)y

0
1α0(λ0 − 1) > 0, t ∈ [a;ω[ ,

y01 · lim
t↑ω

|πω(t)|
1

λ0−1 = Y1, lim
t↑ω

I1(t) = Z1,

lim
t↑ω

πω(t)
( I1(t)
I′1(t)

)′
I1(t)
I′1(t)

=
λ0γ0 + γ1 + 1

λ0 − 1
, lim

t↑ω

I ′′1 (t)I1(t)

(I ′1(t))
2

= 1,

lim
t↑ω

I ′1(t)πω(t)

Φ′
1(Φ

−1
1 (I1(t)))Φ

−1
1 (I1(t))

=
λ0

λ0 − 1
, lim

t↑ω

πω(t)I
′′
1 (t)

I ′1(t)
= ∞

are necessary and sufficient for the existence of Pω(Y0, Y1, λ0)-solutions to the equation (4) in cases
λ0 ∈ R \ {0, 1}. Moreover, for every such solution the next asymptotic representations take place
as t ↑ ω

Φ1(y(t)) = I1(t)[1 + o(1)],
y′(t)Φ′

1(y(t))

Φ1(y(t))
=

I ′1(t)

I1(t)
[1 + o(1)].

For equations of more concrete type we can find more precise representations. For t ∈ [2,+∞[
let us consider the differential equation

y′′ =
1

4
t−3L(t)e|y|

4−t8 |y′|3, (5)

where L : [2,+∞[→ ]0,+∞[ is slowly varying on infinity function.
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In this case

I1(t) =
λ0

8
√
|λ0 − 1|(λ0 − 1)

t−14(L(t))−
1
2 e

1
2
t8 [1 + o(1)],

Φ0(y) =
1

2y3
e

1
2
|y|4 sign y[1 + o(1)] as y → +∞,

Φ1(y) =
1

4y7
e

1
2
|y|4 [1 + o(1)] as y → +∞,

Φ′
1(y)

Φ1(y)
= 2y3[1 + o(1)] as y → +∞.

We have that P+∞(Y0, Y1, λ0)-solutions of the equation (5) can be only P+∞(+∞,+∞, 2)-solutions.
Moreover, for every such solution the next asymptotic representations take place as t → ∞,

1

y7(t)
e

1
2
y4(t) = t−14(L(t))−

1
2 e

1
2
t8 [1 + o(1)],

y′(t)y3(t) = 2t7[1 + o(1)] as t ↑ ω.
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The differential equation

y(4) = α0p(t)

3∏
i=0

φi(y
(i)) exp

(
γ
∣∣∣ 3∑
i=0

ln |y(i)|
∣∣∣µ), (1)

where α0 ∈ {−1, 1}, γ ∈ R, µ ∈ ]0; 1[ , p : [a, ω[ 1 → ]0,+∞[ (−∞ < a < ω ≤ +∞), φi : ∆Yi →
]0,+∞[ (i = 0, 1, 2, 3) are the continuous functions, Yi ∈ {0,±∞}, ∆Yi is either the interval [y0i , Yi[ 2

or the interval ]Yi, y0i ], is considered.
We suppose also that every φi(z) is regularly varying as z → Yi (z ∈ ∆Yi) of index σi and

3∑
i=0

σi ̸= 1.

According to properties of regularly varying functions (see, for example, the monograph [7]) it
is clear that for every defined on [t0, ω[⊂ [a, ω[ solution y of the equation (1) such that

y(i) : [t0, ω[→ ∆Yi , lim
t↑ω

y(i)(t) = Yi (i = 0, 1, 2, 3), (2)

the representations φi(y
(i)(t)) = |y(i)(t)|σi+o(1) take place as t ↑ ω. Therefore the equation (1) is in

some sense similar to the well known differential equation of Emden–Fowler type.
The first results on the asymptotics of solutions of differential equations with regularly varying

nonlinearities have been obtained in the works by V. Marić, M. Tomić [6], S. D. Taliaferro [8],
V. M. Evtukhov, L. O. Kirillova [4] and some other authors for the differential equations of the
second order of the type

y′′ = α0p(t)φ(y).

Any regularly varying function is a product of some power function and some slowly varying func-
tion. Therefore researches of equations with regularly varying nonlinearities have been connected
with the wish to extend to such equations the results, that have been received during the 20th
century for the equations with power nonlinearities, in particular, for the generalized equation of
Emden–Fowler’s type, particular cases of which appear in a lot of sciences of nature.

We call the solution y of the equation (1), that satisfies (2), the Pω(Y0, Y1, Y2, Y3λ0)-solution
(−∞ ≤ λ0 ≤ +∞) if the next condition takes place

lim
t↑ω

(y′′′(t))2

y(4)(t) y′′(t)
= λ0.

1If ω > 0, we will take a > 0.
2If Yi = +∞(Yi = −∞), we take y0

i > 0 (y0
i < 0), correspondingly.
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The improvement of mathematical models of physical phenomena contributed to the growth of
the number of results for equations of greater than the general form. In the works by V. M. Ev-
tukhov and A. V. Drozhzhyna (see, for example, [3]) the differential equation of general form

y(n) = f(t, y, y′, . . . , y(n−1))

was investigated. Here f : [a, ω[×∆Y0 × · · · ×∆Yn−1 → R is a continuous function, −∞ < a < ω ≤
+∞, ∆Yi−1 is some one-sided neighbourhood of Yi−1, Yi−1 equals to zero or to ±∞, i = 1, . . . , n.
The subject of the research is Pω(Y0, . . . , Yn−1, λ0)-solutions of this equation, conditions of their
existence and also asymptotic as t ↑ ω representations of such solutions and their derivatives up
to the order n − 1. The class of Pω(Y0, . . . , Yn−1, λ0)-solutions was introduced in the works by
V. M. Evtukhov and it appeared to be an enough wide class of monotone solutions. It includes
regularly, slowly and rapidly varying as t ↑ ω solutions and also some types of singular solutions.
Every of the mentioned above n + 2 types of Pω(Y0, Y1, . . . , Yn−1, λ0)-solutions of the differential
equation of the n-th order of general form is studied separately by the fulfillment of the condition
(RN)λ0 . The kernel of the condition is the fact that onto any of such solutions the equation is in
some sense asymptotically near to the equation

y(n) = α0p(t)
n∏

j=1

φj−1(y
(j−1)), (3)

where α0 ∈ {−1; 1}, p : [a, ω[→ ]0,+∞[ is a continuous function, φj−1 : ∆Yj−1 → ]0,+∞[ is a
continuous regularly varying function of the order σj−1 as y(j) → Yj−1, j = 1, . . . , n.

In the equation (1) the nonlinearity is not near to the form (3) because of the type of the
function

exp
(
γ
∣∣∣ 3∑
i=0

ln |y(i)|
∣∣∣µ).

It follows from the definition of Pω(λ0)-solution that in cases λ0 ∈ R \ {0, 12 ,
2
3} every Pω(λ0)-

solution of the equation (1) is regularly varying as t ↑ ω. In case of second order differential equation
for all Pω(λ0)-solutions of the equation of the type (1) the necessary and sufficient conditions of
existence and asymptotic representations as t ↑ ω were found (see, for example, [1, 2, 4–6,8, 8]).

Let us introduce the subsidiary notations.

γ0 = 1−
n−1∑
j=0

σj , µn =

n−1∑
j=0

(n− j − 1)σj , πω(t) =

{
t if ω = +∞,

t− ω if ω < +∞,

θi(z) = φi(z)|z|−σi , a0i = (n− i)λ0
n−1 − (n− i− 1) (i = 1, . . . , n),

C = α0|λ0
n−1 − 1|µn

n−2∏
k=0

∣∣∣ n−1∏
j=k+1

a0j

∣∣∣−σk

sign y0n−1,

I0(t) =

t∫
A0

ω

Cp(τ)|πω(τ)|µn dτ, I1(t) =

t∫
A1

ω

α0p(τ) dτ,

A0
ω =


a if

ω∫
a

p(τ)|πω(τ)|γ0 dτ = +∞,

ω if
ω∫

a

p(τ)|πω(τ)|γ0 dtau < +∞,

A1
ω =


a if

ω∫
a

p(τ) dτ = +∞,

ω if
ω∫

a

p(τ) dτ < +∞,
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J(t) =

t∫
Bω

|γ0I1(τ)|
1
γ0 dτ, Bω =


a if

ω∫
a

|I1(τ)|
1
γ0 dτ = +∞,

ω if
ω∫

a

|I1(τ)|
1
γ0 dτ < +∞.

The following conclusions take place for the equation (1).

Theorem 1. The next conditions are necessary for the existence of Pω(Y0, Y1, Y2, Y3λ0)-solutions
(λ0 ∈ R \ {0, 1, 12 ,

2
3}) of the equation (1):

lim
t↑ω

πω(t)I
′
0(t)

I0(t)
=

γ0
λ0
n−1 − 1

, lim
t↑ω

y0i |πω(t)|
a0i+1

λ0n−1−1 = Yi, (4)

y0i y
0
i+1a0i+1(λ

0
n−1 − 1)πω(t) > 0 as t ∈ [a, ω[ , (5)

where y03 = α0, i = 0, . . . , 3.
If the equation

3∑
k=0

σk

3∏
i=k+1

a0i

k∏
i=1

(a0i + λ) = (1 + λ)

3∏
i=1

(a0i + λ)

has no roots with zero real part, then the conditions (4), (5) are sufficient for the existence of
Pω(Y0, Y1, Y2, Y3λ0)-solutions of the equation (1). For any such solution the next asymptotic repre-
sentations as t ↑ ω

|y(n−1)(t)|γ0 exp
(
− γ|

∑3
i=0 ln |y(i)||µ

)
n−1∏
j=0

θj(y(j)(t))

= γ0I0(t)[1 + o(1)],

y(i)(t)

y(n−1)(t)
=

[ (λ0
n−1 − 1)πω(t)]

n−i−1

n−1∏
j=i+1

a0j

[1 + o(1)],

where i = 0, . . . , 2, take place.

By additional conditions on the functions φ0, φ1, . . . , φ3 the asymptotic representations as t ↑ ω
of Pω(Y0, Y1, Y2, Y3λ0)-solutions and their derivatives from the first to third order are found in
another form.

In order to formulate our following results, we present the next definition.
We call the slowly varying as z → Y (z ∈ ∆) function θ satisfies the condition S if for every

continuously differentiable function L : ∆ → ]0;+∞[ such that

lim
z→Y
z∈∆

zL′(z)

L(z)
= 0,

the next representation takes place

θ(zL(z)) = θ(z)[1 + o(1)] as z → Y (z ∈ ∆).

The next result follows from Theorem 1.
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Theorem 2. Let the functions θ0, . . . , θ3 satisfy the condition S. Then for any Pω(Y0, Y1, Y2, Y3λ0)-
solution (λ0 ∈ R \ {0, 1, 12 ,

2
3}) of the equation (1) the next asymptotic representations as t ↑ ω

y(n−1)(t) exp
(
− γ

γ0

∣∣∣ 3∑
i=0

ln |y(i)|
∣∣∣µ) =

∣∣∣γ0I0(t) n−1∏
j=0

θj
(
y0j |πω(t)|

a0j+1

λ0n−1−1
)∣∣∣ 1

γ0 sign y0n−1[1 + o(1)],

y(i)(t) = y(n−1)(t)
[(λ0

n−1 − 1)πω(t)]
n−i−1

n−1∏
j=i+1

a0j

[1 + o(1)], i = 0, . . . , n− 2

take place.
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For a natural number n ∈ N and a domain G of the Euclidean space Rn with the Lebesgue
measure mes, consider a differential system of the form

ẋ = f(t, x), x ∈ G, f(t, 0) = 0, t ∈ R+ ≡ [0,+∞), f, f ′
x ∈ C(R+ ×G). (1)

Let Bδ ≡ {x0 ∈ Rn : 0 < |x0| ≤ δ}, Sδ(f) be the set of nonextendable solutions of system (1)
with initial values x(0) ∈ Bδ, and Sδ,x0(f) ⊂ Sδ(f) – its subset consisting of solutions satisfying
the additional condition x(0) = cx0, c > 0.

The initial concepts of this report are such properties of the zero solution as stability, asymptotic
stability and complete instability. They are massive [6] in the sense that in their description certain
conditions are imposed on all solutions starting in a neighborhood of zero. In addition, each of
them can be of one of the following three types: Lyapunov, Perron and upper-limit (the last two
ones, introduced relatively recently [4, 5], admit contrasting combinations with the first one [3]).

Definition 1 ([7]). We say that system (1) (more precisely, its zero solution) has the Lyapunov,
Perron or, respectively, upper-limit:

1) stability if for any ε > 0 there exists a δ > 0 such that any solution x ∈ Sδ(f) satisfies the
following corresponding requirement

sup
t∈R+

|x(t)| ≤ ε, lim
t→+∞

|x(t)| ≤ ε, lim
t→+∞

|x(t)| ≤ ε (2)

(assuming by default that this solution is defined on the entire ray R+; otherwise, this re-
quirement is assumed to fail to hold);

2) asymptotic stability if: in the Perron or upper-limit cases – there exists a δ > 0 such that any
solution x ∈ Sδ(f) satisfies corresponding requirement (2) for ε = 0, and in the Lyapunov
case – it has both upper-limit asymptotic stability and Lyapunov stability;

3) complete instability if for some ε, δ > 0 no solution x ∈ Sδ(f) satisfies corresponding require-
ment (2).

Each of the properties introduced in Definition 1 can be associated with its radial analogue, in
which the initial values of the perturbed solutions are taken not from the complete neighborhood
of zero, but only along a given ray starting from zero.

Definition 2 ([10]). We say that system (1) has the Lyapunov, Perron or upper-limit:

4) radial property: stability, asymptotic stability or complete instability in the direction of
nonzero vector x0 ∈ Rn – if it has the corresponding property from points 1–3 of Defini-
tion 1 with the replacement of the set Sδ(f) in it by the set Sδ,x0(f);
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5) total radial property: stability, asymptotic stability or complete instability – if it has this
property in each direction.

There is a simple, albeit one-sided, logical connection between the properties introduced in
points 1–3 of Definition 1 and their total radial analogues from point 5 of Definition 2.

Theorem 1. If system (1) has stability, asymptotic stability or complete instability of the Lyapunov,
Perron or upper-limit type, then it has total radial stability, asymptotic stability or, respectively,
complete instability of the same type.

In the one-dimensional case, the statement of Theorem 1 is reversible.

Theorem 2. If for n = 1 system (1) has a total radial property of the Lyapunov, Perron or upper-
limit type: stability, asymptotic stability or complete instability, – then it has stability, asymptotic
stability or, respectively, complete instability of the same type.

In the special case of a linear homogeneous system

ẋ = A(t)x ≡ f(t, x), t ∈ R+, x ∈ G ≡ Rn, A ∈ C(R+,EndRn), (3)

total radial properties have some peculiarities.

Theorem 3. If linear system (3) has a total radial property of the Lyapunov, Perron or upper-limit
type: asymptotic stability or complete instability, – then it has asymptotic stability or, respectively,
complete instability of the same type.

Theorem 4. If linear system (3) has a total radial stability of the Lyapunov or upper-limit type,
then it has stability of both of these types at once.

Remark 1. The problem of the possibility to extending the statement of Theorem 4 also to similar
Perron-type stability properties (separately from Lyapunov and upper-limit) from points 1, 5 of
Definitions 1, 2 remains unresolved for now.

In the case in which system (1) does not have some of the initial properties of Definition 1, the
question of whether this property holds at least to some extent, becomes meaningful. To answer
this question, the following definition introduces characteristics (partly new), which are naturally
called measures of these properties and have a probabilistic connotation.

Definition 3 ([8]). The measures of Lyapunov, Perron or upper-limit stability and instability of
system (1) for κ = λ, π, σ are respectively defined by the formulas

µκ(f) = lim
ε→+0

lim
δ→+0

mesMκ(f, ε, δ)

mesBδ
, µκ(f) = lim

ε→+0
lim

δ→+0

mesMκ(f, ε, δ)

mesBδ
, (4)

and the measures of asymptotic stability of the same types are defined respectively by formulas

µλ0(f) = lim
ε→+0

lim
δ→+0

mes(Mσ(f, 0, δ) ∩Mλ(f, ε, δ))

mesBδ
, µκ0(f) = lim

δ→+0

mesMκ(f, 0, δ)

mesBδ
, (5)

where κ = π, σ, Mκ(f, ε, δ) ≡ 1 −Mκ(f, ε, δ) and Mκ(f, ε, δ) – the set of initial values x(0) of all
solutions x ∈ Sδ(f) satisfying the corresponding requirement (2).

The concepts introduced in Definition 3 are correct.

Theorem 5. For any system (1), all the sets in formulas (4) and (5) are measurable, and the
limits as ε → +0 exist and can be replaced in the formulas for stability measures (including the
Lyapunov asymptotic) and instability, respectively, by the exact lower and upper bounds at ε > 0.
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There is a logical connection between total radial properties and their measures.

Theorem 6. If system (1) has a total radial property of some type: stability, asymptotic stability or
complete instability, – then its measure of stability, asymptotic stability or, respectively, instability
of this type is equal to 1.

For some properties, the statement of Theorem 6 can even be slightly strengthened.

Theorem 7. If system (1) has a total radial property of some type: stability or asymptotic stability,
– then in the corresponding formula for stability measures (4) or, respectively, asymptotic stability
measures (5) of this type, the lower limit as δ → +0 coincides with the upper limit and is equal
to 1.

Definition 4. We say that system (1) has Perron or upper-limit partial extreme instability if for
any δ > 0 there exists a solution x ∈ Sδ(f) satisfying the corresponding requirement

lim
t→+∞

|x(t)| = +∞, lim
t→+∞

|x(t)| = +∞ (6)

(which is assumed to hold, in particular, if the solution is not defined on the entire ray R+).

Remark 2. The property given in Definition 4 is a type of extreme instability [1, 9]:

– reinforced by the fact that the limit (6) in it is infinite;

– weakened by the fact that requirement (6) is not necessarily satisfied here for all solutions
x ∈ Sδ(f) but at least for one of them.

Definition 5 ([6]). If we assume in Definition 1 that not all solutions x ∈ Sδ(f) satisfy requirement
(2) in points 1–3, but almost all (i.e. with initial values x(0) from the ball Bδ(f) minus a subset
of measure zero), then the result will be the definition of the following properties of a system (1):
almost stability, almost asymptotic stability and almost complete instability of the corresponding
type.

The satisfiability of Theorem 6 assumptions for a system (1), does not ensure for it not only
stability, asymptotic stability or, respectively, complete instability, but even almost stability, almost
asymptotic stability or almost complete instability (in particular [10], for two-dimensional systems).

Theorem 8. For any natural n > 1 there exists a system (1) with zero linear approximation (along
the zero solution) which simultaneously:

– has total radial asymptotic stability of all three types;

– has both Perron and upper-limit partial extreme instability;

– does not have almost stability of any type.

Theorem 9. For any natural n > 1 there exists a system (1) with zero linear approximation (along
the zero solution) which simultaneously:

– has total radial complete instability of all three types;

– has both Perron and upper-limit partial extreme instability;

– does not have almost complete instability of any type.
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Theorem 10. For any natural n > 1 there exists a system (1) with zero linear approximation
(along the zero solution) which simultaneously has:

– total radial asymptotic stability of all three types;

– both Perron and upper-limit partial extreme instability;

– both Perron and upper-limit almost asymptotic stability.

Remark 3. It does not seem possible to strengthen Theorem 10 by adding Lyapunov asymptotic
almost stability to its formulation, since the presence of this stability implies the presence of Lya-
punov stability in a system (see [3, Theorem 3]), which can not be implemented in a simultaneous
combination with Perron partial extreme instability.

Theorems 1–7 are proven by I. N. Sergeev.
Theorems 8–10 are proven by A. A. Bondarev. His research was supported by the Theoretical

Physics and Mathematics Advancement Foundation “BASIS” (project # 22-8-10-3-1).
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We consider the functional differential equations, which can be written in the operator form:

(L1x)(t) ≡ ẋ(t)− (T+x)(t) + (T−x)(t) = f(t), t ∈ [0, 1], (1)
(L2x)(t) ≡ ẍ(t)− (T+x)(t) + (T−x)(t) = f(t), t ∈ [0, 1], (2)

where T+ and T− are linear positive operators acting from the space of real continuous functions
C[0, 1] into the space of real integrable functions L[0, 1] (positive operators map non-negative func-
tions into non-negative ones), f ∈ L[0, 1] is integrable. The solution of equation (1) (equation (2))
is an absolutely continuous function on [0, 1] (a function with an absolutely continuous derivative
on [0, 1]) that satisfies the equation for almost all t ∈ [0, 1].

Numerous studies have explored the solvability conditions of a wide range of boundary value
problems associated with functional differential equations (1), (2), in particular, the periodic,
Cauchy, antiperiodic, and other types of boundary value problems [1–3,5].

The literature concerning solvability conditions for functional differential equations, as distinct
from boundary value problems for these equations, is notably sparse, if not entirely absent. How-
ever, the question of the solvability of the functional differential equation itself is nontrivial, since
we do not require the operators to be Volterra, hence, in particular, the Cauchy problem may
not have a solution. To the best of the author’s knowledge, simple coefficient conditions for the
solvability of equations (1), (2) have not yet been formulated. Our goal is to fill this gap and obtain
unimprovable sufficient conditions for solvability in terms of the norms of the positive operators
T+ and T−.

Such operators T : C[0, 1] → L[0, 1] have the representation [4, p. 317] in the form of the
Stieltjes integral

(Tx)(t) =

1∫
0

x(s) dsr(t, s), t ∈ [0, 1],

where r(t, · ) ∈ L[0, 1] is nondeccreasing for almost all t ∈ [0, 1], the function t → r(t, 1)− r(t, 0) is
integrable on [0, 1]. We assume that r(t, 0) ≡ 0 for all t ∈ [0, 1]. The norm of such an operator is
defined by the equality

∥T∥C→L =

1∫
0

(T1 )(t) dt =

1∫
0

r(t, 1) dt,

where 1 is the unit function.

Definition. We will call equation (1) or (2) everywhere solvable if for each function f ∈ L[0, 1]
there is at least one solution.
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For first order equations, it was relatively easy to show that if the following conditions (4) or
(5) are satisfied, then for the equation L1x = f one of the boundary value problems

x(0) = x(1), x(0) = 0, x(1) = 0

is uniquely solvable. Thus, the equation L1x = f is solvable everywhere. If conditions (4) and (5)
are not satisfied, then there exist linear positive operators T+, T− : C[0, 1] → L[0, 1], for which the
equalities (3) are satisfied and L1(AC[0, 1]) ̸= L[0, 1].

Theorem 1. The equation (1) is everywhere solvable for all linear positive operators T+, T− :
C[0, 1] → L satisfying equalities

∥T+∥C→L = T +, ∥T−∥C→L = T −, (3)

if and only if non-negative numbers T +, T − satisfy the inequalities

T + < 1, T − < 2
(
1 +

√
1− T +

)
(4)

or the inequalities
T − < 1, T + < 2

(
1 +

√
1− T −

)
. (5)

In the study of the equation (2), the adjoint operator

L∗
2 : L∞[0, 1] → (AC1[0, 1])∗ ≃ L∞[0, 1]× R2

is used.
Since L2 is a Noetherian operator of index 2, the equation L2 is everywhere solvable if and only

if the homogeneous equation with the adjoint operator

L∗
2g = 0(AC1[0,1])∗ , g ∈ L∞[0, 1], (6)

has only the trivial solution.
If the function g ∈ L∞[0, 1] is a solution to the equation (6), then the function g is absolutely

continuous and satisfies the following boundary value problem:

ġ(t) =

1∫
0

r(s, t)g(s) ds, t ∈ [0, 1], (7)

g(0) = 0, g(1) = 0,

1∫
0

r(s, 1)g(s) ds = 0, (8)

where r(s, t) = r+(s, t)− r−(s, t),

(T+x)(t) =

1∫
0

x(s) dsr
+(t, s), (T−x)(t) =

1∫
0

x(s) dsr
−(t, s), t ∈ [0, 1].

When studying the system (7), (8), we find that if for given T +, T − there exists a nontrivial solution
of this system for some operators T+, T− satisfying the equalities (3), then the system (7), (8) has
a piecewise linear solution (possibly for other operators T+, T− satisfying the equalities (3)). Such
a solution corresponds to some operators T+, T− of the following form:

(T+x)(t) =
n∑

j=1

p+j (t)x(tj), (T−x)(t) =
n∑

j=1

p−j (t)x(tj), t ∈ [0, 1], (9)
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the integrable functions p+j , p−j are non-negative,

0 ≤ t1 < t2 < · · · < tn ≤ 1.

For operators of the form (9), for which the equalities

n∑
j=1

∥ p+j ∥L = T +,

n∑
j=1

∥ p−j ∥L = T −,

are satisfied, the solvability conditions for problem (7), (8) are formulated explicitly.
Let’s introduce the following notation:

G(k) =
(
1 +

√
k +

√
k + 1

)2
(k + 1),

H1(k) =
G(k)− T −

k
, H2(k) = G(k)− k Q,

P̃1(T −) ≡ min
k∈(0,1]

H1(k, T −), P̃2(T −) ≡ min
k∈[0,1]

H2(k, T −).

Remark. Note that P̃1(T −) decreases on [0, 4] and can be defined parametrically:

T − = G(k)− dG(k)

dk
k, P̃1(T −) =

dG(k)

dk
, k ∈ [k0, 1],

where k0 = k21 ≈ 0.43, k1 ∈ [0, 1] is the only root of the equation k4 + 6k3 + 5k2 − k = 0 on the
interval [0, 1].

The function P̃2 is equal to 4 on [4, P̃1(4)], where P̃1(4) ≈ 17.7; on the interval [P̃1(4), 12+8
√
2]

the function P̃2(T −) decreases and can also be specified parametrically:

P̃2(T −) = G(k)− dG(k)

dk
k, T − =

dG(k)

dk
.

Theorem 2. Let non-negative T + and T − be given. The equation (2) is everywhere solvable for
all positive linear operators T+, T− : C[0, 1] → L[0, 1] such that equalities (3) hold, if and only if

T − ∈ [0, 4], T + ≤ P̃1(T −),

or
T − ∈ (4, 12 + 8

√
2], T + ≤ P̃2(T −).

Corollary. Let non-negative T be given. Each of the equations

ẍ(t)− (Tx)(t) = f(t), ẍ(t) + (Tx)(t) = f(t), t ∈ [0, 1],

is everywhere solvable for all linear positive operators T : C[0, 1] → L[0, 1] such that ∥T∥C→L = T ,
if and only if

T ≤ 12 + 8
√
2 .
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For the nonlinear boundary-value problem for an ordinary differential equation in the critical
and noncritical cases, we obtain constructive conditions of its solvability and the scheme for finding
solutions by using Adomian decomposition method.

We investigate the problem of construction of solution [3, 6, 7]

z( · , ε) ∈ C1[0, T ], z(t, · ) ∈ C[0, ε0]

of the nonlinear periodic boundary-value problem

dz

dt
= Az + f(t) + Z(z, t), ℓz( · ) := z(0)− z(T ) = 0 (1)

in a small neighborhood of the solution of the generating problem

dz0
dt

= Az0, ℓz0( · ) := z0(0)− z0(T ) = 0, (2)

where A is a constant (n×n)-dimensional matrix, Z(z, t) is a nonlinear vector function analytic in
the unknown z in a small neighborhood of the solution of the generating problem (2). In addition,
the vector function Z(z, t) and the function f(t) are continuous in the independent variable t on
the segment [a, b].

The urgency of investigation of the boundary-value problem (1) is explained by extensive ap-
plications of similar problems in the study of nonisothermal chemical reactions. An example of
simulation of these reactions can be found in [2].

At the end of the present paper, we give an example of determination of approximations to a
periodic solution of problem (1) obtained by using our iterative scheme. In [4, 5], approximations
to the solutions of nonlinear boundary-value problems and, in particular, periodic boundary-value
problems, were found by using the effective Newton–Kantorovich method [9].

In constructing solutions of nonlinear boundary-value problems, we encounter the problem of
impossibility of representation of these solutions in terms of elementary functions, which, in turn,
leads to the appearance of significant errors in the solutions of the analyzed problems. A similar
situation was demonstrated for a periodic problem posed for the equation used to describe the
motion of a satellite on the elliptic orbit [11].

In addition, the procedure of construction of the solutions of nonlinear boundary-value problems
by the method of simple iterations is significantly complicated by the necessity of evaluation of the
derivatives of nonlinearities [6]. In [4, 5], the rate of convergence of iterations was improved as a
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result of evaluation of the derivatives of nonlinearities in each step. In view of these difficulties, we
can expect that the procedure of evaluation of the derivatives of nonlinearities can be simplified and
the solutions of nonlinear boundary-value problems (and, in particular, of periodic boundary-value
problems) can be found in terms of elementary functions by using the Adomian decomposition
method [1]. An example of this simplification is presented in [8].

By X(t) we denote a normal (X(a) = In) fundamental matrix of the generating problem (2).
In the critical case, we have

detQ = 0

and the generating problem (2) under the condition [6]

PQ∗
r
ℓK[f(s)]( · ) = 0 (3)

has an r-parameter family of solutions

z0(t, cr) = Xr(t)cr +G[f(s)](t), cr ∈ Rr.

Here, the matrix Xr(t) consists of r-linearly independent columns of the normal fundamental matrix
X(t). The matrix PQ∗

r
is formed by r linearly independent rows of the matrix orthoprojector.

Furthermore,
G[g(s)](t) := K[g(s)](t)−X(t)Q+ℓK[g(s)]( · )

is the generalized Green operator of the periodic boundary-value problem [6]

dy

dt
= Ay + g(t), y(0)− y(T ) = 0

in the critical case and Q+ is the pseudoinverse Moore-–Penrose matrix. It is known that the critical
case occurs if and only if the matrix A has eigenvalues on the imaginary axis, namely, imaginary
numbers of the form

λ =
2πik

T
, k = 0, 1, 2, . . . , i =

√
−1 .

The necessary and sufficient condition for the solvability of problem (1)

PQ∗
r
ℓK

[
Z(z(s), s)

]
( · ) = 0

leads to a necessary condition for the solvability of problem (2) in a small neighborhood of the
solution of the generating T -periodic problem

F0(cr) := PQ∗
r
ℓK

[
A0(z0(s, cr), s)

]
( · ) = 0. (4)

In what follows, equation (4) is called the equation for generating amplitudes of the T−periodic
problem (1). Assume that the equation for generating amplitudes (4) has real roots. Fixing one of
real solutions c∗r ∈ Rr of equation (4), we arrive at the problem of construction of a solution to the
nonlinear T−periodic problem (1) in a small neighborhood of the solution

z0(t, c
∗
r) = Xr(t)c

∗
r +G[f(s)](t), c∗r ∈ Rr

of the generating T−periodic problem (2). The conventional condition of solvability of problem (1)
in a small neighborhood of the generating T -periodic problem (2) is the requirement of simplicity
of the roots [6]

detB0 ̸= 0, B0 := F ′
0(c0) ∈ Rr×r
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of the equation for generating amplitudes (4) of the T -periodic problem (1). The form of the matrix
B0 which plays the key role in the investigation of the T -periodic problem (1) with the use of the
Adomian decomposition [1, c. 502], coincides with the conventional form [6]

B0 = PQ∗
r
ℓK[A1(s)Xr(s)]( · ), A1(t) =

∂Z(z, t)

∂z

∣∣∣∣
z=z0(t,c∗r)

is an (n×n)-dimensional matrix. We seek the solution of the periodic boundary-value problem (1)
in the form

z(t) := z0(t, c
∗
r) + u1(t) + · · ·+ uk(t) + · · · .

Since the nonlinear vector function Z(z, t) is analytic in the unknown z in a neighborhood of
the solution z0(t, c

∗
r) of the generating problem (2), the following decomposition is true in this

neighborhood [1, p. 502]

Z(z(t), t) = A0(z0(t, c
∗
r), t)+A1

(
z0(t, c

∗
r), u1(t), t

)
+ · · ·+An

(
z0(t, c

∗
r), u1(t), . . . , un(t), t

)
+ · · · . (5)

The first approximation to the solution of the nonlinear periodic boundary-value problem (1) in
the critical case

z1(t, c
∗
r) := z0(t, c

∗
r) + u1(t), u1(t) = Xr(t)c1 +G

[
A0(z0(s, c

∗
r))

]
(t), c1 ∈ Rr

is given by the solution of the nonlinear periodic boundary-value problem of the first approximation

u′1(t) = Au1(t) +A0(z0(t, c
∗
r)), u1(0)− u1(T ) = 0.

The periodicity of solution to the boundary-value problem of the first approximation is guaranteed
by the choice of the solution c∗r ∈ Rr of equation (4). The second approximation to the solution of
the nonlinear periodic boundary-value problem (1) in the critical case

z2(t, c
∗
r) := z0(t, c

∗
r) + u1(t, c1) + u2(t, c2)

is given by the solution of the nonlinear periodic boundary-value problem of the second approxi-
mation

u′2(t) = Au2(t) +A1

(
z0(t, c

∗
r), u1(t, c1)

)
, u2(0)− u2(T ) = 0,

where
u2(t) = Xr(t)c2 +G

[
A1

(
z0(s, c

∗
r), u1(s, c1)

)]
(t), c2 ∈ Rr.

The condition of solvability of the boundary-value problem of the second approximation

F1(c1) := PQ∗
r
ℓK

[
A1

(
z0(s, c

∗
r), u1(s, c1)

)]
( · ) = 0

is a linear equation
F1(c1) = B0 c1 + d1 = 0, (6)

which is uniquely solvable in the case where the matrix B0 is nondegenerate; here,

B0 = F ′
1(c1) ∈ Rr×r, d1 := F1(c1)−B0 c1.

Indeed, consider a vector function [10]

v(t, ε) := z0(t, c
∗
r) + ε u1(t, c1) + · · ·+ εk uk(t, ck) + · · · .
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In this case,

F1(c1) := PQ∗
r
ℓK

[
A1

(
z0(s, c

∗
r), u1(s, c1)

)]
( · )

= PQ∗
r
ℓK

[
Z ′
ε(v(s, ε), s))

]
( · )

∣∣∣
ε=0

= PQ∗
r
ℓK

[
A1(s)u1(s, c1)

]
( · ).

Thus,
B0 = F ′

1(c1).

Therefore, under the condition of simplicity of roots of the equation for generating amplitudes (4)
of the periodic problem (1), we obtain the following solution of the boundary-value problem of the
first approximation:

u1(t) = Xr(t)c1 +G
[
A0(z0(s, c

∗
r))

]
(t), c1 = −B−1

0 d1.

The conditions of solvability of the boundary-value problems in the next approximations have the
form of linear equations. A sequence of approximations to the solution on the nonlinear periodic
boundary-value problem (1) in the critical case is given by the following iterative scheme:

z1(t, c
∗
r) := z0(t, c

∗
r) + u1(t), u1(t) = Xr(t)c1 +G

[
A0(z0(s, c

∗
r))

]
(t), c1 = −B−1

0 d1, . . . ,

zk+1(t, c
∗
r) := z0(t, c

∗
r) + u1(t, c1) + · · ·+ uk+1(t, ck), k = 0, 1, 2, . . . ,

uk+1(t) = Xr(t)ck+1 +G
[
Ak(z0(s, c

∗
r), u1(s, c1), . . . , uk(s, ck))

]
(t), ck = −B−1

0 dk.

(7)

Theorem. In the critical case the generating periodic boundary-value problem (2) with condition
(3) has an r-parameter family of solutions

z0(t, cr) = Xr(t)cr +G[f(s)](t), cr ∈ Rr.

Moreover, if the problem of construction of a solution to the nonlinear periodic boundary-value
problem (1) in a small neighborhood of the solution of the generating problem (2) is solvable in the
critical case, then the equation for generating amplitudes (4) of the T -periodic problem (1) has real
roots. In the case, where the matrix B0 is nondegenerate, the iterative scheme (7) gives a sequence
of approximations to the solution of the T -periodic boundary-value problem (1) in the critical case.
If there exists a constant 0 < γ < 1, for which the inequality

∥u1(t, c1)∥∞ ≤ γ∥z0(t)∥∞, ∥uk+1(t, ck+1)∥∞ ≤ γ∥uk(t, ck)∥∞, k = 1, 2, . . . , (8)

is true, then the iterative scheme (7) converges to the solution of the nonlinear periodic boundary-
value problem (1).
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We consider a linear homogeneous algebraic system

G(t)z = 0, (1)

where G(t) is in the general case a continuous almost periodic n × n-matrix, z is an unknown
n-dimensional vector function. The problem of the existence of quasiperiodic solutions of the
quasiperiodic system (1) was first investigated by A. M. Samoilenko in connection with the problem
of a periodic basis [20]. He gave conditions for the existence of the solutions with a frequency basis
of the matrix G(t).

Note that in most works on oscillation theory (see, for example, [6,11–13,16,21,22] and others)
the case was studied when the frequency moduli of the differential system and its solution coincide.
Questions about other possible relationships of frequency modules were not addressed. Although,
in particular, for many applied problems, it is necessary to have information about the extent to
which the specificity of the disturbance frequencies affects the nature of the oscillation frequencies
of the system [15,18,19].

Apparently, the first to study this issue in more detail was H. L. Massera. In 1950, he showed
that periodic differential systems can have periodic solutions with an irrational ratio of the periods
of the solution and the system [17]. This result served as the beginning of a new direction in the
theory of oscillations, which was subsequently developed for various classes of systems and their
solutions in the works of J. Kurzweil and O. Veivoda [14], N. P. Erugin [4, 5], I. V. Gaishun [7],
E. I. Grudo [8–10], V. T. Borukhov [1], and others. Solutions of this kind were called strongly
irregular. As it turned out later, in many cases the solution to the problem of the existence of
strongly irregular solutions of the original differential systems is reduced to a similar problem for
system (1) (see, for example, [2, 5, 8]). However, the questions about the structure of the solution
itself remained open.

In this report, the structure of a strongly irregular quasiperiodic solution of system (1) is
investigated.

Let us present some well-known concepts of the theory of quasiperiodic functions. Let a finite set
of real numbers (ω1)

−1, . . . , (ωk)
−1 be rationally linearly independent. A continuous function f(t)

is called quasiperiodic with periods ω1, . . . , ωk if there exists a function of k variables F ∗(t1, . . . , tk),
periodic in tj with period ωj (j = 1,m), which is diagonal for the original function, i.e. f(t) ≡
F ∗(t, . . . , t). The numbers 2π/ω1, . . . , 2π/ωk form the frequency basis of the quasiperiodic function
f(t). Further we assume that in system (1) the matrix G(t) is quasiperiodic with periods ω1, . . . , ωk.

Some quasiperiodic solution z = z(t) with periods Ω1, . . . ,Ωm of system (1) is called strongly
irregular if the frequency bases of the solution and the matrix G(t) are rationally linearly indepen-
dent. In other words, the linear combination

q1

(2π
ω1

)
+ · · ·+ qk

(2π
ωk

)
+ qk+1

(2π
Ω1

)
+ · · ·+ qk+m

( 2π

Ωm

)
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with rational coefficients q1, . . . , qk+m identically vanishes to zero if and only if all coefficients are
zero.

The case G(t) ≡ 0 is degenerate and is of no interest for research. Therefore, in what follows,
we assume that G(t) ̸≡ 0.

Our main result is the following

Theorem. If the quasiperiodic system (1) has a non-trivial strongly irregular solution, then there
is a linear dependence between the components of such solution.

Proof. Let system (1) have a strongly irregular non-trivial periodic solution z = z(t) with periods
Ω1, . . . ,Ωm, i.e. the identity holds

G(t)z(t) ≡ 0.

(i) First, we will indicate the condition that must be met for the existence of a solution z(t) of
system (1)

d1G1(t) + · · ·+ dnGn(t) ≡ 0, (d21 + · · ·+ d2n) ̸= 0,

where G1(t), . . . , Gn(t) are the columns of the matrix G(t). The last identity means the linear
dependence of the columns of the quasiperiodic matrix G(t). This property of the matrix G(t) will
be further referred to as the LinG condition.

(ii) Let the condition LinG be satisfied and r be the largest number of linearly independent
columns of the matrix G(t), 1 ≤ r < n. The monograph [3, Ch. 2] describes an algorithm for
constructing a constant non-singular n×n-matrix Q, with the help of which the matrix of coefficients
G(t) is reduced to a special form with zero first n− r columns

G(t)Q =
[
0 · · · 0 Gn,r(t)

]
,

where the columns of the right block Gn,r of dimension n× r are linearly independent.

(iii) In addition to (ii), we show that the condition LinG is not only necessary but also sufficient
for both the existence and finding of a strongly irregular quasiperiodic solution z(t). To do this,
we perform a change of phase variable

z = Qy,

which reduces system (1) to the system

G(t)Qy =
[
0 · · · 0 Gn,r(t)

]
y = 0.

Let’s introduce the notation

y = col
(
y[n−r], y[r]

)
y[n−r] = col(y1, . . . , yn−r), y[r] = col(yn−r+1, . . . , yn).

Then the last system can be written in a simpler form

Gn,r(t)y[r] = 0,

in this case, the components of the vector y[n−r], as we see, remain arbitrary. Therefore, in order
to solve the problem posed at this stage, we set

y[n−r] = y[n−r](t) = ξ(t), ξ(t) = col(ξ1(t), . . . , ξn−r(t)),

where ξ1(t), . . . , ξn−r(t) are arbitrary continuous quasiperiodic functions with periods Ω1, . . . ,Ωm.
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Since the columns of the coefficient matrix Gn,r(t) are linearly independent by construction,
then according to the result of stage (i) this system does not have non-trivial strongly irregular
quasiperiodic solutions y[r] = y[r](t). Therefore y[r] ≡ 0.

It is easy to verify that if the LinG condition is satisfied, system (1) will have a non-trivial
strongly irregular quasiperiodic solution

z(t) = Q col(y[n−r](t), 0, . . . , 0) = Q col(ξ(t), 0, . . . , 0),

ξ(t) = col(ξ1(t), . . . , ξn−r(t)).

(iv) Let’s establish the dependence between the components of the solution z(t). Let Q1 be a
block of dimension n× (n− r), composed of the first n− r columns of the matrix Q (r < n). Then
the last equality will take the form z(t) = Q1ξ(t). Since the constructed matrix Q is non-singular,
the columns of its block Q1, the number of which is equal to n − r, will be linearly independent.
Therefore, the block Q1 has a minor of order n − r, different from zero. Let this minor be in the
rows with numbers i1 < i2 < · · · < in−r, and in−r+1 < in−r+2 < · · · < in are the ordered numbers
of the remaining rows. Let Q′

1 be a block of dimension (n− r)× (n− r), formed by n− r rows of
the matrix Q1 with numbers i1, . . . , in−r. Note that by construction, this block is non-degenerate
det Q′

1 ̸= 0. By Q′′
1 we denote the block of dimension r × (n− r) formed by the remaining r rows

of the matrix Q1, i.e. the rows with numbers in−r+1, . . . , in. Let

z′(t) = col(zi1(t), . . . , zin−r(t)), z′′(t) = col(zin−r+1(t), . . . , zin(t)),

dimensionally consistent partitioning of vector z(t) = col(z1(t), . . . , zn(t)). Then

z′(t) = Q′
1ξ(t), z′′(t) = Q′′

1ξ(t).

Since the matrix Q′
1 is non-singular, from the first equality we find ξ(t) = (Q′

1)
−1z′(t). Substituting

this expression into the second equality, we obtain

z′′(t) = Q′′
1(Q

′
1)

−1z′(t).

Denoting the r× (n− r)-matrix Q′′
1(Q

′
1)

−1 by F , we find an explicit linear dependence between the
components of the strongly irregular quasiperiodic solution

z′′(t) = Fz′(t).

Corollary 1. For n = 1 the desired quasiperiodic solutions for system (1) are absent.

Corollary 2. The product of any two identically non-zero quasiperiodic functions, whose frequency
bases form a rationally linearly independent set of numbers, does not vanish identically.

Let us consider a fairly transparent example illustrating the obtained result. For a quasi-periodic
linear system with periods ω1 = 2π, ω2 =

√
2π

G(t)z =

 sin t 2 sin t cos
√
2t

sin
√
2 t 2 sin

√
2 t sin t

cos t 2 cos t 2 sin
√
2 t+ cos t

 col(z1, z2, z3) = 0

columns G1(t), G2(t), G3(t) of its coefficient matrix satisfy the identity

2G1(t) +G2(t) ≡ 0,
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i.e. linearly dependent. Therefore, this system has a family of strongly irregular quasi-periodic
solutions. One of such solutions will be the vector

z(t) = col(z1(t), z2(t), z3(t)), z1(t) = ξ(t), z2(t) = −0, 5ξ(t), z3(t) ≡ 0,

ξ(t) = sin
√
3 t+ cos

√
5 t,

the components of which are related by the following linear relationship

col(z2, z3) = Fz1, F =

(
−0.5
0

)
.
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1 Introduction
Consider the second order differential equation(

a(t)ΦC(x
′)
)′
+ b(t)F (x) = 0, t ∈ I = [t0,∞), (1.1)

where the functions a, b are continuous and positive on I = [t0,∞), t0 ≥ 0, the function F is a
continuous function on R such that uF (u) > 0 for u ̸= 0, ΦR : (−1, 1) → R and ΦC : R → (−1, 1)
is the monotone homeomorphismus

ΦC(u) =
|u|p−2u

(1 + |u|p)(p−1)/p
, p > 1.

The operator ΦC is called generalized Euclidean mean curvature operator. In [4], qualitative
similarities between the linear equation

(a(t)y′)′ + b(t)y = 0 (1.2)

and equations (
a(t)ΦE(x

′)
)′
+ b(t)F (x) = 0 and

(
a(t)ΦM (x′)

)′
+ b(t)F (x) = 0,

are pointed out, where

ΦE(u) =
u√

1 + |u|2
and ΦM (u) =

u√
1− |u|2

.

Operator ΦC is called Euclidean mean curvature operator and ΦM Minkowski mean curvature
operator. Operator ΦE is a special case of ΦC . Similarly, ΦM is a particular case of the so called
generalized relativistic operator

ΦR(u) =
|u|p−2u

(1− |u|p)(p−1)/p
, p > 1.
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Curvature operators arise in studying some nonlinear fluid mechanics problems, in particular
capillarity-type phenomena for compressible and incompressible fluids, as well as in the relati-
vity theory when some extrinsic properties of the mean curvature of hypersurfaces are considered,
see [1,5,8–10] and the references therein. In particular, in [10], it is observed that, as for small val-
ues of the variable the classical acceleration operator is an approximation of ΦM and ΦE ; similarly,
the p-Laplacian operator Φp

Φp(u) = |u|p−2u, p > 1, (1.3)

can be viewed, again for small values of the variable, as an approximation of ΦR and ΦC . Under
suitable assumptions on the forcing term F , this similarity between the equation(

a(t)ΦR(x
′)
)′
+ b(t)F (x) = 0 (1.4)

and (
a(t)Φp(x

′)
)′
+ b(t)F (x) = 0

is highlighted in the search of periodic solutions, see [10], as well as in other different contexts,
concerning the oscillation or the nonoscillation, see [2, Theorem 2.1] and [5, Section 5]. Moreover,
in [5] also the existence of solutions x of (1.4) such that x(t)x′(t) < 0 on the whole interval I, is
considered, jointly with their convergence to zero as t → ∞. These solutions are usually called
global Kneser solutions. Moreover, their existence and asymptotic behavior have been investigated
by many authors for a large variety of equations, see, e.g. [11] and the references therein.

Our aim here is to complete the results in [5, Theorem 4.1], by studying the existence of global
Kneser solutions for (1.1). Further, also the decay of these solutions near infinity is examined.
These results illustrate also that an asymptotic proximity between equations with generalized mean
curvature operators and with the p-Laplacian continues to hold for Kneser solutions.

2 A fixed point result

The existence of global Kneser solutions to (1.1) is based on a fixed point result which originates
from [3]. It concerns operators T , which are defined in a Fréchet space by a Schauder’s quasi-
linearization device. Roughly speaking, this method reduces the solvability of the given problem
to the one of a possibly nonlinear problem, whose solutions have known properties. In particular,
this approach does not require the knowledge of the explicit form of the fixed point operator.
Moreover, it seems particularly useful when the problem is considered in a noncompact interval.
In this case, it permits us also to overcome difficulties, which may originate from the check of
topological properties of the fixed point operator, like the compactness, because they become a
direct consequence of suitable a-priori bounds.

More precisely, we start by reducing the problem to an abstract fixed point equation x = T (x),
where T is a possible nonlinear operator, defined in a subset of a suitable Fréchet space X. In
this approach, an important tool is played by a nice property that connects the operators ΦC and
ΦR. Indeed, when p = 2, the inverse of ΦE is ΦM and vice-versa. When p ̸= 2, denote by q the
conjugate number of p, that is

q =
p

p− 1
. (2.1)

Thus a standard calculation shows that if

v = ΦC(u) =
Φp(u)

(1 + |u|p)(p−1)/p
, (2.2)
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then the inverse Φ∗
C of ΦC is given by

u = Φ∗
C(v) =

Φq(v)

(1− |v|q)(q−1)/q
, (2.3)

that is Φ∗
C reads as ΦR where p is replaced by q. Indeed, from (2.2) we get

|v|p/p−1 = |u|p
(
1 + |u|p

)−1 or 1− |v|p/p−1 =
(
1 + |u|p

)−1
.

Thus
|u| = |v|1/(p−1)

(1− |v|p/(p−1))1/p

and so from (2.1) the equality (2.3) follows. In a similar way, the inverse Φ∗
R of ΦR is given by

Φ∗
R(v) =

Φq(v)

(1 + |v|q)(q−1)/q
.

Using these properties, we can define the fixed point operator in the following way. Let G :
I × R× R → R be the continuous function such that

G(t, µ, µ) = b(t)F (µ) for any (t, µ) ∈ I × R, (2.4)

that is F is the restriction to the diagonal of G. Setting y = a(t)ΦC(x
′), equation (1.1) can be

rewritten as the system
x′ = Φ∗

C

(y
a

)
, y′ = −bF (x), (2.5)

where, for sake of simplicity, the dependence on the variable t is omitted. Using (2.3), the system
(2.5) becomes

x′ =
(
aq − |y|q

)−(q−1)/q
Φq(y), y′ = −bF (x). (2.6)

Jointly with (2.6), consider the system

ξ′ =
(
aq − |v|q

)−(q−1)/q
Φq(η), η′ = −G(t, u, ξ), (2.7)

where the couple (u, v) belongs to a suitable set Ω ⊂ C(I,R2). If for any (u, v) ∈ Ω, the system
(2.7) has a unique solution (ξuv, ηuv) which belongs to a subset S ⊂ C(I,R2), defining T (u, v) =
(ξuv, ηuv) and the operator T has a fixed point in Ω, then it is easy to verify that the fixed point
(x̂, ŷ) of T , if any, is a solution of (2.5). In other words, the algebraic aspect of the approach,
consists in reducing our problem to one, whose solvability may be more easy. A special case, in
which this fact occurs, is when the function F satisfies

lim
u→0

F (u)

Φp(u)
= F0, 0 ≤ F0 < ∞. (2.8)

Indeed, by choosing as G the function G(t, u, x) = b(t)F̃ (u(t))Φp(x), where

F̃ (u) =
F (u)

Φp(u)
if u ̸= 0, and F̃ (0) = F0, (2.9)

a standard calculation shows that the system (2.7) is equivalent to the half-linear equation(
Av(t)Φp(ξ

′)
)′
+ b(t)F̃ (u(t))Φp(ξ) = 0, (2.10)

where
Av(t) =

(
ap/(p−1)(t)− |v|p/(p−1)(t)

)(p−1)/p
. (2.11)

For obtaining a fixed point of T , we use the quoted result in [3, Theorem 1.1] and the Tychonoff
fixed point theorem. The following holds.
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Theorem 2.1. Let S be a nonempty subset of the Fréchet space C(I,R2). Assume that there
exists a nonempty, closed, convex and bounded subset Ω ⊂ C(I,R2) such that, for any (u, v) ∈ Ω,
the system (2.7) has a unique solution (ξuv, ηuv) ∈ S. Let T be the operator Ω → S, given by
T (u, v) = (ξuv, ηuv). Assume that

(i1) T (Ω) ⊂ Ω;

(i2) if {(un, vn)} ⊂ Ω is a sequence converging in Ω and T ((un, vn)) → (ξ1, η1), then (ξ1, η1) ∈ S.

Then T has a fixed point (x̂, ŷ) ∈ Ω ∩ S and x̂ is a solution of (1.1).

An abstract fixed point theorem for equations involving a more general operator is given in [5,
Theorem 2.1]. The assumption (i2) is needed for proving the continuity of T . Indeed, as spite of
the fact that in many cases T turns out to be discontinuous, condition (i1) becomes necessary and
sufficient for the continuity T when T (Ω) is bounded, see [3]. Moreover, condition (i1) is verified if
there exists a closed subset S1 ⊂ S ∩ Ω such that for any (u, v) ∈ Ω the system (2.7) has a unique
solution (ξuv, ηuv) ∈ S1. As claimed, this fact illustrates how the compacteness of T can be a direct
consequence of a-priori bounds.

3 Kneser solutions
Here we prove the existence of global Kneser solutions to (1.1), which converge to zero as t → ∞.

Let q be defined by (2.1) and Φq(u) = |u|q−2u be q-Laplacian operator. We assume (2.8),

Ja =

∞∫
t0

Φq(a
−1(s)) ds < ∞, inf

t≥t0
Φq(a(t))

∞∫
t

Φq(a
−1(s)) ds = λ > 0, (3.1)

and
∞∫

t0

Φq

(
a−1(t)

t∫
t0

b(s) ds

)
dt < ∞ ,

∞∫
t0

b(t)Φp

( ∞∫
t

Φq(a
−1(s)) ds

)
dt < ∞. (3.2)

Choose 0 < c < λ and set

K = (1− cλ−1)(p−1)/p, MF = max
u∈[0,c]

F̃ (u), (3.3)

where F̃ is given in (2.9). Consider the half-linear equation(
Ka(t)Φp(z

′)
)′
+MF b(t)Φp(z) = 0. (3.4)

The following holds.

Theorem 3.1. Let (2.8), (3.1) and (3.2) be satisfied. If (3.4) is nonoscillatory and its principal
solution z0 is positive decreasing on I, then (1.1) has infinitely many global Kneser solutions, which
converge to zero as t → ∞.

The proof of Theorem 3.1 is similar to the one given in [5, Theorem 4.1] for proving the existence
of global Kneser solutions of (1.4), with some modifications. It is based on Theorem 2.1 and on some
comparison properties between principal solutions of half-linear equations. We start by recalling
these properties. The notion of principal solution, introduced in 1936 by Leighton & Morse for the
linear equation (1.2), has been extended to the half-linear equation(

a(t)Φp(x
′)
)′
+ b(t)Φp(x) = 0 (3.5)
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by Elbert & Kusano and independently by Mirzov, using the associated generalized Riccati equation,
see [7] for more datails. More precisely, if (3.5) is nonoscillatory, then a nontrivial solution x0 of
(3.5) is said to be the principal solution if for every nontrivial solution x of (3.5) such that x ̸= µx0,
µ ∈ R, the inequality

x′0(t)

x0(t)
<

x′(t)

x(t)
for large t

holds. The set of principal solutions of (3.5) is nonempty and principal solutions are determined
up to a constant factor. If x is a solution of (3.5), we denote its quasiderivative x[1] by x[1](t) =
a(t)Φα(x

′(t)). The following comparison property plays a crucial role in the proof of Theorem 3.1.

Lemma 3.1. Assume Ja < ∞. If (3.5) is nonoscillatory and its principal solution x0, starting at
x0(t0) = k > 0, is positive decreasing on I, then the principal solution y0 of any minorant of (3.5),
starting at y(t0) > 0, is positive decreasing on the whole interval I and satisfies the inequality

x
[1]
0 (t)

Φp(x0(t))
<

y
[1]
0 (t)

Φp(y0(t))
for any t ∈ I.

Now, we give a sketch of the proof of Theorem 3.1. Set H = Φq(K), where K is given in (3.3)
and, without loss of generality, suppose z0(t0) = cH . In view of (3.2) we have lim

t→∞
z0(t) = 0, see,

e.g., [5, Proposition 3.2]. Let Ω be the set

Ω =
{
(u, v) ∈ C(I,R2) : 0 ≤ u(t) ≤ (z0(t))

H , u(t0) = 0, −Φp(cλ
−1)a(t) ≤ v(t) ≤ 0

}
.

For any (u, v) ∈ Ω, the half-linear equation (2.10) is a minorant of (3.4). Thus, (2.10) is nonoscil-
latory and, from Lemma 3.1, its principal solution ηuv such that ηuv(t0) = c, is positive decreasing
on I. Moreover, we have for any t ∈ I

η
[1]
uv(t)

Φp(ηuv(t))
≤ Ka(t)Φp(z

′
0(t))

Φp(z0(t))
.

From this, using Ka(t) ≤ Av(t) ≤ a(t) and taking into account that z′0(t) < 0, with a standard
calculation we get

ηuv(t) ≤ (z0(t))
H . (3.6)

Let w0 be the principal solution of equation (a(t)Φp(w
′))′ = 0 such that w0(t0) = c, i.e.,

w0(t) = c

( ∞∫
t0

Φq(a
−1(s)) ds

)−1
∞∫
t

Φq(a
−1(s)) ds.

Again from Lemma 3.1, we obtain

−1

Φp(w0(t))
=

w
[1]
0 (t)

Φp(w0(t))
≤ η

[1]
uv(t)

Φp(ηuv(t))
.

From this, since ηuv(t) ≤ ηuv(t0) = c, we have

|η[1]uv(t)| ≤ Φp

(
c

( ∞∫
t

Φq(a
−1(s)) ds

)−1)

= a(t)Φp

(
c

(
Φq(a(t)

∞∫
t

Φq(a
−1(s)) ds

)−1)
≤ Φp(cλ

−1)a(t).
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From this and (3.6) we have (ηuv, η
[1]
uv) ∈ Ω. Using (3.2) and the same argument to the one given

in [5, Theorem 4.1], for any (u, v) ∈ Ω, the couple (ηuv, η
[1]
uv) is the only pair (ξ, ξ[1]) with ξ solution

of (2.10), that belongs to Ω. Let T be the operator T (u, v) = (ηuv, η
[1]
uv). By choosing S = Ω,

conditions (i1) and (i2) of Theorem 2.1 are verified. Thus, T has a fixed point, and the assertion
follows.

We close the paper with some comments.

(1) Theorem 3.1 requires that (3.5) is nonoscillatory and its principal solution starting at a
positive value at t0, is positive decreasing for any t ∈ I. To check this property, we may use the
generalized Euler equations (

tpΦp(x
′)
)′
+ p−pΦp(x) = 0, t ≥ t0 > 0 (3.7)

or
(tnΦp(x

′))′ +
(n− p+ 1

p

)p
tn−pΦp(x) = 0, p > 2, n > p− 1, t ≥ t0 > 0, (3.8)

see [5, Corollary 4.3 and (4.18)] and [6, Corollary 1], respectively. The principal solution of (3.7) is
φ(t) = t−p and that of (3.8) is φ(t) = t−p. Thus, using (3.7) and applying Lemma 3.1, equation (3.5)
is nonoscillatory and its principal solution starting at a positive value at t0, is positive decreasing
for any t ∈ I, if for t ≥ t0

Ka(t) ≥ tp and MF b(t) ≤ p−p.

Clearly, a similar result can be formulated by using (3.8).

(2) The proof of Theorem 3.1 yields also the rate of the decay to zero for global Kneser solutions
of (1.1). Indeed, using (3.2) and [5, Proposition 3.2], for any (u, v) ∈ Ω, the principal solution η

[1]
uv

satisfies lim
t→∞

|η[1]uv(t)| = ℓη, 0 < ℓη < ∞. From this, it is easy to obtain

ηuv(t) = O

( ∞∫
t

Φq(a
−1(s)) ds

)
for large t.

(3) Another interesting case in which Theorem 2.1 can be applied is when the function G in
(2.4) is

G(t, u, x) = b(t)F̃ (u(t))Φr(x), r ̸= p.

In this case the system (2.7) becomes equivalent to the generalized Emden–Fowler equation(
a(t)Φp(x

′)
)′
+ b(t)F (x) = 0.

Thus, the asymptotic behavior of solutions of (1.1) can be examined via properties of solutions of
a suitable Emden–Fowler type equation. This will be done in a forthcoming paper.
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We consider the system of differential equations{
y′1 = α1p1(t)φ2(y2),

y′2 = α2p2(t)φ1(y1),
(1)

where αi ∈ {−1, 1} (i = 1, 2), pi : [a, ω[→ ]0,+∞[ (i = 1, 2) are continuous functions, −∞ < a <
ω ≤ +∞, φi : ∆(Y 0

i ) → ]0;+∞[ (i = 1, 2) (∆(Y 0
i ) is a one-sided neighborhood of Y 0

i , Y 0
i equals

either 0, or ±∞) are twice continuously differentiable functions that satisfy the conditions

φ′
i(z) ̸= 0 when z ∈ ∆(Y 0

i ), lim
z→Yi

z∈∆(Y 0
i )

φi(z) = Φ0
i ∈ {0,+∞},

lim
z→Yi

z∈∆(Y 0
i )

φ′′
i (z)φi(z)

[φ′
i(z)]

2
= γi (i = 1, 2).

Such system of differential equations when φi(yi) = |yi|σi (i = 1, n) is called the system of dif-
ferential equations of Emden–Fowler type. While t ↑ ω, the asymptotic representations for its
non-oscillating solutions were established in [2,6]. When γi ̸= 1 (i = 1, 2), system (1) is the system
with regularly warying nonlinearities. Such system of differential equations had been investigated
in [4].

This work considers situation, when γ1 = 1, that means function φ1 is rapidly warying when
y1 → Y 0

1 [1,5]. In this situation, special case of system (1) is a two-term non-autonomous differential
equation with rapidly warying nonlinearity (see [3]).

A solution (yi)
2
i=1 of system (1), defined on the interval [t0, ω[⊂ [a, ω[ , is called Pω(Λ1,Λ2)-

solution, if functions ui(t) = φi(yi(t)) (i = 1, 2) satisfy the following conditions:

lim
t↑ω

ui(t) = Φ0
i , lim

t↑ω

ui(t)u
′
i+1(t)

u′i(t)ui+1(t)
= Λi (i = 1, 2).

Note that the second condition in the definition of Pω(Λ1,Λ2)-solution implies

2∏
i=1

Li = 1.

For system (1) in case, when Λi ̸= 0 (i = 1, 2), the necessary and sufficient conditions for the
existence of Pω(Λ1,Λ2)-solutions are established, as well as the asymptotic representation for these
solutions when t ↑ ω.



58 V. M. Evtukhov, O. O. Maksymov

In order to formulate the theorem, we introduce several auxiliary notations:

Ii(t) =



t∫
A1

p1(τ) dτ for i = 1,

t∫
A2

I1(τ)p2(τ) dτ for i = 2,

βi =

{
−Λ1, if i = 1,

−1, if i = 2,

where limits of integration Ai ∈ {ω, a} are chosen in such a way that corresponding integral Ii aims
either to zero, or to ∞ when t ↑ ω.

A∗
i =

{
1, if Ai = a,

−1, if Ai = ω
(i = 1, 2).

Theorem. Let Λi ∈ R\{0} (i = 1, 2) and γ1 = 1. Then for the existence of Pω(Λ1,Λ2) – solutions
of (1) it is necessary and, if algebraic equation

ν
[
ν + (1− γ2)Λ1

]
= 1

does not have roots with zero real part, it is also sufficient that for each i = 1, 2

lim
t↑ω

Ii(t)I
′
i+1(t)

I ′i(t)Ii+1(t)
= Λi

βi+1

βi

and following conditions are satisfied
A∗

iβi > 0 when Φ0
i = +∞, A∗

iβi < 0 when Φ0
i = 0,

sign
[
αiA

∗
iβi

]
= signφ′

i(z).

Moreover, components of each solution of that type admit the following asymptotic representation
when t ↑ ω

φi(yi(t))

φ′
i(yi(t))φi+1(yi+1(t))

= αiβiIi(t)[1 + o(1)], if i = 1,

φi(yi(t))

φ′
i(yi(t))φi+1(yi+1(t))

= αiβi
Ii(t)

I1(t)
[1 + o(1)], if i = 2.
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Consider the Sturm–Liouville problem

y′′ +Q(x)y + λy = 0, x ∈ (0, 1), (1)
y(0) = y(1) = 0, (2)

where Q belongs to the set Tα,β,γ of all locally integrable on (0, 1) functions with non-negative
values such that the following integral conditions hold:

1∫
0

xα(1− x)βQγ(x) dx = 1, γ 6= 0, (3)

1∫
0

x(1− x)Q(x) dx < ∞. (4)

A function y is a solution of problem (1), (2) if it is absolutely continuous on the segment [0, 1],
satisfies (2), its derivative y′ is absolutely continuous on any segment [ρ, 1− ρ], where 0 < ρ < 1

2 ,
and equality (1) holds almost everywhere in the interval (0, 1).

It was proved that if condition (4) does not hold, then for any 0 ≤ p ≤ ∞, there is no non-trivial
solution y of equation (1) with properties y(0) = 0, y′(0) = p ( [4, Theorem 1].

If γ < 0, α ≤ 2γ − 1 or β ≤ 2γ − 1, then the set Tα,β,γ is empty; for other values α, β, γ, γ 6= 0,
the set Tα,β,γ is not empty [7, Chapter 1, § 2, Theorem 3]. Since for γ < 0, α ≤ 2γ−1 or β ≤ 2γ−1
there exists no function Q satisfying (3) and (4) taken together, we do not consider the problem
for these parameters.

Consider the functional

R[Q, y] =

1∫
0

y′2 dx−
1∫
0

Q(x)y2 dx

1∫
0

y2 dx

.

If condition (4) is satisfied, then the functional R[Q, y] is bounded below in H1
0 (0, 1) [5]. It was

proved [4, 5] that for any Q ∈ Tα,β,γ ,

λ1(Q) = inf
y∈H1

0 (0,1)\{0}
R[Q, y].

In this paper we describe estimates for

mα,β,γ = inf
Q∈Tα,β,γ

λ1(Q)
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for some values of parameters α, β, γ. The result of the paper is a generalization of a result obtained
by one of the authors in [2, 3]. In order to implement the ideas, used in this paper, the authors
follow the technique applied in [6] where a similar problem was considered.

Let γ = 1, 0 6 α, β < 1. For any Q ∈ Tα,β,γ , we have

1∫
0

Q(x)y2 dx 6 sup
[0,1]

y2

xα(1− x)β

1∫
0

Q(x)xα(1− x)β dx

6 sup
[0,1]

x1−α(1− x)1−β sup
[0,1]

y2

x(1− x)
6 (1− α)1−α(1− β)1−β

(2− α− β)2−α−β

1∫
0

y′2 dx

and
mα,β,γ >

(
1− (1− α)1−α(1− β)1−β

(2− α− β)2−α−β

)
· π2 > 0.

If 0 6 α, β < 1, Q ∈ Tα,β,γ , then

R[Q, y] >

1∫
0

y′2 dx− sup
[0,1]

y2

xα(1−x)β

1∫
0

y2 dx

= L[y].

Functional L is bounded below, thus, there exists

inf
y∈H1

0 (0,1)\{0}
L[y] = m.

Theorem. If 0 6 α, β < 1, then for a point x0 ∈ (0, 1) and a number K = x0
−α(1−x0)

−β we have

mα,β,1 = m,

where m is a solution of the equation

tan
√
m (1− x0) =

√
m

K sin
√
mx0 −

√
m cos

√
mx0

,

and mα,β,1 is attained on the potential Kδ(x− x0).

Proof. Following [6], we consider W−1
2 [0, 1], the Hilbert space that is a completion of L2[0, 1] in the

norm

‖y‖W−1
2 [0,1] 
 sup

∥z∥
W1

2 [0,1]
=1

1∫
0

yz dx.

For y ∈ W−1
2 [0, 1], we denote by

1∫
0

yz dx the result

〈y, z〉 
 lim
n→∞

1∫
0

ynz dx
(

where y = lim
n→∞

yn, yn ∈ L2[0, 1]
)
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of applying the linear functional y to the function z ∈ W 1
2 [0, 1]. According to [6], for any function

Q ∈ Tα,β,γ and for any λ ∈ R we consider the map

M : W 1
2 [0, 1] → Lloc[0, 1],

y 7→ y′′ + (Q+ λ)y

that for Q ∈ W−1
2 [0, 1] can be extended to the operator

TQ(λ) : W
1
2 [0, 1] → W−1

2 [0, 1],

y 7→ y′′ + (Q+ λ)y.

The result of applying this operator TQ(λ) to a function z ∈ W 1
2 [0, 1] is

〈Tq(λ)y, z〉 =
1∫

0

[−y′z′ + λyz] dx+ 〈Qy, z〉 =
1∫

0

[−y′z′ + λyz] dx+ lim
n→∞

1∫
0

(Qy)nz dx,

where {Qy}n is a sequence of functions from L2[0, 1].
Let

m = inf
H1

0 (0,1)\{0}

1∫
0

y′2 dx− sup
[0,1]

y2

xα(1−x)β

1∫
0

y2 dx

= L[u],

where u ∈ H1
0 (0, 1) is the minimizer of L, x0 is one of the points such that

sup
[0,1]

u2

xα(1− x)β
=

u2(x0)

xα0 (1− x0)β
.

Denote
K =

1

x0α(1− x0)β
.

Consider the equation
y′′ +Kδ(x− x0)y +my = 0 (5)

and the boundary conditions
y(0) = y(1) = 0. (6)

Let us consider the equivalent to (5), (6) boundary value problem

y′′ +my = 0, (0, x0) ∪ (x0, 1), (7)
y′(x0 + 0)− y′(x0 − 0) = −Ky(x0), (8)

y(0) = y(1) = 0. (9)

Since y′′ = {y′′}+ [y′]x0
δ(x− x0) and −Kδ(x− x0)y = −Ky(x0), we have

−Kδ(x− x0)y −my = −my + (y′(x0 + ε)− y′(x0 − ε))δ(x− x0)

and
y′(x0 + ε)− y′(x0 − ε) = −Ky(x0).
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On [0, x0) we have

y = C sin
√
mx, y′ = C

√
m cos

√
mx,

y′(x0 − 0) = C
√
m cos

√
mx0.

On (x0, 1] we have

y = C sin
√
mx, y′ = C

√
m cos

√
mx,

y′(x0 − 0) = C
√
m cos

√
mx0,

y = D1 cos
√
mx+D2 sin

√
mx,

D1 = −D2 tan
√
m,

y = −D2 tan
√
m cos

√
mx+D2 sin

√
mx = −D2

sin
√
m (1− x)

cos
√
m

,

y′ =
D2

cos
√
m

√
m cos

√
m (1− x),

y′(x0 + 0) =
D2

√
m

cos
√
m

cos
√
m (1− x0).

By virtue of (9), we have

D2
√
m

cos
√
m

cos
√
m (1− x0)− C

√
m cos

√
mx0 = −KC sin

√
mx0,

C =
D2

√
m cos

√
m (1− x0)

cos
√
m

(√
m cos

√
mx0 −K sin

√
mx0

) ,
and

y =


D2

√
m cos

√
m (1− x0)

cos
√
m

(√
m cos

√
mx0 −K sin

√
mx0

) sin√mx, x ∈ [0, x0],

−D2 sin
√
m (1− x)

cos
√
m

, x ∈ (x0, 1].

Since y is continuous at x0, we have
√
m cos

√
m (1− x0)√

m cos
√
mx0 −K sin

√
mx0

sin
√
mx0 = − sin

√
m (1− x0)

or
tan

√
m (1− x0) =

√
m

K sin
√
mx0 −

√
m cos

√
mx0

.

In particular [2, 3], for α = β = 0, K = 1, x0 = 1
2 , m is the solution of the equation

tan

√
m

2
= 2

√
m,

attained on the potential δ(x− 1
2) ,

y =


C sin

√
mx, x ∈

[
0,

1

2

]
,

C sin
√
m (1− x), x ∈

(1
2
, 1
]
,

where C is a constant.
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By virtue of

〈Tq(λ)y, z〉 =
1∫

0

[
− y′z′ + λyz

]
dx+ 〈Qy, z〉 =

1∫
0

[
− y′z′ + λyz

]
dx+ lim

n→∞

1∫
0

(Qy)nz dx,

we have

〈Tq(λ)y, y〉 =
1∫

0

[
− y′2 +my2

]
dx+ 〈Qy, y〉 =

1∫
0

[
− y′2 +my2

]
dx+Ky0

2,

because if we consider the sequence

Qn(x) =


K · n, x ∈

[
x0 −

1

2n
, x0 +

1

2n

]
,

0, x ∈
[
0, x0 −

1

2n

)
∪
(
x0 +

1

2n
, 1
]

and the sequence {Qy}n of functions belonging to L2[0, 1] such that (Qy)n = Qny, then

〈Qy, y〉 = lim
n→∞

1∫
0

(Qy)ny dx = lim
n→∞

1∫
0

Qny
2 dx = K · y2(x0).

Note that by the mean-value theorem, for any fixed n there exists x∗ ∈ (x0 − 1
2n , x0 +

1
2n) such

that

1

2n

x0+
1
2n∫

x0− 1
2n

K · y2 dx = K · 1

2n
· 2n · y2(x∗) = K · y2(x∗).

If

〈TQ(λ)y, y〉 =
1∫

0

[
− y′2 +my2

]
dx+ 〈Qy, y〉 = 0,

then
1∫

0

[
− y′2 +my2

]
dx+Ky0

2 = 0

or
1∫
0

y′2 dx−Ky0
2

1∫
0

y2 dx

= m.

Therefore, for the found weak solution y of equation (5), we have

m =

1∫
0

y′2 dx−Ky0
2

1∫
0

y2 dx

>

1∫
0

u′2 dx−Ku0
2

1∫
0

u2 dx

= m,

and the weak solution of equation (5) is the minimizer of the functional L.
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We consider the dynamical system

dS

dt
= (1− p)a− dS − βIS

1 + σIk
+ δV,

dE

dt
=

βIS

1 + σIk
− (d+ ε+ η)E,

dI

dt
= εE − (d+ τ)I,

dV

dt
= pa+ τI + ηE − (d+ δ)V,

(1)

which arises in an epidemiological model incorporating an incubation period and temporary immu-
nity. The population N is divided into four categories: susceptible (S), exposed (E), infected (I),
and vaccinated/recovered (V ). All parameters of system (1) are non-negative, and their biological
meanings are interpreted as follows: individuals are born at a rate a and enter the susceptible class
S, while a fraction of newborns is effectively vaccinated at a rate p. Susceptible individuals become
infected at a rate β. Temporary immunity (caused by an ideal vaccine, disease, or asymptomatic
infections) wanes at a rate δ. All individuals in every class experience the same natural mortality
rate d. Individuals in the exposed class E can transition to the infected class I at a rate ε, as well
as to the vaccinated/recovered class V at a rate η (due to the acquisition of natural immunity).
Infected individuals effectively recover at a rate τ , and the parameters σ and k will be described
below.

The SEIV S and SIRS models with various incidence rates have been studied in papers
[1–3,5–8,10]: in [2,5,6,8], the SEIV S models were analyzed using a geometric approach to estab-
lish asymptotic stability and global asymptoticity of equilibrium states depending on the control
reproduction number Rc. In [7], the geometric criterion for global asymptoticity was generalized.
In [1,3], diffusion effects of epidemic spread in a population were considered for the SIRS models.
In [10], an SIR model with a specific type of infectious force was examined.

Below, a new infectious force is considered

φ(I) :=
βI

1 + σIk
,

where the parameters σ and k account for inhibitory or psychological effects caused by public.
System (1) has an equilibrium point for any parameter values given by

Q0 = (S0, 0, 0, V0), S0 ≡
a((1− p)d+ δ)

d(d+ δ)
, V0 ≡

pa

d+ δ
,

which corresponds to the absence of infected individuals in the population.
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System (1) admits a biologically feasible region

D =
{
(S,E, I, V ) ∈ R4

+ : S 6 S0, V 6 V0, E 6 S0 + V0, I 6 S0 + V0, S + E + I + V 6 a

d

}
,

which is positively invariant. The control reproduction number, depending on the parameters of
the model, is defined as

Rc :=
εS0φ

′(0)

(d+ τ)(d+ ϵ+ η)
.

Definition. An equilibrium point x∗ is called:

- asymptotically stable if all solutions starting sufficiently close to it not only remain near x∗

for all time but also converge to x∗ as time tends to infinity;

- globally asymptotically stable if every solution, regardless of the initial condition, converges
to x∗ as time tends to infinity.

Theorem 1. The equilibrium point Q0 of system (1) is globally asymptotically stable if Rc 6 1 and
unstable if Rc > 1.

Proof. The local stability of Q0 is established using the next-generation operator method developed
in [9]. Using the notation from [9], the matrices F and V for the model take the form

F =

[
0 S0φ

′(0)
0 0

]
, V =

[
d+ ε+ η 0

−ε d+ τ

]
,

so that the control reproduction number for the model is given by

Rc = ρ(FV −1) =
εS0φ

′(0)

(d+ τ)(d+ ε+ η)
,

where ρ is the spectral radius of the matrix.
Following Theorem 2 in [9], we obtain the first part of the theorem statement.
The Lyapunov function is V (t) = E+ (d+ε+η)I

ε . Since φ′(I) ≤ φ(I)
I , this indicates the monotonic

non-increase of φ(I)
I for I > 0, so that

φ(I)

I
≤ lim

I→0+

φ(I)

I
= φ′(0).

Along the trajectories of system (1), the time derivative of V (t) can be computed as

dV (t)

dt
= I

(
S
φ(I)

I
− (d+ τ)(d+ ε+ η)

ε

)
≤ I

(
S0φ

′(0)− (d+ τ)(d+ ε+ η)

ε

)
= (Rc − 1)

(d+ τ)(d+ ε+ η)

ε
I ≤ 0.

Therefore, by LaSalle’s invariance principle [4] and the local stability of Q0, it follows that Q0 is
globally asymptotically stable in D when Rc ≤ 1.

Theorem 2. If Rc > 1, then system (1) has another equilibrium point Q∗ in the region D, distinct
from Q0, which is asymptotically stable.
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Proof. For system (1), the coordinates of the positive equilibrium are determined as follows:
0 = (1− p)A− dS − Sφ(I) + δV,

0 = Sφ(I)− (d+ ε+ η)E,

0 = εE − (d+ τ)I,

0 = pA+ τI + ηE − (d+ δ)V.

(2)

For convenience, let

θ1 :=
(d+ τ)(d+ ε+ η)

ε
and θ2 :=

(d+ τ)(d+ ε+ η + δ) + εδ

ε(d+ δ)
.

Using the third equation in (2), we obtain E = (d+τ)I
ε . Adding the first two equations and using

the last equation, we get
(1− p)A− dS − θ1I + δV = 0,

pA+ τε+
(d+ τ)η

ε
I − (d+ δ)V = 0.

(3)

Eliminating V from these equations leads to S = S0 − θ2I. Given S ≥ 0, we obtain I ≤ S0/θ2.
Using the second equation in (2), we obtain

Φ(I) := (S0 − θ2I)φ(I)− θ1I = 0, 0 < I ≤ S0

θ2
. (4)

The existence and uniqueness of the positive solution to equation (4) proceed in the following three
steps.

Step 1. Existence of a positive solution for Rc > 1. In fact, from

Φ′(I) = −θ2φ(I) + (S0 − θ2I)φ
′(I)− θ1

and since φ(0) = 0, we have

Φ′(0) = lim
I→0+

S0φ
′(I)− θ1 = θ1(Rc − 1),

which can be achieved. Given Rc > 1, it is easy to show that Φ(I) > 0 for sufficiently small values
of I, since Φ′(0) > 0, Φ(0) = 0, and Φ(S0/θ2) < 0. This means that at least one positive solution
to equation (4) exists. Let us denote this solution by I∗.

Step 2. It can be verified that the positive solution I∗ is unique for Rc > 1. Without loss of
generality, assume that another positive root, closest to I∗, exists and is denoted by I†. Then, the
inequality Φ′(I†) ≥ 0 follows from the continuity of Φ(I). Using the properties of the function φ,
we obtain:

Φ′(I†) = (S†)φ′(I†)− θ2φ(I
†)− (S†)φ(I†)

I†
< 0. (5)

This leads to a contradiction and confirms the uniqueness of I∗.

Step 3. We prove the absence of a positive root for (4) in the case Rc ≤ 1 by contradiction. Assume
that there exists a smallest positive root I+. Then, it is evident that Φ′(I+) < 0 according to
(5). Since Φ(0) = 0 and Φ′(0) ≤ 0, we have Φ(I) ≤ 0 for sufficiently small values of I. Thus, the
continuous function Φ(I) increases from a non-positive value to 0, which implies that Φ′(I+) ≥ 0,
leading to a contradiction.
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Therefore, from Steps 1–3, we conclude that model (1) has a unique endemic equilibrium point
Q∗ = (S∗, E∗, I∗, V ∗) if and only if Rc > 1, where S∗, E∗, V ∗ can be uniquely determined according
to the results derived above.

The Jacobian matrix of model (1) is given by

J =


−(d+ φ(I)) 0 −Sφ′(I) δ

φ(I) −(d+ ε+ η) Sφ′(I) 0

0 ε −(d+ τ) 0

0 η τ −(d+ δ)

 ,

so that the characteristic equation at the point Q∗ is given by

(χ+ d)
[
(χ+ d+ τ)(χ+ d+ ε+ η)(χ+ d+ δ + φ(I∗))+

+ δφ(I∗)(χ+ d+ τ + ε)− εS∗φ′(I∗)(χ+ d+ δ)
]
= 0. (6)

Clearly, χ1 = −d < 0. As for the remaining eigenvalues of the equation:

(χ+ d+ ε+ η)(χ+ d+ δ + φ(I∗)) + δφ(I∗)(χ+ d+ τ + ε) = εS∗φ′(I∗)(χ+ d+ δ). (7)

Case I. φ′(I∗) > 0. It is claimed that all eigenvalues of equation (7) have negative real parts.
Otherwise, there exists at least one eigenvalue χ̃ such that Re χ̃ ≥ 0. From this, it follows that

(d+ τ)(d+ ε+ η)

<

∣∣∣∣(χ̃+ d+ τ)(χ̃+ d+ ε+ η)
(
1 +

φ(I∗)

χ̃+ d+ δ

)
+ δφ(I∗)

χ̃+ d+ τ + ε

χ̃+ d+ δ

∣∣∣∣
= εS∗φ′(I∗) ≤ εS∗φ(I∗)

I∗
= (d+ τ)(d+ ε+ η). (8)

Therefore, each eigenvalue χ of equation (6) satisfies Reχ < 0.
Case II. φ(I∗) ≤ 0. Equation (7) can be reformulated as χ3 +H1χ

2 +H2χ +H3 = 0, where H1,
H2, and H3 are defined by the relations

H1 = h1 + h2 + h3, H2 = h1h2 + h1h3 + h2h3 + δφ(I∗)− εS∗φ′(I∗),

H3 = h1h2h3 + δφ(I∗)h4 − εS∗φ′(I∗)h5,

where

h1 = d+ τ, h2 = d+ ε+ η, h3 = d+ δ + φ(I∗), h4 = d+ τ + ε, h5 = d+ δ.

According to the Routh–Hurwitz stability criterion, the necessary and sufficient conditions for the
stability of Q∗ are:

(i) Hi > 0, i = 1, 2, 3;

(ii) H1H2 −H3 > 0.

It is evident that (i) holds, as hi > 0. Moreover, (ii) can be guaranteed by

H1H2 −H3 =
[
(h1 + h2 + h3)(h1h2 + h1h3 + h2h3)− h1h2h3

]
+ δφ(I∗)(h1 + h2 + h3 − h4)− εS∗φ(I∗)(h1 + h2 + h3 − h5) > 0.

By combining cases I and II, it can be concluded that Q∗ is locally asymptotically stable if and
only if Rc > 1.
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The following differential equation is considered

y(4) = α0p0(t)φ(y), (1)

where α0 ∈ {−1, 1}, p0 : [a, ω[→ ]0,+∞[ – continuous function, −∞ < a < ω ≤ +∞, φ : ∆Y0 →
]0,+∞[ – is a twice continuously differentiable function such that

φ′(y) ̸= 0 at y ∈ ∆Y0 , lim
y→Y0
y∈∆Y0

φ(y) =

{
either 0,

or +∞,
lim
y→Y0
y∈∆Y0

φ(y)φ′′(y)

φ′2(y)
= 1, (2)

Y0 is equal to either 0, or ±∞, ∆Y0 – unilateral dislocation Y0. It directly follows from condition
(2) that

φ′(y)

φ(y)
∼ φ′′(y)

φ′(y)
as y → Y0 (y ∈ ∆Y0) and lim

y→Y0
y∈∆Y0

yφ′(y)

φ(y)
= ±∞.

According to these conditions, the function φ and its first-order derivative (see the monograph
by M. Maric [5, Chapter 3, Section 3.4, Lemmas 3.2, 3.3, pp. 91–92]) are rapidly changing functions
as y → Y0.

Definition 1. A solution y of the differential equation (1) is called Pω(Y0, λ0)-solution, where
−∞ ≤ λ0 ≤ +∞, if it is defined on the interval [t0, ω[⊂ [a, ω[ and satisfies the following conditions

y(t) ∈ ∆Y0 at t ∈ [t0, ω[ , lim
t↑ω

y(t) = Y0,

lim
t↑ω

y(k)(t) =

{
either 0,

or ±∞,
(k = 1, 2, 3), lim

t↑ω

[y
′′′
(t)]2

y′′(t)y(4)(t)
= λ0.

Earlier, the asymptotic behaviour of Pω(Y0, λ0)-solutions of equation (1) was investigated in
the case when λ0 ∈ R \ {0, 12 ,

2
3 , 1} in [3]. The purpose of this paper is to study the existence and

asymptotic behaviour of Pω(Y0, λ0)-solutions in the special case when λ0 = 1. In this case, due to
the a priori asymptotic properties of the Pω(Y0, λ0)-solutions (see [1, Section 3, Subsection 10]),
the following asymptotic relations hold for each Pω(Y0, 1)-solution

y′(t)

y(t)
∼ y′′(t)

y′(t)
∼ y′′′(t)

y′′(t)
∼ y′′′′(t)

y′′′(t)
at t ↑ ω, lim

t↑ω

πω(t)y
′(t)

y(t)
= ±∞,

where

πω(t) =

{
t, or ω = +∞,

t− ω, or ω < +∞.
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It follows, in particular, that the Pω(Y0, 1)-solution of equation (1) and its derivatives up to and
including the third order are rapidly changing functions at t ↑ ω.

Let us introduce the necessary auxiliary notation and assume that the domain of the function
φ in equation (1) is defined as follows

∆Y0 = ∆Y0(y0), where ∆Y0(y0) =

{
[y0, Y0[ if ∆Y0 left neighbourhood Y0,

]Y0, y0] if ∆Y0 right neighbourhood Y0,

and y0 ∈ ∆Y0 such that |y0| < 1 at Y0 = 0 and y0 > 1 (y0 < −1) at Y0 = +∞ (at Y0 = −∞).
Next, let’s assume that

µ0 = signφ′(y), ν0 = sign y0, ν1 =

{
1 if ∆Y0 = [y0, Y0[ ,

−1 if ∆Y0 = ]Y0, y0],

and introduce the following functions

J0(t) =

t∫
A0

p
1
4 (τ) dτ, Φ(y) =

y∫
B

ds

|s|
3
4φ

1
4 (s)

,

where p : [a, ω[→ ]0,+∞[ is a continuous or continuously differentiable function as t ↑ ω,

A0 =


ω if

ω∫
a

p
1
4 (τ) dτ < +∞,

a if
ω∫

a

p
1
4 (τ) dτ = +∞,

B =



Y0 if
Y0∫

y0

ds

|s|
3
4φ

1
4 (s)

= const,

y0 if
Y0∫

y0

ds

|s|
3
4φ

1
4 (s)

= ±∞.

Let’s pay attention to some properties of the function Φ. It keeps its sign at ∆Y0 , goes either to
zero or to ±∞ at y → Y0, and increases at ∆Y0 , since in this interval Φ′(t) = |y|−

3
4φ− 1

4 (y) > 0.
Therefore, there exists an inverse function Φ−1 : ∆Z0 → ∆Y0 , where, due to the second condition
(2) and the monotonic growth of Φ−1,

Z0 = lim
y→Y0
y∈∆Y0

Φ(y) =

{
either 0,

or ±∞,

∆Z0 =

{
[z0, Z0[ if ∆Y0 = [y0, Y0[ ,

]Z0, z0] if ∆Y0 = ]Y0, y0],
z0 = Φ(y0),

Given Definition 1, we note that the numbers ν0 and ν1 determine the signs of any Pω(Y0, 1)-solution
and the first derivative in some left neighbourhood of ω. The conditions

ν0ν1 < 0, if Y0 = 0, ν0ν1 > 0, if Y0 = ±∞,

are necessary for the existence of such solutions.
In addition to the above designations, we will also introduce auxiliary functions:

H(t) =
Φ−1(ν1J0(t))φ

′(Φ−1(ν1J0(t)))

φ(Φ−1(ν1J0(t)))
,

J1(t) =

t∫
A1

p(τ)φ(Φ−1(ν1J0(τ))) dτ, J2(t) =

t∫
A2

J1(τ) dτ, J3(t) =

t∫
A3

J2(τ) dτ,
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where

A1 =


t1 if

ω∫
t1

p(τ)φ(Φ−1(ν1J0(τ))) dτ = +∞,

ω if
ω∫

t1

p(τ)φ(Φ−1(ν1J0(τ))) dτ < +∞,

t1 ∈ [a, ω],

A2 =


t1 if

ω∫
t1

J1(τ) dτ = +∞,

ω if
ω∫

t1

J1(τ) dτ < +∞,

A3 =


t1 if

ω∫
t1

J2(τ) dτ = +∞,

ω if
ω∫

t1

J2(τ) dτ < +∞,

The following statement is true for equation (1).

Theorem. For the existence of Pω(Y0, 1)-solutions of the differential equation (1), the following
inequalities must be satisfied

ν1µ0J0(t) < 0 at t ∈ ]a, ω[ ,

α0ν1 < 0 if Y0 = 0, α0ν1 > 0 if Y0 = ±∞,

and conditions

α0J3(t)

Φ−1(ν1J0(t))
∼ J ′

1(t)

J1(t)
∼ J ′

2(t)

J2(t)
∼ J ′

3(t)

J3(t)
∼ (Φ−1(ν1J0(t)))

′

Φ−1(ν1J0(t))
as t ↑ ω,

lim
t↑ω

H(t) = ±∞, ν1 lim
t↑ω

J0(t) = Z0, lim
t↑ω

πω(t)(Φ
−1(ν1J0(t)))

′

Φ−1(ν1J0(t)))
= ±∞, lim

t↑ω

πω(t)J
′
0(t)

J0(t)
= ±∞.

In addition, for each such solution, the following asymptotic representations are obtained

y(t) = Φ−1(ν1J0(t))
[
1 +

o(1)

H(t)

]
,

y′(t) = α0J3(t)[1 + o(1)], y′′(t) = α0J2(t)[1 + o(1)], y′′′(t) = α0J1(t)[1 + o(1)] as t ↑ ω,

The sufficiency of the obtained conditions is proved by imposing an additional condition.
Namely,

lim
y→Y0
y∈∆Y0

(φ
′(y)

φ(y) )
′

(φ
′(y)

φ(y) )
2

∣∣∣yφ′(y)

φ(y)

∣∣∣ 34 = 0.

The question of the actual existence of solutions with these asymptotic images is established
under some additional conditions, by transforming the found asymptotic images to a system of
quasilinear equations using Theorem 2.2 from the work by Evtukhov V. M., Samoilenko A. M. [4]
on the existence of solutions tending to zero.
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1 Introduction
The motion of small amplitude waves of a water layer with variable depth along the x-axis is
described by the equations of the shallow water theory

∂η

∂t
+

∂

∂x
[h(x)u] = 0,

∂u

∂t
+ g

∂η

∂x
= 0,

where η(x, t) is the vertical water surface elevation, u(x, t) is the depth-averaged water flow velocity
(also called wave velocity), h(x) is the unperturbed water depth and g is the gravity acceleration
(see Fig. 1). From now on, we assume without loss of generality that g = 1.

0 1 2 3 4 5 6

-6

-4

-2

0

2

4

x

η(x, t)

h(x)

u(x, t)

Figure 1. Graphical description of the model.

The shallow water equations constitute a system of coupled PDEs of first order that can be
easily decoupled into a single wave equation for the surface displacement

∂2η

∂t2
− ∂

∂x

[
h(x)

∂η

∂x

]
= 0, (1.1)
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or for the water velocity
∂2u

∂t2
− ∂2

∂x2
[h(x)u] = 0. (1.2)

There is a considerable number of papers devoted to finding sufficient conditions on the bottom
profile h(x) to ensure the existence of travelling waves or other explicit solutions [1–7, 9, 10]. A
travelling wave is a special solution of the form q(x) exp i[ωt−Ψ(x)], where both q and Ψ are scalar
real-valued functions. In the related literature, q(x) is known as the amplitude of the travelling
wave, ω is the frequency and Ψ(x) is the phase, which is called non-trivial if it is non-constant. In
this paper, we are going to study the following inverse problem: given a prescribed amplitude q(x),
can we determine a suitable bottom profile h(x) allowing the equation to admit a travelling wave
with amplitude q(x)?

2 The inverse problem for water velocity

From now on, C+
T will denote the space of continuous scalar T -periodic functions with positive

values. In this section, we study the inverse problem for the water velocity. Given a fixed q ∈ C+
T ,

we wonder if there exists h ∈ C+
T such that Eq. (1.2) has a travelling wave

u(x, t) = q(x) exp i
[
ωt−Ψ(x)

]
. (2.1)

Inserting (2.1) into (1.2) and separating real and imaginary parts, we get the equations

(hq)′′ + ω2q − hqΨ′2 = 0, (2.2)
2(hq)′Ψ′ + hqΨ′′ = 0. (2.3)

From (2.3), we deduce that [(hq)2Ψ′]′ = 0, and (hq)2Ψ′ is a conserved quantity, which is actually an
energy flux, and it is in total analogy with the angular momentum in systems with radial symmetry.
This means that there exists α ∈ R such that[

h(x)q(x)
]2
Ψ′(x) = α, ∀x ∈ R. (2.4)

Now, we insert (2.4) into (2.2) and arrive to a single second order ODE

(hq)′′ + ω2q =
α2

(hq)3
. (2.5)

Recall that for this equation, the unknown is h(x), where q(x) is given. The main result of this
section is the following.

Theorem 2.1. There exists a solution h ∈ C+
T of (2.5) for any α 6= 0, ω 6= 0.

Proof. By introducing the change of variables y = hq into (2.5), we get the equation

y′′ + ω2q =
α2

y3
.

Now, the result is a direct consequence of [8, Theorem 3.12].
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3 The inverse problem for surface elevation
This section is devoted to studying the inverse problem for the surface elevation. Given a fixed
q ∈ C+

T , the problem is to find h ∈ C+
T such that Eq. (1.1) has a travelling wave of the form

η(x, t) = q(x) exp i
[
ωt−Ψ(x)

]
. (3.1)

Following the steps of the previous section, we insert (3.1) into (1.1) and separate real and imaginary
parts to obtain

(hq′)′ + ω2q − hqΨ′2 = 0, (3.2)
(hqΨ′)′ + hq′Ψ′ = 0. (3.3)

Now, the conserved quantity (energy flux) coming from (3.3) is

h(x)q(x)2Ψ′(x) = α, ∀x ∈ R.

Using this information in (3.2), we arrive to the equation

(hq′)′ + ω2q =
α2

hq3
. (3.4)

Again, the unknown is h and q is a prescribed function. Although this equation may look similar
to (2.5), they are indeed totally different. The fundamental difference is that now we have a first-
order differential equation, with the difficulty that q′ will change its sign, hence we are dealing
with a differential equation that is singular not only in the dependent variable h but also in the
independent variable x.

Theorem 3.1. Let us assume that q is a T -periodic and positive function of class C2 with a finite
number of critical points in [0, T ], all of them non-degenerate, that is, if q′(x) = 0, then q′′(x) 6= 0.
Then, there exists a threshold λ0 > 0 such that

(i) there exists a positive T -periodic solution h of (3.4) provided 0 < | α
ω2 | < λ0,

(ii) no positive T -periodic solution of (3.4) exists provided | α
ω2 | > λ0.

Moreover,
q5∗

4|q0|
< λ2

0 ≤ min
{ q5(b)

4|q′′(b)|
: q′(b) = 0, q′′(b) < 0

}
,

where
q∗

def
= min

{
q(x) : x ∈ [0, T ]

}
, q0

def
= min

{
q′′(x) : x ∈ [0, T ]

}
.

3.1 Sketch of Proof

We assume that q is a T -periodic and positive function of class C2 with a finite number of critical
points in [0, T ], all of them non-degenerate, that is, if q′(x) = 0, then q′′(x) 6= 0. Under this
assumption, we can divide the interval [0, T ] into subintervals [a, b] such that q′ is of a constant
sign on (a, b) and q′(a) = q′(b) = 0. Then, the substitution

u(x) =
(h(x)q′(x))2

2ω4
for x ∈ (a, b) (3.5)
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transforms (3.4) into the equation

u′(x) =
λ2q′(x)

q3(x)
− q(x) sgn(q′)

√
2u(x) for x ∈ (a, b), (3.6)

where λ = α/ω2.
At first we consider an interval [a, b] where

q′(a) = 0, q′(b) = 0, q′(x) > 0 for x ∈ (a, b), q′′(a) > 0, q′′(b) < 0. (3.7)

In such an interval, eq. (3.6) reads

u′(x) =
λ2q′(x)

q3(x)
− q(x)

√
2u(x) for x ∈ (a, b). (3.8)

For technical reasons, we embed this equation into

u′(x) =
λ2q′(x)

q3(x)
− q(x)

√
2|u(x)| sgnu(x) for x ∈ [a, b]. (3.9)

Obviously, non-negative solutions of (3.8) and (3.9) are the same.
A solution of (3.9) is understood in the classical sense, that is, a function u ∈ C1([a, b];R)

satisfying (3.9) for every x ∈ [a, b]. We will investigate the properties of a solution to (3.9) subject
to the initial condition

u(a) = 0. (3.10)

Lemma 3.1. There exists a unique solution u of the initial value problem (3.9), (3.10). Moreover,
if λ 6= 0, then

u(x) > 0 for x ∈ (a, b).

Lemma 3.2. Let λ 6= 0 and let u be the solution to (3.9), (3.10). Then, there exists one-sided limit

ℓa
def
= lim

x→a+

√
2u(x)

q′(x)
, (3.11)

it is finite, and ℓa is the unique positive root of the quadratic equation

x2 +
q(a)

q′′(a)
x− λ2

q3(a)q′′(a)
= 0. (3.12)

Lemma 3.3. Let u be a solution of (3.9) satisfying

u(x) > 0 for x ∈ (x0, b)

for some x0 ∈ (a, b) and u(b) = 0. Then, there exists one-sided limit

ℓb
def
= lim

x→b−

√
2u(x)

q′(x)
, (3.13)

it is finite, and ℓb is a root of the quadratic equation

x2 − q(b)

|q′′(b)|
x+

λ2

q3(b)|q′′(b)|
= 0. (3.14)

Lemma 3.4. There exists a threshold λab > 0 such that
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(i) if 0 < |λ| < λab, the unique solution u of (3.9), (3.10) satisfies u(b) = 0. Moreover, ℓa, ℓb
defined by (3.11) and (3.13) are respectively the unique positive root of (3.12) and the smaller
root of (3.14);

(ii) if |λ| = λab, the unique solution u of (3.9), (3.10) satisfies u(b) = 0. Moreover, ℓa, ℓb defined
by (3.11) and (3.13) are respectively the unique positive root of (3.12) and a root of (3.14);

(iii) if |λ| > λab, the unique solution u of (3.9), (3.10) satisfies u(b) > 0.

The case when

q′(a) = 0, q′(b) = 0, q′(x) < 0 for x ∈ (a, b), q′′(a) < 0, q′′(b) > 0

can be transformed by q̃(x) = q(−x) to the previous case.
The threshold λ0 is then a minimum of the thresholds λab that correspond to each subinterval

(a, b). Further, the change (3.5) is inverted by defining

h(x) =
ω2

√
2u(x)

|q′(x)|
for x ∈ (a, b), h(a) = ω2ℓa, h(b) = ω2ℓb,

on every subinterval (a, b). By construction, h is a positive absolutely continuous T -periodic func-
tion.

3.2 Estimation of the threshold λ0

Theorem 3.1 includes a general quantitative estimate of the threshold value λ0. In this subsection,
we develop a technique that permits a significant improvement of the estimates in concrete exam-
ples. Since λ0 is the minimum of the thresholds λab corresponding to each subinterval (a, b), we
only focus on estimating the latter. As in the previous subsection we formulate the results for the
case when (3.7) is valid.

Theorem 3.2. Let there exist positive constants λ1 and λ2 such that λ1 ≤ λ2, and let v, w ∈
AC([a, b];R) satisfy

v′(x) ≥ λ2
1q

′(x)

q3(x)
− q(x)

√
2|v(x)| sgn v(x) for a.e. x ∈ [a, b],

w′(x) ≤ λ2
2q

′(x)

q3(x)
− q(x)

√
2|w(x)| sgnw(x) for a.e. x ∈ [a, b],

v(a) ≥ 0 ≥ w(a), v(b) = 0 = w(b),

lim inf
x→b−

√
2|w(x)| sgnw(x)

q′(x)
> x1(λ2),

where x1(λ2) is the smaller root of (3.14) with λ = λ2. Then, the threshold λab admits the estimate

λ1 ≤ λab ≤ λ2. (3.15)

If we put

v(x)
def
=

(ℓ1(x)q
′(x))2

2
, w(x)

def
=

(ℓ2(x)q
′(x))2

2
for x ∈ [a, b],

then Theorem 3.2 yields the following assertion.
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Corollary 3.1. Let there exist positive constants λ1 and λ2 such that λ1 ≤ λ2, let q ∈ C2([a, b];R),
and let ℓ1, ℓ2 ∈ C1([a, b];R) satisfy

ℓi(x) > 0 for x ∈ [a, b] (i = 1, 2), (3.16)

ℓ1(x)
(
ℓ′1(x)q

′(x) + ℓ1(x)q
′′(x)

)
≥ λ2

1

q3(x)
− q(x)ℓ1(x) for x ∈ [a, b], (3.17)

ℓ2(x)
(
ℓ′2(x)q

′(x) + ℓ2(x)q
′′(x)

)
≤ λ2

2

q3(x)
− q(x)ℓ2(x) for x ∈ [a, b], (3.18)

ℓ2(b) > x1(λ2), (3.19)

where x1(λ2) is the smaller root of (3.14) with λ = λ2. Then, the threshold λab admits the estimate
(3.15).

3.3 A concrete example
Theorem 3.1 provides a general quantitative estimate for the threshold value λ0. However, such
an estimate can be improved for particular cases by a suitable construction of upper and lower
functions. To illustrate this idea, consider q(x) = 2− cosx for x ∈ [0, 2π]. Then local extremes of
q divide the interval [0, 2π] into two subintervals, in particular, we set T = 2π, x1 = 0, x2 = π,
x1 + T = 2π in order to apply Theorem 3.1. Then we have

q′(x) > 0 for x ∈ (0, π), q′(x) < 0 for x ∈ (π, 2π),

q′(0) = q′(π) = q′(2π) = 0, q′′(0) = q′′(2π) = 1, q′′(π) = −1.

Moreover, since q is symmetric with respect to π, we can easily conclude that the thresholds
corresponding to each subinterval has the same value, i.e., λ0 = λ0,π = λπ,2π. Thus, according to
Theorem 3.1, the threshold λ0 satisfies the inequalities

0.25 =
1

4
< λ2

0 ≤
243

4
= 60.75.

Let us see how to improve this estimate by constructing a specific couple of upper and lower
functions.

According to Corollary 3.1, it is sufficient to find suitable functions ℓ1(x) and ℓ2(x) that satisfy
(3.16)–(3.19). Obviously, we can start with positive constant functions. Then, if we put

λ2
1
def
= min

{
(ℓ21q

′′(x) + ℓ1q(x))q
3(x) : x ∈ [0, π]

}
,

λ2
2
def
= max

{
(ℓ22q

′′(x) + ℓ2q(x))q
3(x) : x ∈ [0, π]

}
,

we can easily verify that inequalities (3.17) and (3.18) with a = 0, b = π are fulfilled. Consequently,
if also (3.19) is fulfilled, then we can conclude that (3.15) holds.

Analyzing the function x 7→ (ℓ2q′′(x) + ℓq(x))q3(x) in detail, one can show that the optimal
values for constant functions ℓ1 and ℓ2 are

ℓ1 =
20

7
, ℓ2 =

5

2
.

Then, we get

λ2
1 =

540

49
≈ 11.020408163, λ2

2 =
3125

64
= 48.828125, x1(λ2) ≈ 0.835507015894,



80 R. Hakl, P. J. Torres

1 2 3 4 5 6
x

0.1

0.2

0.3

0.4

0.5

0.6

h(x)

(a) α = 1

1 2 3 4 5 6
x

0.5

1.0

1.5

h(x)

(b) α = 2

1 2 3 4 5 6
x

0.5

1.0

1.5

2.0

2.5

h(x)

(c) α = 3

0 1 2 3 4 5 6
x

1

2

3

4
h(x)

(d) α = 4

1 2 3 4 5 6
x

1

2

3

4

h(x)

(e) α = 5

0 1 2 3 4 5 6
x

1

2

3

4

5
h(x)

(f) α =
√
27

Figure 2: Numerically computed water depth function h(x) for an amplitude q(x) =
2− cosx of the travelling wave. We fixed ω = 1 and moved the energy flux parameter α.
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Figure 2. Numerically computed water depth function h(x) for an amplitude q(x) =
2− cosx of the travelling wave. We fixed ω = 1 and moved the energy flux parameter α.

and we have the estimate
540

49
≤ λ2

0 ≤
3125

64
.

Let us pass to nonconstant functions ℓ1(x) and ℓ2(x). Then the choice

ℓi(x)
def
= ai + bi cosx+ ci sinx+ di sinx cosx for x ∈ [0, π] (i = 1, 2),

where

a1 = 4.265, b1 = 1.639, c1 = −1.075, d1 = −0.778,

a2 = 3.605, b2 = 1.025, c2 = −0.408, d2 = −0.222,

guarantees that ℓ1(x) and ℓ2(x) satisfy (3.16)–(3.19) with a = 0, b = π, λ2
1 = 26.4, and λ2

2 = 31.68.
Furthermore, note also that

ℓ1(π) < x2(λ1), x2(λ2) < ℓ2(π), (3.20)
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where x2(λi) is the greater root of (3.14) with λ = λi (i = 1, 2). Indeed,

ℓ1(π) = 2.626, x2(λ1) ≈ 2.62792828771, x2(λ2) ≈ 2.53762549442, ℓ2(π) = 2.58.

The condition (3.20) is stronger than (3.19) and allows strict inequalities in the threshold estimate.
Therefore, according to Corollary 3.1 we have

26.4 < λ2
0 < 31.68.

We conducted several numerical calculations to approximately solve the relevant equations and
determine the water depth function h(x) associated with the amplitude q(x) = 2 − cosx. The
results are illustrated in Fig. 2. Notably, as λ approaches the critical value λ0, a singularity arises
in h(x).
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Abstract
By passing to the corresponding difference equation, a criterion is obtained for the existence

of a unique solution bounded on the entire real axis of a linear differential equation with piecewise
constant operator coefficients.

1 Introduction
Let (X, ∥ · ∥) be a complex separable Banach space, L(X) be the Banach space of linear continuous
operators acting from X into X, I and O be the identity and null operators in X, and Cb(R, X)
be the Banach space of functions x : R → X continuous and bounded on R with the norm

∥x∥∞ = sup
t∈R

∥x(t)∥.

Let us fix a natural number p, operators A, B; An, 1 ≤ n ≤ p, from L(X), real numbers
t0 < t1 < · · · < tp and consider the differential equation

x′(t) = Ax(t) + y(t), t ≥ tp,

x′(t) = Anx(t) + y(t), tn−1 ≤ t < tn, 1 ≤ n ≤ p,

x′(t) = Bx(t) + y(t), t < t0,

(1.1)

in which y is a fixed function from Cb(R, X). A bounded solution of equation (1.1) is a function
x ∈ Cb(R, X) such that for each t ∈ R \ {t0, t1, . . . , tp} there exists x′(t) and equality (1.1) holds.

Our goal is to obtain necessary and sufficient conditions on the operator coefficients A, B; An,
1 ≤ n ≤ p, for the following condition to be satisfied.
Boundedness condition. For each function y ∈ Cb(R, X) the differential equation (1.1) has a
unique bounded solution.

2 Auxiliary statements
Consider the corresponding to (1.1) difference equation

un+1 = eAun + vn, n ≥ p,

un+1 = eAn+1(tn+1−tn)un + vn, 0 ≤ n ≤ p− 1,

un+1 = eBun + vn, n ≤ −1,

(2.1)

in which {vn, n ∈ Z} is a given and {un, n ∈ Z} is a sought sequence of elements of the space X.
We will say that the difference equation (2.1) satisfies the boundedness condition if it has a unique
bounded solution {un, n ∈ Z} for each bounded sequence {vn, n ∈ Z}.

The following theorem holds.
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Theorem 2.1. For the differential equation (1.1) to satisfy the boundedness condition, it is neces-
sary and sufficient that difference equation (2.1) also satisfy the boundedness condition.

Let S = {z ∈ C | |z| = 1}. Let T be an operator from L(X) such that σ(T ) ∩ S = ∅; σ−(T ),
σ+(T ) are the parts of the spectrum of T that lie inside and outside the circle S, respectively;
P−(T ) and P+(T ) are the Riesz projectors corresponding to σ−(T ) and σ+(T ). Then the space X
can be decomposed into a direct sum X = X−(T )+̇X+(T ) of subspaces X±(T ) = P±(T )(X) that
are invariant with respect to T (see, for example, [3, pp. 32–34]).

For brevity, we denote Ek = eAk(tk−tk−1), Ejk = EkEk−1 . . . Ej , 1 ≤ j ≤ k ≤ p. Since the
operator Ejk is continuously invertible, the image Ejk(G) of an arbitrary subspace G of a Banach
space X is also a subspace. Therefore, by Theorem 3 of [4], the following theorem holds.

Theorem 2.2. For the difference equation (2.1), the boundedness condition is satisfied if and only
if the following conditions are satisfied:

(i1) σ(eA) ∩ S = ∅, σ(eB) ∩ S = ∅;

(i2) X = X−(e
A)+̇E1p(X+(e

B)).

3 Main results
Now let iR = {it | t ∈ R}, V ∈ L(X), σ(V ) ∩ iR = ∅, σ̃−(V ), σ̃+(V ) be the parts of the
spectrum of the operator V that lie in the left and right half-planes of C, respectively. Then, as
for the operator T , the space X decomposes into a direct sum X = X̃−(V )+̇X̃+(V ) of subspaces
X̃±(V ) = P̃±(T )(V ) that are invariant with respect to the operator V , where P̃±(V ) are the
Riesz projections corresponding to σ̃±(V ). The above statements allow us to prove the following
theorems.

Theorem 3.1. For the differential equation (1.1) to satisfy the boundedness condition, it is neces-
sary and sufficient that the following conditions be satisfied:

(j1) σ(A) ∩ iR = ∅, σ(B) ∩ iR = ∅;

(j2) X = X̃−(A)+̇E1p(X̃+(B)).

Theorem 3.2. Assume that conditions j1), j2) of Theorem 3 are satisfied. Then the following
statements hold:

(b1) for each 0 ≤ k ≤ p,
X = E−1

(k+1)p(X̃−(A))+̇E1k(X̃+(B)), (3.1)
where E(p+1)p = E10 = I;

(b2) corresponding to the function y ∈ Cb(R, X) the unique bounded solution x of the differential
equation (1.1) has the following form:

if t ≥ tp, then

x(t) =

t∫
tp

eA(t−s)P−(A)y(s) ds−
+∞∫
t

eA(t−s)P+(A)y(s) ds

+ eA(t−tp)P−
p

( +∞∫
tp

eA(tp−s)P+(A)y(s) ds+

p∑
k=1

Ekp

tk∫
tk−1

eAk(tk−1−s)y(s) ds
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+ E1pP
−
0

t0∫
−∞

eB(t0−s)P−(B)y(s) ds

)
;

if 1 ≤ k ≤ p, then (sequentially in descending order from k = p to k = 1)

x(t) = −
tk∫
t

eAk(t−s)y(s) ds+ eAk(t−tk)x(tk), t ∈ [tk−1; tk);

if t < t0, then

x(t) =

t∫
−∞

eB(t−s)P−(B)y(s) ds−
t0∫
t

eB(t−s)P+(B)y(s) ds

− eB(t−t0)

(
E−1

1p P
+
p

+∞∫
tp

eA(tp−s)P+(A)y(s) ds

+

p∑
k=1

E−1
1(k−1)P

+
k−1

tk∫
tk−1

eAk(tk−1−s)y(s) ds+ P+
0

t0∫
−∞

eB(t0−s)P−(B)y(s) ds

)
.

Here for each 0 ≤ k ≤ p P−
k , P+

k are the projectors corresponding to representation (3.1).

For a differential equation with a variable operator coefficient, the boundedness condition was
studied, in particular, in [1–3,5] using the exponential dichotomy condition on R for the correspond-
ing homogeneous differential equation. In the general case, checking the exponential dichotomy
condition is not trivial. Theorem 3.1 contains necessary and sufficient conditions directly on the
operator coefficients that ensure that the exponential dichotomy condition is satisfied for the ho-
mogeneous differential equation corresponding to equation (1.1).
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The anti-Perron effect [1–3] (opposite to the well-known Perron one [4, 5]) presupposed the
change of all positive characteristic exponents λ1(A) ≤ · · · ≤ λn(A) of linear approximation

ẋ = A(t)x, x ∈ Rn, t ≥ t0, (1)

with the bounded infinitely differentiable coefficients to negative in (some) nontrivial solutions of
the differential system

ẏ = A(t)y + f(t, y), y ∈ Rn, t ≥ t0, (2)

also with an infinitely differentiable vector-function from the known classes of small perturbations.
This effect is of great interest in its applications as compared with the Peron effect (devoted in a
cycle of author’s works). In the present report, we give an account of the results obtained by the
author for the realization of anti-Prron effect.

10. In a class of linear exponentially decreasing perturbations the following theorem is valid.

Theorem 1 ([1]). For any parameters λn ≥ · · · ≥ λ1 > 0, θ > 1, 0 < σ < λ1 + θ−1λ2, there exist:

1) system (1) with exponents λi(A) = λi, i = 1, n;

2) a linear perturbation f(t, y) ≡ Q(t)y with the exponent λ[Q] ≤ −σ < 0 such that system
(2) has exactly n − 1 linearly independent solutions Y1(t), . . . , Yn−1(t) with the Liapounov
exponents

λ[Yi] =
[
θ(σ − λ1)− λi+1

]
(θ − 1)−1, i = 1, n− 1.

Remark 1. The variant λ1(A) > 0, λn(A+Q) < 0, λ[Q] < 0 remains open.

20. In the case of linear perturbations Q(t) → 0, as t → +∞, the following theorem is valid.

Theorem 2 ([2]). For any parameters 0 < λ1 ≤ · · · ≤ λn, µ1 ≤ · · · ≤ µn < 0, there exist:

1) system (1) with the exponents λi(A) = λi, i = 1, n;

2) the perturbation Q(t) → 0, t → +∞ such that λi(A+Q) = µi, i = 1, n.
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30. In the case of nonlinear m-perturbations

∥f(t, y)∥ ≤ Cf∥y∥m, m > 1, y ∈ Rn, t ≥ t0, (3)

the following theorem holds.

Theorem 3 ([3]). For any parameters m > 1, θ > 1 and λ > 0, there exist:

1) two-dimensional system (1) with exponents λ1(A) = λ2(A) = λ > 0;

2) an infinitely differentiable perturbation (3) such that the nonlinear system (2) has the solution
Y (t) with the exponent

λ[Y ] = −λ(θ + 1)

mθ − 1
.

The anti-Perron effect in the case under consideration is realized for a great number of solutions
of the perturbed system. These systems belong to the spatially-time octants

R2
1 =

{
y ∈ R2 : y1 ≥ 0, y2 ≥ 0

}
× T0, R2

2 =
{
y ∈ R2 : y1 ≤ 0, y2 ≥ 0

}
× T0,

R2
3 =

{
y ∈ R2 : y1 ≤ 0, y2 ≤ 0

}
× T0, R2

4 =
{
y ∈ R2 : y1 ≥ 0, y2 ≤ 0

}
× T0,

in which y = (y1, y2) ∈ R2, T0 = [t0,+∞), t0 ≥ 0.
The following theorem is valid.

Theorem 4. For any parameters λ > 0, m4 ≥ m3 ≥ m2 ≥ m1 > 1, θ > 1, there exist:

1) two-dimensional linear system (1) with the characteristic exponents λ1(A) = λ2(A) = λ > 0;

2) an infinitely differentiable m1-perturbation f(t, y) : [t0,+∞) × R2 → R2 which is simultane-
ously an mi-perturbation in the octant R2

i for any i = 1, 4 such that the perturbed system (2)
has the solutions Yi ⊂ R2

i , i = 1, 4, with exponents

λ[Yi] = −λ
θ + 1

miθ − 1
< 0.

Remark 2. An analogous to Theorem 3 statement on the existence of two-dimensional systems
(1) with all positive exponents and (2) with perturbation (3) having 4 nontrivial solutions with
negative different Liapounov exponents, is valid.
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The present note is devoted to one one-dimensional system of nonlinear partial differential
equations (SNPDE). Many mathematical models in physics, biology, engineering and so on are
described by such type of models (see, for example, [1–3, 6, 9, 11, 12, 15, 17, 18] and the references
therein). In this article the initial-boundary value problems are considered and some features of
solutions are stated. The finite difference scheme is constructed for the investigated problem and
the question of its convergence is given. A lots of scientific works are dedicated to the investigation
and numerical resolution of such models (see, for example, [1–13, 15, 17, 18] and the references
therein).

As a model, let us consider the SNPDE of the following type:

∂U

∂t
=

∂

∂x

(
A(V )

∂U

∂x

)
,

∂V

∂t
=

∂

∂x

(
C(V )

∂V

∂x

)
+ F

(
V,
∂U

∂x

)
,

(1)

where A, C and F are the given functions of their arguments.
The numerous diffusion problems are reduced to (1) SNPDE. In particular, if

C(V ) ≡ 0, F
(
V,
∂U

∂x

)
= B(V )

(∂U
∂x

)2
,

(1) SNPSE meets at the modeling of penetration of an electromagnetic field into a medium, whose
coefficient of electroconductivity depends on temperature, without taking into account the heat
conductivity [11]. If

C(V ) ̸≡ 0, F
(
V,
∂U

∂x

)
= −D(V ) +B(V )

(∂U
∂x

)2
,

where B and D are given functions of their arguments, then system (1) describes the process of
penetration of an electromagnetic field into the medium, taking into account the heat conductivi-
ty [11].

If
A(V ) ≡ V, C(V ) ≡ 0, F

(
V,
∂U

∂x

)
= −V +G

(
V
∂U

∂x

)
,

where 0 < g0 ≤ G(ξ) ≤ G0, g0 and G0 are constants, and G is a smooth enough function, then
(1) represents an one-dimensional analogue of system which arises in studying the process of vein
formation in young leaves of higher plants [15].

Let us consider the following initial-boundary value problem:

∂U

∂t
=

∂

∂x

(
V α ∂U

∂x

)
, (2)
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∂V

∂t
= V α

(∂U
∂x

)2
, (3)

U(0, t) = 0, U(1, t) = ψ, (4)
U(x, 0) = U0(x), V (x, 0) = V0(x), (5)

where ψ = const > 0, and U0 = U0(x), V0 = V0(x) are the given functions.
If U(x, 0) = ψx and V (x, 0) = δ0 = const > 0, as it is mentioned in [7] the pair of functions:

U(x, t) = ψx, V (x, t) =
[
δ1−α
0 + (1− α)ψ2t

] 1
1−α , (6)

is the solution of the initial-boundary value problem (2)–(5) for any α ̸= 1. However, if α > 1,
then for a finite time t0 = δ1−α

0 /(ψ2(α − 1)), the function V becomes unbounded. This example
shows that the solutions of a system such as (2), (3) with smooth initial and boundary conditions
can blow-up at a finite time.

Note that the functions U and V , determined by formulas (6), also satisfy the system:

∂U

∂t
=

∂

∂x

(
V α∂U

∂x

)
, (7)

∂V

∂t
= V α

(∂U
∂x

)2
+
∂2V

∂x2
, (8)

with the boundary and initial conditions (4), (5) and adding to them the following boundary
conditions:

∂V

∂x

∣∣∣∣
x=0

=
∂V

∂x

∣∣∣∣
x=1

= 0. (9)

From this we can conclude that if α > 1, then for problem (4), (5), (7)–(9), the theorem on the
existence of the global solution also does not hold.

The question of the stability of the stationary solution for appropriate diffusion problems is
interesting for a mathematical explanation. In this connection we consider the following initial-
boundary value problem:

∂U

∂t
=

∂

∂x

(
V α ∂U

∂x

)
,

∂V

∂t
= −V β + V γ

(∂U
∂x

)2
,

U(0, t) = 0, V α ∂U

∂x

∣∣∣∣
x=1

= ψ,

U(x, 0) = U0(x), V (x, 0) = V0(x).

(10)

It is easy to be convinced that the stationary solution of problem (10) has the form(
ψ

β−γ
2α+β−γ x, ψ

2
2α+β−γ

)
.

The following statement is true.

Theorem 1. If α ̸= 0, 2α+β−γ > 0, then the stationary solution (ψ
β−γ

2α+β−γ x, ψ
2

2α+β−γ ) of problem
(10) is linearly stable if and only if the following condition takes place

(γ − β)ψ
2(β−α−1)
2α+β−γ <

π

4
. (11)

Remark 1. If γ − β ≤ 0, then the stationary solution of problem (10) is always linearly stable.
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Remark 2. Let
γ − β > 0, β − α− 1 ̸= 0, ψc =

[ π2

4(γ − β)

] 2α+β−γ
2(β−α−1)

.

Applying (11), if 0 < ψ < ψc, the stationary solution of problem (10) is linearly stable, and if
ψ > ψc, it becomes unstable. For ψ = ψc, there is the possibility of occurrence of the Hopf-type
bifurcation [14]. Small perturbations of the stationary solution can be transformed into a periodic
in time self-oscillation.

Based on [5], the analogous investigations for more general models are given in [6, 8, 10].
Let us now consider the global stability of a solution of problem (10) for one particular case.

Consider the following problem:

∂U

∂t
=

∂

∂x

(
V
∂U

∂x

)
,

∂V

∂t
= −V +

(∂U
∂x

)2
,

U(0, t) = 0, V
∂U

∂x

∣∣∣∣
x=1

= ψ,

U(x, 0) = U0(x), V (x, 0) = V0(x).

(12)

It is obvious that the stationary solution of problem (12) looks like to (ψ1/3x, ψ2/3). Introduce
the notations:

y(x, t) = U(x, t)− ψ1/3x, z(x, t) = V (x, t)− ψ2/3,

where (U, V ) is a solution of problem (12). We finally arrive at
1∫

0

[
y2(x, t) + z2(x, t)

]
dx ≤ e−Kt

1∫
0

{[
U0(x)− ψ1/3x

]2
+
[
V0(x)− ψ2/3

]2}
dx,

where K is a positive constant.
Thus, the following statement is true.

Theorem 2. For the stationary solution of problem (12) (ψ1/3x, ψ2/3) there takes place the global
and monotone stability in L2(0, 1).

Note that it is not difficult to get a certain generalization of the results considered here for the
diffusion model, where the process of heat conductivity is taken into account.

Note also that some results regarding solvability, uniqueness, asymptotic behavior of solutions
and properties of the difference schemes of corresponding integro-differential models with different
kinds of boundary conditions for the above-mentioned equations and systems are studied in many
works (see, for example, [6, 9] and the references therein).

Now, let us consider the convergence of difference schemes for the following problem:

∂U

∂t
=

∂

∂x

(
V α ∂U

∂x

)
,

∂V

∂t
= V α−1

(∂U
∂x

)2
,

(13)

U(0, t) = U(1, t) = 0, U(x, 0) = U0(x),

V (x, 0) = V0(x) ≥ σ0 = const > 0.
(14)

The grid-function u = {ui} corresponding to U is considered in usual grid, whereas the function
v = {vi} approximating V is considered at the centers of grid points.
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Using usual notations [16], let us consider the following two-parameterized finite difference
scheme:

ut + βτutt =
[
(v(σ))αu

(σ)
x

]
x
,

vt + βτvtt = (v(σ))α−1(u
(σ)
x )2,

u(0, t) = u(1, t) = 0, u(x, 0) = U0(x),

u(x, τ) = U0(x) + τ
[
(V (σ))αU

(σ)
x

]
x,t=0

,

v(x, 0) = V0(x), v(x, τ) = V0(x) + τ
[
(V (σ))α−1(U

(σ)
x )2

]
t=0

.

(15)

Here,
v(σ) = σvj+1 + (1− σ)vj .

The scheme (15), for the sufficiently smooth solution of the problem (13), (14), has the following
order of approximation:

O(τ2 + h2 + (σ − 0, 5− β)τ).

Using the method of energy inequalities [16] for investigation of the difference schemes, the
following statement is proved.

Theorem 3. If problem (13), (14) has the sufficiently smooth solution, then the solution of the
difference scheme (15) tends to the solution of problem (13), (14) and the rate of the convergence
is O(τ2 + h2 + (σ − 0, 5− β)τ).

Remark 3. If σ = 1/2, β = 0, the two-layer difference scheme with accuracy of order O(τ2 + h2)
is constructed. The same accuracy takes place if σ = 1 and β = 1/2. In this case, (15) is the
three-layer scheme.

The difference scheme (15) is the system of the nonlinear algebraic equations. To be convinced
of the solvability, it is enough to use an a-priori estimation which follows after the multiplication of
equations (15) by u and v, respectively, and apply the Brouwer fixed-point lemma (see, e.g., [13]).
Note that applying the same technique as we use in proving the convergence Theorem 3, it is not
difficult to prove the uniqueness of the solution and the stability of the scheme (15).
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1 Introduction
We consider nonlinear differential equations of the form(

p(t)φα(t)(x
′)
)′
+ q(t)φβ(t)(x) = 0, (A)

under the following assumptions:

(a) the coefficients p(t) and q(t) are positive continuous functions on I = [a,∞), a ≥ 0;

(b) the exponents α(t) and β(t) are positive continuous functions on I having the limits α(∞)
and β(∞) as t → ∞ in the extended real number system;

(c) the symbol φγ(t) with a positive continuous function γ(t) on I denotes the operator in C(I)
defined by

φγ(t)(u(t)) = |u(t)|γ(t) sgnu(t), u ∈ C(I).

Since the prototype of (A) is the differential equation(
p(t)φα(x

′)
)′
+ q(t)φβ(x) = 0, (A0)

α and β being positive constants, which is well-known as the Emden–Fowler equation, (A) is
often referred to as a generalized Emden–Fowler equation or an Emden–Fowler type equation with
variable exponents.

We are concerned exclusively with nontrivial solutions x(t) of (A) which are defined on an
infinite interval of the form [T,∞), T ≥ a. A solution is called oscillatory if it has an infinite
sequence of zeros tending to infinity and nonoscillatory otherwise. Given a solution x(t) of (A), we
define

Dαx(t) = p(t)φα(t)(x
′(t)),

and call it the quasi-derivative of x(t). In this notation, the dependence of the operator Dα on p(t)
is omitted for simplicity.

Historically, a vast literature has been published on oscillation theory of the standard Emden–
Fowler differential equation (A0). A remarkable result in the theory is the fact that the situation
in which all solutions of (A0) with α ̸= β are oscillatory can be characterized completely by the
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impressive integral conditions formulated in terms of the exponents {α, β} and the coefficients
{p(t), q(t)}.

Equation (A0) is called strongly superlinear or strongly sublinear according as α < β or α > β,
respectively. Use is made of the following notations and functions:

Ip =

∞∫
a

p(t)−
1
α dt, Iq =

∞∫
a

q(t) dt,

P (t) =

t∫
a

p(s)−
1
α ds if Ip = ∞, π(t) =

∞∫
t

p(s)−
1
α ds if Ip < ∞,

Q(t) =

t∫
a

q(s) ds if Iq = ∞, ρ(t) =

∞∫
t

q(s) if Iq < ∞.

The following facts are well-known.

(i) All solutions of (A0) are oscillatory if Ip = Iq = ∞.

(ii) Assume that Ip = ∞ and Iq < ∞. Let (A0) be strongly superlinear. All of its solutions are
oscillatory if and only if

∞∫
a

(
p(t)−1ρ(t)

) 1
α dt = ∞.

(iii) Assume that Ip = ∞ and Iq < ∞. Let (A0) be strongly sublinear. All of its solutions are
oscillatory if and only if

∞∫
a

q(t)P (t)β dt = ∞.

(iv) Assume that Ip < ∞ and Iq = ∞. Let (A0) be strongly superlinear. All of its solutions are
oscillatory if and only if

∞∫
a

q(t)π(t)β dt = ∞.

(v) Assume that Ip < ∞ and Iq = ∞. Let (A0) be strongly sublinear. All of its solutions are
oscillatory if and only if

∞∫
a

(
p(t)−1Q(t)

) 1
α dt = ∞.

For the proofs of these theorems see e.g. Elbert and Kusano [1] and Kusano et al. [3].
Now, a question naturally arises: Is it possible to characterize the oscillation of all solutions of

the generalized Emden–Fowler equations with variable exponents? The aim of the present work is
to give an affirmative answer to this question by showing that the results (ii)–(v) for (A0) mentioned
above can be properly generalized to equation (A) which is strongly superlinear or strongly sublinear
in the sense defined below.

Any generalized Emden–Fowler equation (A) is made up by the two crucial components. One
is the pair of the exponents {α(t), β(t)} which determines the nonlinearity of (A), and the other is
the pair of the coefficients {p(t), q(t)} which implies, so to speak, the size or magnitude of (A).

The concept of superlinearity and sublinearity of (A0) is extended to equation (A) as follows.
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Definition 1.1.

(i) Equation (A) is said to be strongly superlinear if the pair of exponents {α(t), β(t)} has the
property that α(t) is nonincreasing, β(t) is nondecreasing and there is a constant λ > 1 such
that

β(t) ≥ λα(t) for t ≥ a.

(ii) Equation (A) is said to be strongly sublinear if the pair of exponents {α(t), β(t)} has the
property that α(t) is nonincreasing, β(t) is nondecreasing and there is a positive constant
µ > 1 such that

α(t) ≥ µβ(t) for t ≥ a.

We measure the size of the coefficients p(t) and q(t) by their integrals defined by

I(p) =

∞∫
a

p(t)
− 1

α(t) dt and I(q) =

∞∫
a

q(t) dt.

There are four different combinations of I(p) and I(q), of which the following three cases will be
the main object of our analysis.

Definition 1.2. Equation (A) is said to be of category I if I(p) = ∞ and I(q) < ∞, of category II
if I(p) < ∞ and I(q) = ∞, and of category III if I(p) = ∞ and I(q) = ∞.

The category IV (I(p) < ∞, I(q) < ∞) is excluded from our consideration because equation
(A) of this category always possesses nonoscillatory solutions.

Our main objective in this paper is to generalize the propositions (ii)–(v) listed above regar-
ding the standard Emden–Fowler equation (A0) to the corresponding Emden–Fowler equation with
variable exponents (A).

In Section 2 we focus our attention on equation (A) of category I and show by way of direct
asymptotic analysis that necessary and sufficient conditions for oscillation of all of its solutions can
be established for both strongly superlinear and strongly sublinear cases. Equation (A) of category
II is considered in Section 3. There, we avoid analyzing the equation directly as in Section 2, and
make use of an uncommon means named Duality Principle which makes it possible to derive the
desired oscillation theorems for the category II equation almost automatically from the results on
the category I equation already known in Section 2. Thus it turns out that our results obtained
in Sections 2 and 3 combined are an exact generalization of the propositions (ii)–(v) which are the
typical oscillation theorems for the standard Emden–Fowler equation (A0).

2 Oscillation of equation (A) of category I

We begin with an oscillation theorem which generalizes the proposition (i) for (A0) to equation (A)
of of category III.

Theorem 2.1. Consider equation (A) with α(∞) > 0 and β(∞) > 0. All of its solutions are
oscillatory if p(t) and q(t) have the property that I(p) = ∞ and I(q) = ∞.

Proof. Assume for contradiction that (A) has a nonoscillatory solution x(t) on J = [T,∞). Without
loss of generality we may suppose that x(t) > 0 on J . Since (A) is written as

(Dαx)
′(t) = −q(t)x(t)β(t) < 0,
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Dαx(t) is decreasing on J . We claim that Dαx(t) > 0 on J . In fact, if it is negative at some point
of t∗ ∈ J then there is a negative constant −k = Dαx(t∗) such that

Dαx(t) = −p(t)(−x′(t))α(t) ≤ −k for t ≥ t∗.

Rewriting the above as
−x′(t) ≥ k

1
α(t) p(t)

− 1
α(t) for t ≥ t∗,

and integrating the above inequality from t∗ to t, we have

x(t∗)− x(t) ≥
t∫

t∗

k
1

α(s) p(s)
− 1

α(s) ds, t ≥ t∗,

from which, since k
1

α(t) ≥ k0, t ≥ t∗, for some constant k0 > 0 because of α(∞) > 0, it follows that
x(t) → −∞ as t → ∞. This, however, contradicts the assumed positivity of x(t), and hence we
must have Dαx(t) > 0 on J . This means that x(t) is increasing on J .

Now, we integrate (A) from T to t to obtain
t∫

T

q(s)x(s)β(s) ds = Dαx(T )−Dαx(t) ≤ Dαx(T ), t ≥ T,

which implies that
∞∫
T

q(s)x(s)β(s) ds < ∞. Combining this inequality with the fact that x(t)β(t) with

β(∞) > 0 is greater than some positive constant on J , we conclude that
∞∫
T

q(s) ds < ∞ contrary

to the assumption I(q) = ∞. This completes the proof.

Note that in Theorem 2.1 neither the superlinearity nor the sublinearity is required for (A).
Let there be given equation (A) of category I whose coefficients p(t) and q(t) satisfy I(p) = ∞

and I(q) < ∞, respectively. Use is made of the functions

Pα(t) =

t∫
a

p(s)
− 1

α(s) ds and ρ(t) =

∞∫
t

q(s) ds.

It is clear that Pα(t) → ∞ and ρ(t) → 0 as t → ∞.
The main results of this section are stated in the following two theorems. They guarantee

that the situation in which all solutions of equation (A) of category I are oscillatory is completely
characterized provided that (A) is either strongly superlinear or strongly sublinear.

Theorem 2.2. Let equation (A) with α(∞) > 0 be of category I and strongly superlinear. Then,
all solutions of (A) are oscillatory if and only if

∞∫
a

(
p(t)−1ρ(t)

) 1
α(t) dt = ∞. (2.1)

Theorem 2.3. Let equation (A) with α(∞) > 0 be of category I and strongly sublinear. Then, all
solutions of (A) are oscillatory if and only if

∞∫
a

q(t)Pα(t)
β(t) dt = ∞.
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Each of these theorems is proved by reductio ad absurdum. In proving Theorem 2.2, for example,
to verify the “if” part, first we assume (2.1) to hold but (A) has a nonoscillatory solution of (A)
and after a sensitive computational process we are finally forced to admit the contrary conclusion
that

∞∫
a

(
p(t)−1ρ(t)

) 1
α(t) dt < ∞. (2.2)

Likewise, to verify the “only if” part of Theorem 2.2, we have to show that the condition (2.2)
implies the existence of a nonoscillatory solution for equation (A). As a matter of fact, one such
positive solution x(t) such that x(∞) = 1 can be obtained as a solution of the integral equation
with variable exponents

x(t) = 1−
t∫

T

(
p(s)−1

∞∫
s

q(r)x(r)β(r) dr

) 1
α(s)

ds, t ≥ T, (2.3)

for some sufficiently large T > a. It should be noted that the solvability of (2.3) is assured for a
much wider class of equations of the form (A) including both strongly superlinear and sublinear
equations as special cases.

The procedure of the proof of Theorem 2.3 by reductio ad absurdum is essentially the same as
for Theorem 2.2.

What is said above suggests that in studying oscillation theory of generalized Emden–Fowler
equations preliminary knowledge of nonoscillation theory for them is indispensable. See [2].

3 Oscillation of equation (A) of category II via Duality Principle
Now we turn our attention to equation (A) of category II whose coefficients p(t) and q(t) satisfy
the integral conditions

∞∫
a

p(t)
− 1

α(t) dt < ∞,

∞∫
a

q(t) dt = ∞.

Equation (A) is assumed to be either strongly superlinear or strongly sublinear.
For such an equation (A) the functions

πα(t) =

∞∫
t

p(s)
− 1

α(s) ds and Q(t) =

t∫
a

q(s) ds,

are well-defined and play a major role throughtout this section. It is clear that πα(t) → 0 and
Q(t) → ∞ as t → ∞.

Our aim is to find explicit oscillation criteria for equation (A) of category II which are similar
to those given in Theorems 2.1 and 2.2 for equation (A) of category I. We are so bold as to make
use of an uncommon method (named Duality Principle) which enables us to precisely formulate
the desired results for equations of category II almost automatically (without additional serious
computations) from the corresponding known results for equations of category I.

Let (A) be a generalized Emden–Fowler equation with the exponents {α(t), β(t)} and the coef-
ficients {p(t), q(t)}. Putting

y(t) = −p(t)φα(t)(x
′(t)),
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equation (A) is split into the first-order differential system with variable exponents

x′(t) = −p(t)
− 1

α(t)φ 1
α(t)

(y(t)), y′(t) = q(t)φβ(t)(x(t)). (3.1)

It is easy to see that elimination of {y(t), y′(t)} from (3.1) gives the original second-order differential
equation (A), and that elimination of {x(t), x′(t)} from (3.1) gives a new second-order differential
equation (

q(t)
− 1

β(t)φ 1
β(t)

(y′)
)′
+ p(t)

− 1
α(t)φ 1

α(t)
(y) = 0. (B)

Equation (B) is called the reciprocal equation of (A). Equation (B) is structurally the same as
equation (A) and has the exponents { 1

β(t) ,
1

α(t)} and the coefficients {q(t)−
1

β(t) , p(t)
− 1

α(t) }. It is
obvious that (A) is the reciprocal equation of (B).

If we denote the exponents of (B) by {α̃(t), β̃(t)}, and the coefficients of (B) by {p̃(t), q̃(t)},
then it is easily verified that the nonlinearity of (B) is the same as that of (A), and that

∞∫
a

p̃(s)
− 1

α̃(s) ds =

∞∫
a

q(s) ds,

∞∫
a

q̃(s) ds =

∞∫
a

p(s)
− 1

α(s) ds.

Thus it is confirmed that the transition from equation (A) to its reciprocal equation (B) keeps the
strong superlinearity or strong sublinearity of (A) unchanged, but changes the category of (A) from
I to II, or from II to I. Such a close interrelationship between (A) and its reciprocal equation (B)
is worthy of being remembered as a principle:
Duality Principle. Let equation (B) be the reciprocal equation of (A).

(i) If (A) is strongly superlinear (or strongly sublinear), then so is (B).

(ii) If (A) is of category I (resp. category II), then (B) is of category II (resp. category I).

(iii) All solutions of (A) are oscillatory if and only if all solutions of (B) are oscillatory.

Let us return to equation (A) of category II which is either strongly superlinear or strongly sub-
linear, and demonstrate that the Duality Principle makes it possible to find the desired oscillation
criteria for (A) almost automatically from the already known oscillation criteria for (B) which is
category I.

It is known that since (A) has the coefficients {p(t), q(t)} and the exponent {α(t), β(t)}, the
components of the coefficients {p̃(t), q̃(t)} and the exponents {α̃(t), β̃(t)} of (B) are expressed as

p̃(t) = q(t)
− 1

β(t) , q̃(t) = p(t)
− 1

α(t) , α̃(t) =
1

β(t)
, β̃(t) =

1

α(t)
.

Suppose that (A) is strongly superlinear. In addition suppose that β(∞) < ∞. Then, (B)
is also strongly superlinear and α̃(∞) = 1/β(∞) > 0, Since (B) is of category I, Theorem 2.2 is
applicable to to (B) and ensures that all solutions of (B) are oscillatory if and only if

∞∫
a

(p̃(t)−1ρ̃(t))
1

α̃(t) dt = ∞.

Noting that

p̃(t)−1 = q(t)
1

α(t) and ρ̃(t) =

∞∫
t

p(s)
− 1

α(s) ds = πα(t),

we are led to the following oscillation theorem for strongly superlinear equation (A) of category II.
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Theorem 3.1. Let (A) be a strongly superlinear equation with β(∞) < ∞ and of category II. All
of its solutions are oscillatory if and only if

∞∫
a

q(t)πα(t)
β(t) dt = ∞.

Next, suppose that (A) is strongly sublinear with β(∞) < ∞. Then, (B) is also strongly
sublinear with α̃(∞) > 0 and so applying Theorem 2.3 to (B) we see that all solutions of (B) with
α̃(∞) > 0 are oscillatory if and only if

∞∫
a

q̃(t)P̃α(t)
β̃(t) dt = ∞. (3.2)

Noting (3.2) that q̃(t) = p(t)
− 1

α(t) and

P̃α̃(t)(t)
β̃(t) =

( t∫
a

q(s) ds

) 1
α(t)

= Q(t)
1

α(t) .

we are led to the following oscillation theorem for strongly sublinear equation of category II.

Theorem 3.2. Let (A) be a strongly sublinear equation with β(∞) < ∞ and of category II. All of
its solutions are oscillatory if and only if

∞∫
a

(p(t)−1Q(t))
1

α(t) dt = ∞.

Concluding Remarks. Recenly there has been an increasing interest in the study of differential
equations with variable exponents. To the best of our knowledge the pioneer of oscillation theory
of such equations is Koplatadze who published the papers [4, 5]. Koplatadze’s results are closely
related to ours specialized to equation (A) with α(t) ≡ 1 and p(t) ≡ 1. For other related topics see
e.g.the papers [2, 7, 8].
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1 Introduction
This report is a continuation of the note [1] that was submitted to the QUALITDE-2021 in which
the distribution of zeros and extrema of oscillatory solutions were studied for second order half-
linear differential equations of the form(

p(t)φα(x
′)
)′
+ q(t)φα(x) = 0, (HL)

where α is a positive constant, p(t) and q(t) are positive continuously differentiable functions on
[a,∞), and φα stands for the odd function on R given by

φα(u) = |u|α sgnu = |u|α−1u, u ∈ R.

We assume that equation (HL) is oscillatory, that is, all of its nontrivial solutions are oscillatory.
Let x(t) be a solution of (HL) on [a,∞). Let {σk}∞k=1 (σk < σk+1) be the sequence of all zeros
of x(t), and let {τk}∞k=1 (τk < τk+1) be the sequence of all points at which x(t) takes on its local
extrema. It is clear that x′(τk) = 0 for all k. The value |x′(σk)| is called the slope of x(t) at t = σk,
while the value |x(τk)| is called the amplitude of x(t) at t = τk. The sets of the amplitudes and
slopes of x(t) determine the following

A∗[x] = sup
k

|x(τk)|, A∗[x] = inf
k
|x(τk)|, (1.1)

S∗[x] = sup
k

|x′(σk)|, S∗[x] = inf
k
|x′(σk)|, (1.2)

which provide helpful information about the oscillatory behavior of x(t). Since it is difficult to
analyze the equation (HL) with general positive functions p(t) and q(t), we restrict our analysis
to the equation in which both p(t) and q(t) are positive monotone functions on [a,∞). The four
possible cases
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(i) p′(t) = 0, q′(t) 5 0;

(ii) p′(t) 5 0, q′(t) = 0;

(iii) p′(t) = 0, q′(t) = 0;

(iv) p′(t) 5 0, q′(t) 5 0

should be distinguished.

2 Known results
In this section we state known results for the convenience of the reader (see [1]).

Theorem A. Let (HL) be oscillatory and let x(t) be a solution of it satisfying the initial condition

x(a) = l, x′(a) = m, (2.1)

where l and m are any given constants such that (l,m) ̸= (0, 0).

(i) Suppose that p′(t) = 0 and q′(t) 5 0 for t = a. Then,

A∗[x] 5
[q(a)|l|α+1 + αp(a)|m|α+1

q(∞)

] 1
α+1 if q(∞) > 0, (2.2)

A∗[x] =
[p(a) 1

α {q(a)|l|α+1 + αp(a)|m|α+1}
p(∞)

1
α q(a)

] 1
α+1 if p(∞) < ∞. (2.3)

(ii) Suppose that p′(t) 5 0 and q′(t) = 0 for t = a. Then,

A∗[x] 5
[p(a) 1

α {q(a)|l|α+1 + αp(a)|m|α+1}
p(∞)

1
α q(a)

] 1
α+1 if p(∞) > 0, (2.4)

A∗[x] =
[q(a)|l|α+1 + αp(a)|m|α+1

q(∞)

] 1
α+1 if q(∞) < ∞. (2.5)

(iii) Suppose that (p(t)
1
α q(t))′ = 0 for t = a. Then,

A∗[x] 5
[q(a)|l|α+1 + αp(a)|m|α+1

q(a)

] 1
α+1

, (2.6)

A∗[x] =
[p(a) 1

α {q(a)|l|α+1 + αp(a)|m|α+1}
p(∞)

1
α q(∞)

] 1
α+1 if p(∞)

1
α q(∞) < ∞. (2.7)

(iv) Suppose that (p(t)
1
α q(t))′ 5 0 for t = a. Then,

A∗[x] 5
[p(a) 1

α {q(a)|l|α+1 + αp(a)|m|α+1}
p(∞)

1
α q(∞)

] 1
α+1 if p(∞)

1
α q(∞) > 0, (2.8)

A∗[x] =
[q(a)|l|α+1 + αp(a)|m|α+1

q(a)

] 1
α+1

. (2.9)



104 J. Jaroš, T. Kusano, T. Tanigawa

Since the constants l and m in (2.1) are arbitrary, the above inequalities (2.2)–(2.9) guarantee
under the indicated conditions on p(∞) and/or q(∞) that A∗[x] < ∞ and A∗[x] > 0 for all
solutions x(t) of (HL). Then, noting that A∗[x] < ∞ gives the boundedness of x(t) on [a,∞) and
more A∗[x] < ∞ and A∗[x] > 0 implies the non-decaying boundedness of x(t) on [a,∞), we have
the following propositions.

Corollary A. Suppose that (HL) is oscillatory. All of its solutions are bounded on [a,∞) if p(t)
and q(t) satisfy one of the following conditions:

(i) p′(t) = 0, q′(t) 5 0 for t = a and q(∞) > 0;

(ii) p′(t) 5 0, q′(t) = 0 for t = a and p(∞) > 0;

(iii) (p(t)
1
α q(t))′ = 0 for t = a;

(iv) (p(t)
1
α q(t))′ 5 0 for t = a and p(∞)

1
α q(∞) > 0.

Corollary B. Suppose that (HL) is oscillatory. All of its solutions are non-decaying bounded on
[a,∞) if p(t) and q(t) satisfy one of the following conditions:

(i) p′(t) = 0, q′(t) 5 0 for t = a and p(∞) < ∞, q(∞) > 0;

(ii) p′(t) 5 0, q′(t) = 0 for t = a and p(∞) > 0, q(∞) < ∞;

(iii) (p(t)
1
α q(t))′ = 0 for t = a and p(∞)

1
α q(∞) < ∞;

(iv) (p(t)
1
α q(t))′ 5 0 for t = a and p(∞)

1
α q(∞) > 0.

Theorem B. Let (HL) be oscillatory and let x(t) be a solution of it satisfying (2.1).

(i) Suppose that p′(t) = 0 and q′(t) 5 0 for t = a. Then,

S∗[x] 5
[q(a)|l|α+1 + αp(a)|m|α+1

αp(a)

] 1
α+1

, (2.10)

S∗[x] =
[p(a) 1

α q(∞){q(a)|l|α+1 + αp(a)|m|α+1}
αp(∞)1+

1
α q(a)

] 1
α+1 if p(∞) < ∞ and q(∞) > 0. (2.11)

(ii) Suppose that p′(t) 5 0 and q′(t) = 0 for t = a. Then,

S∗[x] 5
[p(a) 1

α q(∞){q(a)|l|α+1 + αp(a)|m|α+1}
αp(∞)1+

1
α q(a)

] 1
α+1 if p(∞) > 0 and q(∞) < ∞, (2.12)

S∗[x] =
[q(a)|l|α+1 + αp(a)|m|α+1

αp(a)

] 1
α+1

. (2.13)

(iii) Suppose that p′(t) = 0 and q′(t) = 0 for t = a. Then,

S∗[x] 5
[q(∞){q(a)|l|α+1 + αp(a)|m|α+1}

αp(a)q(a)

] 1
α+1 if q(∞) < ∞, (2.14)

S∗[x] =
[p(a) 1

α {q(a)|l|α+1 + αp(a)|m|α+1}
αp(∞)1+

1
α

] 1
α+1 if p(∞) < ∞. (2.15)



REPORTS OF QUALITDE, Volume 3, 2024 105

(iv) Suppose that p′(t) 5 0 and q′(t) 5 0 for t = a. Then,

S∗[x] 5
[p(a) 1

α {q(a)|l|α+1 + αp(a)|m|α+1}
αp(∞)1+

1
α

] 1
α+1 if p(∞) > 0, (2.16)

S∗[x] =
[q(∞){q(a)|l|α+1 + αp(a)|m|α+1}

αp(a)q(a)

] 1
α+1 if q(∞) > 0. (2.17)

Corollary C. Let (HL) be oscillatory. If p(t) and q(t) are monotone functions such that 0 <
p(∞) < ∞ and 0 < q(∞) < ∞, then S∗[x] < ∞ and S∗[x] > 0 for all solutions x(t) of (HL).

3 Main results
Our first result concerns the estimation of the derivatives of oscillatory solutions of (HL).

Theorem 3.1. Let (HL) be oscillatory and let x(t) be the solution of it satisfying the initial
condition (2.1).

(i) p′(t) = 0 and q′(t) 5 0 for t = a. Then,

sup
t

|x′(t)| 5
[q(a)|l|α+1 + αp(a)|m|α+1

αp(a)

] 1
α+1

,

lim
t→∞

x′(t) = 0 if p(∞) = ∞.

(ii) p′(t) 5 0 and q′(t) = 0 for t = a. Then,

sup
t

|x′(t)| 5
[p(a) 1

α q(∞){q(a)|l|α+1 + αp(a)|m|α+1}
αp(∞)1+

1
α q(a)

] 1
α+1 if p(∞) > 0 and q(∞) < ∞.

(iii) p′(t) = 0 and q′(t) = 0 for t = a. Then,

sup
t

|x′(t)| 5
[q(∞){q(a)|l|α+1 + αp(a)|m|α+1}

p(a)q(a)

] 1
α+1 if q(∞) < ∞,

lim
t→∞

x′(t) = 0 if lim
t→∞

q(t)

p(t)
= 0.

(iv) p′(t) 5 0 and q′(t) 5 0 for t = a. Then,

sup
t

|x′(t)| 5
[p(a) 1

α {q(a)|l|α+1 + αp(a)|m|α+1}
αp(∞)1+

1
α

] 1
α+1 if p(∞) > 0.

Our next result in this section concerns the sequences of zeros of solutions of (HL). We are
interested in explicit laws or rules, if any, governing the arrangement of this sequences. Assume
that (HL) is oscillatory. Let x(t) be any of its solutions on [a,∞) and let {σk} represent the
sequences of zeros of x(t).

Theorem 3.2. The sequence {σk+1 − σk} is decreasing or increasing according to p′(t) 5 0 and
q′(t) = 0, or p′(t) = 0 and q′(t) 5 0 for t = a.
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4 Example
Consider the half-linear differential equation(

(coth(t+ τ))αφα(x
′)
)′
+ k tanh(t+ τ)φα(x) = 0 (4.1)

on [0,∞), where τ = 0 and k > 0 are constants. Equation (4.1) is oscillatory since the functions
p(t) = (coth(t + τ))α and q(t) = k tanh(t + τ) are not integrable on [0,∞). It is clear that p(t)

and q(t) satisfy p′(t) 5 0, q′(t) = 0, (p(t) 1
α q(t))′ = 0, p(0) = (coth τ)α, p(∞) = 1, q(0) = k tanh τ

and q(∞) = k, all nontrivial solutions of equation (4.1) are bounded and non-decaying by (ii) and
(iii) of Corollary A and Corollary B, respectively. As regards the estimates for upper and lower
amplitudes and upper and lower slopes of solutions of (4.1), we obtain, for example,

A∗[x] 5
[
coth τ |l|α+1 +

α

k
(coth τ)α+2|m|α+1

] 1
α+1

,

A∗[x] =
[
tanh τ |l|α+1 +

α

k
(coth τ)α|m|α+1

] 1
α+1

from (ii) of Theorem A, and

S∗[x] 5
[k
α
coth τ |l|α+1 + (coth τ)α+2|m|α+1

] 1
α+1

,

S∗[x] =
[k
α
(tanh τ)α+1|l|α+1 + |m|α+1

] 1
α+1

from (ii) of Theorem B. If in particular τ → ∞ and k = α, then the upper and lower amplitudes
and slopes coincide, that is,

A∗[x] = A∗[x] = S∗[x] = S∗[x] =
[
|l|α+1 + |m|α+1

] 1
α+1 .

This value may well be called the amplitude A[x] and the slope S[x] of the solution x(t) of the
equation

(φα(x
′))′ + αφα(x) = 0. (4.2)

Equation (4.2) is known as a differential equation generating a generalized trigonometric func-
tion. Its solution x(t) determined by the initial condition x(0) = 0, x′(0) = 1 is the generalized
sine function x(t) = S(t) which exists on R, is periodic with period 2πα, πα = 2π

α+1/ sin(
π

α+1),
and vanishes at t = nπα, n ∈ Z, whose amplitude and slope are given by A[x] = 1 and S[x] = 1,
respectively. Moreover, from the first statement of Theorem 3.2 applied to equation (4.2), it follows
that the sequences {σk} of zeros of any solution of it are arranged in such a way that {σk+1 − σk}
is decreasing.
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Let Ω be a convex piecewise smooth domain on the plane of independent variables x and t. In
the domain Ω for the inhomogeneous equation of the string vibration

�u := utt − uxx = F (x, t), (1)

consider the Dirichlet type problem
u
∣∣
∂Ω

= φ, (2)

where � := ∂2

∂t2
− ∂2

∂x2 and ∂Ω is the boundary of the domain Ω.
Numerous works are devoted to the investigation of Dirichlet type problem for the homogeneous

string vibration equation. A. Sommerfeld [11] was the first who draw attention to this problem,
pointing out the difference between this problem and Dirichlet problem for Laplace equation. A
systematic study of this problem for the string vibration homogeneous equation dates back to the
works of J. Adamard [5–7], which was later developed in the work of A. Huber [8]. Of particular
note is the work of F. John [9], in which Dirichlet type problem for a fairly wide class of domains
is reduced to the same problem for a rectangle. In the case of a rectangular domain, this problem
was the subject of research of D. G. Bourgin and R. Duffin [2], N. N. Vakhania [12]. In these works,
questions of uniqueness and existence of solutions are closely related to the algebraic properties of
the ratio λ of sides of a rectangle. In particular, in the case when λ is irrational, there is a unique
solution to Dirichlet problem. In the case when λ is rational, the uniqueness of the solution to this
problem is violated, and some special cases of solvability of this problem are studied in the works
of D. W. Fox and C. Pucci [4], L. L. Campbell [3].

In our work, although a special case is considered when λ = 1 for the inhomogeneous equation
of forced oscillations of a string, necessary and sufficient conditions for the solvability of Dirichlet
type problem with inhomogeneous boundary conditions are established, under which the solutions
to this problem are written in quadratures. In particular, it is shown that the corresponding
homogeneous problem have an infinite number of linearly independent solutions, which are given
out explicitly.

Below, for simplicity and clarity of the obtained results, we will limit ourselves to considering
the case, when the domain Ω := {(x, t) ∈ R2 : 0 < x < l, 0 < t < l} is a square. Rewrite the
corresponding (2) boundary conditions on ∂Ω as follows

u(x, 0) = φ(x), u(x, l) = φ1(x), 0 ≤ x ≤ l, (3)
u(0, t) = µ1(t), u(l, t) = µ2(t), 0 ≤ t ≤ l. (4)

Considering regular solutions of the class C2(Ω), we will require the following conditions of
smoothness and consistency at the vertices of the square Ω to be satisfied for problem (1), (3), (4)

F ∈ C1(Ω), φ, φ1, µi ∈ C2([0, l]), i = 1, 2,
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φ(0) = µ1(0), φ(l) = µ2(0), φ1(0) = µ1(l), φ1(l) = µ2(l),

µ′′1(0)− φ′′(0) = F (0, 0), µ′′1(l)− φ′′
1(0) = F (0, l),

µ′′2(l)− φ′′
1(l) = F (l, l), µ′′2(0)− φ′′(l) = F (l, 0).

Let D := PP1P3P2 be any characteristic rectangle, lying in Ω, where P = P (x0, t0), Pi =
Pi(xi, ti), t0 > ti, i = 1, 2, 3, and the segments P1P ; P3P2 and P1P3; PP2 belong to the families of
characteristics x− t = const and x+ t = const, respectively.
Auxiliary statement. Let γ = γ1 ∪ γ2 be a simple piecewise smooth curve dividing the charac-

teristic rectangle PP1P3P2 into two simply connected domains D1 and D2, and γ1 consists of the
characteristic segments of equation (1), and γ2 does not have a characteristic direction at any of
its points. Next, let u ∈ C2(D \ γ)∩C(D) be a solution of equation (1) in D \ γ, and the functions

u1 := u
∣∣
D1

∈ C2(D1) and u2 := u
∣∣
D2

∈ C2(D2),

on the line transition γ are related by the following relations

u1
∣∣
γ
= u2

∣∣
γ
,

∂u1
∂ν

∣∣∣∣
γ2

=
∂u2
∂ν

∣∣∣∣
γ2

, (5)

where ∂
∂ν is the derivative with respect to the direction of the outer unit normal ν := (νx, νt) to

the boundary one of the domains D1 or D2.
Then the equality holds

u(P ) = u(P1) + u(P2)− u(P3) +
1

2

∫
PP1P3P2

F dx dt. (6)

For investigation of the boundary value problem (1), (3), (4) below will be needed solution in
quadratures of the following mixed problem: in the domain Ω find the solution u ∈ C2(Ω) of
equation (1) according to the initial

u(x, 0) = φ(x), ut(x, 0) = ψ(x), 0 ≤ x ≤ l, (7)

and boundary
u(0, t) = µ1(t), u(l, t) = µ2(t), 0 ≤ t ≤ l, (8)

conditions, where the functions F, φ, ψ, µ1 and µ2 satisfy the following smoothness and consistency
conditions

F ∈ C1(Ω), φ ∈ C2([0, l]), ψ ∈ C1([0, l]), µ1, µ2 ∈ C2([0, l]),

F (0, 0) = µ′′1(0)− φ′′(0), F (l, 0) = µ′′2(0)− φ′′(l),

µ1(0) = φ(0), µ′1(0) = ψ(0), µ2(0) = φ(l), µ′2(0) = ψ(l).

(9)

In order to solve these problem in quadratures let us divide the domain Ω, which is a square
with vertices at the points A(0, 0), B(0, l), C(l, l) and D(l, 0), into four rectangular triangles Ω1 :=
∆AOD, Ω2 := ∆AOB, Ω3 := ∆DOC and Ω4 := ∆BOC, where the point O( l2 ,

l
2) is the center of

the square Ω (see, for example, [10]).
By virtue of d’Alembert’s formula (see, for example, [1]) the solution of problem (1), (7) is given

by the following equality

u(x, t) =
1

2

[
φ(x− t) + φ(x+ t)

]
+

1

2

x+t∫
x−t

ψ(τ) dτ +
1

2

∫
Ω1

x,t

F dξ dτ, (x, t) ∈ Ω1, (10)
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where D1
x,t is a triangle with vertices at the points (x, t), (x− t, 0) and (x+ t, 0).

Let the point P = P (x, t) ∈ Ω2, and PP1P3P2 be the characteristic rectangle, where P1 =
P1(0, t − x), P2 = P2(x + t, 0), P3 = P3(t,−x). Let us denote by P̃2 = P̃2(x − t, 0) the point of
intersection of the side P1P3 of the rectangle PP1P3P2 with the side AD of the square Ω. For t < 0,
we introduce the function u2 as a solution to the equation �u2 = 0 with the initial conditions (7),
i.e.,

u2(x, t) =
1

2

[
φ(x− t) + φ(x+ t)

]
+

1

2

x+t∫
x−t

ψ(τ) dτ, (x, t) ∈ ∆AED, (11)

where E = E( l2 ,−
l
2). For the characteristic rectangle PP1P3P2 we use equality (6), in which

γ = P̃2P2, D1 = PP1P̃2P2, D2 = P̃2P3P2, u1 := u
∣∣
PP1P̃2P2

, and the function u2 is given by equality
(11). Due to the above reasoning, bonding conditions (5) will be satisfied, and then, taking into
account the Dirichlet boundary conditions (8), equality (6) for our case will take the form

u(x, t) = µ1(t− x)+
1

2

[
φ(t+ x)−φ(t− x)

]
+

1

2

t+x∫
t−x

ψ(τ) dτ +
1

2

∫
PP1P̃2P2

F dξ dτ, (x, t) ∈ Ω2. (12)

Carrying out similar reasoning in the case of P = P (x, t) ∈ Ω3 and P = P (x, t) ∈ Ω4 for
solution u = u(x, t) of problem (1), (7), (8) we will have

u(x, t) = µ2(x+t−l)+
1

2

[
φ(x−t)−φ(2l−x−t)

]
+
1

2

2l−x−t∫
x−t

ψ(τ) dτ+
1

2

∫
D3

x,t

F dξ dτ, (x, t) ∈ Ω3, (13)

and

u(x, t) = µ1(t− x) + µ2(x+ t− l)

− 1

2

[
φ(t− x) + φ(2l − t− x)] +

1

2

2l−t−x∫
t−x

ψ(τ) dτ +
1

2

∫
D4

x,t

F dξ dτ, (x, t) ∈ Ω4, (14)

respectively.
Here D3

x,t – quadrilateral with vertices: P (x, t) ∈ Ω3, P 3
1 (x− t, 0), P 3

2 (2l−x− t, 0) and P 3
3 (l, x+

t− l), and D4
x,t – pentagon with vertices: P (x, t) ∈ Ω4, P 4

1 (0, t− x), P 4
2 (t− x, 0), P 4

3 (2l − x− t, 0)
and P 4

4 (l, x+ t− l).
Thus, due to the conditions of smoothness and consistency (9), the unique classical solution

u ∈ C2(Ω) of problem (1), (7), (8) is given by formulas (10), (12)–(14).
From the above reasoning the following theorem follows.

Theorem. Let the smoothness and consistency conditions (9) be satisfied. Then for the solvability
of Dirichlet problem (1), (3), (4) it is necessary and sufficient the following condition

φ1(x) = µ1(l − x) + µ2(x)− φ(l − x) +
1

2

∫
PP1P3P2

F dξ dτ, 0 ≤ x ≤ l (15)

to be satisfied, where

P = P (x, l), P1 = P1(0, l − x), P3 = P3(l − x, 0), P2 = P2(l, x).



110 O. Jokhadze, S. Kharibegashvili

Moreover, if condition (15) is satisfied, all solutions to this problem are given by formulas (10),
(12)–(14), where ψ is an arbitrary function from the class C1([0, l]).

From this theorem it follows that the kernel

K :=
{
v ∈ C2(Ω), � v = 0, v

∣∣
∂Ω

= 0
}

of problem (1), (3), (4) is infinite-dimensional and can be described by the formula

v(x, t) =



1

2

x+t∫
x−t

ψ(τ) dτ, (x, t) ∈ Ω,

1

2

t+x∫
t−x

ψ(τ) dτ, (x, t) ∈ Ω,

1

2

2l−x−t∫
x−t

ψ(τ) dτ, (x, t) ∈ Ω,

1

2

2l−t−x∫
t−x

ψ(τ) dτ, (x, t) ∈ Ω4,

(16)

where ψ is an arbitrary function of the class C1([0, l]).

Remark. Taking into account that Dirichlet type problem (1), (3), (4) for the string vibration in-
homogeneous equation, as well as Dirichlet problem for Poisson equation ∆u = F is self-adjoint,
then a necessary condition for the solvability of problem (1), (3), (4) in the case of homogeneous
boundary conditions (3), (4) is the following equality∫

Ω

Fv dx dt = 0 ∀ v ∈ K,

where the function v is the given by equality (16).
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Nonlinear deterministic and stochastic integral equations of the Hammerstein type have a long
history. These equations are known to play a major role in classical problems of physics and
engineering. Due to the expansion of the scope of applications of integral equations, in particular,
to problems in biology and mathematical economics, various generalizations of the Hammerstein
equations are becoming increasingly popular in the literature.

We consider the following Hammerstein-type stochastic equation with singular and non-singular
kernels and nonlinear Volterra operators:

x(t) = κ(t) +
m∑
i=1

t∫
0

Ki(t, s)(Fix)(s) ds+
m∑
i=1

mi∑
j=1

t∫
0

Kij(t, s)(Gijx)(s) dBi(s), (1)

where x(t), κ(t) are random n-dimensional processes, Bi are jointly independent scalar Wiener
processes, Ki, Kij are deterministic Borel functions with values in the space of n×n-matrices, and
Fi and Gij are Volterra operators ensuring the dependence of solutions of the equations on the
prehistory. Here the first integral is the Lebesgue integral, and the second is the Itô integral. In
most formulations below, equation (1) is assumed to be defined on a finite interval [0, T ], but in
fact, all the results are also true for the semiaxis t ≥ 0.

Equation (1) covers many important classes of stochastic fractional differential and integral
equations. To see how a stochastically perturbed deterministic equation with fractional derivatives
can be converted into (1), consider the deterministic equation

(CDα
0+x)(t) = f(t, x(t)) (α > 0),

with the fractional Caputo derivative, see e.g. the monograph [6]. If this equation is perturbed by
the white noise Ḃ(t), then we obtain a formally written equation

(CDα
0+x)(t) = f(t, x(t)) + g(t, x(t))Ḃ(t)

or
dαx(t) = f(t, x(t)) dt+ g(t, x(t)) dB(t), (2)
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where dα is the fractional Caputo differential. In this case, the transition from (2) to a well-defined
integral equation (1) is based on the fractional integration formula

(CDα
0+x)(t) = f(t) =⇒ x(t) =

l−1∑
k=0

x(k)(0)tk

k!
+

1

Γ(α)

t∫
0

(t− s)α−1f(s) ds,

where Γ(α) =
∞∫
0

sα−1e−s ds – the Gamma function, and l = α if α ∈ N , and l = [α] + 1 if α /∈ N .

This formula allows us to move from the differential form (2) to the integral one:

x(t) =
l−1∑
k=0

x(k)(0)tk

k!
+

1

Γ(α)

t∫
0

(t− s)α−1f(s, x(s)) ds+
1

Γ(α)

t∫
0

(t− s)α−1g(s, x(s)) dB(s),

and then a solution of equation (2) is by definition understood as a stochastic process x(t) satisfying
this integral equation.

Another example of (1) are equations with fractional Wiener processes describing a popular
class of models primarily developed in connection with their applications in financial mathematics,
see, for example, [3], as well as numerous references cited in this monograph. An example is an
equation of the form

dx(t) = f(t, x(t)) dt+ g(t, x(t)) dBβ(t), (3)

where Bβ is a fractional Wiener process with the Hurst parameter β (0.5 < β < 1). Note that
without loss of generality we can assume thatBβ is written in the Riemann–Liouville form, since this
form differs from the standard one by a progressively measurable stochastic process with absolutely
continuous trajectories, which can therefore be included in the first term on the right-hand side
of the equation (3). This observation makes it possible to write the equation (3) as an integral
equation (1) using the well-known formula [3]

t∫
0

ξ(t) dBβ(t) =
1

Γ(β + 1/2)

t∫
0

ξ(s)(t− s)β−1/2 dB(t).

Then equation (3) can be rewritten in the integral form

x(t) = x(0) +

t∫
0

f(s, x(s)) ds+
1

Γ(α)

t∫
0

(t− s)α−1g(s, x(s)) dB(s),

where α = β + 1/2. By a solution of equation (3) we mean a stochastic process x(t) satisfying this
integral equation in order to avoid technical difficulties associated with integration over fractional
Wiener process [3].

The third important class of stochastic equations included in the general form (1) are equations
with multiple time scales

dx(t) =
m∑
i=1

fi(t, x(t)) (dt)
αi + g(t, x(t)) dB(t) (0 < αi < 1), (4)

which were introduced in [9]. Here (dt)αi are Jumarie-type differentials defining independent time
scales Ti(t) = tαi (see [9] for a more detailed description of these time scales). The transition from
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(4) to the integral equation (1) is based on the formula
t∫

t0

ξ(t)(dt)α = α

t∫
t0

ξ(s)(t− s)α−1 dt,

developed in [9], which again gives a special case of the equation (1):

x(t) = x(0) +

m∑
i=1

αi

t∫
0

(t− s)α1−1fi(s, x(s)) ds+

t∫
0

g(s, x(s)) dB(s).

By combining all these special cases, one can also obtain various mixed integral equations (1) with
singular kernels Ki, Kij of the form const(t − s)α−1 (0 < α < 1), and some further examples can
be found in Corollaries 1–6 below.

In what follows, we use the following constants that remain fixed:

- n ∈ N is the dimension of the phase space of the equation, i.e. the size of the solution vector
of the equation.

- m,mi ∈ N .

- i is the index satisfying the conditions 1 ≤ i ≤ m.

- j is the index satisfying the conditions 1 ≤ j ≤ mi.

- T > 0, p ≥ 2, q ≥ 1, qi ≥ 1, qij ≥ 1, αi > 0, αij > 1/2 – real numbers.

The following notations will also be used:

- R = (−∞,∞), R+ = [0,∞), R− = (−∞, 0).

- | · | – fixed norm in Rn and ∥ · ∥ – matrix norm consistent with the norm | · |.

- IA – indicator (characteristic function) of the set A.

- Bor(M) – σ-algebra of all Borel subsets of the metric space M .

- Ln
q – Lebesgue space of equivalence classes of n-dimensional functions on the interval [0, T ].

- B = (Ω,F , (F)t≥0, P ) is a stochastic basis, where Ω is the set of elementary events, F is the
σ-algebra of events on Ω, (F)t≥0 is a right-continuous non-decreasing flow of σ-subalgebras
of F , P is a probability measure on F , and all σ-algebras are complete with respect to this
measure.

- E is the mathematical expectation constructed with respect to the measure P .

- B(t) (t ∈ R+) – scalar standard Wiener process.

- Bi(t) (t ∈ R+) – scalar standard and jointly independent Wiener processes.

- knp – linear space of n-dimensional F0-measurable random variables χ satisfying the condition
E|χ|p <∞; the norm in knp is the p-th root of this variable.

- Dn
p is the linear normed space of all n-dimensional progressively measurable stochastic pro-

cesses x(·) on the interval [0, T ] satisfying the condition sup
0≤t≤T

E|x(t)|p <∞; the norm in Dn
p

is the p-th root of this quantity.
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Let J be the interval [0, T ] or the semiaxis R+. Recall that a stochastic process x(t, ω) (t ∈ J ,
ω ∈ Ω) whose restriction to the set [0, v]×Ω is Bor([0, v])⊗Fv-measurable for any v ∈ J , is called
progressively measurable (with respect to the stochastic basis B).
Definition 1. Let a Volterra operator V map stochastic processes from Dn

p to progressively mea-
surable processes and let there exist a linear bounded operator Q : Dn

p → Dn
p and a measurable

deterministic function Ψ(t) ≥ 0, t ∈ [0, T ], such that the inequality∣∣(V x)(t)− (V y)(t)
∣∣ ≤ Ψ(t)|(Q(x− y))(t)|

for all x, y ∈ Dn
p and µ-almost all 0 ≤ t ≤ T . Then we will say that the operator V satisfies the

generalized Lipschitz condition with the operator Q and the function Ψ.
The theorem below describes conditions of existence and uniqueness of the main equation (1).

Theorem 1. Let the following conditions be satisfied for the equation (1) on the interval [0, T ]:
(1) κ ∈ Dn

p .

(2) The operators Fi, Gij satisfy the generalized Lipschitz conditions with linear bounded operators
Qi, Qij : Dn

p → Dn
p and functions Ψi ∈ L1

qi, Ψij ∈ L1
2qij

, respectively.

(3) Fi0̂ ∈ Dn
p , Gij 0̂ ∈ Dn

p , where 0̂ is the zero element of Dn
p .

(4) Ci := sup
0≤t≤T

t∫
0

∥Ki(t, s)∥
qi

qi−1 ds <∞, Cij := sup
0≤t≤T

t∫
0

∥Kij(t, s)∥
2qij
qij−1 ds <∞.

Then this equation has a unique solution, belonging to the space Dn
p .

In what follows we apply Theorem 1 to several specific classes of stochastic fractional equations.
The interval on which the existence of solutions is proved is always assumed to be finite and equal
to [0, T ], and the solution on this interval belongs to the space Dn

p , but all the results below remain
valid for the semi-axis with obvious changes in the formulations.
Corollary 1. Let in the equation (1) Ki(t, s) = (t − s)αi−1, Kij(t, s) = (t − s)αij−1, and the
operators Fi, Gij satisfy conditions (2), (3) of Theorem 1, where

qi > max{α−1
i ; 1}, qij > max{(2αij − 1)−1; 1}.

Then for any κ ∈ Dn
p the equation (1) has a unique solution.

Corollary 1 is a far-reaching generalization of the corresponding results on fractional equations
with Caputo derivatives from [8] (for the finite-dimensional case) and [4]. In particular, it includes
random right-hand sides and random delays.

The two corollaries below deal with the initial value problem for equations with distributed and
random delays, respectively. Both types of initial value problems are special cases of the equation
(1), since, as shown below, they are reduced to this equation using the technique described in the
monograph [2].

Consider the equation

x(t) = x(0) +
m∑
i=1

t∫
0

(t− s)αi−1fi(s, (Hix)(s)) ds

+
m∑
i=1

mi∑
j=1

t∫
0

(t− s)αij−1gij(s, (Hijx)(s)) dBi(s) (t ∈ [0, T ]), (5)
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where fi(t, ω, v), gij(t, ω, v) – n-dimensional random functions that for each v ∈ Rnl are progres-
sively measurable in variables (t, ω) ∈ [0, T ]× Ω, and for P ⊗ µ-almost all (t, ω) are continuous in
v. The initial condition for (5) is defined by

x(s) = φ(s) (s ∈ R−), (6)

where φ is a given stochastic process on R−. By a solution of the problem (5), (6) x(t) (t ≤ T )
we mean an n-dimensional stochastic process whose restriction to the interval [0, T ] belongs to the
space Dn

p and which satisfies the initial condition (6).
Let us start with an equation that includes distributed delay.

Corollary 2. Let the following conditions be satisfied:

(1) φ – (Bor(R−)⊗F0)-measurable n-dimensional stochastic process.

(2) There exist measurable non-negative functions Ψi(t), Ψij(t) (t ∈ [0, T ]), Ψi ∈ L1
qi, Ψij ∈ L1

2qij
,

where qi > max{α−1
i ; 1}, qij > max{(2αij − 1)−1; 1}, for which P ⊗ µ-the inequalities

|fi(t, u)− fi(t, v))| ≤ Ψi(t)|u− v| and |gij(t, u)− gij(t, v))| ≤ Ψij(t)|u− v|

for any u, v ∈ Rnl and t ∈ [0, T ].

(3)

(Hiz)(t) =

t∫
−∞

dsRi(t, s)z(s), (Hijz)(t) =

t∫
−∞

dsRij(t, s)z(s),

where Borel functions Ri, Rij, defined on the set [0, T ] × (−∞, t] and taking values in the
space of (nl)× n-matrices, satisfy conditions

sup
0≤t≤T

Vart0Ri(t, · ) <∞, sup
0≤t≤T

Vart0Rij(t, · ) <∞,

sup
0≤t≤T

E

∣∣∣∣fi(t,
0∫

−∞

dsRi(t, s)φ(s)

)∣∣∣∣p <∞, sup
0≤t≤T

E

∣∣∣∣gij(t,
0∫

−∞

dsRij(t, s)φ(s)

)∣∣∣∣p <∞.

Then for any x(0) ∈ knp the problem (5), (6) has a unique solution.

The following corollary considers the initial value problem (5), (6) with random delays.

Corollary 3. Let conditions (1), (2) of Corollary 2 be satisfied, and let condition (3) be replaced
by condition

3A. (Hiz)(t) = (x(h1i (t)), . . . , x(h
l
i(t))), (Hijz)(t) = (x(h1ij(t)), . . . , x(h

l
ij(t))), where scalar stochas-

tic processes hki (t), hkij(t) (k = 1, . . . , l) satisfy the conditions h(t) ≤ t a.s. 0 ≤ t ≤ T ,
h−1(B) ∈ Bor([0, T ])⊗Fv for any v ∈ [0, T ] and any Borel set B ⊂ (−∞, v] and

sup
0≤t≤T

E
∣∣∣fi(t, φ(h1i (t))I{h1

i (t)<0}, . . . , φ(h
l
i(t))I{hl

i(t)<0}

)∣∣∣p <∞,

sup
0≤t≤T

E
∣∣∣gij(t, φ(h1ij(t))I{h1

ij(t)<0}, . . . , φ(h
l
ij(t))I{hl

ij(t)<0}

)∣∣∣p <∞.
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Then for any x(0) ∈ knp equation with random delays

x(t) = x(0) +

m∑
i=1

1

Γ(αi)

t∫
0

(t− s)αi−1fi
(
s, x(h1i (t)), . . . , x(h

l
i(t))

)
ds

+

m∑
i=1

mi∑
j=1

1

Γ(αij)

t∫
0

(t− s)αij−1gij
(
s, x(h1ij(t)), . . . , x(h

l
ij(t))

)
dBi(s) (t ∈ [0, T ])

has only one solution satisfying the equality (6).
Consider now equations with arbitrary homogeneous singular kernels.
Let

x(t) = κ(t) +
m∑
i=1

t∫
0

Ki(t− s)(Fix)(s) ds+

m∑
i=1

mi∑
j=1

t∫
0

Kij(t− s)(Gijx)(s) dBi(s) (t ∈ [0, T ]). (7)

Corollary 4. Let conditions (1)–(3) of Theorem 1 be satisfied, and condition (4) be replaced by
4A. The columns of the matrices Ki and Kij belong to the spaces Ln

qi(qi−1)−1 and Ln
2qij(qij−1)−1,

respectively.
Then equation (7) has a unique solution belonging to the space Dn

p .
Corollary 4 generalizes the main result of the paper [4].
Consider now equations including generalized fractional derivatives. They are represented by

(1) on the interval [0, T ], where
Ki(t, s) = ψ′

i(s)(ψi(t)− ψi(s))
αi−1 and Kij(t, s) = ψ′

ij(s)(ψij(t)− ψij(s))
αij−1, (8)

the functions ψi and ψij have continuous derivatives on [0, T ], and ψ′
i(t) > 0, ψ′

ij(t) > 0, t ∈ [0, T ].
Obviously, this equation is a stochastic generalization of equations with Caputo derivatives.
Corollary 5. Let the operators Fi, Gij satisfy conditions (2), (3) of Theorem 1, where

qi > max{α−1
i ; 1}, qij > max

{
(2αij − 1)−1; 1

}
.

Then for any κ ∈ Dn
p the equation (1), where Ki and Kij are defined by the formulas (8), has a

unique solution.
Corollary 5 generalizes the existence and uniqueness theorem from [1].
Finally, we consider equations including multifractional Wiener processes described by (1) on

[0, T ], where

Ki(t, s) =
1

Γ(θi(t))
(t− s)θi(t)−1 and Kij(t, s) = cij(θij(t))(t− s)θij(t)−1/2. (9)

Corollary 6. Let cij(u) (u > 0), θi(t), θij(t) (t ∈ [0, T ]) be Borel, bounded scalar functions, where
θi(t) ≥ αi, θij(t) ≥ δij > 0 for all t ∈ [0, T ]. Let, further, the operators Fi, Gij satisfy conditions
(2), (3) of Theorem 1, where

qi > max{α−1
i ; 1}, qij > max

{
(2δij)

−1; 1
}
.

Then for any κ ∈ Dn
p the equation (1), where Ki and Kij are defined by the formulas (9), has a

unique solution.
Such equations were considered in [5]. Corollary 6 does not formally generalize the result on

the existence of weak solutions for the equations offered in [5], but it does extend the existence and
uniqueness theorem to equations of a much more general form.

The proofs of the above results can be found in the paper [7].



118 R. I. Kadiev, A. Ponosov

References
[1] R. Almeida, A. B. Malinowska and M. T. T. Monteiro, Fractional differential equations with

a Caputo derivative with respect to a kernel function and their applications. Math. Methods
Appl. Sci. 41 (2018), no. 1, 336–352.

[2] N. V. Azbelev, V. P. Maksimov and L. F. Rakhmatullina, Introduction to the Theory of
Functional Differential Equations: Methods and Applications. Contemporary Mathematics
and Its Applications, 3. Hindawi Publishing Corporation, Cairo, 2007.

[3] F. Biagini, Y. Hu, B. Øksendal and T. Zhang, Stochastic Calculus for Fractional Brownian Mo-
tion and Applications. Probability and its Applications (New York). Springer-Verlag London,
Ltd., London, 2008.

[4] M. M. El-Borai, K. E.-S. El-Nadi and H. A. Fouad, On some fractional stochastic delay
differential equations. Comput. Math. Appl. 59 (2010), no. 3, 1165–1170.

[5] F. A. Harang, T. K. Nilssen and F. N. Proske, Girsanov theorem for multifractional Brownian
processes. Stochastics 94 (2022), no. 8, 1137–1165.

[6] R. Herrmann, Fractional Calculus. An Introduction for Physicists. Third edition of
[MR3243574]. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2018.

[7] R. I. Kadiev and A. V. Ponosov, Existence and uniqueness of solutions of nonlinear functional
integral Itô equations. (Russian) Differencial’nye uravneniya 60 (2024), no. 9, 1167–1189.

[8] Y. Li and Y. Wang, The existence and asymptotic behavior of solutions to fractional stochastic
evolution equations with infinite delay. J. Differential Equations 266 (2019), no. 6, 3514–3558.

[9] J.-C. Pedjeu and G. S. Ladde, Stochastic fractional differential equations: modeling, method
and analysis. Chaos Solitons Fractals 45 (2012), no. 3, 279–293.



REPORTS OF QUALITDE, Volume 3, 2024 119

An Efficient Numerical Method For Solving Problem
for Impulsive Differential Equations with Loadings Subject

to Multipoint Conditions

Zhazira Kadirbayeva1,2
1Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan

2Kazakh National Women’s Teacher Training University, Almaty, Kazakhstan
E-mail: zhkadirbayeva@gmail.com

1 Introduction
Impulsive differential equations are a significant area of mathematical research, driven by their
ability to model real-world phenomena exhibiting sudden changes at specific moments. Such sys-
tems arise in various fields, including physics, biology, engineering, and economics, where abrupt
transitions, discontinuities, or shocks are inherent. These equations offer a robust framework to
capture behaviors like population explosions, mechanical shocks, or instantaneous changes in elec-
trical circuits [1, 6, 8].

The concept of “loadings” in impulsive differential equations introduces an additional layer of
complexity and applicability. Loadings can represent external influences or internal accumula-
tions that act on the system during the impulse events [7]. This perspective extends the classical
theory, enabling more comprehensive modeling of systems with cumulative or distributed effects
accompanying the impulses.

The study of impulsive differential equations with loadings bridges the gap between theoretical
advancements and practical applications. It explores existence, uniqueness, stability, and qual-
itative behavior of solutions while accounting for the dynamic interplay between impulses and
loadings. Such investigations are critical in optimizing real-world systems, predicting outcomes,
and controlling processes influenced by sudden changes and distributed forces [2, 5].

This paper focuses on developing numerical method for solving problem for impulsive differen-
tial equations with loadings subject to multipoint conditions. The objective is to provide numerical
algorithm for solving problem for impulsive differential equations with loadings subject to mul-
tipoint conditions. By doing so, it contributes to the growing body of knowledge that supports
both the theoretical understanding and practical use of impulsive systems in diverse scientific and
engineering domains.

2 Setting of the problem and the main results
In this paper, by means of the Dzhumabaev parameterization method [3], we investigate the fol-
lowing problem for impulsive differential equations with loadings subject to multipoint conditions

dx

dt
= A0(t)x+

m∑
i=1

Ai(t) lim
t→θi+0

x(t) + f(t), x ∈ Rn, t ∈ (0, T ), (2.1)

Bi lim
t→θi−0

x(t)− Ci lim
t→θi+0

x(t)
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= φi +
i−1∑
k=1

Dk lim
t→θk−0

x(t) +

i−1∑
k=1

Ek lim
t→θk+0

x(t), φi ∈ Rn, i = 1,m, (2.2)

G0x(0) +G1 lim
t→θ1+0

x(t) +G2x(T ) = d, d ∈ Rn. (2.3)

Here (n×n)-matrices Ai(t) (i = 0,m) and n-vector-function f(t) are piecewise continuous on [0, T ]
with possible discontinuities of the first kind at the points t = θi (i = 1,m). Bi, Ci (i = 1,m), Gj

(j = 0, 2), Dk and Ek (k = 1,m− 1) are constant (n × n)-matrices, and φi (i = 1,m) and d are
constant n vectors, 0 = θ0 < θ1 < · · · < θm < θm+1 = T .

Let PC([0, T ], θ,Rn) denote the space of piecewise continuous functions x(t) with the norm

∥x∥1 = max
i=0,m

sup
t∈[θi,θi+1)

∥x(t)∥.

A solution to problem (2.1)–(2.3) is a piecewise continuously differentiable vector function x(t)
on [0, T ], which satisfies the system of the differential equations with loadings (2.1) on [0, T ] except
the points t = θi (i = 1,m), the conditions of impulse effects at the fixed time points (2.2) and the
condition (2.3).

Definition. Problem (2.1)–(2.3) is called uniquely solvable, if for any function f(t) ∈
PC([0, T ], θ,Rn) and vectors d ∈ Rn, φi ∈ Rn (i = 1,m), it has a unique solution.

In this paper, we use the approach offered in [4] to solve the boundary value problem for
impulsive differential equations with loadings subject to the multipoint conditions (2.1)–(2.3).

The interval [0, T ] is divided into subintervals by points:

[0, T ) =
m+1⋃
r=1

[θr−1, θr).

Define the space C([0, T ], θ,Rn(m+1)) of systems functions x[t] = (x1(t), x2(t), . . . , xm+1(t)),
where xr : [θr−1, θr) → Rn are continuous on [θr−1, θr) and have finite left-sided limits lim

t→θr−0
xr(t)

for all r = 1,m+ 1, with the norm

∥x[ · ]∥2 = max
r=1,m+1

sup
t∈[θr−1,θr)

∥xr(t)∥.

Denote by xr(t) the restriction of the function x(t) to the r−th interval [θr−1, θr), i.e. xr(t) =
x(t) for t ∈ [θr−1, θr), r = 1,m+ 1, and introducing the parameters

λr = lim
t→θr−1+0

xr(t), r = 1,m+ 1,

and performing a replacement of the function ur(t) = xr(t) − λr on each interval [θr−1, θr), r =
1,m+ 1, we obtain the boundary value problem with parameters λr, r = 1,m+ 1:

dur
dt

= A0(t)(ur + λr) +

m∑
i=1

Ai(t)λi+1 + f(t), t ∈ [θr−1, θr), r = 1,m+ 1, (2.4)

ur(θr−1) = 0, r = 1,m+ 1, (2.5)

Bi lim
t→θi−0

ui(t) +Biλi − Ciλi+1 = φi +
i−1∑
k=1

Dk lim
t→θk−0

[
uk(t) + λk

]
+

i−1∑
k=1

Ekλk+1, i = 1,m, (2.6)
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G0λ1 +G1λ2 +G2λm+1 +G2 lim
t→T−0

um+1(t) = d. (2.7)

A solution to problem (2.4)–(2.7) is a pair (λ∗, u∗[t]), with elements

λ∗ = (λ∗
1, λ

∗
2, . . . , λ

∗
m+1) ∈ Rn(m+1),

u∗[t] =
(
u∗1(t), u

∗
2(t), . . . , u

∗
m+1(t)

)
∈ C([0, T ], θ,Rn(m+1)),

where u∗r(t) are continuously differentiable on [θr−1, θr), r = 1,m+ 1, and satisfying the system of
ordinary differential equations (2.4) and conditions (2.5)–(2.7) at λr = λ∗

r , j = 1,m+ 1.
Problem (2.1)–(2.3) is equivalent to problem (2.4)–(2.7). If the function x∗(t) is a solution to

problem (2.1)–(2.3), then the triple (λ∗, u∗[t]), where

λ∗ =
(
x∗(θ0), x

∗(θ1), . . . , x
∗(θm)

)
and

u∗[t] =
(
x∗(t)− x∗(θ0), x

∗(t)− x∗(θ1), . . . , x
∗(t)− x∗(θm)

)
,

is a solution to problem (2.4)–(2.7). Conversely, if the triple (λ̃, ũ[t]), with elements

λ̃ = (λ̃1, λ̃2, . . . , λ̃m+1), ũ[t] =
(
ũ1(t), ũ2(t), . . . , ũm+1(t)

)
,

is a solution to problem (2.4)–(2.7), then the function x̃(t) defined by the equalities

x̃(t) = ũr(t) + λ̃r, t ∈ [θr−1, θr), r = 1,m+ 1

and
x̃(T ) = λ̃m+1 + lim

t→T−0
ũm+1(t),

will be the solution of the original problem (2.1)–(2.3).
Let Φr(t) be a fundamental matrix to the differential equation

dx

dt
= A(t)x on [θr−1, θr], r = 1,m+ 1.

Then, the solution to the Cauchy problem (2.5), (2.6) can be written as follows

ur(t) = Φr(t)

t∫
θr−1

Φ−1
r (τ)A0(τ) dτ λr +Φr(t)

t∫
θr−1

Φ−1
r (τ)

m∑
i=1

Ai(τ) dτ λi+1

+Φr(t)

t∫
θr−1

Φ−1
r (τ)f(τ) dτ, t ∈ [θr−1, θr), r = 1,m+ 1. (2.8)

Substituting the right-hand side of (2.8) into the impulse conditions (2.6) and condition (2.7) at
the corresponding limit values, we obtain the following system of linear algebraic equations with
respect to parameters λr, r = 1,m+ 1:

BiΦi(θi)

θi∫
θi−1

Φ−1
i (τ)

{
A0(τ)λi +

m∑
j=1

Aj(τ)λj+1

}
dτ +Biλi − Ciλi+1
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−
i−1∑
k=1

Dkλk −
i−1∑
k=1

Ekλk+1 −
i−1∑
k=1

DkΦk(θk)

θk∫
θk−1

Φ−1
k (τ)

{
A0(τ)λk +

m∑
j=1

Aj(τ)λj+1

}
dτ

= φi −BiΦi(θi)

θi∫
θi−1

Φ−1
i (τ)f(τ) dτ +

i−1∑
k=1

DkΦk(θk)

θk∫
θk−1

Φ−1
k (τ)f(τ) dτ, i = 1,m, (2.9)

G0λ1 +G1λ2 +G2

[
I +Φm+1(T )

T∫
θm

Φ−1
m+1(τ)A0(τ) dτ

]
λm+1

+G2Φm+1(T )

T∫
θm

Φ−1
m+1(τ)

m∑
j=1

Aj(τ)λj+1 dτ = d−G2Φm+1(t)

T∫
θm

Φ−1
m+1(τ)f(τ) dτ. (2.10)

We denote the matrix corresponding to the left side of the system of equations (2.9), (2.10) by
Q∗(θ) and write the system in the form

Q∗(θ)λ = F∗(θ), λ ∈ Rn(m+1), (2.11)

where

F∗(θ) =



φ1 −B1Φ1(θ1)

θ1∫
θ0

Φ−1
1 (τ)f(τ) dτ

φ2 −B2Φ2(θ2)

θ2∫
θ1

Φ−1
2 (τ)f(τ) dτ +D1Φ1(θ1)

θ1∫
θ0

Φ−1
1 (τ)f(τ) dτ

...

φm −BmΦm(θm)

θm∫
θm−1

Φ−1
m (τ)f(τ) dτ +

m−1∑
k=1

DkΦk(θk)

θk∫
θk−1

Φ−1
k (τ)f(τ) dτ

d− Φm+1(t)

T∫
θm

Φ−1
m+1(τ)f(τ) dτ



.

Theorem. Let the matrix Q∗(θ) : Rn(m+1) → Rn(m+1) be invertible. Then the boundary value
problem (2.1)–(2.3) has a unique solution x∗(t) for any f(t) ∈ PC([0, T ], θ,Rn), d ∈ Rn, and
φi ∈ Rn, i = 1,m.

Solvability of the boundary value problem (2.1)–(2.3) is equivalent to the solvability of system
(2.11). The solution to system (2.11) is a vector λ∗, consisting of the values of solutions to problem
(2.1)–(2.3) at the initial points of subintervals, i.e., λ∗

r = x∗(θr−1), r = 1,m+ 1.
If λ∗ = (λ∗

1, λ
∗
2, . . . , λ

∗
m+1) solution to system (2.11) is known, then a solution to problem (2.1)–

(2.3) is determined by the equalities:

x∗(t) = Φr(t)Φ
−1
r (θr−1)λ

∗
r +Φr(t)

t∫
θr−1

Φ−1
r (τ)

m∑
j=1

Aj(τ) dτ λ
∗
j+1
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+Φr(t)

t∫
θr−1

Φ−1
r (τ)f(τ) dτ, t ∈ [θr−1, θr), r = 1,m+ 1, (2.12)

x∗(T ) = Φm+1(t)Φ
−1
m+1(θm)λ∗

m+1 +Φm+1(t)

T∫
θm

Φ−1
m+1(τ)

m∑
j=1

Aj(τ) dτ λ
∗
j+1

+Φm+1(t)

T∫
θm

Φ−1
m+1(τ)f(τ) dτ. (2.13)

Expressions (2.12) and (2.13) give the analytical form of solution to problem (2.1)–(2.3).
We offer the following algorithm for numerical solving of linear boundary value problem for

impulsive differential equations with loadings subject to the multipoint conditions (2.1)–(2.3).

1. Suppose we have a partition: 0 = θ0 < θ1 < · · · < θm < θm+1 = T . Divide each rth interval
[θr−1, θr], r = 1,m+ 1, into Nr parts.

2. Solve the following Cauchy problem for ordinary differential equations

dz

dt
= A0(t)z +Aj(t), z(θr−1) = 0, t ∈ [θr−1, θr], j = 0,m, r = 1,m+ 1,

dz

dt
= A0(t)z + f(t), z(θr−1) = 0, t ∈ [θr−1, θr], r = 1,m+ 1.

3. Construct the system of linear algebraic equations in parameters

Qh̃
∗(θ)λ = F h̃

∗ (θ), λ ∈ Rn(m+1),

and find its solution λh̃. As noted above, the elements of λh̃ = (λh̃
1 , λ

h̃
2 , . . . , λ

h̃
m+1) are the

values of an approximate solution to problem (2.1)–(2.3) at the left end-points of the subin-
tervals: xh̃r(θr−1) = λh̃

r , r = 1,m+ 1.

4. To define the values of an approximate solution at the remaining points of set {θr−1, θr},
r = 1,m+ 1, we solve the Cauchy problems

dx

dt
= A0(t)x+

m∑
j=1

Aj(t)λ
h̃
j+1 + f(t), x(θr−1) = λh̃

r , t ∈ [θr−1, θr], r = 1,m+ 1.

Thus, this algorithm allows us to find the numerical solution to problem (2.1)–(2.3).
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1 Introduction
The averaging method is a powerful tool for analyzing and solving optimal control problems, in
particular for systems described by differential equations and inclusions with rapidly oscillating
coefficients. It was originally developed and rigorously justified by Krylov and Bogolyubov for the
approximate analysis of oscillating processes in non-linear mechanics, and then further refined for
the control-related problems, see, e.g. a monograph by Plotnikov [10]. Motivated by the modern
control engineering applications, the averaging method has been recenlty applied to the solution of
optimal control problems for linear by control systems with rapidly oscillating coefficients on a finite
interval [9], and on the semi-axis [8]. The approximate solutions of the optimal control problems for
non-linear systems of differential inclusions with fast-oscillating parameters were investigated in [11]
and [3], for the cases of a finite interval and on the semi-axis, respectively. The optimal control
problem on the semi-axis for the Poisson equation with nonlocal boundary conditions was studied
in [4]. Further applications of the averaging method for parabolic systems with fast-oscillating
coefficients were considered in [5–7].

In the present paper, we use the averaging method for the investigation of the optimal control
problem for nonlinear parabolic differential inclusion with fast-oscillating (w.r.t. time variable)
coefficients on an infinite time interval. With this, we prove that the optimal control for the
problem with averaged coefficients can be considered as “approximately” optimal for the original
system.

2 Setting of the problem and the main results
Let Ω ⊂ Rn be a bounded domain. In a cylinder Q = (0,+∞)×Ω, we consider an initial boundary-
value problem for a parabolic inclusion

∂y

∂t
∈ Ay + f

( t

ε
, y(t, x)

)
+ g(y)u, (t, x) ∈ Q,

y
∣∣
∂Ω

= 0,

y
∣∣
t=0

= y0(x).

(2.1)

Here ε > 0 is a small parameter, f : R+×R+ → conv(R) is a given multivalued mapping, g : R → R,
q : Ω × R → R are given real-valued mappings, A is an elliptic operator which can be defined by
the rule:

Ay =
n∑

i=1

∂

∂xi

( ∂y

∂xi

)
,
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y is an unknown state function, u is an unknown control function, which are determined by re-
quirements

u ∈ U ⊆ L2(Q), (2.2)

J(y, u) =

∫
Q

e−γtq(x, y(t, x)) dt dx+ α

∫
Q

u2(t, x) dt dx −→ inf, (2.3)

where γ, α are positive constants.
We consider the problem of finding an approximate solution of (2.1)–(2.3) by transition to the

averaged coefficients. For this purpose, we assume that there exists f : R → R such that uniformly
w.r.t. y ∈ R there exists

distH

(
f(y),

1

T

T∫
0

f(s, y) ds
)
−→ 0, T → ∞, (2.4)

where distH(A,B) is Hausdorff metric between sets A and B, and integral of multivalued map we
consider in the sense of Aumann [1].

Let us consider the following optimal control problem
∂y

∂t
∈ Ay + f(y) + g(y)u, (t, x) ∈ Q,

y
∣∣
∂Ω

= 0,

y
∣∣
t=0

= y0(x),

(2.5)

u ∈ U ⊆ L2(Q), (2.6)

J(y, u) =

∫
Q

e−γtq(x, y(t, x)) dt dx+ α

∫
Q

u2(t, x) dt dx −→ inf . (2.7)

Under the natural assumptions on f , g, u, q we prove that the optimal control problem (2.1)–(2.3)
has a solution {y ε, u ε}, i.e. for every u ∈ U and for any solution yε of (2.1) with control u we have

J(y ε, u ε) ≤ J(yε, u).

Note that we can apply similar suggestions to problem (2.5)–(2.7).
Assume that {y, u} is a solution of (2.5)–(2.7). The main goal of the paper is to prove the

convergence
J(y ε, u ε) −→ J(y, u), ε → 0.

We suggest that the next assumptions for parameters of problem (2.1)–(2.3) are fulfilled.

Condition 2.1. Multi-valued function f : R+ × R+ → conv(R) is continuous and there exist
C,C1 > 0 such that

∀ t ≥ 0 ∀ y ∈ R ∥f(t, y)∥+ := sup
ξ∈f(t,x)

∥ξ∥R ≤ C + C1∥y∥R,

where ∥ξ∥R denotes the Euclidian norm of ξ ∈ Rn.

Condition 2.2. Function g : R → R is continuous function and there exists C2 > 0 such that

∀ y ∈ R ∥g(y)∥R ≤ C2.
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Condition 2.3. Function q : Ω× R → R is a Carathéodory function and there exists C3 > 0 and
functions K1 ∈ L2(Ω), K2 ∈ L1(Ω) such that

∥q(x, ξ)∥R ≤ C3∥ξ∥2R +K1(Ω), q(x, ξ) ≤ K2(x).

Condition 2.4. U ⊆ L2(Q) is closed and convex, 0 ∈ U .
Condition 2.5. γ > 2C2

1 + 1 + C2.
Condition 2.6. Uniformly w.r.t. y ∈ R there exists the limit (2.4).

For u ∈ U and y0 ∈ L2(Ω) we understand solution of (2.1) as a mild solution on every finite
time interval, i.e. y is a solution of (2.1) if y ∈ L2

loc(0,+∞;H1
0 (Ω)) ∩ L∞

loc(0,+∞;L2(Ω)) such that
∀T > 0, ∀φ ∈ H1

0 (Ω), ∀ η ∈ C∞
0 (0, T ) the following equality holds:

−
T∫
0

(y, φ)H · η′ dt+
T∫
0

(∇y,∇φ)H · η dt

=

T∫
0

(f(t), φ)H · η dt+
T∫
0

(g(y)u, φ)H · η dt, f(t) ∈ f
( t

ε
, y
)

and f ∈ L2
loc(0,+∞;L2(Ω)).

Here and after we denote by ∥ · ∥H and ( · , · )H the classical norm and scalar product in
H = L2(Ω), by ∥ · ∥V the classical norm in V := H1

0 (Ω), by V ∗ the dual space to V .
Note that due to Conditions 2.1, 2.2 and properties of the operator A for y from definition of

mild solution we have
∂y

∂t
∈ L2

loc(0,+∞;V ∗).

In the sequel we denote by Fε (or F) a set of all pairs {y, u}, where y is a solution of (2.1) (or
(2.5)) with control u.

The following Lemma gives us a result on solvability of the optimal control problem (2.1)–(2.3).
Lemma. Under Conditions 2.1–2.5 for every ε > 0 problem (2.1)–(2.3) has a solution {y ε, u ε},
that is

J(y ε, u ε) ≤ J(y, u) ∀ {y, u} ∈ Fε.

Note that the existence of a solution {y, u} of (2.5)–(2.7) can be proved following similar argu-
ments to the proof of the existence of {y ε, u ε} for problem (2.1)–(2.3).
Theorem. Suppose that Conditions 2.1-2.6 hold and, moreover, problem (2.5) has a unique solution
for every u ∈ U .

We assume additionally that ∀ η > 0 ∃ δ > 0 ∀ t ≥ 0 ∀ y, z ∈ R

∥y − z∥R < δ =⇒ dist(f(t, y), f(t, z)) < η.

Let {y ε, u ε} be a solution of (2.1)–(2.3). Then

J(y ε, u ε) −→ J(y, u), ε → 0,

and up to subsequence

y ε → y in L2(0,+∞;H),

u ε → u weakly in L2(0,+∞;H),

where {y, u} is a solution of (2.5)–(2.7).
These results are substantiated in [2].
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In the plane of variables x and t consider a nonlinear high−order partial differential equation
of the form

Lfu :=
∂2u

∂t2
− ∂4ku

∂x4k
+ f(u) = F, (1)

where f , F are given, while u is an unknown functions, k is a natural number.
For the equation (1) we consider the following antiperiodic in time problem: find in the domain

DT : 0 < x < l, 0 < t < T a solution u = u(x, t) of the equation (1) according to the boundary
conditions

u(x, 0) = −u(x, T ), ut(x, 0) = −ut(x, T ), 0 ≤ x ≤ l, (2)
∂iu

∂xi
(0, t) = 0,

∂iu

∂xi
(l, t) = 0, 0 ≤ t ≤ T, i = 0, . . . , 2k − 1. (3)

Note that to the study of antiperiodic and periodic problems for nonlinear partial differential
equations, having a structure different from (1), is devoted numerous literature (see, for example,
[1, 2, 4–8] and the literature cited therein). For the equation (1) with k = 1, antiperiodic problem,
both in terms of time and space variables, is considered in the work [3].

Denote by C2,4k(DT ) the space of functions continuous in DT , having in DT continuous partial
derivatives ∂iu

∂ti
, i = 1, 2, ∂ju

∂xj , j = 1, . . . , 4k. Let

C2,4k
0 (DT ) :=

{
u ∈ C2,4k(DT ) :

∂iu

∂ti
(x, 0) = −∂iu

∂ti
(x, T ), 0 ≤ x ≤ l, i = 0, 1;

∂ju

∂xj
(0, t) = 0,

∂ju

∂xj
(l, t) = 0, 0 ≤ t ≤ T, j = 0, . . . , 2k − 1

}
.

Consider the Hilbert space W 1,2k
0 (DT ) as a completion of the classical space C2,4k

0 (DT ) with
respect to the norm

∥u∥2
W 1,2k

0 (DT )
=

∫
DT

[
u2 +

(∂u
∂t

)2
+

2k∑
i=1

(∂iu

∂xi

)2
]
dx dt. (4)

It follows from (4) that if u ∈ W 1,2k
0 (DT ), then u ∈ W 1

2 (DT ) and ∂iu
∂xi ∈ L2(DT ), i = 2, . . . , 2k.

Here W 1
2 (DT ) is the well-known Sobolev space consisting of the elements L2(DT ), having up to the

first order generalized derivatives from L2(DT ).
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Remark 1. Let u ∈ C2,4k
0 (DT ) be a classical solution of the problem (1)–(3). Multiplying the both

sides of the equation (1) by an arbitrary function φ ∈ C2,4k
0 (DT ) and integrating obtained equality

over the domain DT with taking into account that the functions from the space C2,4k
0 (DT ) satisfy

the boundary conditions (2) and (3), we get∫
DT

[∂u
∂t

∂φ

∂t
+

∂2ku

∂x2k
∂2kφ

∂x2k

]
dx dt−

∫
DT

f(u)φ dx dt = −
∫
DT

Fφ dx dt ∀φ ∈ C2,4k
0 (DT ). (5)

We take the equality (5) as a basis of definition of a weak generalized solution of the problem
(1)–(3) in the space W 1,2k

0 (DT ). But for this, certain restrictions must be imposed on the function
f so that the integral ∫

DT

f(u)φ dx dt (6)

exists.
Remark 2. Below, from function f in the equation (1) we require that

f ∈ C(R), |f(u)| ≤ M1 +M2|u|α, α = const > 1, u ∈ R, (7)

where Mi = const ≥ 0, i = 1, 2. As it is known, since the dimension of the domain DT ⊂ R2 equals
two, the embedding operator

I : W 1
2 (DT ) → Lq(DT )

is linear and compact operator for any fixed q = const > 1. At the same time the Nemitskii
operator N : Lq(DT ) → L2(DT ), acting by formula Nu = f(u), where u ∈ Lq(DT ), and function f
satisfies the condition (7) is bounded and continuous, when q ≥ 2α. Therefore, if we take q = 2α,
then the operator

N0 = NI : W 1
2 (DT ) → L2(DT )

will be continuous and compact. Hence, in particular, we have that if u ∈ W 1
2 (DT ), then f(u) ∈

L2(DT ) and from un → u in the space W 1
2 (DT ) it follows f(un) → f(u) in the space L2(DT ).

Definition 1. Let function f satisfy the condition (7) and F ∈ L2(DT ). A function u ∈ W 1,2k
0 (DT )

is named a weak generalized solution of the problem (1)–(3) if the integral equality (5) holds for
any function φ ∈ W 1,2k

0 (DT ), i.e.,∫
DT

[∂u
∂t

∂φ

∂t
+

∂2ku

∂x2k
∂2kφ

∂x2k

]
dx dt−

∫
DT

f(u)φ dx dt = −
∫
DT

Fφ dx dt ∀φ ∈ W 1,2k
0 (DT ). (8)

Note that due to Remark 2 the integral (6) in the left-hand side of the equality (8) is defined
correctly since from u ∈ W 1,2k

0 (DT ) it follows that f(u) ∈ L2(DT ), and since φ ∈ L2(DT ), then
f(u)φ ∈ L1(DT ).

It is easy to see that if a weak generalized solution u of the problem (1)–(3) in the sense of
Definition 1 belongs to the class C2,4k

0 (DT ), then it is a classical solution to this problem.
In the space C2,4k

0 (DT ) together with the scalar product

(u, v)0 =

∫
DT

[
uv +

∂u

∂t

∂v

∂t
+

2k∑
i=1

∂iu

∂xi
∂iv

∂xi

]
dx dt (9)
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with the norm ∥ · ∥0 = ∥ · ∥
W 1,2k

0 (DT )
, defined by the right−hand side of the equality (4), let us

consider the following scalar product

(u, v)1 =

∫
DT

[∂u
∂t

∂v

∂t
+

∂2ku

∂x2k
∂2kv

∂x2k

]
dx dt (10)

with the norm
∥u∥21 =

∫
DT

[(∂u
∂t

)2
+
(∂2ku

∂x2k

)2
]
dx dt, (11)

where u, v ∈ C2,4k
0 (DT ).

The following inequalities

c1∥u∥0 ≤ ∥u∥1 ≤ c2∥u∥0 ∀u ∈ C2,4k
0 (DT )

with positive constants c1 and c2, not dependent on u, are valid. Hence due to (9)–(11) it follows
that if we complete the space C2,4k

0 (DT ) with respect to the norm (11), then we obtain the same
Hilbert space W 1,2k

0 (DT ) with the equivalent scalar products (9) and (10). Using this circumstance,
one can prove the unique solvability of the linear problem corresponding to (1)–(3), when f = 0,
i.e. for any F ∈ L2(DT ) there exists a unique solution u = L−1

0 F ∈ W 1,2k
0 (DT ) to this problem,

where the linear operator
L−1
0 : L2(DT ) → W 1,2k

0 (DT )

is continuous.
Remark 3. From the above reasoning it follows that when the conditions (7) are fulfilled, the
nonlinear problem (1)–(3) is equivalently reduced to the functional equation

u = L−1
0 [f(u)− F ] (12)

in the Hilbert space W 1,2k
0 (DT ).

As noted below, if the nonlinear function f is not required to fulfill other conditions in addition
to (7), then the problem (1)–(3) may not have a solution. At the same time, if the additional
condition

lim
|u|→∞

sup
f(u)

u
≤ 0 (13)

is satisfied, an a priori estimate is proved for the solution of the functional equation (12) in the
space W 1,2k

0 (DT ), from which, taking into account Remarks 2 and 3, the existence of a solution to
the equation (12) follows, and, consequently, of the problem (1)–(3) in the space W 1,2k

0 (DT ) in the
sense of Definition 1. Thus, the following theorem holds.

Theorem 1. Let the conditions (7) and (13) be fulfilled. Then for any F ∈ L2(DT ) the problem (1)–
(3) has at least one weak generalized solution u in the space W 1,2k

0 (DT ) in the sense of Definition 1.

In turns out that in the case of the problem (1)–(3), the monotonicity of the function f one can
ensure uniqueness of its solution.

Theorem 2. If the condition (7) is fulfilled and f is a non-strictly decreasing function, i.e.

(f(y)− f(z))(y − z) ≤ 0 ∀ y, z ∈ R, (14)

then for any F ∈ L2(DT ) the problem (1)–(3) can not have more than one weak generalized solution
in the space W 1,2k

0 (DT ) in the sense of Definition 1.
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From these theorems it follows the following theorem.

Theorem 3. Let the conditions (7), (13) and (14) be fulfilled. Then for any F ∈ L2(DT ) the
problem (1)–(3) has a unique weak generalized solution u in the space W 1,2k

0 (DT ) in the sense of
Definition 1.

As noted above, if no other conditions are imposed on the nonlinear function f in addition to
the condition (7), then the problem (1)–(3) may not have a solution. Indeed, the following theorem
holds.

Theorem 4. Let the function f satisfy the conditions (7) and

f(u) ≤ −|u|γ ∀u ∈ R, γ = const > 1, (15)

and the function F = βF0, where F0 ∈ L2(DT ), F0 > 0 in the domain DT , β = const > 0. Then
there exists a number β0 = β0(F0, γ) such that for β > β0 the problem (1)–(3) can not have a weak
generalized solution in the space W 1,2k

0 (DT ) in the sense of Definition 1.

It is easy to see that when the condition (15) is fulfilled, then the condition (13) is violated.
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In the present report, on the finite interval ]a, b[ we consider the n-th order advanced ordinary
differential equation

u(n)(t) = f
(
t, u(τ1(t)), . . . , u

(n−1)(τn(t))
)

(1)
under the two-point nonlinear boundary conditions

φ
(
u(a), . . . , u(m−1)(a)

)
= c0, u(i−1)(b) = φi(u

(n−1)(b)) (i = 1, . . . , n− 1). (2)

Here n ≥ 2, m ∈ {1, . . . , n}, c0 is a positive constant, and f : ]a, b] × Rn → R, τi : [a, b] → [a, b]
(i = 1, . . . , n), φ : Rm → R, φi : R → R (i = 1, . . . , n−1) are continuous functions, R = ]−∞,+∞[ .
Moreover,

a ≤ t < τi(t) ≤ b for a ≤ t < b (i = 1, . . . , n), (3)
φ(0, . . . , 0) = 0, φ(x1, . . . , xm) → +∞ as (−1)i−1xi → +∞ (i = 1, . . . ,m), (4)

(−1)n−iφi(x)x ≥ 0 for x ∈ R (i = 1, . . . , n− 1). (5)

A solution of equation (1) is sought in the space of n-times continuously differentiable functions
defined in the interval ]a, b[ .

By u(a) and u(b) (by u(i)(a) and u(i)(b)) we denote, respectively, the right and the left limits
of the solution u (of the i-th derivative of u) at the points a and b.

A solution u of equation (1) is said to be a solution of problem (1), (2) if there exist one-sided
limits u(i−1)(a) (i = 1, . . . ,m), u(k−1)(b) (k = 1, . . . , n), and equalities (2) are satisfied.

A solution u is said to be a Kneser solution if

(−1)iu(i)(t)u(t) ≥ 0 for a < t < b (i = 1, . . . , n− 1).

In the case, where τ(t) ≡ t, two-point boundary value problems for equation (1) have long
attracted the attention of specialists, and most of them, namely, some problems with boundary
conditions of type (2), have been studied in sufficient detail (see [1–7] and the references therein).
As for the case of advance, i.e. when inequalities (3) hold, two-point boundary value problems for
equation (1), as far as we know, remains still unstudied.

The results below fill the above mentioned gap to some extent. They contain unimprovable
in a certain sense conditions guaranteeing, respectively, the solvability and unique solvability of
problem (1), (2) in the space of Kneser type functions. It should be noted that these conditions do
not restrict the growth order of the function f in the phase variables at infinity, and contain the
case where the function f has a nonintegrable singularity in the time variable at the point t = 0,
more precisely, the case, where

b∫
a

|f(t, x1, . . . , xn)| dt = +∞ for xi ̸= 0 (i = 1, . . . , n).
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To formulate the main results, we need to introduce the following notations.

f∗(t; r) = max
{
|f(t, x1, . . . , xn)| : 0 ≤ (−1)i−1xi ≤ r (i = 1, . . . , n)

}
for a < t ≤ b, r > 0,

f∗(t; δ, r) = min
{
|f(t, x1, . . . , xn)| : δ ≤ (−1)i−1xi ≤ r (i = 1, . . . , n)

}
for a<t≤b, r>δ>0,

φr(x) = min
{
φ(x1, . . . , xm−1, x) : 0 ≤ (−1)i−1xi ≤ r (i = 1, . . . ,m− 1)

}
for m > 1, r > 0, x ∈ R,

φr(x) = φ(x) for m = 1, r > 0, x ∈ R.

Theorem 1. If along with (3)–(5) the conditions

f(t, 0, . . . , 0) = 0, (−1)nf(t, x1, . . . , xn) ≥ 0 for a < t < b, (−1)i−1xi ≥ 0 (i = 1, . . . , n), (6)
b∫

a

(t− a)n−mf∗(t; r) dt < +∞ for r > 0 (7)

hold, then problem (1), (2) has at least one nonnegative Kneser solution.

Theorem 2. If along with (3), (5), (6) the conditions

φ(0, . . . , 0) = 0, φr(x) → +∞ for r > 0, (−1)n−1x → +∞, (4′)
b∫

a

(t− a)n−mf∗(t; δ, r) dt = +∞ for r > δ > 0

hold, then problem (1), (2) has no nonnegative Kneser solution.

From the above formulated theorems it follows

Corollary 1. Let conditions (3), (4′), (5), (6) hold and let for every constants r > 0 and δ ∈ ]0, r[
there exist a positive number ρ(r, δ) such that

f∗(t; r) ≤ ρ(r, δ)f∗(t; δ, r) for a < t < b. (8)

Then for problem (1), (2) to have at least one nonnegative Kneser solution, it is necessary and
sufficient that condition (7) to satisfied.

Remark 1. Conditions (6) and (8) are satisfied, for example, in the case, where

f(t, x1, . . . , xn) =

k∑
j=1

pj(t)fj(x1, . . . , xn),

where k is any natural number, pj : ]a, b] → R, fj : Rn → R (j = 1, . . . , k) are continuous functions
such that

(−1)npj(t) ≥ 0 for a < t < b (j = 1, . . . , k),

fj(0, . . . , 0) = 0 (j = 1, . . . , k),

min
{
fj(x1, . . . , xn) : δ ≤ (−1)i−1xi ≤ r (i = 1, . . . , n)

}
> 0 for r > δ > 0 (j = 1, . . . , k).
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Example 1. Consider the equation

u(n)(t) = p(t)h
(
|u(n−1)(τ(t))|

)
(9)

with the boundary conditions (2), where m ≤ n − 1, while p : ]a, b] → R, h : [0,+∞[→ R, and
τ : [a, b] → [a, b] are continuous functions, and

(−1)np(t) ≥ 0 for a < t < b,

b∫
a

(t− a)n−m|p(t)| dt < +∞,

b∫
a

|p(t)| dt = +∞, (10)

h(0) = 0, h(x) > 0 for x > 0,

+∞∫
δ

ds

h(s)
< +∞ for δ > 0. (11)

If along with (4), (5) the condition

a ≤ t < τ(t) ≤ b for a ≤ t < b (12)

is satisfied, then according to Theorem 1 problem (9), (2) has at least one nonnegative Kneser
solution. Assume now that all the above conditions are satisfied except of (12) instead of which we
have

τ(t) = t for a ≤ t ≤ a0, t < τ(t) ≤ b for a0 < t < b,

where a0 ∈ ]a, b[ . Show that in this case problem (9), (2) has no nonnegative Kneser solution.
Assume the contrary that there exists such a solution u. Then there are δ > 0 and t0 ∈ ]a, a0] such
that

0 < δ ≤ (−1)n−1u(n−1)(t) < +∞ for a < t ≤ t0.

On the other hand,
|u(n−1)(t)|′ = −|p(t)|h

(
|u(n−1)(t)|

)
for a < t ≤ t0.

Therefore,
|u(n−1)(t)|∫

δ

dx

h(x)
=

t0∫
t

|p(t)| dt for a < t ≤ t0,

which contradicts conditions (10) and (11).
The above constructed example shows that if instead of (3) for some a0 ∈ ]a, b[ the conditions

a ≤ t < τi(t) ≤ b for a ≤ t < b (i = 1, . . . , n− 1), τn(t) = t for a ≤ t ≤ a0,

t < τn(t) ≤ b for a0 < t < b

hold, then conditions (4)–(7) do not guarantee the existence of a nonnegative Kneser solution of
problem (1), (2).

To simplify the presentation, we will consider the question on the uniqueness of a solution of
problem (1), (2) in the case where the boundary conditions (2) have the form

m∑
i=1

αi|u(i−1)(a)|µi sgn(u(i−1)(a)) = c0,

u(j−1)(b) = βj |u(n−1)(b)|νj sgn(u(n−1)(b)) (j = 1, . . . , n− 1),

(2′)
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where

(−1)i−1αi ≥ 0, µi > 0 (i = 1, . . . ,m), αm ̸= 0,

(−1)n−jβj ≥ 0, νj > 0 (j = 1, . . . , n− 1).

Evidently, in this case the function

φ(x1, . . . , xm) ≡
m∑
i=1

αi|xi|µi sgn(xi)

satisfies conditions (4′), and the functions φj(x) = βj |x|νj sgn(x) (j = 1, . . . , n − 1) – conditions
(5).

We will say that the function f is locally Lipschitzian in the phase variables on the set
[a0, b]× Rn if for every r > 0 there exists ℓ(r) > 0 such that

∣∣f(t, x1, . . . , xn)− f(t, y1, . . . , yn)
∣∣ ≤ ℓ(r)

n∑
i=1

|xi − yi| for a0 ≤ t ≤ b,

n∑
i=1

(
|xi|+ |yi|

)
≤ r.

Theorem 3. Let along with (3), (7) the condition

f(t, 0, . . . , 0) = 0, (−1)nf(t, x1, . . . , xn) ≥ (−1)nf(t, y1, . . . , yn) ≥ 0

for a < t < b, (−1)i−1xi ≥ (−1)i−1yi ≥ 0 (i = 1, . . . , n)

hold. Let, moreover, there exist a0 ∈ ]a, b[ such that the function f is locally Lipschitzian in the
phase variables on the set [a0, b] × Rn. Then problem (1), (2′) has a unique nonnegative Kneser
solution.

Finally, we consider two nontrivial particular cases of equation (1):

u(n)(t) =
n∑

i=1

pi(t)fi
(
u(i−1)(τi(t))

)
, (13)

u(n)(t) =
n∑

i=1

pi(t)
∣∣u(i−1)(τi(t))

∣∣λi sgn
(
u(i−1)(τi(t))

)
, (14)

where pi : ]a, b] → R, fi : R → R (i = 1, . . . , n) are continuous functions, while λi (i = 1, . . . , n) are
constants.

Corollary 1 and Theorem 3 yield the following results.

Corollary 2. Let the functions τi (i = 1, . . . , n) satisfy inequalities (3), and let the functions pi
and fi (i = 1, . . . , n) be such that

(−1)n+i−1pi(t) ≥ 0 for a < t < b (i = 1, . . . , n), (15)
fi(0) = 0, (−1)i−1fi(x) > 0 for (−1)i−1x > 0 (i = 1, . . . , n).

Then for problem (13), (2′) to have at least one nonnegative Kneser solution, it is necessary and
sufficient that the conditions

b∫
a

(t− a)n−m|pi(t)| dt < +∞ (i = 1, . . . , n) (16)

to satisfied.
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Corollary 3. Let the functions τi and pi (i = 1, . . . , n) satisfy inequalities (3) and (15), and let fi
(i = 1, . . . , n) be locally Lipschitzian functions such that

fi(0) = 0, (−1)i−1fi(x) ≥ (−1)i−1fi(y) > 0 for (−1)i−1x ≥ (−1)i−1y > 0 (i = 1, . . . , n).

Then for problem (13), (2′) to have a unique nonnegative Kneser solution, it is necessary and
sufficient that conditions (16) be satisfied.

From Corollaries 2 and 3 it follow Corollaries 4 and 5, respectively.

Corollary 4. Let
λi > 0 (i = 1, . . . , n),

and let the functions τi, pi (i = 1, . . . , n) satisfy inequalities (3) and (15). Then for problem (14), (2′)
to have at least one nonnegative Kneser solution, it is necessary and sufficient that conditions (16)
be satisfied.

Corollary 5. Let
λi ≥ 1 (i = 1, . . . , n),

and let the functions τi, pi (i = 1, . . . , n) satisfy inequalities (3) and (15). Then for problem (14), (2′)
to have a unique nonnegative Kneser solution, it is necessary and sufficient that conditions (16) be
satisfied.
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In the rectangle Ω = [0, ω1]× [0, ω2] consider the initial-boundary value problem

uxy = P0(x, y)u+ P1(x, y)ux + P2(x, y)uy + q(x, y), (1)
u(0, y) = φ(y), h(ux(x, · ))(x) = ψ(x), (2)

where Pj ∈ C(Ω;Rn×n) (j = 0, 1, 2), q ∈ C(Ω;Rn), φ ∈ C1([0, ω2];Rn), ψ ∈ C([0, ω1];Rn), and
h : C([0, ω2];Rn) → C([0, ω1];Rn) is a bounded linear operator.

We make use of the following notations:

- Im is m×m identity matrix, Om is the m×m zero matrix, Om,k is m× k zero matrix.

- If A = (aij))
n
i,j=1 ∈ Rn×n, then by [A]m,m we denote its principal m×m submatrix, i.e.

[A]m,m = (aij)
m
i,j=1.

- If z = (zi)
n
i=1 ∈ Rn, then [z]m = (zi)

m
i=1 and [z]m = (zi)

n
i=m+1.

- Cm,k(Ω;Rn) is the Banach space of functions u : Ω → Rn, having continuous partial deriva-
tives u(i,j)) (i = 0, . . . ,m; j = 0, . . . k), endowed with the norm

∥u∥Cm(Ω) =

m∑
i=0

k∑
j=0

∥∥∥ ∂i+ju

∂xi∂yj

∥∥∥
C(Ω)

.

By a solution of problem (1), (2) we understand a classical solution, i.e., a function u ∈ C1,1(Ω)
satisfying equation (1) and the boundary conditions (2) everywhere in Ω.

Along with problem (1), (2) consider the problem

v′ = P1(x
∗, y)v, (3)

h(v)(x∗) = 0. (4)

Problem (3), (4) is called associated problem of problem (1), (2). Notice that problem (3), (4) is a
boundary value problem for a linear ordinary differential equation depending on the parameter x∗.

The associate problem (3), (4) plays a decisive in the study of problem (1), (2). Theorems 4.1
and 4.1′ from [1] state that if for every x∗ ∈ [0, ω1] problem (3), (4) has only the trivial solution,
then problem (1), (2) is well-posed, i.e., it is uniquely solvable for arbitrary φ ∈ C1([0, ω2];Rn),
ψ ∈ C([0, ω1];Rn) and q ∈ C(Ω;Rn), and its solution u admits the estimate

∥u∥C1,1(Ω) ≤M
(
∥φ∥C1([0,ω2]) + ∥ψ∥C([0,ω1]) + ∥q∥C(Ω)

)
, (5)
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where M is a positive constant independent of φ, ψ and q.
In [3] the inverse statement is proved: if problem (1), (2) is well-posed, i.e., if a solution of

problem (1), (2) admits estimate (5), then the associate problem (3), (4) has only the trivial solution
for every x∗ ∈ [0, ω1].

Well-posed initial-boundary value problems and nonlocal boundary value problems for linear
hyperbolic systems were studied in [1] and [3]. Well-posed initial-boundary value problems and
nonlocal boundary value problems for higher order linear hyperbolic equations were studied in [4]
and [2]. Ill-posed initial-boundary value problems for higher order linear hyperbolic equations were
studied in [5].

Let Y (x∗, y) be the fundamental matrix of differential system (3) such that Y (x∗, 0) = I.
If h : C([0, ω2];Rn) → C([0, ω1];Rn) is a bounded linear operator, then according to Lem-

mas 2.11 and 2.31 from [1],

h(z)(x) = H(x)z(0) +

ω2∫
0

K(x, t)v′(t) dt,

h(Y (x, · )z( · ))(x) =M0(x)z(0) +

ω2∫
0

M(x, t)v′(t) dt,

where

H(x) ∈ C([0, ω1];Rn×n), K ∈ L∞(Ω;Rn×n),

M0(x) = H(x) +

ω2∫
0

M(x, t)Yt(x, t) dt,

M(x, y) = K(x, y)Y (x, y) +

ω2∫
y

K(x, t)Yt(x, t) dt.

If h : C([0, ω2];Rn) → C1([0, ω1];Rn) is a bounded linear operator, then

H(x) ∈ C1([0, ω1];Rn×n),

M0(x) ∈ C1([0, ω1];Rn×n),

y∫
0

M(x, t) dt ∈ C1,1(Ω;Rn×n).

In terms of the matrix H, problem (1), (2) is well-posed if and only if rankH(x) = n for every
x ∈ [0, ω1]. The ill-posed problem (1), (2) in the case where rankH(x) ≡ 0 was studied in [1].

In this paper, we study the ill-posed problem (1), (2) in case where rankH(x) = n−m for some
m ∈ {1, . . . , n}. For the sake of technical simplicity we will assume that

H(x) =

(
Om Om,n−m

On−m,m H0(x)

)
, rankH0(x) = n−m for x ∈ [0, ω1]. (6)

Theorem 1. Let (6) hold, let P1 ∈ C1,0(Ω;Rn) and let

det

[ ω2∫
0

M(x, t)Z−1(x, t)
(
P0(x, t) + P2(x, t)P1(x, t)

)
Z(x, t) dt

]
mm

̸= 0 for x ∈ [0, ω1]. (7)
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Then problem (1), (2) is solvable in the weak sense if and only if the equality

[ ω2∫
0

M(0, t)Z−1(0, t)
(
P0(0, t)φ(t) + P2(0, t)φ

′(t) + q(0, t)
)
dt

]
m

= [ψ(0)]m (8)

holds. Moreover, if equality (8) holds, then problem (1), (2) has a unique weak solution u ∈
C0,1(Ω;Rn) admitting the estimate∥∥[u]m∥∥

C0,1(Ω)
≤M

(
∥q∥C(Ω) + ∥φ∥C1([0,ω2]) + ∥ψ∥C([0,ω1])

)
, (9)∥∥[u]m∥∥C1,1(Ω)

≤M
(
∥q∥C(Ω) + ∥φ∥C1([0,ω2]) + ∥ψ∥C([0,ω1])

)
, (10)

where M is a positive constant independent of φ, ψ and q.

Theorem 2. Let Pj ∈ C1,0(Ω;Rn×n) (j = 0, 1, 2), q ∈ C1,0(Ω;Rn), ψ ∈ C1([0, ω1];Rn), let
h : C([0, ω2];Rn) → C1([0, ω1];Rn) be a bounded linear operator, and let conditions (6) and (7)
hold. Then problem (1), (2) is solvable in the classical sense if and only if equality (8) holds.
Moreover, if equality (8) holds, then problem (1), (2) has a unique classical solution u admitting the
estimate ∥∥[u]m∥∥

C1,1(Ω)
≤M

(
∥q∥C1,0(Ω) + ∥φ∥C1([0,ω2]) + ∥ψ∥C1([0,ω1])

)
, (11)∥∥[u]m∥∥C2,1(Ω)

≤M
(
∥q∥C1,0(Ω) + ∥φ∥C1([0,ω2]) + ∥ψ∥C1([0,ω1])

)
, (12)

where M is a positive constant independent of φ, ψ and q.

Remark 1. Estimates (9), (10), (11) and (12) are sharp and cannot be relaxed. Indeed, let n = 2m,
u = (v, w), v, w ∈ Rm. Consider the problem

vxy = P (x)v + q1(x),

wxy = Q1(x, y)v +Q2(x, y)w + q2(x, y),
(13)

v(0, y) = c, w(0, y) = φ2(y), vx(x, 0) = vx(x, ω2), wx(x, 0) = 0. (14)

For problem (13), (14)

H(x) =

(
Om Om

Om Im

)
.

Assume that problem (13), (14) has a unique weak solution (v(x, y), w(x, y)) ∈ C0,1(Ω;R2m). Then
w(x, y) is a solution of the integral equation

w(x, y) = φ2(y) +

x∫
0

y∫
0

(
Q2(s, t)w(s, t) +Q1(s, t)v(s, t) + q2(s, t)

)
dt ds. (15)

The integral equation (15) is uniquely solvable for every v(x, y) ∈ C(Ω;Rm), and its solution belongs
to C1,1(Ω;Rm).

Consequently, the unique solvability of problem (13), (14) is equivalent to the unique solvability
of the problem

vxy = P (x)v + q1(x), (16)
v(0, y) = c, vx(x, 0) = vx(x, ω2). (17)
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Let v ∈ C0,1(Ω;Rm) be a weak solution of problem (16), (17). It admits a continuous ω2-periodic
continuation with respect to y. It is clear that v(x, y + r) is a solution of problem (16), (17) for
every r ∈ [0, ω1]. Therefore, the unique solvability of problem (16), (17) implies that

v(x, y) ≡ v(x).

Consequently, v is a solution of the linear algebraic system

P (x)v(x) + q1(x) = 0.

The latter system is uniquely solvable for an arbitrary q1(x) if and only if

detP (x) ̸= 0 for x ∈ [0, ω1],

i.e., inequality (7) holds for problem (13), (14). Thus problem (16), (17) has the unique weak
solution

v(x) = −P−1(x)q1(x)

if and only if
c = −P−1(0)q(0).

This solution is classical if P ∈ C1([0, ω1];Rm×m) and q1 ∈ C1([0, ω1];Rm). This confirms the
sharpness of estimates (9), (10), (11) and (12).

If detP (x∗) = 0 for some x∗ ∈ [0, ω1], then problem (16), (17) may not have a weak solution
even if P ∈ C∞(ω;Rm×m) and q ∈ C∞(ω;Rm).

Finally, notice that if detP (0) ̸= 0, P (x) = Om for x ∈ [a, b] for some interval [a, b] ⊂ (0, ω1),
and q(x) = P (x)q(x), then problem (16), (17) and, consequently, problem (13), (14), have infinite-
dimensional sets of solutions.

For the system

uxy = P0(x, y)u+ P2(x, y)uy + q(x, y), (18)

consider the initial-boundary conditions

u(0, y) = φ(y),
[
ux(x, γ2(x))− ux(x, γ1(x))

]m
= [ψ(x)]m, [ux(x, 0)]m = [ψ(x)]m, (19)

and
u(0, y) = φ(y), ux(x, 0) = ux(x, ω2). (20)

Here γi ∈ C([0, ω1]) (i = 1, 2) and γ1(x) < γ2(x) for x ∈ [0, ω1].

Theorem 3. Let

det

[ γ2(x)∫
γ1(x)

P0(x, t) dt

]
mm

̸= 0 for x ∈ [0, ω1].

Then problem (18), (19) is solvable in the weak sense if and only if the equality

[ γ2(0)∫
γ1(0)

(
P0(0, t)φ(t) + P2(0, t)φ

′(t) + q(0, t)
)
dt

]
m

= [ψ(0)]m (21)

holds. Moreover, if equality (21) holds, then problem (18), (19) has a unique weak solution u
admitting the estimate

∥u∥C0,1(Ω) ≤M
(
∥q∥C(Ω) + ∥φ∥C1([0,ω2]) + ∥ψ∥C([0,ω1])

)
,
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where M is a positive constant independent of φ, ψ and q. Moreover, if Pj ∈ C1,0(Ω;Rn×n)
(j = 0, 2), q ∈ C1,0(Ω;Rn), ψ ∈ C1([0, ω1];Rn) and γi ∈ C1([0, ω1]) (i = 1, 2), then u is a classical
solution admitting the estimate

∥u∥C1,1(Ω) ≤M
(
∥q∥C1,0(Ω) + ∥φ∥C1([0,ω2]) + ∥ψ∥C1,0([0,ω1])

)
.

Corollary 1. Let

det

ω2∫
0

P0(x, t) dt ̸= 0 for x ∈ [0, ω1].

Then problem (18), (20) is solvable if and only if the equality
ω2∫
0

(
P0(0, t)φ(t) + P2(0, t)φ

′(t) + q(0, t)
)
dt = 0 (22)

holds. Moreover, if equality (22) holds, then problem (18), (20) has a unique weak solution u
admitting the estimate

∥u∥C0,1(Ω) ≤M
(
∥q∥C(Ω) + ∥φ∥C1([0,ω2])

)
,

where M is a positive constant independent of φ, ψ and q. Moreover, if P0 ∈ C1,0(Ω;Rn×n) and
q ∈ C1,0(Ω;Rn), then u is a classical solution admitting the estimate

∥u∥C1,1(Ω) ≤M
(
∥q∥C1,0(Ω) + ∥φ∥C1([0,ω2])

)
.

Let n = 2m, u = (v, w), and v, w ∈ Rm. For the systems

vxy = wx +B11(x, y)vy +B12(x, y)wy +Q11(x, y)v +Q12(x, y)w + q1(x, y),

wxy = −vx +B21(x, y)vy +B22(x, y)wy +Q21(x, y)v +Q22(x, y)w + q2(x, y)
(23)

and
vxy = wx +B(x, y)vy +Q(x, y)v + q1(x, y),

wxy = −vx +B(x, y)wy +Q(x, y)w + q2(x, y),
(24)

consider the initial-periodic conditions

v(0, y) = φ1(y), w(0, y) = ϕ2(y), vx(x, 0) = vx(x, 2π), wx(x, 0) = wx(x, 2π). (25)

Theorem 4. Let

det

( 2π∫
0

(
cos t Im sin t Im
− sin t Im cos t Im

)(
Q11(x, t)−B12(x, t) Q12(x, t) +B11(x, t)
Q21(x, t)−B12(x, t) Q11(x, t)−B12(x, t)

)

×
(
cos t Im − sin t Im
sin t Im cos t Im

)
dt

)
̸= 0 for x ∈ [0, ω1].

Then problem (23), (25) is solvable in the weak sense if and only if the equality

2π∫
0

(
cos t Im − sin t Im
sin t Im cos t Im

)

×

(
Q11(0, t)φ1(t) +Q12(0, t)φ2(t) +B11(0, t)φ

′
1(t) +B12(0, t)φ

′
2(t) + q1(0, t)

Q21(0, t)φ1(t) +Q22(0, t)φ2(t) +B21(0, t)φ
′
1(t) +B22(0, t)φ

′
2(t) + q2(0, t)

)
dt =

(
0
0

)
(26)
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holds. Moreover, if equality (26) holds, then problem (23), (25) has a unique weak solution (v, w)
admitting the estimate

∥v∥C0,1(Ω) + ∥w∥C0,1(Ω) ≤M
(
∥q∥C(Ω) + ∥φ∥C1([0,ω2])

)
,

where M is a positive constant independent of φ, ψ and q. Moreover, if Bij ∈ C1,0(Ω;Rm×m) and
Qij ∈ C1,0(Ω;Rm×m) (i, j = 1, 2), and qi ∈ C1,0(Ω;Rm) (i = 1, 2), then (v, w) is a classical solution
admitting the estimate

∥v∥C1,1(Ω) + ∥w∥C1,1(Ω) ≤M
(
∥q∥C1,0(Ω) + ∥φ∥C1([0,ω2])

)
.

Corollary 2. Let

det

( 2π∫
0

(
Q(x, t) B(x, t)
−B(x, t) Q(x, t)

)
dt

)
̸= 0 for x ∈ [0, ω1].

Then problem (23), (24) is solvable in the weak sense if and only if the equality

2π∫
0

(
cos t Im − sin t Im
sin t Im cos t Im

)(
Q(0, t)φ1(t) +B(0, t)φ′

1(t) + q1(0, t)
Q(0, t)φ2(t) +B(0, t)φ′

2(t) + q2(0, t)

)
dt =

(
0
0

)

holds. Moreover, if equality (26) holds, then problem (23), (24) has a unique weak solution u
admitting the estimate

∥v∥C0,1(Ω) + ∥w∥C0,1(Ω) ≤M
(
∥q∥C(Ω) + ∥φ∥C1([0,ω2])

)
,

where M is a positive constant independent of φ, ψ and q. Moreover, if B ∈ C1,0(Ω;Rm×m),
Q ∈ C1,0(Ω;Rm×m), and qi ∈ C1,0(Ω;Rm) (i = 1, 2), then u is a classical solution admitting the
estimate

∥v∥C1,1(Ω) + ∥w∥C1,1(Ω) ≤M
(
∥q∥C1,0(Ω) + ∥φ∥C1([0,ω2])

)
.
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The analysis of electromagnetic field penetration into materials, its mathematical representa-
tion, and subsequent computational solutions represent a crucial aspect of applied mathematics.
This phenomenon often involves the production of heat energy, which modifies the medium’s per-
meability and affects diffusion processes. Such effects arise from the strong dependence of the
material’s conductivity on temperature. The mathematical description of these processes, like
many other real-world problems, results in systems of nonlinear partial differential equations and
integro-differential equations. In the quasistatic approximation, the system of Maxwell’s equations
can be expressed in a following form [17]

∂H

∂t
= −∇× (νm∇×H), cν

∂θ

∂t
= νm(∇×H)2. (1)

The equations (1) describe the evolution of magnetic fields and temperature within the medium,
considering Joule heating effects. The coefficients for thermal capacity and electrical conductivity
are assumed to depend on temperature. Under specific assumptions, as shown in [5], the system of
Maxwell’s equations can be reduced to a nonlinear parabolic-type integro-differential equation [5]

∂H

∂t
= −∇×

[
a

( t∫
0

|∇ ×H|2 dτ
)
∇×H

]
, (2)

where function a = a(S) is defined for S ∈ [0,∞).
The integro-differential equation (2) derived in this context is complex, and only specific cases of

this model have been studied in depth (see references such as [5–20,24] and references therein). By
assuming a specific structure for the magnetic field, in particular, if H = (0, U, V ) and U = U(x, t),
V = V (x, t), the vector equation (2) becomes as the following system of nonlinear integro-differential
equations:

∂U

∂t
− ∂

∂x

[
a

( t∫
0

[(∂U
∂x

)2
+

(∂V
∂x

)2]
dτ

)
∂U

∂x

]
= 0,

∂V

∂t
− ∂

∂x

[
a

( t∫
0

[(∂U
∂x

)2
+

(∂V
∂x

)2]
dτ

)
∂V

∂x

]
= 0.

(3)

This note aims to apply Deep Neural Network (DNN) approach implemented in [15] to solve
the Dirichlet initial-boundary value problem for system (3). The focus is on approximate solution
to the nonlinear equations using neural network architectures, where the diffusion coefficient has
the following form a(S) = (1 + S)p, 0 < p ≤ 1.
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Thus, our goal is to apply DNN for the approximate solution of the the following nonlinear
initial-boundary value problem with nonhomogeneous right-hand sides

∂U

∂t
− ∂

∂x

[(
1 +

t∫
0

[(∂U
∂x

)2
+
(∂V
∂x

)2]
dτ

)p ∂U

∂x

]
= f1(x, t),

∂V

∂t
− ∂

∂x

[(
1 +

t∫
0

[(∂U
∂x

)2
+
(∂V
∂x

)2]
dτ

)p ∂V

∂x

]
= f2(x, t),

U(0, t) = U(1, t) = V (0, t) = V (1, t) = 0, t ∈ [0,T ],

U(x, 0) = U0(x), V (x, 0) = V0(x), x ∈ [0, 1],

(4)

where f1, f2, U0, and V0 are the given functions.
Descriptive and measurable features, along with the numerical solutions for problem (4) and

one-dimensional analogue of (2) type models have been thoroughly studied in the literature (see,
for example, [1, 2, 4–16, 18–20, 24], and the references therein). As mentioned earlier, our goal is
to explore an alternative method for solving partial differential equations (PDEs) using Machine
Learning techniques. Machine learning, specifically neural networks, is utilized to create surrogate
models that predict PDE solutions at any point within the domain. Neural networks, which con-
sist of input, hidden, and output layers, offer flexibility in terms of architecture and the number of
neurons per layer (see, for example, [16]). In this approach, the solution to the problem is approx-
imated by a neural network output, and the network parameters are optimized during training. A
significant advantage of using DNNs in solving PDEs is their ability to incorporate physical laws
into the learning process, reducing the volume of required training data (as discussed in [3,21–23]).

The methodology allows to define a residual for the nonlinear problem (4), involving the ap-
proximate solution (u(x, t, ρ), v(x, t, ρ)) which is evaluated at specific training points

R(x, t, ρ) =
∂u(x, t, ρ)

∂t
+

∂v(x, t, ρ)

∂t
− f1(x, t)− f2(x, t)

− ∂

∂x

{(
1 +

t∫
0

[(∂u(x, t, ρ)
∂x

)2
+
(∂v(x, t, ρ)

∂x

)2
]
dτ

)p ∂u(x, t, ρ)

∂x

}

− ∂

∂x

{(
1 +

t∫
0

[(∂u(x, t, ρ)
∂x

)2
+
(∂v(x, t, ρ)

∂x

)2
]
dτ

)p ∂v(x, t, ρ)

∂x

}
. (5)

The neural network is trained by minimizing a cost function that combines residual (5) with
boundary and initial condition constraints [3, 15,21–23].

Test experiments, adopting the setup described in [16], were conducted to validate this approach.
The results demonstrate the potential of neural networks to approximate solutions effectively, even
for complex nonlinear PDEs. The experiments used TensorFlow for training and incorporated
various parameter settings to replicate and extend prior findings.

The source terms f1 and f2 were selected such a way that the exact solutions are given as
follows:

U(x, t) = x(1− x) sin(2πx− t), V (x, t) = x(1− x) cos(2πx− t).

In Figures 1 and 2 the results of the exact and approximate solutions are given for U and V
respectively. The plots are for the case p = 0.5 in the problem (4).
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Figure 1. Exact and numerical solutions for U(x, t).

Figure 2. Exact and numerical solutions for V (x, t).



REPORTS OF QUALITDE, Volume 3, 2024 147

Acknowledgment
This work is supported by the Shota Rustaveli National Science Foundation (SRNSFG), # FR-21-
2101.

References
[1] M. M. Aptsiauri, T. A. Dzhangveladze and Z. V. Kiguradze, Asymptotic behavior of the

solution of a system of nonlinear integro-differential equations. (Russian) Differ. Uravn. 48
(2012), no. 1, 70–78; translation in Differ. Equ. 48 (2012), no. 1, 72–80.

[2] Y. Bai and P. Zhang, On a class of Volterra nonlinear equations of parabolic type. Appl. Math.
Comput. 216 (2010), no. 1, 236–240.

[3] J. Blechschmidt and O. G. Ernst, Three ways to solve partial differential equations with neural
network – a review. GAMM-Mitt. 44 (2021), no. 2, Paper no. e202100006, 29 pp.

[4] T. Dzhangveladze, An Investigation of the First Boundary-Value Problem for Some Nonlinear
Parabolic Integrodifferential Equations. (Russian) Tbilisi State University, Tbilisi, 1983.

[5] D. G. Gordeziani, T. A. Dzhangveladze and T. K. Korshiya, Existence and uniqueness of the
solution of a class of nonlinear parabolic problems. (Russian) Differentsial’nye Uravneniya 19
(1983), no. 7, 1197–1207; translation in Differ. Equ. 19 (1984), 887–895.

[6] F. Hecht, T. Jangveladze, Z. Kiguradze and O. Pironneau, Finite difference scheme for one
system of nonlinear partial integro-differential equations. Appl. Math. Comput. 328 (2018),
287–300.

[7] T. Jangveladze, On one class of nonlinear integro-differential parabolic equations. Semin. I.
Vekua Inst. Appl. Math. Rep. 23 (1997), 51–87.

[8] T. Jangveladze, Convergence of a difference scheme for a nonlinear integro-differential equation.
Proc. I. Vekua Inst. Appl. Math. 48 (1998), 38–43.

[9] T. Jangveladze, Investigation and numerical solution of nonlinear partial differential and
integro-differential models based on system of Maxwell equations. Mem. Differ. Equ. Math.
Phys. 76 (2019), 1–118.

[10] T. Jangveladze and Z. Kiguradze, Large time asymptotics of solutions to a nonlinear integro-
differential equation. Mem. Differential Equations Math. Phys. 42 (2007), 35–48.

[11] T. A. Jangveladze and Z. V. Kiguradze, Asymptotics for large time of solutions to nonlinear
system associated with the penetration of a magnetic field into a substance. Appl. Math. 55
(2010), no. 6, 471–493.

[12] T. Jangveladze, Z. Kiguradze and B. Neta, Finite difference approximation of a nonlinear
integro-differential system. Appl. Math. Comput. 215 (2009), no. 2, 615–628.

[13] T. Jangveladze, Z. Kiguradze and B. Neta, Large time asymptotic and numerical solution of
a nonlinear diffusion model with memory. Comput. Math. Appl. 59 (2010), no. 1, 254–273.

[14] T. Jangveladze, Z. Kiguradze and B. Neta, Numerical Solutions of Three Classes of Nonlinear
Parabolic Integro-Differential Equations. Elsevier Science Publishing Co Inc., 2015.

[15] Z. Kiguradze, Approximate solution for heat equation applying neural network. Reports of
QUALITDE 1 (2022), 135–138;
https://rmi.tsu.ge/eng/QUALITDE-2022/Kiguradze_Z_workshop_2022.pdf.



148 Z. Kiguradze

[16] Z. Kiguradze, Numerical solution for one nonlinear integro-differential equation applying deep
neural network. Reports of QUALITDE 2 (2023), 108–111;
https://rmi.tsu.ge/eng/QUALITDE-2023/Kiguradze_Z_workshop_2023.pdf.

[17] L. D. Landau and E. M. Lifshic, Electrodynamics of Continuous Media. (Russian) Gosudarstv.
Izdat. Tehn.-Teor. Lit., Moscow, 1957.

[18] G. I. Laptev, Quasilinear parabolic equations that have a Volterra operator in the coefficients.
(Russian) Mat. Sb. (N.S.) 136(178) (1988), no. 4, 530–545; translation in Math. USSR-Sb.
64 (1989), no. 2, 527–542.

[19] Y. P. Lin and H.-M. Yin, Nonlinear parabolic equations with nonlinear functionals. J. Math.
Anal. Appl. 168 (1992), no. 1, 28–41.

[20] N. T. Long and P. N. D. Alain, Nonlinear parabolic problem associated with the penetration
of a magnetic field into a substance. Math. Methods Appl. Sci. 16 (1993), no. 4, 281–295.

[21] M. Raissi, P. Perdikaris and G. E. Karniadakis, Physics informed deep learning, Part I: Data-
driven solutions of nonlinear partial differential equations. arXiv 1711.10561, 2017.

[22] M. Raissi, P. Perdikaris and G. E. Karniadakis, Physics informed deep learning, Part II:
Data-driven discovery of nonlinear partial differential equations. arXiv 1711.10566, 2017.

[23] M. Raissi, P. Perdikaris and G. E. Karniadakis, Physics-informed neural networks: a deep
learning framework for solving forward and inverse problems involving nonlinear partial dif-
ferential equations. J. Comput. Phys. 378 (2019), 686–707.

[24] N. Sharma, M. Khebchareon, K. Sharma and A. K. Pani, Finite element Galerkin approx-
imations to a class of nonlinear and nonlocal parabolic problems. Numer. Methods Partial
Differential Equations 32 (2016), no. 4, 1232–1264.



REPORTS OF QUALITDE, Volume 3, 2024 149

Median and p-Median

Filip Konopka1,2
1Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague

Prague, Czech Republic
2Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

E-mail: filip.konopka@natur.cuni.cz

1 Introduction
In this paper, we introduce the definition of p-median of a measurable function which is the key
concept in the definition of p-oscillation and generalized Kurzweil integral. This new integral is
based on minimization of sums of p-oscillations instead of ordinary oscillations which leads to a
wider class of integrable functions. We introduce its definition in Section 4. However, it is not
obvious how to compute p-oscillation of a given function. It leads us to question if it is possible to
classify p-medians of a given function for any p. We can answer this question for p = 1, p = 2 and
p = ∞.

2 Preliminaries
Let M be an arbitrary subset of R, then µ(M) is the Lebesgue measure of M and, for p ∈ [1,∞],
Lp(M) is, as usual, the space of real valued functions measurable on M and such that ‖f‖p < ∞,
where

‖f‖p =
(∫

M

|f(x)|p dx
) 1

p

if p ∈ [1,∞) and ‖f‖∞ = ess sup
x∈M

|f(x)|

is the usual norm on Lp(M).

3 Median and p-median
Next definition was used in [5] (c.f. Definition 2.5 therein) and it is an analogue of median of
random variable in probability and statistics, cf. e.g. [6, Section 1.4].

Definition 3.1 (Median). Let f : [a, b] → R be a measurable function. We say that the number
λ ∈ R is the median of the function f on [a, b] if there exists a measurable set M ⊂ [a, b] such that
µ(M) = 1

2 (b− a), f ≤ λ on M and f ≥ λ on [a, b] \M .

Definition 3.2 (p-median). Let I ⊂ R be a bounded interval and f ∈ Lp(I) for some p ∈ [1,∞].
We say that the number c(p) ∈ R is the p-median of the function f on I if

inf
c∈R

‖f − c‖p = ‖f − c(p)‖p.

Remark 3.1. The existence of p-median is obvious. Indeed, since the function g(c) := ‖f − c‖p is
non-negative, continuous and its limits at ±∞ are +∞, it follows that it has a minimum.
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As we will prove later, median coincides with p-median for p = 1. We will also show that
for p = 2 the p-median coincides with the integral mean value of the given function, while for
p = ∞ it is simply the arithmetic mean of essential supremum and infimum of the given function.
Furthermore, if f ∈ L∞(I), then the relations ess inf f ≤ c(p) ≤ ess sup f hold for all p ∈ [1,∞].

First, we will show that median of a measurable function always exist.

Proposition 3.1. Every measurable function f : [a, b] → R has a median.

Proof. Let a measurable function f : [a, b] → R be given and

S1 :=
{
λ ∈ R; µ

(
f−1((−∞, λ))

)
≤ b− a

2

}
,

S2 :=
{
λ ∈ R; µ

(
f−1((λ,+∞))

)
≤ b− a

2

}
.

The monotonicity of measure implies that h1(λ) := µ(f−1((−∞, λ))) is non-decreasing on R and
h2(λ) := µ(f−1((λ,+∞))) is non-increasing on R. Moreover,

0 ≤ hi(λ) ≤ b− a for all λ ∈ R and i ∈ {1, 2}.

Denote Ak := f−1((−∞, k)) for k ∈ N. Then Ak ⊂ Ak+1 for each k and in view of the continuity
of measure we get

lim
k→∞

µ(Ak) = µ
( ∞⋃

k=1

Ak

)
= b− a.

Therefore, there is a k1 ∈ N such that µ(f−1((−∞, k1))) >
b−a
2 . Hence, S1 is bounded from above.

Next, we will show that it is non-empty. To this aim, put Bk := f−1((−∞,−k)) for k ∈ N. We
have Bk+1 ⊂ Bk for each k and all these sets have finite measures. Thus, using the continuity of
measure again, we obtain

lim
k→∞

µ(Bk) = µ
( ∞⋂

k=1

Bk

)
= 0.

Therefore, there is a k2 ∈ N such that

µ
(
f−1((−∞,−k2))

)
<

b− a

2
.

In other words, S1 6= ∅. Analogously, we can prove that S2 is nonempty and bounded from below.
Obviously, λ1 = supS1 < ∞ and −∞ < λ2 = inf S2. Moreover, it is easy to see that λ2 ≤ λ1.

Indeed, if the opposite was true, we could find numbers c1, c2 such that λ1 < c1 < c2 < λ2. In such
a case we would have

µ
(
f−1((−∞, c1))

)
>

b− a

2
and µ

(
f−1((c2,+∞))

)
>

b− a

2

a contradiction, since
f−1((−∞, c1)) ∩ f−1((c2,∞)) = ∅,

while
f−1((−∞, c1)) ∪ f−1((c2,∞)) = [a, b].

Let λ2 < λ1 and let an arbitrary ξ ∈ (λ2, λ1) be given. Then we can choose ξ1 ∈ S1 and ξ2 ∈ S2

in such a way that λ2 < ξ2 < ξ < ξ1 < λ1. By the definitions of the sets S1, S2, we have

µ
(
f−1((−∞, ξ])

)
≤ µ

(
f−1((−∞, ξ1))

)
≤ b− a

2
and µ

(
f−1((ξ,∞))

)
≤ µ

(
f−1((ξ2,∞))

)
≤ b− a

2
.
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Thus,

µ
(
f−1((−∞, ξ])

)
+ µ

(
f−1((ξ,∞))

)
≤ µ

(
f−1((−∞, ξ1))

)
+ µ

(
f−1((ξ2,∞))

)
≤ b− a. (3.1)

On the other hand, f−1((−∞, ξ]) ∪ f−1((ξ,∞)) = [a, b] and this together with (3.1) yields

µ
(
f−1((−∞, ξ])

)
+ µ

(
f−1((ξ,∞))

)
= b− a,

i.e. any ξ ∈ (λ1, λ2) is the median of f .
It remains to consider the case λ1 = λ2. Thus, let λ∗ := λ1 = λ2. Then, since (−∞, λ∗) ⊂ S1,

we have µ(f−1((−∞, λ))) ≤ 1
2(b− a) for all λ < λ∗ and, thanks to the continuity of measure,

µ
(
f−1((−∞, λ∗))

)
= lim

λ→λ∗
µ
(
f−1((−∞, λ))

)
≤ b− a

2
. (3.2)

Similarly,
µ(f−1(λ∗,∞)) ≤ b− a

2
. (3.3)

If one of the relations (3.2), (3.3) reduces to the equality, then λ∗ will be the median of f . Indeed,
if µ(f−1(λ∗,∞)) = b−a

2 , then for M = f−1(λ∗,∞)), we have

f(M) = (λ∗,∞), µ(M) =
b− a

2
and f([a, b] \M) ⊂ (−∞, λ∗].

Now, assume that both inequalities (3.2) and (3.3) are strict. Then, as obviously

[a, b] = f−1
(
((−∞, λ∗))

)
∪ f−1({λ∗}) ∪ f−1(((λ∗,∞))),

the set f−1({λ∗}) is nonempty and µ(f−1({λ∗})) > 0. We can define

h(t) = µ
(
[a, t] ∩ f−1({λ∗})

)
for t ∈ [a, b].

As h is continuous on [a, b], h(a) = 0 and h(b) = b− a, we can find a t0 ∈ [a, b] such that

h(t0) = µ
(
[a, t0] ∩ f−1({λ∗})

)
=

b− a

2
− µ(f−1(−∞, λ∗)) > 0.

Furthermore,
f−1({λ∗}) = A ∪B,

where
A := [a, t0] ∩ f−1

(
{λ∗}

)
and B := (t0, b] ∩ f−1

(
{λ∗}

)
are disjoint. Simultaneously,

µ
(
A ∪ f−1(−∞, λ∗)

)
=

b− a

2
, µ

(
B ∪ f−1((λ∗,∞))

)
=

b− a

2
,

f(x) ≤ λ∗ for x ∈ A ∪ f−1((−∞, λ∗)) and f(x) ≥ λ∗ for x ∈ B ∪ f−1((λ∗,∞)).

It follows easily that λ∗ is the median of the function f .

Example 3.1. Median doesn’t have to be uniquely determined, as shown by the following example.
The median of the function f : [0, 2] → R given by the formula

f(x) =

{
0 if x ∈ [0, 1),

1 if x ∈ [1, 2]

can be any number from the interval [0, 1]. Indeed, let M = [0, 1). Then given an arbitrary
λ ∈ [0, 1], we have f ≤ λ on M and f ≥ λ on [0, 2] \M .

On the other hand, it is easy to verify that if p > 1, then all the p-medians of the function f
on [0, 2] are equal to 1

2 .
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Example 3.2. The median of the function sinx on [−π, π] is zero, as well as all its p-medians with
p > 1 (shown in [3]).

Example 3.3. The median of the function sinx on the interval [0, π] equals 1
2

√
2 because sinx ≥

√
2
2

for all x ∈ [π4 ,
3π
4 ] and sinx ≤

√
2
2 for all x ∈ [0, π4 ) ∪ (3π4 , π]. On the other hand, its p-median c(∞)

for p = ∞ equals 1
2 , while

c(2) =
1

π

π∫
0

sinx dx =
2

π
.

Proposition 3.2. Median of the continuous function f : [a, b] → R is uniquely determined.

Proof. For a contradiction, let us suppose that f has two medians λ1, λ2 such that λ1 < λ2. Then,
by the definition of the median, there are measurable sets M1,M2 ⊂ [a, b], of measure b−a

2 and such
that

f(x) ≤ λ1 for all|; x ∈ M1 and f(x) ≥ λ1 for all|; x ∈ [a, b] \M1

and
f(x) ≤ λ2 for all|; x ∈ M2 and f(x) ≥ λ2 for all|; x ∈ [a, b] \M2.

Using these properties, we get

b− a

2
= µ(M2) ≥ µ

(
f−1((−∞, λ2))

)
≥ µ(M1) + µ

(
f−1((λ1, λ2))

)
=

b− a

2
+ µ

(
f−1((λ1, λ2))

)
.

It follows that µ(f−1((λ1, λ2))) = 0. However, the preimage of an open interval (λ1, λ2) under a
continuous mapping f must be an open set. Therefore, f−1((λ1, λ2)) is an open set of measure
zero, so it must be empty. Thus, the range Hf of the function f must be a subset of the set
[0, λ1] ∪ [λ2,∞]. Since the continuous image of the interval [a, b] is again an interval, it must be
either Hf ⊂ [0, λ1] or Hf ⊂ [λ2,∞]. But, in the former case it is f(x) ≤ λ1 for all x ∈ [a, b] which
implies that λ2 can not be the median of f . Similarly, in the latter case we have f(x) ≥ λ2 for
all x ∈ [a, b] which means that λ1 can not be the median of f . These conclusions contradicts our
assumption, of course.

Proposition 3.3. Let I ⊂ R be a bounded interval and f ∈ L∞(I). Put

A := ess inf
x∈I

f(x) and B := ess sup
x∈I

f(x).

Then
inf
c∈R

‖f − c‖p = inf
c∈[A,B]

‖f − c‖p for all p ∈ [1,∞].

Furthermore,
inf
c∈R

‖f − c‖∞ =
∥∥∥f − A+B

2

∥∥∥
∞

=
B −A

2
.

Proof.
(i) First, let us prove the first part of the statement, i.e. that the sought number c will always lie
in the interval [A,B]. In other words, we want to show that

inf
z∈[A,B]

‖f − z‖p ≤ ‖f − c‖p for all c ∈ (−∞, A) ∪ (B,∞).

If c ∈ (B,∞), then for almost all x ∈ [a, b] we have

|f(x)− c| = c− f(x) > B − f(x) = |f(x)−B|.
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Consequently, |f(x)− c|p > |f(x)−B|p for a.e. x ∈ I and, thus, ‖f − c‖p ≥ ‖f −A‖p.
In case p = ∞ we have

‖f − c‖∞ ≥ ‖f −B‖∞ if c > B and ‖f − c‖∞ ≥ ‖f −A‖∞ if c < A.

To summarize,
inf
c∈R

‖f − c‖p = inf
c∈[A,B]

‖f − c‖p for all p ∈ [1,∞].

(ii) Let us prove the remaining part of the statement. If c ∈ R is an arbitrary constant, then

ess inf(f(x)− c) = A− c and ess sup(f(x)− c) = B − c.

Thus
‖f − c‖∞ = max

{
|A− c|, |B − c|

}
.

Function y(c) = max{|A− c|, |B − c|} has a minimum for c = A+B
2 and, therefore,

inf
c∈R

‖f − c‖∞ = max
{∣∣∣A− A+B

2

∣∣∣, ∣∣∣B − A+B

2

∣∣∣} =
B −A

2
.

Remark 3.2. Analogously, if instead of p-norm we consider the supremum norm ‖f‖ = sup
x∈I

|f(x)|,
we get

inf
c∈R

‖f − c‖ =
∥∥∥f − 1

2

(
sup f(x) + inf f(x)

)∥∥∥.
Proposition 3.4. Let I ⊂ R be a bounded interval and f ∈ L2(I). Then

inf
c∈R

‖f − c‖2 =
∥∥∥∥f − 1

µ(I)

∫
I

f(t) dt

∥∥∥∥
2

.

In other words, for p = 2 the p-median of f equals to the integral mean value of f .

Proof. Let c ∈ R. Since L2(I) ⊂ L1(I) for I bounded, both integrals
∫
I

f(x) dx and
∫
I

f2(x) dx exist

and are finite. Therefore,

g(c) := ‖f − c‖22 =
∫
I

(f(x)− c)2 dx =

∫
I

f2(x) dx− 2c

∫
I

f(x) dx+ c2µ(I).

This is a quadratic function of c with a positive leading coefficient and thus it must have a minimum.
Its derivative is

g′(c) = −2

∫
I

f(x) dx+ 2c µ(I).

Hence
g′(c) = 0 if and only if c =

1

µ(I)

∫
I

f(x) dx.

This is its stationary point, and the function g takes a minimum there. Therefore, it is also a
minimum of the function ‖f − c‖2.
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4 Oscillations and HKp integral

In this section we introduce the notions of oscillation which is the key concept in the definition of
HKSp integral. Next definition is taken from [5, Definition 2.3].

Definition 4.1 (Oscillations). Let I ⊂ R be a bounded interval and p ∈ [1,∞]. We define the
p-oscillation of a measurable function f : I → R as

oscp(f, I) := (µ(I))
− 1

p inf
c∈R

‖f − c‖p.

Here and in what follows we set 1
p = 0 if p = ∞.

The following proposition is taken from [5, Proposition 2.6].

Proposition 4.1 (Oscillation and median relation). Let λ ∈ R be the median of the function f on
the bounded interval I ⊂ R and p ∈ [1,∞]. Then

oscp(f, I) ≤ (µ(I))
− 1

p ‖f − λ‖p ≤ 2
1− 1

p oscp(f, I).

In particular, for p = 1 we get

osc1(f, I) = (µ(I))−1‖f − λ‖1. (4.1)

It implies that
inf
c∈R

‖f − c‖1 = ‖f − λ‖1.

In other words, median coincides with p-median for p = 1.
Next, we will introduce the new definition of generalized Kurzweil integral based on minimiza-

tion of sum of p-oscillations instead of ordinary oscillations which leads to a wider class of integrable
functions.

Definition 4.2. We say that {[ai, bi], xi}ni=1 (n ∈ N) is a tagged partition of the interval I ⊂ R
if the intervals [ai, bi] are non-overlapping, their union is I and xi ∈ [ai, bi] for every i ∈ {1, . . . , n}.

Definition 4.3. Let an arbitrary positive function δ : [a, b] → R+ be given. We say that the tagged
partition {[ai, bi], xi}ni=1 is δ-fine if

[ai, bi] ⊂ (xi − δ(xi), xi + δ(xi)) for all i ∈ {1, . . . , n}.

Definition 4.4 (Generalized Kurzweil integral). Let I ⊂ R be an interval, f , F be functions
measurable on I. We say that F is an indefinite HKp integral of a function f if for all ε > 0 there
exists δε : I → R+ such that

n∑
i=1

oscp
(
F − f(xi)x, [ai, bi]

)
< ε

holds for each δε-fine tagged partition {[ai, bi], xi}ni=1 of the interval I.
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5 Examples
Example 5.1. Next example shows that even if the p-median c(p) is determined uniquely for all
p∈[1,∞], the function p 7→ c(p) need not be monotone, in general. Indeed, for the function

f(x) =

{
sin2 x if x ∈ [0, π],

sinx if x ∈ (π, 2π]

we have c(1) = c(∞) = 0. On the other hand, c(2) is negative, as by Proposition 3.4 we have

c(2) =
1

2π

2π∫
0

f(x) dx =
1

2π

(π
2
− 2

)
< 0.

Example 5.2. Let f(x) =

{
1 if x ∈ J,

0 if x ∈ I \ J,
where I ⊂ R is bounded interval and J ⊂ I its

subinterval.
It was shown in [3, Example 2.2.6] that the p-medians c(p) of this function are uniquely deter-

mined and they are explicitly given by the formula

c(p) =
((µ(I \ J)

µ(J)

) 1
p−1

+ 1
)−1

for p ∈ (1,∞).

Notice that the limit of p-medians as p → +∞ is indeed the arithmetic mean of essential suprema
and infima, i.e lim

p→+∞
c(p) = 1

2 = c(∞). Further, notice also that

lim
p→1+

c(p) = 1 = c(1) if µ(J) > µ(I \ J) and lim
p→1+

c(p) = 0 = c(1) if µ(J) < µ(I \ J),

i.e. the limit of p-medians c(p) as p → 1+ is indeed the median of f .
If µ(I \ J) = µ(J), then c(p) = 1

2 for all p ∈ (1,∞], while the median of f is not unique as it
can be any number from the interval [0, 1].

5 Examples

Example 5.1. Next example shows that even if the p-median c(p) is determined uniquely for all p∈[1,∞],
the function p 7→ c(p) need not be monotone, in general. Indeed, for the function

f(x) =

{
sin2 x if x ∈ [0, π],

sinx if x ∈ (π, 2π]

we have c(1) = c(∞) = 0. On the other hand, c(2) is negative, as by Proposition 3.11 we have

c(2) =
1

2π

∫ 2π

0

f(x) dx =
1

2π

(π
2
− 2

)
< 0.

Example 5.2. Let f(x) =

{
1 if x ∈ J,
0 if x ∈ I \ J, where I ⊂ R is bounded interval and J ⊂ I its subinterval.

It was shown in [4, Example 2.2.6] that the p-medians c(p) of this function are uniquely determined
and they are explicitly given by the formula

c(p) =
((µ(I \ J)

µ(J)

) 1
p−1 + 1

)−1

for p ∈ (1,∞).

Notice that the limit of p-medians as p → +∞ is indeed the arithmetic mean of essential suprema
and infima, i.e lim

p→+∞
c(p) = 1

2 = c(∞). Further, notice also that

lim
p→1+

c(p) = 1 = c(1) if µ(J) > µ(I \ J) and lim
p→1+

c(p) = 0 = c(1) if µ(J) < µ(I \ J),

i.e. the limit of p-medians c(p) as p → 1+ is indeed the median of f .
If µ(I \ J) = µ(J), then c(p) = 1

2 for all p ∈ (1,∞], while the median of f is not unique at it can be
any number from the interval [0, 1].

Figure 1: Graph of function c(p) in case µ(I\J)
µ(J)

= 2

Example 5.3. Let

f(x) =


8 if x ∈ [0, 1],

0 if x ∈ (1, 6],

−4 if x ∈ (6, 10].

Then the p-median c(p) of f on [0, 10] is determined uniquely for any p ∈ [1,∞], but no explicit formula
for c(p) is available. One can verify that c(1) = c(3) = 0, while c(2) < 0 and c(∞) > 0. Thus, the function
p 7→ c(p) is not monotone. Notice that the arithmetic mean of suprema and infima is c(∞) = 2, while
the integral mean value evaluates c(2) = − 4

5 .

6

Figure 1. Graph of function c(p) in case µ(I\J)
µ(J) = 2

Example 5.3. Let

f(x) =


8 if x ∈ [0, 1],

0 if x ∈ (1, 6],

−4 if x ∈ (6, 10].
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Then the p-median c(p) of f on [0, 10] is determined uniquely for any p ∈ [1,∞], but no explicit
formula for c(p) is available. One can verify that c(1) = c(3) = 0, while c(2) < 0 and c(∞) > 0.
Thus, the function p 7→ c(p) is not monotone. Notice that the arithmetic mean of suprema and
infima is c(∞) = 2, while the integral mean value evaluates c(2) = −4

5 .
For a given p > 1 let us denote again g(c) := ‖f−c‖pp. Obviously, g(c) = (8−c)p+5|c|p+4(4+c)p

and g is continuous [−4, 8]. Furthermore, g′(c) = −p(8 − c)p−1 + 5p|c|p−1 sgn c + 4p(4 + c)p−1 for
c 6= 0. One can verify that g′ is continuous and increasing on [−4, 0) ∪ (0, 8], while g′(−4) < 0,
g′(8) > 0 and g′(0−) = g′(0+) = p(4p − 8p−1)). In particular, for a given p ∈ (1,∞), there
is exactly one point c(p) ∈ (−4, 8) such that g′(c(p)) = 0. This defines implicitly the function
p 7→ c(p). In addition, g is decreasing on [−4, c(p)] and increasing on [c(p), 8]. Finally, notice that
g′(0−) = g′(0+) = 0 if and only if 8p−1 = 4p, i.e. if and only if p = 3, i.e. c(3) = 0.

For a given p > 1 let us denote again g(c) := ∥f − c∥pp. Obviously, g(c) = (8− c)p + 5|c|p + 4(4 + c)p

and g is continuous [−4, 8]. Furthermore, g′(c) = −p (8− c)p−1 + 5p |c|p−1 sgn c+ 4p (4 + c)p−1 for c ̸= 0.
One can verify that g′ is continuous and increasing on [−4, 0) ∪ (0, 8], while g′(−4) < 0, g′(8) > 0
and g′(0−) = g′(0+) = p(4p − 8p−1)). In particular, for a given p ∈ (1,∞), there is exactly one point
c(p) ∈ (−4, 8) such that g′(c(p)) = 0. This defines implicitly the function p 7→ c(p). In addition, g is
decreasing on [−4, c(p)] and increasing on [c(p), 8]. Finally, notice that g′(0−) = g′(0+) = 0 if and only
if 8p−1 = 4p, i.e. if and only if p = 3, i.e. c(3) = 0.

Figure 2: Graph of c(p)

6 Open problems

� (Uniqueness of p-median) Let I ⊂ R be a bounded interval and f ∈ Lp(I) for some p ∈ (1,∞]. Is
there unique number c(p) ∈ R such that

inf
c∈R

∥f − c∥p = ∥f − c(p)∥p ?

We have proved the uniqueness of p-medians if p > 1 for step function, analogously as in Example
5.3., but still we don’t know if there is uniqueness in general for f ∈ Lp(I). If yes, it would be
interesting to investigate properties of function p 7→ c(p).

� (Limits of p-medians) In Example 5.2 we have seen that for the function f considered there the
limit of p-medians c(p) as p → ∞ is c(∞) and the limit of c(p) as p → 1+ is the median of f. The
question is whether this is true in general.

� (Properties of p-medians) Is function p 7→ c(p) continuous? Is it differentiable? Is it true that
lim

p→1+
c′(p) = 0?
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Let us show using the example of several nonlinear difference equations the possibility of esti-
mating the properties of the solutions using a discrete analogue of the retract principle. To describe
this principle, we need to consider a system of discrete equations

∆Y (k) = F (k, Y (k)), k ∈ N(k0), (0.1)

where Y = (Y0, . . . , Yn−1)
T and

F (k, Y ) =
(
F1(k, Y ), . . . , Fn(k, Y )

)T
: N(k0)× Rn → Rn. (0.2)

A solution Y = Y (k) of system (0.1) is defined as a function Y : N(k0) → Rn satisfying (0.1) for
each k ∈ N(k0). The initial problem

Y (k0) = Y 0 = (Y 0
0 , . . . , Y

0
n−1)

T ∈ Rn

defines a unique solution to (0.1). Obviously, if F (k, Y ) is continuous with respect to Y , then the
initial problem (0.1), (0.2) defines a unique solution Y = Y (k0, Y

0)(k), where Y (k0, Y
0) indicates a

dependence of the solution on the initial point (k0, Y
0), which depends continuously on the value

Y 0. Let bi, ci : N(k0) → R, i = 1, . . . , n be given functions, satisfying

bi(k) < ci(k), k ∈ N(k0), i = 1, . . . , n.

Define auxiliary functions Bi, Ci : N(k0)× R → R, i = 1, . . . , n as

Bi(k, Y ) := −Yi−1 + bi(k), Ci(k, Y ) := Yi−1 − ci(k),

and auxiliary sets

Ωi
B :=

{
(k, Y ) : k ∈ N(k0), Bi(k, Y ) = 0, Bj(k, Y ) ≤ 0, Cp(k, Y ) ≤ 0,

∀ j, p = 1, . . . , n, j ̸= i
}
,

Ωi
C :=

{
(k, Y ) : k ∈ N(k0), Ci(k, Y ) = 0, Bj(k, Y ) ≤ 0, Cp(k, Y ) ≤ 0,

∀ j, p = 1, . . . , n, p ̸= i
}
,

where i = 1, . . . , n.
Playing a crucial role in the proofs and being suitable for applications, the following lemma is

a slight modification of [3, Theorem 1] (see [5, Theorem 2] also).
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Definition 0.1. The set Ω is called the regular polyfacial set with respect to the discrete sys-
tem (0.1) if

bi(k + 1)− bi(k) < Fi(k, Y ) < ci(k + 1)− bi(k),

for every i = 1, . . . , n and every (k, Y ) ∈ Ωi
B and if

bi(k + 1)− ci(k) < Fi(k, Y ) < ci(k + 1)− ci(k),

for every i = 1, . . . , n and every (k, Y ) ∈ Ωi
C .

To formulate the following theorem, we need to define sets

Ω(k) =
{
(k, Y ) : Y = (Y1, . . . , Yn) ∈ Rn, bi(k) < Yi < ci(k), i = 1, . . . , n

}
,

Ωi(k) =
{
(Y ) : Y ∈ R, bi(k) < Yi < ci(k), i = 1, . . . , n

}
.

Theorem 0.1 ([4, Theorem 4]). Let F : N(k0)×Ω → Rn. Let, moreover, Ω be regular with respect
to the discrete system (0.1), and let the function

Gi(w) := w + Fi(k, Y1, . . . , Yi−1, w, Yi+1, . . . , Yn)

be monotone on Ωi(k) for every fixed k ∈ N(k0), each fixed i ∈ {1, . . . , n}, and every fixed

(Y1, . . . , Yi−1, Yi+1, . . . , Yn)

such that (k, Y1, . . . , Yi−1, w, Yi+1, . . . , Yn) ∈ Ω. Then, every initial problem Y (k0) = Y ∗ with
Y ∗ ∈ Ω(k0) defines a solution Y = Y ∗(k) of the discrete system (0.1), satisfying the relation

Y ∗(k) ∈ Ω(k)

for every k ∈ N(k0).
Now we formulate a result which is proved in [3] by a retract method sometimes called an Anti-

Liapunov method due to the assumptions used being often an opposite to those used when Liapunov
method is applied (such an approach goes back to Ważewski, who formulated his topological method
formulated for ordinary differential equations). The following theorem is a slight modification
of [3, Theorem 1] (see [5, Theorem 2] also).
Theorem 0.2. Assume that the function F (k, Y ) satisfies (0.1) and is continuous with respect to
Y . Let the inequality

Fi(k, Y ) < bi(k + 1)− bi(k)

hold for every i = 1, . . . , n and every (k, Y ) ∈ Ωi
B. Let, moreover, the inequality

Fi(k, Y ) > ci(k + 1)− ci(k)

hold for every i = 1, . . . , n and every (k, Y ) ∈ Ωi
C . Then, there exists a solution Y = Y (k),

k ∈ N(k0) of system (0.1), satisfying the inequalities

bi(k) < Yi−1(k) < ci(k)

for every k ∈ N(k0) and i = 1, . . . , n.
Definition 0.2. A function uupp : B → R is said to be an approximate solution to equation (0.1)
of an order g, where g : N(k0) → R, if

lim
k→∞

[
∆3uupp(k)± kαunupp(k)

]
g(k) = 0.

If the main term (i.e. the term being asymptotically leading) in uupp(k) is a power-type function,
we say that it is a power-type approximate solution.
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1 Discrete analogue of Emden–Fowler second-order
non-linear equation

Now let us consider the following second-order non-linear equation

∆2u(k)± kαum(k) = 0, (1.1)

where u : N(k0) → R is an unknown solution, ∆u(k) is its first-order forward difference, i.e.,

∆u(k) = u(k + 1)− u(k),

∆2(k) is its second-order forward difference, i.e.,

∆2u(k) = ∆(∆u(k)) = u(k + 2)− 2u(k + 1) + u(k),

and α, m are real numbers. A function u = u∗ : N(k0) → R is called a solution of equation (1.1) if
the equality

∆2u∗(k)± kα(u∗(k))m = 0

holds for every k ∈ N(k0).
Equation (1.1) is a discretization of the classical Emden–Fowler second-order differential equa-

tion (we refer, e.g., to [2])
y′′ ± xαym = 0,

where the second-order derivative is replaced by a second-order forward difference and the contin-
uous independent variable is replaced by a discrete one.
Remark 1.1. We need to assume m ̸= 0, m ̸= 1, s + 2 ̸= 0, and s + 2 − ms ̸= 0, that is, m ̸= 0,
m ̸= 1, α ̸= −2, and α ̸= −2m.

Let us define

s =
α+ 2

m− 1
,

a =
[
∓ s(s+ 1)

]1/(m−1)
, (1.2)

and
b =

as(s+ 1)

s+ 2−ms
.

Remark 1.2. If, in formula (1.2), either the upper variant of sign is in force (i.e. −) and s(s+1) > 0
or in (1.2) lower variant of sign in force (i.e. +) and s(s+1) < 0, then the constant m has the form
of a ratio m1/m2 of relatively prime integers m1, m2, and m2 is odd, the difference m1−m2 is odd
as well. If this convention holds, formula (1.2) defines two or at least one value. As equation (1.1)
splits into two equations, when formulating the results, we assume that a concrete variant is fixed
(either with the sign + or with the sign −).

Previously in [1,7,8] the conditions on the existence of a power-type solution of equation (1.1)
were discussed.

Theorem 1.1. If there exist γ ∈ (0, 1), s and εi > 0, i = 1, 2, 3, 4, such that P ≡ γ+s+1
s+1 and

Q ≡ γ+s+2
ms and at least one of the following four conditions is true

(1) ms > 0, s > −1, ε3 < ε1P , ε4 < ε2P , ε1 < ε3Q, ε2 < ε4Q;

(2) ms < 0, s > −1, ε3 < ε1P , ε4 < ε2P , ε2 < −ε3Q, ε1 < −ε4Q;
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(3) ms < 0, −2 ̸= s < −1, ε4 < −ε1P , ε3 < −ε2P , ε2 < −ε3Q, ε1 < −ε4Q;

(4) ms > 0, −2 ̸= s < −1, ε4 < −ε1P , ε3 < −ε2P , ε1 < ε3Q, ε2 < ε4Q,

then there exists K such that for all k0 > K there exists a solution u(k) to equation (1.1) such that
for all k ∈ N(k0) the following inequalities

− ε1
kγ

<
(
u(k)− a

ks
− b

ks+1

)( b

ks+1

)−1
<

ε2
kγ

, (1.3)

− ε3
kγ

<
(
∆u(k)−∆

( a

ks

)
−∆

( b

ks+1

))(
∆
( b

ks+1

))−1
<

ε4
kγ

, (1.4)

− ε1
kγ

+O
(1
k

)
<

(
∆2u(k)−∆2

( a

ks

)
−∆2

( b

ks+1

))(
∆2

( b

ks+1

) ms

s+ 2

)−1
<

ε2
kγ

+O
(1
k

)
(1.5)

hold.

Theorem 1.2. If there exist s > −1 and εi > 0, i = 1, 2, 3, 4, such that one of the following
conditions hold

(1) ms > 0, ε3 < ε1, ε2 > ε4, ε3 >
ms

s+ 2
ε1, ε4 >

ms

s+ 2
ε2;

(2) ms < 0, ε3 < ε1, ε2 > ε4, ε3 > − ms

s+ 2
ε2, ε4 > − ms

s+ 2
ε1,

then for some K for all k0 > K there exist a solution u(k) to equation (1.1) such that for all
k ∈ N(k0) and γ = 0 (1.3)–(1.5) hold.

To prove these theorems we had to transform the discrete second-order non-linear equation to
the system of two discrete equations, and applying theorems in preliminaries we get the above
theorems. For more details to the proof we refer to [1, 7].

2 Another second-order non-linear difference equation
Let us consider the problem of the existence of a nontrivial solution to the equation

∆2v(k) = −ks(∆v(k))3 (2.1)

such that the limit limk→∞ v(k) exists and is finite. More exactly, under the condition s > 1, we
prove the existence of a solution to equation (2.1) such that the limit

lim
k→∞

v(k) = 0.

Theorem 2.1. Let s > 1. Let εi, γi, i = 1, 2 be fixed positive numbers such that ε2 < ε1 < 1,
γ2 < γ1 < 1. Then there exists a solution v = v(k) to equation (2.1) such that

−ε1|c|k−α < v(k)− ck−α < γ1|c|k−α,

−ε2γ2∆
(
|c|k−α

)
< ∆v(k)− (∆(ck−α)) < γ2∆

(
|c|k−α

)
,

and
∆2v(k) = O(1)

for all k ∈ Z∞
k0

provided that k0 is sufficiently large.

Opposite to the equation in the previous chapter where Theorem 0.1 was used, in this case
Theorem 0.2 is applied (for details see [6]).
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3 Conclusion
In this article we discussed two different non-linear discrete equations. To prove some properties to
its solutions, we used the retract principle described in this article. It can be concluded that other
nonlinear discrete differential equations can be investigated in a similar way.
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1 Introduction
In recent years, there has been a significant development of interest in the implementation of a qual-
itative process of mixing in flows in two-dimensional rectangular cavities without the participation
of physical mixers in the process itself. This becomes possible when the flow of an incompressible
viscous liquid is periodically excited in a rectangular cavity with the help of tangential velocities
applied to its walls. The results obtained in this direction relate to problems in which the side
walls in a rectangular cavity are free from loads, which is physically impossible to implement. The
purpose of the research is to build a similar model, which is proposed in [1,4], considering the case
of fixed side walls in a rectangular cavity. Moreover, the goal is to find periodic points of the third
order and establish their type.

2 Setting of the problem and the main results
The movement of individual flow particles is considered in a known velocity field and is reduced
to solving the advection equations, which are a system of first-order ordinary differential equations
with a complex functional dependence in the right-hand parts:

dxi(t)

dt
= f(x, y),

dyi(t)

dt
= g(x, y), i = 1, n (2.1)

with the initial conditions
xi(t) = xi0, yi(t) = yi0, i = 1, n.

Two-dimensional slow flow of an incompressible viscous fluid can be represented in terms of a
biharmonic problem. If such a motion is so slow that the inertial forces containing the squares of
the velocities can be neglected compared to the viscous terms, then the stream function ψ satisfies
the biharmonic equation

∆2ψ = 0. (2.2)

In rectangular coordinates, the Euler components of the velocity vector u and v are defined as

u =
∂ψ

∂y
, v = −∂ψ

∂x
.

Flow in a rectangular cavity |x| ≤ a, |y| ≤ b is caused by the given tangential velocities Utop(x)
and Ubot(x) on the upper (y = b) and lower (y = −b) walls, respectively, and the side walls x = a
are stationary (Figure 1).
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Figure 1: Geometry of a rectangular cavity.

ψ = 0,
∂ψ

∂y
= ±U(x), y = ±b, |x| ≤ a, (5)

where

U(x) = Utop(x) = −Ubot(x) = U
(1)
1 cos

πx

2a
− U

(2)
1 sin

πx

a
. (6)

A detailed description of the construction of the solution to problem (2), (4), and (5) is
considered in [3, 4]. The resulting solution de�nes the velocity �eld, that is, the right-hand
sides of the advection equations (1).

Important for studying the advection of a passive non-inertial particle is the knowledge
of the periodic points of the process of order p, that is, such initial conditions in the
advection equation (1), when the point accurately returns to its initial position in p
periods. A fundamental element of the analysis of the advection process is the classi�cation
of periodic points into elliptical and hyperbolic.

We will classify the type of periodic point analytically by determining the eigenvalue λ1
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Boundary conditions for equation (2.2) have the form

ψ = 0,
∂ψ

∂x
= 0, x = ±a, |y| ≤ b, (2.3)

ψ = 0,
∂ψ

∂y
= ±U(x), y = ±b, |x| ≤ a, (2.4)

where
U(x) = Utop(x) = −Ubot(x) = U

(1)
1 cos

πx

2a
− U

(2)
1 sin

πx

a
. (2.5)

A detailed description of the construction of the solution to problem (2.2), (2.3), and (2.4) is
considered in [2,3]. The resulting solution defines the velocity field, that is, the right-hand sides of
the advection equations (2.1).

Important for studying the advection of a passive non-inertial particle is the knowledge of the
periodic points of the process of order p, that is, such initial conditions in the advection equation
(2.1), when the point accurately returns to its initial position in p periods. A fundamental element
of the analysis of the advection process is the classification of periodic points into elliptical and
hyperbolic.

We will classify the type of periodic point analytically by determining the eigenvalue λ1 and λ2
of the Jacobian matrix of the linearized system (2.1) in the vicinity of the considered point. If λ1
and λ2 are complex conjugate, the point is of elliptic type. If λ1 and λ2 = 1

λ1
are valid, the time

point is of hyperbolic type.
There can also be a situation of λ1 = λ2 = ±1, which corresponds to the degenerate case

where the periodic point is parabolic: in this case, any small change in the velocity field causes the
periodic point to become elliptical or hyperbolic.

The Jacobian elements of the matrix M are calculated by solving system (2.1) for four initial
conditions (x+ ϵ, y), (x− ϵ, y), (x, y+ ϵ), (x, y− ϵ), where (x, y) are the rectangular coordinates of
a periodic point, and ϵ is an arbitrarily small value,

Mxx =
x(0,pT )(x+ ϵ, y)− x(0,pT )(x− ϵ, y)

2ϵ
, Mxy =

x(0,pT )(x, y + ϵ)− x(0,pT )(x, y − ϵ)

2ϵ
,

Myx =
y(0,pT )(x+ ϵ, y)− y(0,pT )(x− ϵ, y)

2ϵ
, Mxy =

y(0,pT )(x, y + ϵ)− y(0,pT )(x, y − ϵ)

2ϵ
,

(2.6)
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where p is the order of the periodic point.
The condition that the determinant of the matrix M must be equal to one is used when checking

the accuracy of calculations.
Figure 2 shows periodic points (in red), which have the following coordinates: AL = (−2.01, 0),

AC = (0, 0), AR = (2.01, 0). Coordinates of periodic points and parameters U (1)
1 and U

(2)
1 in (2.5)

were selected according to the following algorithm:

(1) periodic points AL and AC must belong to the same flow line;

(2) points AL and AR are equidistant from the central point AC .

With such values of U (1)
1 and U

(2)
1 , the periodic points AL and AC pass into each other in a half-

period τ = 1
2 T (T = 2, τ varies from 0 to 1

2 T ), exchange positions (the transition occurs clockwise),
and the right AR remains stationary.

where p is the order of the periodic point.
The condition that the determinant of the matrix M must be equal to one is used

when checking the accuracy of calculations.
Figure 2 shows periodic points (in red), which have the following coordinates: AL =

(−2.01, 0), AC = (0, 0), AR = (2.01, 0). Coordinates of periodic points and parameters

U
(1)
1 and U

(2)
1 in (6) were selected according to the following algorithm:

1) periodic points AL and AC must belong to the same �ow line;
2) points AL and AR are equidistant from the central point AC .

With such values of U
(1)
1 and U

(2)
1 , the periodic points AL and AC pass into each other

in a half-period τ = 1
2
T (T = 2, τ varies from 0 to 1

2
T ), exchange positions (the transition

occurs clockwise), and the right AR remains stationary.

Figure 2: Picture of streamlines in a rectangular cavity a = 3 and b = 1 with unmovable
side walls over the half period 0 < t < 1

2
T .

Figure 3: Picture of streamlines in a rectangular cavity a = 3 and b = 1 with unmovable
side walls over the half period 1

2
T < t < T .

In the time period from 1
2
T to T , the found velocity at the boundaries changes its

value to the opposite, begins to act in the opposite direction. In this case, the left periodic
point remains stationary, and the central and right point move into each other, changing
their positions (the transition occurs counter-clockwise). The corresponding picture of

3

Figure 2. Picture of streamlines in a rectangular cavity a = 3 and b = 1 with unmovable
side walls over the half period 0 < t < 1

2
T .

where p is the order of the periodic point.
The condition that the determinant of the matrix M must be equal to one is used

when checking the accuracy of calculations.
Figure 2 shows periodic points (in red), which have the following coordinates: AL =

(−2.01, 0), AC = (0, 0), AR = (2.01, 0). Coordinates of periodic points and parameters

U
(1)
1 and U

(2)
1 in (6) were selected according to the following algorithm:

1) periodic points AL and AC must belong to the same �ow line;
2) points AL and AR are equidistant from the central point AC .

With such values of U
(1)
1 and U

(2)
1 , the periodic points AL and AC pass into each other

in a half-period τ = 1
2
T (T = 2, τ varies from 0 to 1

2
T ), exchange positions (the transition

occurs clockwise), and the right AR remains stationary.

Figure 2: Picture of streamlines in a rectangular cavity a = 3 and b = 1 with unmovable
side walls over the half period 0 < t < 1

2
T .

Figure 3: Picture of streamlines in a rectangular cavity a = 3 and b = 1 with unmovable
side walls over the half period 1

2
T < t < T .

In the time period from 1
2
T to T , the found velocity at the boundaries changes its

value to the opposite, begins to act in the opposite direction. In this case, the left periodic
point remains stationary, and the central and right point move into each other, changing
their positions (the transition occurs counter-clockwise). The corresponding picture of

3

Figure 3. Picture of streamlines in a rectangular cavity a = 3 and b = 1 with unmovable
side walls over the half period 1

2
T < t < T .

In the time period from 1
2 T to T , the found velocity at the boundaries changes its value to

the opposite, begins to act in the opposite direction. In this case, the left periodic point remains
stationary, and the central and right point move into each other, changing their positions (the
transition occurs counter-clockwise). The corresponding picture of streamlines along with the
observed points is shown in Figure 3. In three full periods T , the points will return to their original
positions.
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Thus, the found points are periodic points of the third order of the elliptic type. The type of
these points was determined numerically and analytically according to the methodology proposed
in this work. These points play an important role in the theory of mixing liquids and are called
“ghost rods”.

References
[1] P. Kumar, J. Chen and M. Stremler, Stirring with ghost rods in a lid-driven cavity. Bulletin

of the American Physical Society 54 (2009), no. 19.
[2] O. B. Kurylko, Topological chaos in two-dimesional rectangular cavity flow. Visn., Ser. Fiz.-

Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2 (2010), no. 2, 61–64.
[3] V. V. Meleshko, O. B. Kurylko and A. A. Gourjii, Retracted article: Generation of topological

chaos in the stokes flow in a rectangular cavity. J. Math. Sci. 185 (2012), 858–871.
[4] M. A. Stremler and J. Chen, Generating topological chaos in lid-driven cavity flow. Phys.

Fluids 19 (2007), 103602.



REPORTS OF QUALITDE, Volume 3, 2024 167

The Averaging Method for Optimal Control Problems
of Systems of Integro-Differential Equations

Roksolana Lakhva
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

E-mail: roksolanalakhva@knu.ua

Viktoriia Mogylova
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

E-mail: mogylova.viktoria@gmail.com

Vasyl Kravets
Dmytro Motornyi Tavria State Agrotechnological University

Melitopol, Zaporizhzhia obl., Ukraine
E-mail: v_i_kravets@ukr.net

Abstract
This work is devoted to the optimal control of systems of integro-differential equations with

rapidly oscillating coefficients and a small parameter. Using the averaging method, it has
been proven that the optimal control of the averaged problem, which is a system of ordinary
differential equations, is nearly optimal for the original problem. That is, it minimizes the
quality criterion with an accuracy up to ε.

1 Problem statement
We consider the nonlinear optimal control problem of integro-differential system with rapidly os-
cillating coefficients: 

ẋ = X

(
t

ε
, x,

t∫
0

φ(t, s, x(s)) ds, u(t)

)
,

x(0) = x0,

(1.1)

and a cost function:

Jε[u] =

T∫
0

L(t, xε(t), u(t)) dt+ ϕ(xε(T )) −→ inf . (1.2)

Here, ε > 0 is a small parameter, T > 0 is a constant, x is the phase vector in the domain
D ⊂ Rd, u(t) – m-dimensional control vector from a certain functional set.

Furthermore, x(t, u) is the solution to the Cauchy problem (1.1), (1.2) corresponding to the
control u(t). Disregarding the dependence on u, we denote it simply as x(t).

We assume that there exists a function X0(x, u) such that, for uniformly x ∈ Rd and u ∈ U ,
the following limit exists:

lim
ε→0

t∫
0

[
X
( t

ε
, x, φ1(t, x), u

)
−X0(x, u)

]
dτ, (1.3)
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where

φ1(t, x) =

t∫
0

φ(t, s, x) ds,

t ∈ [0, T ], s ∈ [0, T ].
Note that condition (1.3) means the integral continuity of the function X( τε , x, φ(τ, x), u) at the

point ε = 0 on the [0, T ], x ∈ D, u ∈ U .
The optimal control problems (1.1), (1.2) with rapidly oscillating coefficients correspond to a

simpler optimal control problem {
ξ̇ = X0(ξ, u(t)),

ξ(0) = x0,
(1.4)

with a cost function:

J0[u] =

T∫
0

L(t, ξ(t), u(t)) dt+ ϕ(ξ(T )) −→ inf . (1.5)

For problems (1.1), (1.2), we assume that the following conditions hold.

Condition 1.1. The admissible controls are m-dimensional vector functions u( · ) such that u( · ) ∈
U – a compact set in L2((0, T )).

Condition 1.2. The function X(t, x, y, u) is defined and continuous with respect to the collection
of variables in the domain

Q0 =
{
t ∈ [0, T ], x ∈ D ⊂ Rd, y ∈ Rn, u ∈ U ∈ Rm

}
.

(1) X(t, x, y, u) satisfies the linear growth condition with respect to x, y in Q0, i.e. there exists a
constant M > 0 such that

|X(t, x, y, u)| ≤ M
(
1 + |x|+ |y|

)
for any (t, x, y, u) ∈ Q0.

(2) X(t, x, y, u) satisfies the Lipschitz condition with respect to x ∈ D ⊂ Rd and u ∈ Rm in Q0,
with constant λ:∣∣X(t, x, y, u)−X(t, x1, y1, u1)

∣∣ ≤ λ
(
|x− x1|+ |y − y1|+ |u− u1|

)
for any (t, x, y, u), (t, x1, y1, u1) ∈ Q0.

Condition 1.3. The function φ(t, s, x) is defined and continuous in the domain Q1 = {t ∈
[0, T ], s ∈ [0, T ], x ∈ D} and satisfies the linear growth and the Lipschitz conditions with re-
spect to x, i.e., ∃Lφ such that∣∣φ(t, s, x)− φ(t, s, x1)

∣∣ ≤ Lφ|x− x1|,
|φ(t, s, x)| ≤ Lφ

(
1 + |x|

)
.

Condition 1.4. Uniformly with respect to x ∈ D, u ∈ Rm, the limit (1.3) exists.

Condition 1.5. The function L(t, x, u) is defined and continuous with respect to the collection of
arguments in the domain Q1 = {t ∈ [0, T ], x ∈ Rd, u ∈ Rm}, where:
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(1) L(t, x, u) is uniformly bounded on [0, T ] with u ∈ Rm and continuous with respect to x ∈ Rd.

(2) L(t, x, u) satisfies the Lipschitz condition with respect to u in Q1 with constant λ > 0.

(3) The function ϕ : Rd → R is continuous with respect to x.
According to Conditions 1.1, 1.2 and Theorem 3.1 from [1], it follows that for any continuous

admissible control u(t), the solution of the Cauchy problem X(t, u) exists and is unique on the
entire interval [0, T ]. The problems (1.1), (1.4) make sense for all admissible controls.

2 Main results
The following theorem guarantees the closeness of solutions of the corresponding Cauchy problems
(1.1), (1.4) for small ε on a finite time interval.
Theorem 2.1. Let Conditions 1.1–1.3 hold. Then for any η > 0, there exists ε0 = ε0(η) such
that 0 < ε ≤ ε0, for the solutions x(t, u), ξ(t, u) of the Cauchy problems (1.1) and (1.4) satisfy the
following estimate

|x(t, u)− ξ(t, u)| ≤ η,

for all t ∈ [0, T ] and all admissible controls u(t).
Proof. We will choose the fixed η > 0. For any ε > 0 and any admissible control u(t), we estimate
the difference between x(t, u) and ξ(t, u). For simplicity, let’s denote x(t, u) = x(t) and ξ(t, u) =
ξ(t). We will also omit the dependence of x(t) on ε.

Since U is compact in L2((0, T )), for the given η, there exists a finite grid. Thus, for the chosen
control u(t) from the grid such that ηe−λ

4λ : u1(t), . . . , un(t), where N = N(η). Then, for the chosen
control u(t), there exists a subsequence uj(t) from the grid such that

∥u( · )− uj( · )∥L2 ≤ η

4λ
e−λ.

Thus, since u(t) is compact in L2((0, T )), all u(t) satisfy the inequality, where there exists K > 0
such that

T∫
0

|u(t)| dt ≤ K.

Then

|x(t)| ≤ |x0|+MT +M

T∫
0

(
|x(s)|+ Lφ

s∫
0

(
1 + |x(τ)|

)
dτ

)
ds.

Since, by the Bellman–Gronwall inequality, we get

|x(t)| ≤ C, |ξ(t)| ≤ C, (2.1)

where C is a constant. The estimate for |ξ(t)| was obtained in the same way.
Since Assumption 1.2, we get

|x(t)− ξ(t)| ≤
t∫

0

∣∣∣∣X(
s

ε
, x(s),

s∫
0

φ(s, τ, x(τ)) dτ, uj(s)

)
−X0(ξ(s), uj(s))

∣∣∣∣ ds
+ 2λ

( T∫
0

|u(s)− uj(s)|2 ds
) 1

2

≤ I1 +
η

2
e−λT .
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Then we will evaluate I1 using Conditions 1.2, 1.3, we have

I1 ≤
t∫

0

(
λ|x(s)− ξ(s)|+

s∫
0

|x(t)− ξ(t)|Lφ dτ

)
ds

+

t∫
0

(
X

(
s

ε
, ξ(s),

s∫
0

φ(s, τ, ξ(τ)) dτ, uj(s)

)
−X0(ξ(s), uj(s))

)
ds. (2.2)

Since any function from L2((0, T )) can be approximated in the L2 – norm by a continuous function,
and any continuous function on a closed interval can be approximated by a piecewise constant
function, for uj(t) we take a continuous function uc(t) and a piecewise constant function uc(t) such
that the inequalities hold:

∥uj − ucj∥L2 <
η

16λ
e−λT , (2.3)

∥ucj (t)− upj (t)∥L2 <
η

16λ
e−λT (2.4)

for all t ∈ [0, T ].
Using estimates (2.3) and (2.4), we evaluate the last integral from (2.2):

t∫
0

(
X

(
s

ε
, ξ(s),

s∫
0

φ(s, τ, ξ(τ)) dτ, uj(s)

)
−X0(ξ(s), uj(s))

)
ds

≤
t∫

0

(
X

(
s

ε
, ξ(s),

s∫
0

φ(s, τ, ξ(τ)) dτ, up(s)

)
−X0(ξ(s), up(s))

)
ds+

η

4
e−λT .

We split the integral from the last inequality into two integrals, and I2 and I3

t∫
0

[
X

(
s

ε
, ξ(s),

s∫
0

φ(s, τ, ξ(τ)) dτ, up(s)

)
−X0(ξ(s), up(s))

]
ds

=

t∫
0

[
X

(
s

ε
, ξ(s),

s∫
0

φ(s, τ, ξ(τ)) dτ, up(s)

)
−X

(
s

ε
, ξ(s),

s∫
0

φ(s, τ, ξ(s)) dτ, up(s)

)]
ds

+

t∫
0

[
X

(
s

ε
, ξ(s),

s∫
0

φ(s, τ, ξ(s)) dτ, up(s)

)
−X0(ξ(s), up(s))

]
ds = I2 + I3.

If necessary, by dividing the segment [0, T ] with points {tk}R0 (t0 = 0, tR = T ), it can be
assumed that on each interval [tk, tk+1), all components of the vector function up(t) take constant
values, i.e., up(tk) = up(tk) for t ∈ [tk, tk+1). Here, the natural R = R(η) is fixed for a fixed choice
of η.

Now, let us choose a natural n and divide the segment [0, T ] into equal n parts using the points
ti = i ·n−1 (i = 0, n). We assume n is large enough such that each interval [tk, tk+1) contains points
ti. As a result, we obtain n intervals of the form [ti, ti+1). If, for some k and i, ti < tk < ti+1, the
interval [ti, ti+1) is divided into two intervals, [ti, tk) and [tk, ti+1). Consequently, the segment [0, T ]
is divided into no more than n + R intervals, each with a length not exceeding 1

n . The division
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points are again denoted as ti, and the total number of intervals [ti, ti+1) is denoted by K = K(η).
Clearly, K ≤ n+R, and up(t) = up(ti) for t ∈ [ti, ti+1). Let us denote ξi = ξ(ti), and up(ti) = upi.
Then

I2 ≤
K−1∑
i=0

ti+1∫
ti

[
X

(
s

ε
, ξ(s),

s∫
0

φ(s, τ, ξ(τ)) dτ, upi

)
−X

(
s

ε
, ξi,

s∫
0

φ(s, τ, ξi) dτ, upi

)]
ds

+

K−1∑
i=0

ti+1∫
ti

[
X

(
s

ε
, ξi,

s∫
0

φ(s, τ, ξi) dτ, upi

)
−X

(
s

ε
, ξ(s),

s∫
0

φ(s, τ, ξ(s)) dτ, upi

)]
ds

≤
K−1∑
i=0

λ

ti+1∫
ti

|ξ(s)− ξi| ds+
ti+1∫
ti

s∫
0

Lφ|ξ(τ)− ξi| dτ ds+
K−1∑
i=0

λ

ti+1∫
ti

|ξi − ξ(τ)| ds+
ti+1∫
ti

s∫
0

Lφ|ξi − ξ(s)| dτ ds

≤ 2

K−1∑
i=0

λ
MT (1 + C)

n2

(
1 +

ti+1∫
ti

ds

s∫
0

Lφ dτ

)
≤ λMT (1 + C)

n+R

n2

(
1 + Lφ

T

n

)
.

Then, for a chosen η > 0, there exists a number n such that for all ε > 0, the following holds:

I2 ≤
η

8
e−λT .

For estimating the integral I3, we split it over the interval [0, T ] into a sum of integrals

∣∣∣∣
t∫

0

[
X

(
s

ε
, ξ(s),

s∫
0

φ(s, τ, ξ(s)) dτ, up(s)

)
−X0(ξ(s), up(s))

]
ds

∣∣∣∣
≤

K−1∑
i=0

λ

ti+1∫
ti

|ξ(s)− ξi| ds+
ti+1∫
ti

ds

s∫
0

Lφ|ξ(s)− ξi| dτ +

K−1∑
i=0

λ

ti+1∫
ti

|ξ(s)− ξi| ds+ I4,

where

I4 =
K−1∑
i=0

ti+1∫
ti

[
X

(
s

ε
, ξ(s),

s∫
0

φ(s, τ, ξi) dτ, upi

)
−X0(ξi, upi)

]
ds.

In terms of φ1(t, x), we have

ti+1∫
ti

[
X
(s
ε
, ξi, φ1(s, ξi), upi

)
−X0(ξi, upi)

]
ds

=

ti+1∫
0

[
X
(s
ε
, ξi, φ1(s, ξi), upi

)
−X0(ξi, upi)

]
ds

+

ti∫
0

[
X
(s
ε
, ξi, φ1(s, ξi), upi

)
−X0(ξi, upi)

]
ds. (2.5)

To estimate (2.5), it is necessary to use the lemma.
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Lemma 2.1. The convergence in (2.5) is uniform with respect to ξi, upi, and ti ∈ [0, T ], by
subsequence εn → 0.

Since K is fixed, then, due to the proven lemma, Condition 1.3 holds for small εn (depending
on K), but independent of ξi, upi and ti, we have

I6 ≤
η

8
e−λT .

So we have established that for small enough εn

|xεn(t)− ξ(t)| < η, t ∈ [0, T ].

We get
K−1∑
i=0

ti+1∫
ti

(
X

(
s

ε
, ξi,

s∫
0

φ(s, τ, ξi) dτ, upi

)
−X0(ξi, upi)

)
ds <

η

16
e−λT .

So,
I3 ≤

η

8
e−λT .

Hence, the following can be obtained from the proof of I2,

I1 ≤ λ

( t∫
0

|x(s)− ξ(s)| ds+
s∫

0

Lφ|x(τ)− ξ(τ)| dτ
)
+

η

4
e−λT ≤ η

2
e−λT .

The reasoning outlined above can be applied to each function u1(t), u2(t), . . . , un(t) from the
constructed grid. Due to its finiteness, there exists a unique choice i for each function in the system.

Thus, from an arbitrary sequence of solutions xεn(t) of problem (1.1), one can select a subse-
quence of solutions xεn(t), which converges uniformly for t ∈ [0, T ] to the same limiting function
ξ(t). Therefore, the entire family xε converges uniformly in t ∈ [0, T ], u ∈ U as ε → 0 to ξ(t).

The theorem is proved.

Theorem 2.2. Let

J∗
ε = inf

u( · )∈U
Jε[u],

J∗
0 = inf J0[u].

Let Conditions 1.1–1.5 hold. Then problems (1.1), (1.2) and (1.4), (1.5) have solutions
(x∗ε(t), u

∗
ε(t)), (ξ∗(t), u∗(t)), respectively. Moreover,

(1)
J∗
ε → J∗

0 as ε → 0.

(2) For any η > 0, there exists ε0 such that for ε < ε0,

|J∗
ε − Jε(u

∗)| < η,

i.e., the optimal control of the averaging problem is nearly optimal for the original problem.

(3) There exists a sequence εn → 0, n → ∞, such that

x∗εn(t) → ξ∗(t) uniformly on [0, T ], (2.6)

and
u∗εn(t) → u∗(t) in L2((0, T )). (2.7)
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If the averaging problem (1.4), (1.5) has a unique solution, then the convergence results (2.6) and
(2.7) hold for all ε → 0.

Proof.
(1) First, let us prove the continuity of Jε(u) with respect to u ∈ L2((0, 1)) for each ε > 0.

Let u1(t), u2(t) be arbitrary admissible controls for problem (1.1), (1.2), and let x(t, u1), x(t, u2)
be the corresponding trajectories.

Using Condition 1.2 and Gronwall’s inequality, we have

sup
t∈[0,1]

|x(t, u1)− x(t, u2)| ≤ λ∥u1 − u2∥L2eλ. (2.8)

Thus,

|Jε(u1)− Jε(u2)| ≤ λ∥u1 − u2∥L2

+

T∫
0

[
L
(
t, x(t, u2), u1(t)

)
− L

(
t, x(t, u2), u2(t)

)]
dt+

∣∣Φ(x(T, u1))− Φ(x(T, u2))
∣∣. (2.9)

Estimate (2.1) is uniform for any admissible control u(t).
Thus, from (2.1), we have that x(t, u) does not go beyond the boundaries of the area Bc-sphere

of radius C with center at for t ∈ [0, T ].
Due to (1) from Condition 1.5 and Cantor’s theorem, the function L(t, x, u) will be uniformly

continuous with respect to x ∈ Bc, uniformly relative to t ∈ [0, T ] and u ∈ Rm. Therefore, from
(2.8) and (2.9), the continuity of Jε(u) with respect to the L2-norm follows.

By similar considerations, we establish the continuity of the functional J0(u) with respect to u.
Now, considering the compactness of the set of admissible controls, we establish the existence

of (x∗ε(t), u∗ε(t)) and (ξ∗(t), u∗(t)) – optimal solutions of (1.1), (1.2) and (1.4), (1.5), respectively.
Now, we prove that J∗

ε → J∗
0 as ε → 0. Choose an arbitrary η > 0 and fix it. Then

J∗
ε ≤ Jε(u

∗) = J∗
0 + Jε(u

∗)− J0(u
∗).

But

|Jε(u∗)− J0(u
∗)| ≤

T∫
0

∣∣∣L(t, x(t, u∗), u∗(t))− L
(
t, ξ(t), u∗(t)

)∣∣∣ dt+ ∣∣Φ(x(T, u∗))− Φ(ξ(T ))
∣∣. (2.10)

From Theorem 2.1 we have

max
t∈[0,1]

|x(t, u∗)− ξ∗(t)| → 0, ε → 0. (2.11)

Now, considering the uniform continuity of the function L(t, x, u) with respect to x ∈ Bc, uniformly
for t ∈ (0, T ] and u ∈ Rm, it follows from (2.10), (2.11) and Condition 1.5 that there exists ε0 > 0
such that for ε < ε0, we have

|Jε(u∗)− J0| < η,

then
J∗
ε < J∗

0 + η. (2.12)

From other side, as ε < ε0, we get

J∗
0 ≤ J0(u

∗
ε) = J∗

ε +
(
J0(u

∗
ε)− Jε(u

∗
ε)
)
. (2.13)
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Therefore
J∗
0 < J∗

ε + η.

From (2.12) and (2.13) it follows that

J∗
ε → J∗

0 , ε → 0. (2.14)

Then, statement (1) is proved.

The proof of statement (2) follows from the following inequality

|J∗
ε − Jε(u

∗)| ≤ |J∗
ε − J∗

0 |+
∣∣J0(u∗)− Jε(u

∗)
∣∣.

Let’s move on to the proof of the next statement. Since u is compact in L2((0, 1)), it follows that
from the family u∗ε, we can extract a subsequence u∗εn that converges in L2((0, 1)).

Let
lim
εn→0

u∗εn = u0. (2.15)

Consider the auxiliary systems. Using the auxiliary systems and Theorem 2.1, through simple
considerations, we obtain

sup
t∈[0,T ]

|x∗εn(t)− ξ(t)| → 0, εn → 0. (2.16)

Accordingly,

J∗
εn = Jεn(u

∗
εn) =

T∫
0

L
(
t, x∗εn(t), u

∗
εn(t)

)
dt+Φ(x∗εn(T ))

=

T∫
0

L
(
t, x∗εn(t), u

∗
εn(t)

)
dt+ ϕ(X∗

εn(T )) +

T∫
0

[
L
(
t, x∗εn(t), u

∗
εn(t)

)
− L

(
t, x∗εn(t), u0(t)

)]
dt. (2.17)

From (2) of Condition 1.5 and (2.15), it follows that the last term in (2.17) tends to zero as
εn → 0. Let’s consider the limit in equation (2.17) as εn → 0, using (2.14) and (2.16), we have

J∗
0 =

T∫
0

L(t, ξ(t), u0(t)) dt+Φ(ξ(T )).

Thus, (ξ(t), u0(t)) is the optimal solution of the averaged problem (1.4), (1.5), proving state-
ment (3).

If the problem (1.4), (1.5) has a unique solution, as shown earlier, it follows that any convergent
sequence (x∗εn(t), u

∗
εn(t)) converges to the only uniquely defined solution. This completes the proof

of statement (4).
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Let us consider a one-parameter family of linear differential systems

ẋ = Aµ(t)x, x ∈ R2, t ≥ 0, (1µ)

whose coefficient matrix is of the form

Aµ(t) :=


dk diag[1,−1], 2k − 2 ≤ t < 2k − 1,

(µ+ bk)

(
0 1

−1 0

)
, 2k − 1 ≤ t < 2k, k ∈ N.

Here µk ∈ R is considered as a parameter; bk, dk are arbitrary real numbers.
E. Sorets and T. Spenser have shown in the paper [8] that major characteristic exponent of

differential equation

ẍ = −
(
K2
(
cos t+ cos(ωt+ θ)

)
+ E

)
x, x ∈ R2, t ≥ 0

is positive for all irrational ω ∈ R and for almost all θ ∈ R on the set of energy values E ≥ 0, such
that it’s relative Lebesque measure tends to 1 under increasing to infinity K.

L.-S. Young in the article [9], as a part, have established for all sufficiently big values of dk ≡
d > 0 and bk = kω, k ∈ N, where ω ∈ R \ Q satisfies some diophantine condition holding almost
everywhere, that the major characteristic exponent of system (1µ), which coincides for almost all
values of µ ∈ R, approximately equal to d.

In the papers [2, 3, 6] we considered the case when the inequality dk ≥ d > 0, k ∈ N, holds.
Particularly, in [2], we have proved under condition dk ≡ d > 4 ln 2 that major characteristic
exponent of system (1µ), is positive for the set of parameter µ with a positive Lebesque measure.

The theorem of the article [3] implies an absence of uniform on µ ∈ R and t ≥ 0 upper
estimations for a solution norms of system (1µ). Where as, the method developed in the paper
[6] essentially uses Parseval’s identity for trygonometric sums. It allows to prove an absence of
analogous estimations, which are uniform on µ and subexponential on t. Given there the proof of
system (1µ) major characteristic exponent positiveness unfortunately contains invalid statements.
The theorem of article [4], that implies the same conclusion, is wrong as well.

In this report we offer the way sufficient to complete the correct proof of specified result.
For all n ∈ N, an arbitrary α ∈ R and set χ = {x1, . . . , xn}, xi ∈ R, i = 1, n, let us denote

fi(x) = fi(x, xi) := ln |x− xi|, x ̸= xi,

and
f(x) = f(x, α, χ) := α+ n−1

n∑
i=1

fi(x).
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Lemma ( [7]). For all a, k, l, l̂ ∈ R such that l ≥ 1, l̂ > 0, k > 3 + 2l̂−1, and for every set
χ = {x1, . . . , xn} and number α ∈ R, that satisfy the conditions f(a) > −l, sup{f(x) : |x − a| ≤
1/2} < l, for Lebesque measure of the set

M = M(α, χ, a, k, l, l̂) :=
{
x ∈ K : sup

y∈K
f(y) > f(x) + l̂

}
,

where d̃ := e−lk, K := [a− d̃/k, a+ d̃/k], the estimation holds mesM ≤ 48k−2d̃/l̂.

Let us denote by XAµ(t, s), t, s ≥ 0, Cauchy matrix of system (1µ).

Theorem. The major characteristic exponent of system (1µ), considered as a function of parameter
µ, is positive on the set of positive Lebesgue measure in the case when the condition dk ≥ d > 0,
k ∈ N, holds.

Proof. Under

U(φ) ≡
(
cosφ − sinφ
sinφ cosφ

)
we denote the rotation matrix on the angle φ ∈ R counterclockwise.

According to estimations (40) from paper [6], the inequality holds

2π∫
0

XAµ(2k, 0 dµ ≥ 2π
k∏

j=1

ch dj ≥ 2π(1 + 2−1d2)k.

Hence, and because of the equality XAµ(2k, 2k − 1) = U(µ+ bk), we have the relation

2π∫
0

XAµ(2k − 1, 0) dµ ≥ 2π(1 + 2−1d2)k−1. (2)

Remark. In cited article Fk should been defined by the formula Fk = κkE + κk−1 sh dkI. Followed
by estimations (40) an equality in (41) is in general incorrect. Really, for every continuous function
f( · ) : R → (0,+∞) and numbers p > q the next formula holds [1, p. 167]

exp

{
1

p− q

p∫
q

ln f(t) dt

}
≤

p∫
q

1

p− q
ln f(t) dt. (3)

Whereas estimation (41) from paper [6] demands the opposite to (3) inequality. So all subsequent
statements of this article are not justified. Hence the conclusion of Theorem 2 in [6] cannot be
thought as sufficiently proved.

Here we give another way that allows to avoid the indicated failures.
From estimation (2) it follows the existence of γk ∈ [0, 2π] such that the inequality holds

∥XAγk
(2k, 0)∥ ≥ (1 + 2−1d2)k. (4)

Denote by xij(t, µ), i, j = 1, 2, the elements of matrix XAµ(t, 0).
In the papre [7] after the formula (36) we have proved that xij(2n−1, µ), i, j = 1, 2, is a uniform

polynome Pn,i,j(sinµ, cosµ) degree n− 1 on sinµ and cosµ.
For every real µ ̸= π(2−1 +m), m ∈ Z, the equality holds

Pn,i,j(sinµ, cosµ) = cosn µPn,i,j(tgµ, 1).
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In the opposite case when µ ̸= πm, m ∈ Z, we have the formula

Pn,i,j(sinµ, cosµ) = sinn µPn,i,j(1, ctgµ).

Denote

δn = δn(µ) :=


0, if | cosµ| ≥ 1√

2
,

1, if | cosµ| < 1√
2
.

The next relation is correct

Pn,i,j(sinµ, cosµ) = cosn
(
µ+ 2−1πδn(µ)

)
Pn,i,j

(
tg1−δn µ, ctgδn µ

)
. (5)

The equality

P̂n(tg
1−2δn(µ) µ) =

2∑
i=1

2∑
j=1

P 2
n,i,j

(
tg1−δn µ, tg−δn µ

)
defines a polynome P̂n( · ) : R → R.

Next formulas hold

∥XAµ(2n− 1, 0)∥2 = max
y∈R2

∥XAµ(2n− 1, 0)y∥2

∥y∥2
= max

ζ∈R

∥∥∥∥(x2ij(2n− 1, µ))2i,j=1

(
cos ζ
sin ζ

)∥∥∥∥2
= max

ζ∈R

2∑
i=1

(
xi1(2n− 1, µ) cos ζ + xi2(2n− 1, µ) sin ζ

)2
. (6)

They imply the inequalities

1

2

2∑
i=1

2∑
j=1

x2ij(2n− 1, µ) ≤
2∑

i=1

max
j∈{1,2}

x2ij(2n− 1, µ)

=

2∑
i=1

max
ζ∈{0,2−1π}

(
xi1(2n− 1, µ) cos ζ + xi2(2n− 1, µ) sin ζ

)2
≤

2∑
i=1

max
ζ∈R

(
xi1(2n− 1, µ) cos ζ + xi2(2n− 1, µ) sin ζ

)2 (5)
= ∥XAµ(2n− 1, 0)∥2

(6)
≤ max

ζ∈R

2∑
i=1

(
xi1(2n− 1, µ) cos ζ

)2
+
(
xi2(2n− 1, µ) sin ζ

)2 ≤ 2∑
i=1

2∑
j=1

x2ij(2n− 1, µ). (7)

Hence, for some κ ∈ [1, 2] we have the equalities

P̂n(tg
1−2δn(µ) µ)

(5)
=

2∑
i=1

2∑
j=1

cos−n
(
µ+ 2−1πδn(µ)

)
P 2
n,i,j(sinµ, cosµ)

= cos−n
(
µ+ 2−1πδn(µ)

) 2∑
i=1

2∑
j=1

x2ij(2n− 1, µ)

(7)
= κ cos−n

(
µ+ 2−1πδn(µ)

)
∥XAµ(2n− 1, 0)∥2. (8)
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For all µ ∈ R, such that δn(µ) = 0, the next estimation is correct∣∣ cos(µ+ 2−1πδn(µ))
∣∣ = | cosµ| ≥ 1√

2
.

In the opposite case the formulas hold∣∣ cos(µ+ 2−1πδn(µ))
∣∣ = ∣∣ cos(µ+ 2−1π)

∣∣ = | sinµ| =
√
1− cos2 µ ≥ 1√

2
.

The both cases united imply the inequality∣∣ cos(µ+ 2−1πδn(µ))
∣∣ ≥ 1√

2
, µ ∈ R. (9)

According to relation (10) from the paper [5], we have the estimation

∥XAµ(t, 0)∥ ≤ eth, where h := sup
k∈N

dk. (10)

From formulas (8)–(10) the next estimations follow

P̂n(tg
1−2δn(µ) µ)

(8), (9)
≤ 2n/2∥XAµ(2n− 1, 0)∥2

(10)
≤ 2n/2eh(2n−1). (11)

The relations (4) and (8) imply the inequalities

P̂n(tg
1−2δn(γn) γn)

(8)
≥ ∥XAγn

(2n− 1, 0)∥
(4)
≥(1 + 2−1d2)n−1. (12)

Due to main algebra theorem, there exist α ∈ R and βj ∈ C, j = 1, 2n− 2, such that

P̂n(ν) = α
2n−2∏
j=1

(ν − βj). (13)

Let us put in lemmas conditions (here [ · ] denotes a whole part of the number)

l := 1 + h, l̂ :=
d̂

4
, k := max

{
211d̂−1, 4 + 2[l̂−1]

}
, d̃ := e−lk, f( · ) := 1

2n− 2
ln P̂n( · ).

Denote γ̃n = tg1−2δn(γn) γn.
For all ν ∈ [γ̃n − d̃/k, γ̃n + d̃/k] there exists µ = µ(ν) ∈ [γn − d̃/k, γn + d̃/k] such that ν =

tg1−2δn(µ) µ.
Hence, as a consequence of formula (11), for such ν the estimation holds

f(ν)
(11)
≤ 1

2n− 2
ln(2n/2eh(2n−1)) =

n ln 2 + h(2n− 1)

2n− 2
≤ 1 + h. (14)

Denote d̂ := 1
2 ln(1 + 2−1d2).

Inequalities (12) imply the relation

f(γ̃n)
(12)
≥ 1

2n− 2
ln(1 + 2−1d2)n−1 ≥ 1

2
. (15)

Then, considering (13) and (14), due to lemma we have the inequality

mes

{
µ ∈

[
γn−

d̃

k
, γn+

d̃

k

]
:

1

2n− 2
ln P̂n(tg

δn γn) >
1

2n− 2
ln P̂n(tg

δn µ)+
d̂

4

}
≤ 48k−2d̃

4

d̂
. (16)
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For all µ = µ(ν) ∈ [γn − d̃/k, γn + d̃/k] the next formulas are correct

∣∣ cos (µ+ 2−1πδn(µ)
)∣∣− ∣∣ cos (γn + 2−1πδn(µ)

)∣∣
≥ −

∣∣∣ cos (µ+ 2−1πδn(µ)
)
− cos

(
γn + 2−1πδn(µ)

)∣∣∣ ≥ − d̃

k
. (17)

Thus, denote ε := d̃/k, for all µ ∈ [γn − ε, γn + ε] with exception of the set Wn which Lebesgue
measure mesWn ≤ ε

4
by the cause of (16) we have the estimations

1

2n− 1
ln ∥XAµ(2n− 1, 0)∥

(8), (16)
≥ 1

2n− 1
ln P̂n(tg

δn γn)

+
1

2n− 1
ln
∣∣ cosn(µ− 2−1πδn(µ))

∣∣− ∣∣ cos(γn + 2−1πδn(µ))
∣∣− d̂

4
(8), (17)

≥ 1

2n− 1
ln ∥XAγn

(2n− 1, 0)∥ − d̃

k
− d̂

4

(15)
≥ d̂

5
. (18)

The set of limit points of sequence {γk}∞k=1 is not empty.
Let us denote by γ∞ some of them.
For an arbitrary n ∈ N, there exists k(n) ≥ n such that |γk(n) − γ∞| < ε

2 .
Denote also

W∞ :=
⋃
m∈N

⋂
n≥m

Wk(n) = Lim
m→+∞

⋂
n≥m

Wk(n).

The next relations hold

mesW∞ = lim
m→+∞

mes
⋂
n≥m

Wk(n) ≤ lim
m→+∞

sup
n≥m

mesWk(n) ≤
ε

4
. (19)

We have the inclusions

M̃ :=
[
γ∞ − 2−1ε, γ∞ + 2−1ε

]
\W∞

=
⋂
m∈N

⋃
n≥m

(
[γ∞ − 2−1ε, γ∞ + 2−1ε] \Wk(n)

)
⊂
⋂
m∈N

⋃
n≥m

([
γk(n) − ε, γk(n) + ε

]
\Wk(n)

)
. (20)

Thus for all µ ∈ M̃ , as a consequence of formula (18), the next estimations are correct

λmax(Aµ) ≥ lim
n→+∞

1

2k(n)− 1
ln
∥∥XAµ(2k(n)− 1, 0)

∥∥ (18), (20)
≥ d̂

5
> 0.

As well, relations (19) imply the inequality

mes M̃ ≤ mes
[
γ∞ − 2−1ε, γ∞ + 2−1ε

]
−mesW∞ ≥ ε

4
.

The theorem is proved.



180 A. V. Lipnitskii

References
[1] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities. 2d ed. Cambridge, at the University

Press, 1952.
[2] A. V. Lipnitskiĭ, On the positivity of the upper Lyapunov exponent in one-parameter families

of linear differential systems. (Russian) Differ. Uravn. 45 (2009), no. 8, 1095–1101; translation
in Differ. Equ. 45 (2009), no. 8, 1116–1123.

[3] A. V. Lipnitskii, Lower bounds for the norm of solutions of linear differential systems with
a linear parameter. (Russian) Differ. Uravn. 50 (2014), no. 3, 412–416; translation in Differ.
Equ. 50 (2014), no. 3, 410–414.

[4] A. V. Lipnitskii, Lower bounds for the upper Lyapunov exponent in one-parameter families
of Millionshchikov systems. (Russian) Tr. Semin. im. I. G. Petrovskogo no. 30 (2014), Part I,
171–177; translation in J. Math. Sci. (N.Y.) 210 (2015), no. 2, 217–221.

[5] A. V. Lipnitskiĭ, Estimates for the deviation of the solutions of Millionshchikov linear differ-
ential systems from the corresponding trigonometric sums. (Russian) Dokl. Nats. Akad. Nauk
Belarusi 60 (2016), no. 3, 5–10.

[6] A. V. Lipnitskiĭ, On the instability of Millionshchikov linear differential systems that depend
on a real parameter. (Russian) Dokl. Nats. Akad. Nauk Belarusi 63 (2019), no. 3, 270–277.

[7] A. V. Lipnitskii, Upper semicontinuity of the upper Lyapunov exponent of Millionshchikov
linear differential systems with an affine parameter. (Russian) Differ. Uravn. 56 (2020), no. 1,
62–69; translation in Differ. Equ. 56 (2020), no. 1, 60–67.

[8] E. Sorets and T. Spencer, Positive Lyapunov exponents for Schrödinger operators with quasi-
periodic potentials. Comm. Math. Phys. 142 (1991), no. 3, 543–566.

[9] L.-S. Young, Lyapunov exponents for some quasi-periodic cocycles. Ergodic Theory Dynam.
Systems 17 (1997), no. 2, 483–504.



REPORTS OF QUALITDE, Volume 3, 2024 181
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We consider the system
u′ = f1(u, v), v′ = f2(u, v) (S)

subject to the conditions
u(0) = u(ω), v(0) = v(ω), (P)

and
u(0) = c, sup

{
|u(t)|+ |v(t)| : t ≥ 0

}
< +∞. (B)

Here, f1 and f2 are Carathéodory functions on [0, ω] × R2, and ω-periodic with respect to the
independent variable.

Definition 1. Solutions (u1, v1) and (u2, v2) of (S), (P) are said to be consecutive if u1(t) ≤ u2(t)
for t ∈ [0, ω], u1 ̸≡ u2, and for every solution (u, v) of (S), (P) satisfying u1(t) ≤ u(t) ≤ u2(t) for
t ∈ [0, ω], either u1 ≡ u or u2 ≡ u holds.

Property O. We will say that (S), (P) possesses Property O if there exists ε > 0 such that every
solution (u, v) of (S), (P) satisfies

min
{
|v(t)| : t ∈ [0, ω]

}
≤ ε.

Remark 1. Consider the problem

u′ = λ cos2(3u)ψ(v), v′ = cos2 t sinu− 1

4
, u(0) = u(ω), v(0) = v(ω). (∗)

It is clear that for every c, function (u, v) := (π6 , c+
1
8 sin(2t)) is a solution of (∗), and consequently,

(∗) does not have Property O.

Hypothesis B. We will say that f1 : [0, ω]× R2 → R satisfies Hypothesis B if

f1(t, x, · ) : R → R is non-decreasing for a.e. t ∈ [0, ω], x ∈ R, (1)

and
f1(t, x, y) sgn y ≥ 0 for t ∈ [0, ω], x, y ∈ R.

Proposition 1. Let Hypothesis B hold, and

meas
{
t ∈ [0, ω] : f1(t, x, y) ̸= 0

}
> 0 for x ∈ R, y ∈ R \ {0}.

Then problem (S), (P) has Property O.

Property V. We will say that (S), (P) possesses Property V if for every pair (u1, v1) and (u2, v2)
of solutions of (S), (P), satisfying u1 ≡ u2, the identity v1 ≡ v2 is fulfilled.
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Example presented in Remark 1 shows that (∗) does not have Property V.

Proposition 2. Let f1(t, x, y) := f0(t, x)ψ(y), where f0(t, x) ≥ h0(t) ≥ 0 for t ∈ [0, ω], x ∈ R,
h0 ̸≡ 0, and ψ is an increasing continuous function with ψ(0) = 0. Then (S), (P) possesses Property
V .

Hypothesis Lx. We will say that f1 satisfies Hypothesis Lx if (1) holds and for every r > 0 and
ε > 0, there exist prε ∈ L([0, w]) such that∣∣f1(t, x, y)− f1(t, x

′, y)
∣∣ ≤ prε(t)|x− x′| for t ∈ [0, w], |x− x′| ≤ ε, |y| ≤ r.

Definition 2. Function (α, β) : [0, w] → R2 is said to be a lower function of (S), (P) if β = β0+β1,
α, β0 ∈ AC([0, w]), β1 is non-decreasing, β′1(t) = 0 for a.e. t ∈ [0, ω], α(0) = α(ω), β(0+) ≥ β(ω−),
and

α′(t) = f1(t, α(t), β(t)), β′(t) ≥ f2(t, α(t)) for a.e. t ∈ [0, ω].

Analogously, (γ, δ) : [0, w] → R2 is said to be an upper function of (S), (P) if δ = δ0 + δ1, γ, δ0 ∈
AC([0, w]), δ1 is non-increasing, δ′1(t) = 0 for a.e. t ∈ [0, ω], γ(0) = γ(ω), δ(0+) ≤ δ(ω−), and

γ′(t) = f1(t, γ(t), δ(t)), δ′(t) ≤ f2(t, γ(t)) for a.e. t ∈ [0, ω].

Definition 3. Solution (u, v) of (S), (P) is said to be upper weakly stable (lower weakly stable) if
for every ε > 0, there exist a lower function (α, β) (resp. an upper function (γ, δ)) of (S), (P) such
that

u(t) ≤ α(t) ≤ u(t) + ε for t ∈ [0, ω], α ̸≡ u(
resp. u(t)− ε ≤ γ(t) ≤ u(t) for t ∈ [0, ω], γ ̸≡ u

)
.

Remark 2. Let f1(t, x, 0) ≡ 0, f2(t, 0) ≡ 0, ε0 > 0 and f2(t, · ) is non-increasing on [−ε0, ε0]. It is
not difficult to verify that solution (u, v) := (0, 0) is both u.w.s and l.w.s.

The next proposition (partially) justifies introduced terminology.

Proposition 3. Let Hypothesis Lx be fulfilled and (S), (P) possess Property V. Let, moreover,
(u, v) be a Lyapunov stable solution of (S), (P). Then (u, v) is both u.w.s and l.w.s.

Definition 4. Let α, γ ∈ C([0, ω]), α(t) ≤ γ(t) for t ∈ [0, ω], a ∈ [0, ω[ , α(a) < γ(a) and
c ∈ ]α(0), γ(0)[ . We say that (S), (P) possesses property Zαγ(a, c) if for every solution (u, v) of
(S), (P) satisfying α(t) ≤ u(t) ≤ γ(t) for t ∈ [0, ω], the inequality u(a) ̸= c holds.

Remark 3. It is clear that if (u1, v1) and (u2, v2) are consecutive solutions of (S), (P), then there
exist a ∈ [0, ω[ and c ∈ ]u1(a), u2(a)[ such that (S), (P) possesses Property Zu1u2(a, c).

Now we are able to formulate results.

Consecutive solutions
Theorem 1. Suppose that (S), (P) possesses Property O and (u1, v1) and (u2, v2) are solutions
of (S), (P) satisfying u1(t) ≤ u2(t) for t ∈ [0, ω]. Let, moreover, a ∈ [0, ω[ , u1(a) < u2(a),
c ∈ ]u1(a), u2(a)[ and (S), (P) possesses Property Zu1u2(a, c). Then there exist consecutive solutions
(u∗, v∗) and (u∗, v∗) of (S), (P) such that

u1(t) ≤ u∗(t) ≤ u∗(t) ≤ u2(t) for t ∈ [0, ω], u∗(a) < c < u∗(a).

Proposition 4. Let Hypothesis B hold, (u∗, v∗) and (u∗, v∗) are consecutive solutions of (S), (P)
and u∗(t) < u∗(t) for t ∈ [0, ω]. Then, if (u∗, v∗) is u.w.s, then (u∗, v∗) is not l.w.s and vice versa,
if (u∗, v∗) is l.w.s, then (u∗, v∗) is not u.w.s.
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Unstable solution
Theorem 2. Let Hypothesis B and Hypothesis Lx hold and (S), (P) possess Property O. Let,
moreover, (α, β) and (γ, δ) be lower and upper functions of (S), (P), α(t) ≤ γ(t) for t ∈ [0, ω],
a ∈ [0, ω[ , c ∈ ]α(a), γ(a)[ and (S), (P) possess property Zαγ(a, c). Then, there exist unstable
solution (u, v) of (S), (P) such that

α(t) ≤ u(t) ≤ γ(t) for t ∈ [0, w].

Corollary. Let Hypothesis B and Hypothesis Lx hold, problem (S), (P) possess Property O, and

f1(t, x+ ω1, y) = f1(t, x, y), f2(t, x+ ω1) = f2(t, x) for t ∈ [0, ω], x, y ∈ R,

where ω1 > 0. Let, moreover, (S), (P) be solvable and possess no more than countable many
solutions. Then (S), (P) has countably many unstable solutions.

Bounded solutions
Theorem 3. Let Hypothesis B and Hypothesis Lx hold, r0 > 0, h0 ∈ L([0, ω]) be nontrivial
non-negative, and

|f1(t, x, σr0)| ≥ h0(t) for t ∈ [0, ω], x ∈ R, σ ∈ {−1, 1}.

Let, moreover, (u∗, v∗) and (u∗, v∗) be consecutive solutions of (S), (P), u∗(t) < u∗(t) for t ∈ [0, ω],
and (u∗, v∗) is u.w.s ((u∗, v∗) is l.w.s). The, for every c ∈ ]u∗(0), u

∗(0)[ , problem (S), (B) has a
solution (u, v) such that

u∗(t) ≤ u(t) ≤ u∗(t), u(t) ≤ u(t+ ω) for t ≥ 0(
u∗(t) ≤ u(t) ≤ u∗(t), u(t) ≥ u(t+ ω) for t ≥ 0

) (2)

and

lim
n→+∞

max
{
|u∗(t)− u(t)| : t ∈ [nω, (n+ 1)ω]

}
= 0(

lim
n→+∞

max
{
|u∗(t)− u(t)| : t ∈ [nω, (n+ 1)ω]

}
= 0

)
.

If, moreover, the Cauchy problem for (S) is uniquely solvable, then all inequalities in (2) hold in
the strong sense.

As an example, we consider the system

u′ = f0(t, u)ψ(v), v′ = p0(t, u) sinu+ q(t). (S′)

Here, we suppose that

p0(t, x) ≤ p(t) for t ∈ [0, ω], x ∈ R,
0 ≤ h0(t) ≤ f0(t, x) ≤ h(t) for t ∈ [0, ω] x ∈ R, h0 ̸≡ 0,

and ψ ∈ C(R),
ψ(y) sgn y ≥ 0, |ψ(y)| ≤ 1 for y ∈ R.
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Solvability of (S′), (P)
Theorem 4. Let ∥h∥L < 2π and

∥∥[p]+∥∥L +

∣∣∣∣
ω∫

0

g(s) ds

∣∣∣∣ ≤ ∥∥[p]−∥∥L cos
∥h∥L
4

.

Then, for every k ∈ Z, there exists a solution (uk, vk) of (S′), (P) such that

Range(uk − 2kπ) ⊆
[π
2
− 1

4
∥h∥L,

3π

2
+

1

4
∥h∥L

]
and [π

2
+

1

4
∥h∥L,

3π

2
− 1

4
∥h∥L

]
∩ Range(uk − 2kπ) ̸= ∅.

In the next theorem, another localization of solutions is stated.

Theorem 5. Let ∥h∥L < π and

∥∥[p]+∥∥L +

∣∣∣∣
ω∫

0

g(s) ds

∣∣∣∣ < ∥∥[p]−∥∥L cos
∥h∥L
2

. (3)

Then, for every k ∈ Z, there exists solutions (u1k, v1k) and (u2k, v2k) of (S′),(P) such that

Range(u1k − 2kπ) ⊂
]
− π

2
,
π

2

[
, Range(u2k − 2kπ) ⊂

]π
2
,
3π

2

[
.

It is not difficult to verify the validity of

Proposition 5. Let ∥h∥L < π, i ∈ {0, 1} and

(−1)i+1

ω∫
0

q(s) ds >
∥∥[p]+∥∥L −

∥∥[p]−∥∥L cos
∥h∥L
2

.

Then, every solution (u, v) of (S′), (P) satisfies{
(−1)i

π

2
+ 2πn : n ∈ Z

}
∩ Rangeu = ∅.

Conservative solutions of (S′), (P)
Suppose in addition that

ψ is increasing on R. (4)
Then, by virtue of Proposition 1 and 2, (S′), (P) possesses Property O and Property V. Taking
into account Theorem 1, 4, 5 and Proposition 5, we get

Theorem 6. Let (4) hold, ∥h∥L < π and

∥∥[p]+∥∥L −
∥∥[p]−∥∥L cos

∥h∥L
2

<

∣∣∣∣
ω∫

0

q(s) ds

∣∣∣∣ ≤ ∥∥[p]−∥∥L cos
∥h∥L
4

−
∥∥[p]+∥∥L .

Then, for every k ∈ Z, there exist a pair of consecutive solutions (u1k, v1k) and (u2k, v2k) of (S′), (P)
such that:
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(1) If
ω∫
0

q(s) ds ≥ 0, then

Range(u1k − 2kπ) ⊆
[π
2
− 1

4
∥h∥L ,

3π

2

[
, Range(u2k − 2kπ) ⊂

]3π
2
,
7π

2

[
;

(2) If
ω∫
0

q(s) ds ≤ 0, then

Range(u1k − 2kπ) ⊂
]π
2
,
5π

2

[
, Range(u2k − 2kπ) ⊆

[5π
2
,
7π

2
+

1

4
∥h∥L

[
.

Theorem 7. Let (4) hold, ∥h∥L < π and (3) be fulfilled. Then, for every k ∈ Z, there exist two
pairs of consecutive solutions (u1k, v1k) and (u2k, v2k) and (u3k, v3k) and (u4k, v4k) of (S′), (P) such
that u2k(t) ≤ u3k(t) for t ∈ [0, ω],

Range(u1k − 2kπ) ⊆
]
− π

2
,
π

2

[
, Range(u2k − 2kπ) ⊂

]π
2
,
3π

2

[
and

Range(u3k − 2kπ) ⊂
]π
2
,
3π

2

[
, Range(u4k − 2kπ) ⊆

]3π
2
,
5π

2

[
.

If, moreover, p(t) ≤ 0 for t ∈ [0, ω], then (u1k, v1k) is u.w.s and (u4k, v4k) is l.w.s.

Unstable solutions of (S′), (P)

First note that Hypothesis Lx now reads as follows: for every ε > 0, there exists pε ∈ L([0, ω]) such
that ∣∣f0(t, x)− f0(t, x

′)
∣∣ ≤ pε(t)|x− x′| for t ∈ [0, ω], |x− x′| ≤ ε. (5)

Theorem 8. Let (5) be fulfilled, and the conditions of Theorem 6 (resp. Theorem 7) hold. Then
from every pair of consecutive solutions of (S′), (P), at least one of them is unstable. In particular,
(S′), (P) possesses at least countably many unstable solutions.

Theorem 9. Let (4) and (5) hold, p(t) ≤ 0 for t ∈ [0, ω], ∥h∥L < π, and

∣∣∣∣
ω∫

0

g(s) ds

∣∣∣∣ < ∥p∥L cos
∥h∥L
2

. (6)

Then, for every k ∈ Z, the problem (S′), (P) has an unstable solution (uk, vk) such that

Range(uk − 2kπ) ⊂
]π
2
,
3π

2

[
.

Bounded solution of (S′) and its asymptotics
First mention that under the assumptions of Theorem 4, one can show that for every c ∈ R, the
problem (S′), (B) is solvable. However, we are interested in the existence of non-periodic solutions
of (S′), (B).
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Theorem 10. Let (5) hold, and the conditions of Theorem 6 be fulfilled. Let, moreover, (u1k, v1k)
and (u2k, v2k) be solutions of (S′), (P) appearing in the conclusion of Theorem 6. Then, for every
k ∈ Z, there exists a non-periodic solution (uk, vk) of (S′), (B) such that

u1k(t) ≤ uk(t) ≤ u2k(t) for t ≥ 0.

Theorem 11. Let (4) and (5) hold, ∥h∥L < π, and (6) be fulfilled (clearly, conditions of Theorem
7 hold). Let, moreover, k ∈ Z and (uik, vik), i = 1, 2, 3, 4, be solutions of (S′), (P); their existence
is stated in Theorem 7.

Then, for every c ∈ ]u1k(0), u2k(0)[ , the problem (S′), (B) has a solution (uk, vk) such that

u1k(t) ≤ uk(t) ≤ u2k(t), uk(t) ≤ uk(t+ ω) for t ≥ 0, (7)

and
lim

n→+∞
max

{
|uk(t)− u2k(t)| : t ∈ [nω, (n+ 1)ω]

}
= 0,

while, for every c ∈ ]u3k(0), u4k(0)[ , the problem (S′), (B) possesses a solution (uk, vk) such that

u3k(t) ≤ uk(t) ≤ u4k(t), uk(t) ≥ uk(t+ ω) for t ≥ 0, (8)

and
lim

n→+∞
max

{
|uk(t)− u3k(t)| : t ∈ [nω, (n+ 1)ω]

}
= 0,

If, moreover, ψ is a Lipschitz function, then all inequalities in (7) and (8) hold in the strict sense.
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Let Ω ⊂ Rn be a bounded region with a smooth boundary and for ε ∈ (0, 1) controlled process
in a cylinder QT = [0, T ]× Ω be described by a boundary value problem

yεt (x, t) = Aε(yε(x, t)) + gε(x)v(t), (t, x) ∈ QT ,

yε(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ],

yε(x, 0) = yε0(x), x ∈ Ω,

(1)

where Aε := div(aε
−→
∇), aε(x) = ((aεij(x)))

n
i,j=1 – measured symmetric matrix satisfying the condi-

tions of uniform ellipticity and boundedness, gε, yε0 ∈ L2(Ω), ε – small parameter.
Control is limited by

v( · ) ∈ U =
{
v ∈ L2(0, T ) : |v(t)| ≤ ξ almost everywhere on [0;T ]

}
. (2)

The problem of optimal control is to minimize the semi-definite quality criterion

Jε(v) =

(∫
Ω

q(x)yε(x, T ) dx

)2

+ γ

T∫
0

v2(t) dt, (3)

at solutions (1), where q ∈ L2(Ω), γ > 0.
We will assume the following convergences of the coefficients of the optimal control problem

(1)–(3):
gε → g0, yε0 → y0 weakly in L2(Ω) as ε → 0,

aε → a0 in sense of G-convergence of matrices as ε → 0.
(4)

For definitions and properties of G-convergence of matrices see [1]. Further using the limit
functions from (4) we can assume that the optimal control problem (1)–(3) is defined also for ε = 0
(so-called averaged problem). It is known that for each fixed control v ∈ U problem (1) has a
unique solution in the class C([0, T ];L2(Ω)) [3]. In addition, for an arbitrary ε ∈ [0, 1) the optimal
control problem (1)–(3) also has a unique solution vε( · ) ∈ U [4].

Applying the Fourier method and decomposing the data of the initial optimal control problem
by the eigenbasis {Xε

i (x)}∞i=1 of the operator

Aε : AεXε
i + (λε

i )
2Xε

i = 0, i = 1,∞,

the problem (1)–(3) is split and reduced to an equivalent optimal control problems for the first order
ordinary differential equation [6]. In addition, we will assume that the spectrum of the averaged
operator A0 is simple, i.e.,

0 < (λ0
1)

2 < (λ0
2)

2 < · · · . (5)
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Let gεi , qεi be the Fourier coefficients of the corresponding functions according to the system
{Xε

i (x)}∞i=1. Let us denote

f ε(t) =

∞∑
i=1

e(λ
ε
i )

2(t−T )qεi g
ε
i , aε0 =

∞∑
i=1

e−(λε
i )

2T qεi y
0ε
i ,

ℜε(x, t) =

∞∑
i=1

qεi e
(λε

i )
2(t−T )Xε

i (x).

The resulting optimal control problem for an ordinary differential equation has already been
studied in [2] under the condition that f ε(t) is a positive and strictly monotonically increasing
function. We consider another condition and assume that for each ε ∈ [0, 1) the function f ε(t)
remains strictly monotonically increasing and changes sign, i.e., there exists such tε0 ∈ (0, T ) that

f ε(0) < 0, f ε(t0) = 0, f ε(T ) > 0, f ε(t) strictly monotonically increases on [0, T ]. (6)

Refusion of the requirement of function f ε(t) positiveness allows us to observe a more complex
behavior of the optimal control. In particular, it becomes possible for the optimal control to have
two switching points when reaching both the lower v = −ξ and upper v = −ξ restrictions. This
qualitatively new case we will pay our further attention to.

Applying the maximum principle, under the condition that the system of inequalities

∓aε0f
ε(0)

γ +
T∫
0

(f ε(s))2 ds

< −ξ,
∓aε0f

ε(T )

γ +
T∫
0

(f ε(s))2 ds

> ξ, ξ

T∫
0

|f ε(s)| ds < ∓aε0 (7)

is fulfilled for all ε ∈ [0, 1), we obtain the optimal control in the feedback form for optimal control
problem (1)–(3)

uε[t, yε(t)] =



∓ξ, t ∈ [0, tε−],

−

(ℜε(t), yε(t))± ξ
T∫
tε+

f ε(s) ds

γ +
tε+∫
tε−

(f ε(s))2 ds

f ε(t), t ∈ [tε−, t
ε
+],

±ξ, t ∈ [tε+, T ],

(8)

where yε(x, t) – solution of the boundary value problem (1) with control (8), and the switching
points tε− and tε+ are determined from the system

aε0 ∓ ξ
tε−∫
0

f ε(s) ds± ξ
T∫
tε+

f ε(s) ds

γ +
tε+∫
tε−

(f ε(s))2 ds

f ε(tε−) = ±ξ ,

aε0 ∓ ξ
tε−∫
0

f ε(s) ds± ξ
T∫
tε+

f ε(s) ds

γ +
tε+∫
tε−

(f ε(s))2 ds

f ε(tε+) = ∓ξ .

(9)
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It can be seen from the formulas (8), (9) that optimal control contains coefficients which are
expressed by series and, in addition, it irregularly depends on a small parameter ε. Thus, for
practical application it is natural to restrict infinite series by finite sums and to get rid of dependence
on a small parameter using average procedure.

For an arbitrary ε ∈ [0; 1) and N ∈ N, we define

aε0N =
N∑
i=1

e−(λε
i )

2T qεi y
0ε
i ,

f ε
N (t) =

N∑
i=1

e(λ
ε
i )

2(t−T )qεi g
ε
i ,

ℜε
N (x, t) =

N∑
i=1

qεi e
(λε

i )
2(t−T )Xε

i (x).

Let (8)N and (9)N be the formulas (8) and (9) respectively in which all occurrences of aε0,
f ε(t) and ℜε(x, t) are replaced with aε0N , f ε

N (t) and ℜε
N (x, t), respectively, and tε−N , tε+N are the

corresponding switching points. It can be proved that for each N ∈ N the points tε−N , tε+N are
determined uniquely, and for an arbitrary ε ∈ [0; 1) the convergences tε−N → tε−, tε+N → tε+ as
N → ∞ are fulfilled.

We will construct the law of approximate averaged synthesis for problem (1)–(3), and make sure
of the closeness of the values of the quality criterion (3) on the optimal control and constructed
approximate control. Further, the main object of our research is the approximate averaged control

vN [t, zεN (t)] =



∓ξ, t ∈ [0, t0−N ],

−

(ℜ0
N (t), zεN (t))± ξ

T∫
t0+N

f0
N (s) ds

γ +
t0+N∫
t0−N

(f0
N (s))2 ds

f0
N (t), t ∈ [t0−N , t0+N ],

±ξ, t ∈ [t0+N , T ],

(10)

where zεN (x, t) – solution of problem (1) with control (10), t0−N , t0+N – switching points that are
defined from system (9)N at ε = 0.

Using the ideas from [2], it is possible to prove the correctness of the proposed approximate
averaged synthesis (10), that is, the control in the feedback form (10) provides close to the optimal
value of the objective functional (10). Namely, we have

Theorem. Let gε, yε0, q ∈ L2(Ω) and the assumptions (4)–(7) be fulfilled. Then for an arbitrary
small η > 0 there exist N0 ∈ N and ε0 > 0 such that for any N ≥ N0 and ε ∈ (0, ε0) for the controls
(8), (10) we have the inequalities∥∥uε[ · , yε]− vn[ · , zεn]

∥∥
L2(0,T )

< η,∥∥yε( · , t)− zεn( · , t)
∥∥ < η for all t ∈ [0, T ],∣∣Jε

(
uε[t, yε]

)
− Jε

(
un[t, z

ε
n]
)∣∣ < η.

So, besides the law of the optimal synthesis (8), (9) also approximate averaged feedback control
(10), which provides control system behavior that is close to optimal one and thus has a series of
advantages from the practical application point of view, is proposed and proved.
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In [5] the efficiency of approximate averaged control construction procedure consisted of cutting
to finite sums of series in optimal control and replacing of Fourier coefficients nonregular depended
on small parameter by corresponding average values is illustrated by concreate example of controlled
system for parabolic process. We compare the properties of the averaged control and the sequence
of optimal controls calculated at the different values of the small parameter. For comparison, the
switching points of optimal control and averaged control, deviation between optimal control and
averaged control, the difference in the values of the quality criterion on optimal control and averaged
control are used. In considered example the precision of quality criteria value on approximate
control has ε-order and for sufficiently small ε the precision is one order better then ε.
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Consider a linear differential system

ẋ = A(t)x, x ∈ Rn, t ≥ 0, (1)

with continuous and bounded coefficient matrix A.
System (1) is said to be almost reducible [2] (or approximately similar, see [6]) if for any δ > 0

there exists a Lyapunov transformation reducing system (1) to the form

ẋ = Bx+Qδ(t)x, x ∈ Rn, t ≥ 0,

where B is a constant matrix and Qδ satisfy the condition ∥Qδ(t)∥ ≤ δ. Note that the matrix B is
the same for all δ > 0.

The property of almost reducibility plays a crucial role in many issues related to Erugin’s
problem on Lyapunov regularity of linear systems with almost periodic coefficients. This problem
was posed by N. P. Erugin at a mathematical seminar at the Institute of Physics and Mathematics of
Byelorussian Academy of Sciences in 1956. The original formulation of Erugin’s problem involved
proving the hypothesis of Lyapunov regularity of all systems with almost periodic coefficients,
see [4, pp. 121, 137] and also [5].

Erugin’s problem has been solved by V. M. Millionshchikov who has proved the following two
statements.

(i) Let H(A) be the hull of A, i.e. the uniform closure of all shifts Aτ (t) := A(t + τ). If A is
almost periodic, then almost all systems with coefficient matrices from H(A) are Lyapunov
regular [17].

(ii) There exists some Lyapunov irregular system (1) with almost periodic coefficients [19].

It should be noted that the proof in [19] is not completely constructive and use the following
result from [18].

(iii) If there exists a non-almost reducible system with coefficient matrix from H(A), then there
exists an irregular system with coefficient matrix from H(A) [18].

By virtue of (iii), to prove statement (ii) it is sufficient to construct some non-almost reducible
system with almost periodic coefficients. To this end V. M. Millionshchikov introduced a special
class of limit periodic linear systems and constructed the required system within that class. Now
such systems are usually called Millionshchikov systems. A comprehensive study of such systems
was made by A. V. Lipntskii in [8–15]. In particular, an explicit example of Lyapunov-irregular
Millionshchikov system is given in [8] (see also [21]). However, no effective tools are known for
recognising almost reducibility for these systems.
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A number of almost reducibility criteria are known for general systems and systems with almost
periodic coefficients, see e.g. [3, 7, 20]. However, most of these criteria are based on properties of
some solution sets for such systems. In [16] we propose a sufficient condition for almost reducibility
of Millionshchikov systems based on properties of periodic approximations to the system under
consideration. Our goal here is to give some corollaries of this result.

Let coefficient matrix A has the form

A(t) =

+∞∑
k=0

Ak(t+ τk), (2)

where Ak, k = 0, . . . ,+∞, are periodic matrices with the periods Tk and τk are arbitrary real
numbers. If each matrix Ak is everywhere continuous and series (2) converges uniformly on the
entire time axis R, then the matrix A is limit-periodic [1, p. 32] and, therefore, almost periodic.

In what follows we suppose that T0 = 2, Tk ∈ N, and Tk+1/Tk = mi ∈ N for all k = 0, . . . ,+∞.
We also suppose that mk > 1, k = 0, . . . ,+∞. Let

J =

(
0 −1
1 0

)
, D =

(
−1 0
0 1

)
.

Take some continuous function ω : [0, 1] → R such that ω(0) = ω(1) = 0 and
1∫
0

ω(t) dt = 1. Take

also a sequence φ : N → [0, π/2[ . As usually, the values of the sequence φ we denote by φk, k ∈ N.
Now let us define the matrices Ak by the following equalities:

A0(t) =

{
ω(t)D, for t ∈ [0, 1[ ,

0, for t ∈ [1, 2[
(3)

for k = 0 and

Ak(t) =

{
−φkω(t)J, for t ∈ [0, 1[ ,

0, for t ∈ [1, Ti[
(4)

for all k = 1, . . . ,+∞.
It can be easily shown that if

∞∑
k=1

φk < +∞,

then system (1) with the coefficient matrix A defined by (3) and (4) is limit periodic.

Definition 1. We say that system (1) with the coefficient matrix A defined by (3), (4), and (2)
with τk = 0 is a gathered Millionshchikov system.

Definition 2. System (1) with the coefficient matrix A defined by (3), (4), and (2) with τk ∈
2Z, is said to be a Millionshchikov system. We say that this system corresponds to a gathered
Millionshchikov system with the same matrices Ak, k = 0, . . . ,+∞.

Note that any gathered Millionshchikov system has the coefficient matrix of the form

A(t) =

+∞∑
k=0

Ak(t).

Let
Sm(t) =

m∑
k=0

Ak(t), m = 1, . . . ,+∞,
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where Ak are defined by (3) and (4). It can be easily seen that each matrix Sm is Tm-periodic.
Now for arbitrary m ∈ N consider a periodic linear system

ż = Sm(t)z, z ∈ R2, t ∈ R. (5)

Denote the Cauchy matrix of system (5) by Zm. Then the monodromy matrix of system (5) can be
written as Zm(Tm, 0) and the eigenvalues of Zm(Tm, 0) are the Floquet multipliers of system (5).
If these numbers are real, then we can find some real eigenvectors of Zm(Tm, 0) and the angle βm
between them.

Definition 3 ([16]). We say that gathered Millionshchikov system (1) is a real-type system if all
Floquet multipliers of each corresponding system (5) with m ∈ N are real.

Theorem 1 ([16]). Suppose that system (1) is a real-type gathered Millionshchikov system. If the
angle βm is separated from zero for all m ∈ N, then system (1) is almost reducible.

Definition 4. We say that a gathered Millionshchikov system (1) minorises another gathered
Millionshchikov system if the angles φk of the first system are not greater than the corresponding
angles of the second system.

Theorem 2. If system (1) satisfies conditions of Theorem 1, then all minorizing it gathered
Millionshchikov systems are almost reducible.

Theorem 3. If system (1) satisfies conditions of Theorem 1, then all corresponding to it Million-
shchikov systems are almost reducible.
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1 Introduction
We consider a controlled system of linear functional differential equations with a fractional deriva-
tive and aftereffect. The well-known definition of the fractional Caputo derivative of the order
α ∈ (0, 1) is used. The system under study includes, in addition to the Caputo derivative, a linear
Volterra operator of a general form defined on the trajectories and a linear Volterra operator de-
fined on the controls. For the system, an initial state is fixed. The aim of controlling is given by a
prescribed value of a linear target vector-functional. The question of the solvability to the control
problem is studied for two cases: the case without constraints regarding control and the case of
linear constraints with respect to control. The approach used is based on the theory of abstract
functional differential equations (AFDE) developed by the heads of the Perm Seminar, professors
N. V. Azbelev and L. F. Rakhmatullina, and systematically presented in [2].

2 Preliminaries
Let L∞ = Ln

∞[0, T ] be the space of measurable and bounded in essence functions z : [0, T ] → Rn

with the norm ∥z∥L∞ = vraisup (|z(t)|, t ∈ [0, T ]) (here and below | · | stands for a norm in
Rn). AC∞ = ACn

∞[0, T ] is the space of absolutely continuous functions x : [0, T ] → Rn with the
derivative ẋ ∈ L∞ and the norm ∥x∥AC∞ = |x(0)| + ∥ẋ∥L∞ , L2 = Lr

2[0, T ] is the space of square

summable functions u : [0, T ] → Rr with the inner product ⟨u, v⟩ =
T∫
0

u′(t) · v(t) dt (the symbol

( · )′ stands for transposition).
Consider the linear fractional functional differential system

Dαx = T x+ f, (2.1)

where Dα is the Caputo derivative of the order α ∈ (0, 1) (see, for instance, [4]),

(Dαx)(t) =
1

Γ(1− α)

t∫
0

ẋ(s)

(t− s)α
ds

(Γ( · ) is the Euler gamma-function), T : ACn
∞[0, T ] → Ln

∞[0, T ] is linear bounded Volterra operator
with the property: there exists p > 0 such that the inequality

|(T x)(t)| ≤ p max
s∈[0,t]

|x(s)|, t ∈ [0, T ] (2.2)

holds for any x ∈ ACn
∞[0, T ].
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All our constructions below are based on the representation of solutions to (2.1) with the initial
condition x(0) = 0.

Let us denote
(Kz)(t) = (T Jαz)(t),

where the fractional integration operator Jα : Ln
∞[0, T ] → ACn

∞[0, T ] is defined by the equality

(Jαz)(t) =

t∫
0

(t− s)α−1

Γ(α)
z(s) ds

(see, for instance, [4]).
Remark. Equations (2.1) and ẋ = T x + f are two different representatives of the AFDE [2] δx =
T x + f . Therewith the theory of the latter uses the representation x = V d

dt x + x(0), where

(V z)(t) =
t∫
0

z(s) ds, while the theory of (2.1) is based on the representation x = JαDαx + x(0).

The space AC∞ is isomorphic to the direct product L∞ × Rn with two possible isomorphisms:
x = V z + β and x = Jαz + β, correspondingly.

Throughout the following, we assume that K : Ln
∞[0, T ] → Ln

∞[0, T ] is a regular integral Volterra
operator:

(Kz)(t) =

t∫
0

K(t, s) z(s) ds.

This condition is fulfilled for wide classes of operators T including the operators of inner super-
position with delay [1] and Volterra integral ones. In such cases, the representation of the kernel
K(t, s) can be obtained in an explicit form.

Under above condition (2.2), the operator K has the resolvent operator R : (I −K)−1 = I +R,
where I is the identity operator, see [9], and R is an integral Volterra operator too:

(Rf)(t) =

t∫
0

R(t, s)f(s) ds

with the resolvent kernel R(t, s) [11, Theorem 2.2, p. 119].
As is shown in [9], the Cauchy problem for (2.1) with the initial condition x(0) = 0 is uniquely

solvable, and its solution has the representation

x(t) = (Cf)(t) =

t∫
0

C(t, s)f(s) ds, (2.3)

where C(t, s) is the Cauchy matrix that is defined by the equality

C(t, s) =
(t− s)α−1

Γ(α)
E +

t∫
s

(t− τ)α−1

Γ(α)
R(τ, s) dτ (2.4)

(here and below E is the identity (n× n)-matrix). Note that, for α = 1, (2.4) takes the form [5]

C(t, s) = E +

t∫
s

R(τ, s) dτ.

Operator C : L∞ → AC∞ is called the Cauchy operator.
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3 The problem formulation
The development of the theory of fractional dynamics led to the works on the dynamics of fractional
systems with control. A detailed review of the fundamental works on the control theory of systems
with fractional derivatives is given in [3].

Consider the fractional functional differential system under control

Dαx = T x+ Fu+ f, (3.1)

where F : Lr
2[0, T ] → Ln

∞[0, T ] is a linear Volterra operator that is responsible for the implementa-
tion of control actions u ∈ Lr

2[0, T ].
Without loss of generality we assume that the initial state of the system is zero:

x(0) = 0. (3.2)

The goal of control we set by the equality

ℓx ≡
m∑
i=1

Aix(ti) +

T∫
0

B(τ)x(τ) dτ = β ∈ RN , (3.3)

where ti, i = 1, . . . ,m are fixed points from [0, T ], Ai are constant (N × n)-matrices, B( · ) is
(N ×n)-matrix with summable elements, β is prescribed constant vector. We study the solvability
of the control problem (3.1)–(3.3) for two cases: the case without constraints regarding control
and the case of linear constraints with respect to control. Some results are presented in the next
section.

4 Main results
Let’s denote

Θi(s) = Ai

{
F ∗[χi( · )C(ti, · )

]}
(s), i = 1, . . . ,m; Φ(s) =

T∫
s

B(τ)C(τ, s) dτ ; (4.1)

Θm+1(s) =
{
F ∗Φ( · )

}
(s); M(s) =

m+1∑
i=1

Θi(s); W =

T∫
0

M(s)M ′(s) ds. (4.2)

Here χi( · ) is the characteristic function of the segment [0, ti], F ∗ is the adjoint operator to F , M
is the so called moment matrix.

Theorem 4.1 ([10]). Control Problem (3.1)–(3.3) is solvable for any f ∈ Ln
∞[0, T ] and β ∈ RN if

and only if the (N × N)-matrix W defined by the equalities (4.1), (4.2) is invertible. The control
u0(t) = M ′(t) d with d = W−1[β − ℓCf ], solves the problem.

In the case of polyhedral constraints with respect to the control u:

Λ · u(t) ≤ γ, γ ∈ RN1 , t ∈ [0, T ], (4.3)

with constant (N1 × r)-matrix (it is assumed that the set of solutions to the system Λ · v ≤ γ is
nonempty), there arises the problem of the description to the set of all target values β such that
the problem (3.1)–(3.3), (4.3) is solvable. Such a set is called the attainability set to the problem.
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It should be noted that, in most works, the attainability is understood in relation to the terminal
target vector-functional ℓx = x(T ). In contrary to this, we consider the essentially more general
case of the target vector-functional, and the term ℓ-attainability seems to be more proper. Here we
consider the question on the inner (lower by inclusion) estimates to the ℓ-attainability set. In the
case of the systems with the derivative of the integer order, this question is studied in [6–8]. All
constructions used to obtain the inner estimates are based on the representation (2.3) of solutions
to the system (3.1).

Using the moment matrix M , the equality (3.3) that defines the aim of control is reduced to
the integral form with respect to control u:

T∫
0

M(t) · u(t) dt = β.

Thus the control problem (3.1)–(3.3), (4.3) is reduced to the system

T∫
0

M(t) · u(t) dt = β ∈ RN , Λ · u(t) ≤ γ, t ∈ [0, T ].

The inner estimate of the ℓ-attainability set is based on the following constructions. Let us split
the segment [0, T ] onto partial ones by the points ϑ1, . . . , ϑK−1 : 0 = ϑ0 < ϑ1 < · · · < ϑK−1 < T =
ϑK, and denote by χi(t) the characteristic function of the interval (ϑi−1, ϑi]. We restrict the class
of controls by piecewise constant ones of the form

u(t) =

K∑
i=1

diχi(t), (4.4)

where di ∈ Rm are constant vectors. Next we define constant (N ×r)-matrices Mi by the equalities

Mi =

ϑi∫
ϑi−1

M(t) dt, i = 1, . . . ,K.

Let us fix a collection of vectors λ1, . . . , λj , . . . , λN ∈ RN , and, for every j, set the linear program-
ming problem

K∑
i=1

λ′
j ·Midi → max, Λ · di ≤ γ, i = 1, . . . ,K. (4.5)

Let λj1 , . . . , λjN1
be a subset of the collection {λj}, j = 1, . . . ,N such that, for any its element

the problem (4.5) has a solution Djk = (djk1 , . . . , djkK ), k = j1, . . . , jN1 . Every such solution, after
substitution of it into (4.4), defines a program control ujk(t) that gives an attainable value of the
target vector-functional ℓ:

ℓx =

T∫
0

M(t) · ujk(t) dt = ρjk .

The collection of such values (points in RN ) allows one to obtain an inner estimate to the ℓ-
attainability set.

Theorem 4.2. Let P ⊂ RN be the set of all linear convex combinations of the points ρjk , k =
j1, . . . , jN1. Then any value β ∈ P is an ℓ-attainable value in the problem (3.1)–(3.3), (4.3).
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1 Introduction
We study, on the interval I := [a, b], the fourth order ordinary differential equations

u(4)(t) = p(t)u(t) + q(t) (1.1)

and
u(4)(t) = p(t)u(t) + f(t, u(t)), (1.2)

under the boundary conditions

u(j)(a) = 0, u(j)(b) = 0 (j = 0, 1), (1.31)
u(j)(a) = 0 (j = 0, 1, 2), u(b) = 0, (1.32)

where p, h ∈ L(I; R), f ∈ K(I ×R;R).
By a solution of problem (1.2), (1.3i) (i ∈ {1, 2}) we understand a function u ∈ C̃3(I;R) which

satisfies equation (1.2) a.e. on I, and conditions (1.3i).
We use the following notations here.
C̃(3)(I;R) is the set of functions u : I → R which are absolutely continuous together with their

third derivatives;
L(I;R) is the Banach space of Lebesgue integrable functions p : I → R with the norm ∥p∥L =

b∫
a
|p(s)| ds;

K(I ×R;R) is the set of functions f : I ×R → R satisfying the Carathéodory conditions.
For arbitrary x, y ∈ L(I; R), the notation

x(t) 4 y(t) (x(t) < y(t)) for t ∈ I

means that x ≤ y (x ≥ y) and x ̸= y; We also use the notations [x]± = (|x| ± x)/2.
The aim of our work is to study the solvability of the above mentioned problems. We have

proved the unimprovable sufficient conditions of the unique solvability for the linear problem, which
show that the solvability of problem (1.1), (1.31) ((1.1), (1.32)) depends only on the nonnegative
(nonpositive) part of the coefficient p if this nonnegative (nonpositive) part is small enough. On the
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basis of these results for the nonlinear problems, we have proved sufficient conditions of solvability,
which in some sense improve previously known results.

The results of the given work are based on our previous results from the papers [1] and [2].
Below we present some definitions and results from these papers.

Definition 1.1. Equation
u(4)(t) = p(t)u(t) for t ∈ I (1.4)

is said to be disconjugate (non-oscillatory) on I if every nontrivial solution u has less than four
zeros on I, the multiple zeros being counted according to their multiplicity.

Definition 1.2. We will say that p ∈ D+(I) if p ∈ L(I;R+
0 ), and problem (1.4), (1.31) has a

solution u such that
u(t) > 0 for t ∈ ]a, b[ . (1.5)

Definition 1.3. We will say that p ∈ D−(I) if p ∈ L(I;R−
0 ), and problem (1.4), (1.32) has a

solution u such that inequality (1.5) holds.

Theorem 1.1 ([1]).

(a) Let the equation
u(4)(t) = [p(t)]+u(t)

be disconjugate on I. Then problem (1.1), (1.31) is uniquely solvable for arbitrary [p]− and q.

(b) Let the equation
u(4)(t) = −[p(t)]−u(t)

be disconjugate on I. Then problem (1.1), (1.32) is uniquely solvable for arbitrary [p]+ and q.

Theorem 1.2 ( [2]). Let p ∈ L(I; R+
0 ). Then for the discojugacy of equation (1.4) on I it is

necessary and sufficient the existence of p∗ ∈ D+(I), such that

p(t) 4 p∗(t) for t ∈ I.

Theorem 1.3 ( [2]). Let p ∈ L(I; R−
0 ). Then for the dsconjugacy of equation (1.4) on I it is

necessary and sufficient the existence of p∗ ∈ D−(I) such that

p∗(t) 4 p(t) for t ∈ I.

2 Linear problems
The proofs of the following results of the unique solvability of problems (1.1), (1.31) and (1.1), (1.32)
are based on Theorems 1.1–1.3.

Theorem 2.1 ([3]). Let i ∈ {1, 2} and the function p0 ∈ L(I;R) be such that the equation

u(4)(t) = [p0(t)]+u(t) if i = 1,

u(4)(t) = −[p0(t)]−u(t) if i = 2,

is disconjugate on I. Then if the inequality

(−1)i−1[p(t)− p0(t)] ≤ 0 for t ∈ I

holds, problem (1.1), (1.3i) is uniquely solvable.
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From the last theorem with p0 = [p]+ or p0 = −[p]− it immediately follows
Corollary 2.1. Let there exist p∗ ∈ D+(I) (p∗ ∈ D−(I)) such that the inequality

[p(t)]+ 4 p∗(t)
(
− [p(t)]− < p∗(t)

)
for t ∈ I

holds. Then problem (1.1), (1.31) ((1.1), (1.32)) is uniquely solvable.
Corollary 2.2. Let inequality

p(t) ≤ λ4
1

(b− a)4
≈ 500

(b− a)4

(
[p(t)]− ≤ λ4

2

(b− a)4
≈ 949

(b− a)4

)
holds, where λ1 (λ2) is the first eigenvalue of the problem

u(4)(t) = λ4u(t), u(j)(0) = 0, u(j)(1) = 0 (j = 0, 1)
(
u(j)(0) = 0 (j = 0, 1, 2), u(1) = 0

)
.

Then problem (1.1), (1.31) ((1.1), (1.32)) is uniquely solvable.

3 Nonlinear problem
On the basis of our results for the linear problems, for the nonlinear problems we have proved the
following solvability theorem.
Theorem 3.1 ([3]). Let i ∈ {1, 2} and there exist r ∈ R+ and g ∈ L(I;R+

0 ) such that a.e. on I
the inequality

−g(t)|x| ≤ (−1)i−1f(t, x) sgnx ≤ δ(t, |x|) for |x| > r (3.1)
holds, where the function δ ∈ K(I ×R+

0 ; R
+
0 ) is nondecreasing in the second argument and

lim
ρ→+∞

1

ρ

b∫
a

δ(s, ρ) ds = 0.

Then if the equation

u(4)(t) = [p(t)]+u(t) if i = 1, u(4)(t) = −[p(t)]−u(t) if i = 2

is disconjugate, problem (1.2), (1.3i) has at least one solution.
From the last theorem and Corollary 2.2 it easily follows

Corollary 3.1. Let there exist r ∈ R+ and g ∈ L(I;R+
0 ) such that a.e. on I inequalities (3.1) and

[p(t)]+ ≤ 500

(b− a)4

(
[p(t)]− ≤ 949

(b− a)4

)
,

hold. Then problem (1.2), (1.31) ((1.2), (1.32)) has at least one solution.
The following theorems of the uniqueness of the solution for our nonlinear problem follows from

Theorems 1.2, 1.3 and 2.1.
Theorem 3.2 ([3]). Let there exist p∗ ∈ D+(I) such that a. e. on I the inequality[

f(t, x1)− f(t, x2)
]
sgn(x1 − x2) <

[
p∗(t)− p(t)

]
|x1 − x2|

holds for x1, x2 ∈ R, x1 ̸= x2. Then problem (1.2), (1.31) has at most one solution.
Theorem 3.3 ([3]). Let there exist p∗ ∈ D−(I) such that a.e. on I the inequality[

f(t, x1)− f(t, x2)
]
sgn(x1 − x2) >

[
p∗(t)− p(t)

]
|x1 − x2|

holds for x1, x2 ∈ R, x1 ̸= x2. Then problem (1.2), (1.32) has at most one solution.
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The study of systems of ODE is one of the part of investigations in modern analysis and its
applications. Unlike Cauchy problems, the solutions to inhomogeneous boundary-value problems
for differential systems may not exist and/or may not be unique. Therefore, the question about
the solvability character of such problems is fundamental for the theory of differential equations.

The topic is most fully studied for linear ODE. Thus, Kiguradze [2] investigated the solutions
of first order differential systems with general inhomogeneous boundary conditions of the form

y′(t) +A(t)y(t) = f(t), t ∈ (a, b), By = c. (1)

Here, the matrix-valued function A( · ) is Lebesgue integrable over the finite interval (a, b); the
vector-valued function f( · ) belongs to L((a, b);Rm); the vector c pertains to Rm, and B is an
arbitrary linear continuous operator from the Banach space C([a, b];Rm) to Rm with m ∈ N.

The boundary condition in (1) covers the main types of classical boundary conditions; namely:
Cauchy problems, two-point and multipoint problems, integral and mixed problems. The Fredholm
property with zero index was established for problems of the form (1). Moreover, the conditions for
the problems to be well posed were obtained, and the limit theorem for their solutions was proved.

These results were further developed in a series of articles by Mikhailets and his colleagues.
Specifically, they allow the differential system to have an arbitrary order r ∈ N and the boundary
operator B to be any linear continuous operator from the space Cr−1([a, b];Cm) to Crm. They
obtained conditions for the boundary-value problems to be well posed and proved limit theorems
for solutions to these problems.

We arbitrarily choose a finite interval (a, b) ⊂ R and the following parameters:

n ∈ N ∪ {0}, {m, r, l} ⊂ N, and 1 ≤ p ≤ ∞.

As usual,

Wn+r
p ([a, b];C) :=

{
y ∈ Cn+r−1([a, b];C) : y(n+r−1) ∈ AC[a, b], y(n+r) ∈ Lp[a, b]

}
is a complex Sobolev space; set W 0

p := Lp. This space is Banach with respect to the norm

∥y∥n+r,p =
n+r∑
k=0

∥y(k)∥p,
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with ∥ · ∥p standing for the norm in the Lebesgue space Lp([a, b];C). We need the Sobolev spaces

(Wn+r
p )m := Wn+r

p ([a, b];Cm) and (Wn+r
p )m×m := Wn+r

p ([a, b];Cm×m).

They respectively consist of vector-valued functions and matrix-valued functions whose elements
belong to Wn+r

p . The norms in these spaces are defined to be the sums of the relevant norms in
Wn+r

p of all elements of a vector-valued or matrix-valued function.
We preserve the same notation ∥ · ∥n+r,p for these norms. It will be clear from the context

to which space (scalar or vector-valued or matrix-valued functions) relates the designation of the
norm. The same concerns all other Banach spaces used in the sequel. Certainly, the above Sobolev
spaces coincide in the m = 1 case. If p < ∞, they are separable and have a Schauder basis.

Consider the linear boundary-value problem

(Ly)(t) := y(r)(t) +
r∑

j=1

Ar−j(t)y
(r−j)(t) = f(t), t ∈ (a, b), (2)

By = c. (3)

Here, the matrix-valued functions Ar−j( · ) ∈ (Wn
p )

m×m, vector-valued function f( · ) ∈ (Wn
p )

m,
vector c ∈ Cl, linear continuous operator

B : (Wn+r
p )m → Cl (4)

are arbitrarily chosen; y( · ) ∈ (Wn+r
p )m is unknown.

The boundary condition (3) consists of l scalar condition for system of m differential equations
of r-th order, we representing vectors and vector-valued functions as columns.

A solution to the boundary-value problem (2), (3) is understood as a vector-valued function
y( · ) ∈ (Wn+r

p )m that satisfies both equation (2) (everywhere if n ≥ 1, and almost everywhere if
n = 0) on (a, b) and equality (3).

If the parameter n increases, so does the class of linear operators (4). When n = 0, this
class contains all operators that set the general boundary conditions described above. Hence, the
condition (3) with operator (4) is generic condition for this equation. It includes all known types
of classical boundary conditions and numerous nonclassical conditions containing the derivatives
(in general fractional) of an order ≥ rm. Thus, boundary conditions can contain derivatives whose
order is greater than the order of the equation. If l < rm, then the boundary conditions are
underdetermined. If l > rm, then the boundary conditions are overdetermined.

In case 1 ≤ p < ∞, the linear continuous operator B : (Wn+r
p )m → Cl admits the unique

analytic representation

By =

n+r−1∑
i=0

αi y
(i)(a) +

b∫
a

Φ(t)y(n+r)(t) dt, y( · ) ∈ (Wn+r
p )m,

for certain number matrices αs ∈ Crl×m and matrix-valued function Φ( · ) ∈ Lp′([a, b];Crl×m); as
usual, 1/p+1/p′ = 1. If p = ∞, this formula also defines a bounded operator B : (Wn+r

∞ )m → Crl.
However, there exist other operators of this class generated by integrals over finitely additive
measures. Hence, unlike p < ∞, the case of p = ∞ contains additional analytical difficulties.

We rewrite the inhomogeneous boundary-value problem (2), (3) in the form of a linear operator
equation

(L,B)y = (f, c).
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Here, (L,B) is a bounded linear operator on the pair of Banach spaces

(L,B) : (Wn+r
p )m → (Wn

p )
m × Cl, (5)

which follows from the definition of the Sobolev spaces involved and from the fact that Wn
p is a

Banach algebra.
Let E1 and E2 be Banach spaces. A linear bounded operator T : E1 → E2 is called a Fredholm

one if its kernel and co-kernel are finite-dimensional. If T is a Fredholm operator, then its range
T (E1) is closed in E2, and its index is finite

indT := dimkerT − dim
E2

T (E1)
∈ Z.

Theorem 1. The bounded linear operator (5) is a Fredholm one with index rm− l.

The proof of Theorem 1 uses the well-known theorem on the stability of the index of a linear
operator with respect to compact additive perturbations.

Theorem 1 naturally raises the question of finding d-characteristics of the operator (L,B), i.e.
dimker(L,B) and dim coker(L,B). This is a quite difficult task because the Fredholm numbers
may vary even with arbitrarily small one-dimensional additive perturbations.

To formulate the following result, let us introduce some notation and definitions.
For each number i ∈ {1, . . . , r}, we consider the family of matrix Cauchy problems:

Y
(r)
i (t) +

r∑
j=1

Ar−j(t)Y
(r−j)
i (t) = Om, t ∈ (a, b),

Y
(j−1)
i (a) = δi,jIm, j ∈ {1, . . . , r},

where Yi( · ) is an unknown m×m matrix-valued function.
Let [BYi] denote the number l ×m matrix whose j-th column is the result of the action of B

on the j-th column of the matrix-valued function Yi.

Definition 1. A block rectangular number matrix

M(L,B) :=
(
[BY1], . . . , [BYr]

)
∈ Cl×rm (6)

is called the characteristic matrix to problem (2), (3).

Note that this matrix consists of r rectangular block columns [BYk] ∈ Cm×l.

Theorem 2. The dimensions of the kernel and co-kernel of the operator (5) are equal to the
dimensions of the kernel and co-kernel of the characteristic matrix (6), resp; i.e.,

dimker(L,B) = dimker(M(L,B)),

dim coker(L,B) = dim coker(M(L,B)).

Theorem 2 implies the following necessary and sufficient conditions for the invertibility of (5).

Corollary. The operator (5) is invertible if and only if l = rm and the square matrix M(L,B) is
nonsingular.

If all the coefficients of the differential expression L are constant, then the characteristic matrix
can be explicitly found. In this case, the characteristic matrix is an analytic function of a certain
square number matrix and coincides hence with some polynomial of this matrix.
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Example 1 (One-point problem). Consider a linear one-point boundary-value problem

(Ly)(t) := y′(t) +Ay(t) = f(t), t ∈ (a, b), (7)

By :=

n−1∑
k=0

αky
(k)(a) = c. (8)

Here, A is a constant (m×m)-matrix, f( · ) ∈ (Wn
p )

m, αk ∈ Cl×m, c ∈ Cl, y( · ) ∈ (Wn+1
p )m,

B : (Wn+1
p )m → Cl, (L,B) : (Wn+1

p )m → (Wn
p )

m × Cl.

Let Y ( · ) = (yi,j)
m
i,j=1 ∈ (Wn+1

p )m×m be the unique solution of the linear homogeneous matrix
equation with the initial Cauchy condition

Y ′(t) +AY (t) = Om, t ∈ (a, b), Y (a) = Im.

Hence,

Y (t) = exp(−A(t− a)), Y (a) = Im;

Y (k)(t) = (−A)k exp(−A(t− a)), Y (k)(a) = (−A)k, k ∈ N.

Recall that

M(L,B) =

B

 y1,1
...

ym,1

 , . . . , B

 y1,m
...

ym,m


 ∈ Cl×m.

Substituting these values into the equality (8), we have

M(L,B) =
n−1∑
k=0

αk(−A)k.

It follows from Theorem 1 that ind(L,B) = ind(M(L,B)) = m − l. Therefore, owing to
Theorem 2, we obtain

dimker(L,B) = dimker
( n−1∑

k=0

αk(−A)k
)
= m− rank

( n−1∑
k=0

αk(−A)k
)
,

dim coker(L,B) = −m+ l + dimker
( n−1∑

k=0

αk(−A)k
)
= l − rank

( n−1∑
k=0

αk(−A)k
)
.

It follows from these formulas that d-characteristics of the problem do not depend on the length
of the interval (a, b).

Example 2 (Multipoint problem). Let us consider a multipoint boundary-value problem for the
differential system (7) with A(t) ≡ Om. The boundary conditions contain derivatives of integer
and/or fractional orders (in the sense of Caputo) at certain points tk ∈ [a, b], k = {0, . . . , N}. These
conditions become

Ly(t) := y′(t) = f(t), t ∈ (a, b),

By :=
N∑
k=0

s∑
j=0

αk,j(
CDβk,j

a+ y)(tk) = c.
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Here, all αk,j ∈ Cl×m, whereas the nonnegative numbers βk,j satisfy

βk,0 = 0 whenever k ∈ {1, 2, . . . , N}.

Theorem 1 asserts that index of the operator (L,B) equals m − l. Let us find its Fredholm
numbers. Since Y ( · ) = Im, we have

M(L,B) =
N∑
k=0

s∑
j=0

αk,j(
CDβk,j

a+ Im) =
N∑
k=0

αk,0,

because the derivatives (CDβk,j

a+ Im) = 0 whenever βk,j > 0. Hence, by Theorem 2, we conclude that

dimker(L,B) = dimker
( N∑

k=0

αk,0

)
= m− rank

( N∑
k=0

αk,0

)
,

dim coker(L,B) = −m+ l + dim coker
( N∑

k=0

αk,0

)
= l − rank

( N∑
k=0

αk,0

)
.

These formulas show that d-characteristics of the problem do not depend on the length of the
interval (a, b) and on the choice of the points {tk}Nk=0 ⊂ [a, b] and matrices αk,j with j ≥ 1.

Conclusions
We prove that the generic problem (2), (3) is a Fredholm one and find its Fredholm numbers, i.e.
the dimensions of its kernel and cokernel. Along the way, we find the index of the problem. Note
that, unlike the index, the Fredholm numbers are unstable with respect to one-dimensional additive
perturbations with an arbitrarily small norm. To find these numbers, we introduce a rectangular
number characteristic matrix M(L,B) of the problem and prove that the Fredholm numbers of
this matrix coincide with the Fredholm numbers of the problem. We give examples in which the
characteristic matrix can be explicitly found [1, 3].

Acknowledgment
The research of Olena Atlasiuk is financially supported by the Academy of Finland, grant # 359642.

References
[1] O. Atlasiuk and V. Mikhailets, On differential systems in Sobolev spaces with generic inho-

mogeneous boundary conditions. Women in Analysis and PDE, 37–47, Trends Math., 5, Res.
Perspect. Ghent Anal. PDE Cent., 5, Birkhäuser/Springer, Cham, 2024.

[2] I. T. Kiguradze, Boundary value problems for systems of ordinary differential equations. (Rus-
sian) Translated in J. Soviet Math. 43 (1988), no. 2, 2259–2339; Itogi Nauki i Tekhniki, Current
problems in mathematics. Newest results, Vol. 30 (Russian), 3–103, 204, Akad. Nauk SSSR,
Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987.

[3] V. Mikhailets and O. Atlasiuk, The solvability of inhomogeneous boundary-value problems in
Sobolev spaces. Banach J. Math. Anal. 18 (2024), no. 2, Paper no. 12, 23 pp.



REPORTS OF QUALITDE, Volume 3, 2024 209

On Admissible Perturbations of 3D Quadratic ODE System
with an Infinite Number of Limit Cycles

E. Musafirov, A. Grin, A. Pranevich
Yanka Kupala State University of Grodno, Grodno, Belarus
E-mails: musafirov@bk.ru; grin@grsu.by; pranevich@grsu.by

1 Introduction
The qualitative study of parameter depending systems of autonomous ordinary differential equa-
tions requires the study of limit sets and their bifurcations. With respect to applications, equi-
libria, limit cycles, homoclinic orbits and invariant manifolds play a crucial role. In case of
planar autonomous systems a lot of methods for qualitative investigations has been established
(see [1, 8]), nevertheless there are unsolved basic questions [9]. According to the results of H. Du-
lac, Yu. Ilyasenko and J. Ecale a planar polynomial autonomous system has only a finite number
of limit cycles (individual finiteness) [7,12]. The question for the maximum number of limit cycles
of polynomial systems in dependence of the the degree of the polynomials and their bifurcations
(Hilberts sixteenth problem) is still open. It has been proved that the cyclicity of a focus and of a
period annulus (continuum of periodic orbits) of quadratic systems is three [27].

It is well known that already in the case of of quadratic polynomial three-dimensional au-
tonomous systems new limit sets exist and new bifurcation scenarios occur [2, 10, 11, 14, 29]. The
motivation for our work is to due two papers [4, 5] of V. Bulgakov devoted to the bifurcation of
limit cycles in polynomial three-dimensional systems. In the first paper the focus is on Hopf bi-
furcation using the approach of Y. Bibikov [3] which essentially coincides with the center manifold
approach [28]. In the second paper Bulgakov and Grin [5] proved that the system

ẋ = a0x− a1y + a2xy + a3y
2 + a4xz + a5yz,

ẏ = a1x+ a0y − a2x
2 − a3xy + a4yz − a5xz,

ż = 2(a0z + a4z
2); (x, y, z) ∈ R3,

(1.1)

where ai ∈ R (i = 0, 5) are system parameters, has infinitely many (continuum) limit cycles, which
represent intersection curves of the family of invariant surfaces z = (x2+y2)/k, k ∈ R\{0} and the
plane z = −a0/a4. But the results presented in the mentioned paper [5] are local. For system (1.1)
under consideration, the non-local existence of an infinite number of limit cycles is proved in [25].
The focus was also on Hopf bifurcation of the reduced system on the invariant manifolds, but since
these manifolds are no center manifolds this type of bifurcation did not explain the existence of
limit cycles in the three-dimensional system. The underlying mechanism to generate a continuum
of limit cycles is related to the existence of a period annulus.

In planar systems it is usual to define a limit cycles as an isolated periodic solution [1, 8]. To
be able to speak about a continuum of limit cycles we have to use another definition of a limit
cycle. In the monograph of C. Chicone [6] we find the following definition: A limit cycle Γ is a
periodic orbit that is either the ω-limit set or the α-limit set of some point in the phase space with
the periodic orbit removed. This monograph further emphasizes that the above definitions are not
equivalent to each other in general, but they are equivalent in the case of real analytical systems.
We will use Chicones definition in what follows.
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The goal of our work is to perturb system (1.1) and find such a perturbed non-autonomous
system in which the continuum of limit cycles retained its existence.

2 Preliminaries
In paper [15] V. I. Mironenko introduced the concept of a reflecting function to study the qualitative
behavior of solutions of ODE systems. This function is now known as the Mironenko reflecting
function (MRF) and has been successfully used to solve many problems in qualitative theory of
ODE [16–18,20].

ODE systems with the same MRF have the same translation operator (see [13]) on any inter-
val (−β, β), and 2ω-periodic ODE systems with the same MRF have the same mapping on the
period [−ω, ω] (Poincare mapping). Therefore, some qualitative properties (such as the existence
of periodic solutions and their stability) of solutions of ODE systems that have the same MRF are
common.

So it is advisable to look for perturbations that do not change the MRF (the so-called admissible
perturbations) of known (well-studied) systems. If we manage to find admissible perturbations, then
we thereby know which perturbations not change the qualitative properties of the solutions inherent
in the solutions of the original unperturbed system.

For example, in papers [21–24, 26], admissible perturbations of various systems, such as the
Lorenz-84 system, Langford system, generalized Langford system and Hindmarsh-Rose system,
were obtained, and the qualitative properties of solutions of perturbed systems were also studied.

To search for admissible perturbations, we can use theorem from [19], which we formulate here
in the form of the following lemma.

Lemma 2.1. Let the vector functions ∆i(t, x) (i = 1,m, where m ∈ N or m = ∞) be solutions of
the equation

∂∆

∂t
+

∂∆

∂x
X − ∂X

∂x
∆ = 0 (2.1)

and αi(t) be any scalar continuous odd functions. Then the MRF of any perturbed system of the
form

ẋ = X(t, x) +
m∑
i=1

αi(t)∆i(t, x), t ∈ R, x ∈ D ⊂ Rn

is equal to the MRF of the system

ẋ = X(t, x), t ∈ R, x ∈ D ⊂ Rn. (2.2)

3 Main results
For system (1.1), we look for admissible perturbations of the form ∆·α(t), where α(t) is an arbitrary
continuous scalar odd function and

∆ =

( l∑
i+j+k=0

qijk x
iyjzk,

l∑
i+j+k=0

rijk x
iyjzk,

l∑
i+j+k=0

sijk x
iyjzk

)T

,

where qijk, rijk, sijk ∈ R, i, j, k, l ∈ N ∪ {0}. For the polynomial ∆ under consideration, relation
(2.1) takes the form

∂∆(x, y, z)

∂(x, y, z)
X(x, y, z) ≡ ∂X(x, y, z)

∂(x, y, z)
∆(x, y, z). (3.1)
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Substituting ∆ into relation (3.1) and using the method of indefinite coefficients we obtain a system
of equations for qijk, rijk, sijk. As a result, we obtained the following theorem.

Theorem 3.1. Let αi(t) (i = 1, 3) be arbitrary scalar continuous odd functions. Then for a2 =
a3 = 0, the MRF of system (1.1) coincides with the MRF of the system

ẋ = (a0x− a1y + a4xz + a5yz)(1 + α1(t)) + xα2(t) + yα3(t),

ẏ = (a1x+ a0y + a4yz − a5xz)(1 + α1(t)) + yα2(t)− xα3(t),

ż = 2z(a0 + a4z)(1 + α1(t)).

(3.2)

Proof. For a2 = a3 = 0, the right-hand side of system (1.1) is

X =
(
a0x− a1y + a4xz + a5yz, a0y + a1x+ a4yz − a5xz, 2(a0 + a4z)z

)T

and its Jacobi matrix is

∂X

∂(x, y, z)
=

a0 + a4z −a1 + a5z a4x+ a5y
a1 − a5z a0 + a4z a4y − a5x

0 0 2(a0 + 2a4z)

 .

Let us write out the vector factors for αi(t) from the right-hand side of system (3.2):

∆1 =

a0x− a1y + a4xz + a5yz
a0y + a1x+ a4yz − a5xz

2z(a0 + a4z)

 , ∆2 =

x
y
0

 , ∆3 =

 y
−x
0

 .

By successively checking identity (3.1) for each vector-multiplier ∆i we will make sure that it is
true. Let us show this, for example, for ∆1. The Jacobi matrix is

∂∆1

∂(x, y, z)
=

a0 + a4z −a1 + a5z a4x+ a5y
a1 − a5z a0 + a4z a4y − a5x

0 0 2(a0 + 2a4z)

 .

Hence we obtain

∂∆1

∂(x, y, z)
X =

a0 + a4z −a1 + a5z a4x+ a5y
a1 − a5z a0 + a4z a4y − a5x

0 0 2(a0 + 2a4z)

a0x− a1y + a4xz + a5yz
a0y + a1x+ a4yz − a5xz

2(a0 + a4z)z


≡

a0 + a4z −a1 + a5z a4x+ a5y
a1 − a5z a0 + a4z a4y − a5x

0 0 2(a0 + 2a4z)

a0x− a1y + a4xz + a5yz
a0y + a1x+ a4yz − a5xz

2z(a0 + a4z)

 =
∂X

∂(x, y, z)
∆1.

Then the assertion of the theorem follows from Lemma 2.1.

If, as usual, we consider non-negative time, then the requirement that the functions αi(t) be odd
is not essential, since they can be continued in an odd way continuously to the negative semi-axis
of time (assuming that αi(0) = 0).

In some cases, it is possible to find solutions of system (1.1) corresponding to limit cycles.
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Lemma 3.1. Suppose a2 = a3 = 0 and a4 ̸= 0. Then ∀ k ∈ R \ {0} such that a0k/a4 < 0, system
(1.1) has a solution

x(t) =

√
−a0k

a4
cos

((a0a5
a4

+ a1

)
t
)
,

y(t) =

√
−a0k

a4
sin

((a0a5
a4

+ a1

)
t
)
,

z(t) = −a0
a4

(3.3)

corresponding to the cycle x2 + y2 = −a0k/a4, z = −a0/a4. Moreover, for a1 ̸= −a0a5/a4 this
solution is 2π|a4|

|a0a5+a1a4| -periodic.

The assertions of the lemma are proved by direct substitution of (3.3) into system (1.1).
The following theorem tells us about the cases when system (3.2) has infinitely many periodic

solutions, and what is the character of the stability of these solutions.

Theorem 3.2. Let αi(t) (i = 1, 3) be scalar twice continuously differentiable odd functions, a4 ̸= 0,
a1 ̸= −a0a5/a4 and the right-hand side of system (3.2) be 2π|a4|

|a0a5+a1a4| -periodic with respect to time t.
Then ∀ k ∈ R\{0} such that a0k/a4 < 0, a solution of system (3.2), satisfying the initial conditions

x
( −π|a4|
|a0a5 + a1a4|

)
=

√
−a0k

a4
, y

( −π|a4|
|a0a5 + a1a4|

)
= 0, z

( −π|a4|
|a0a5 + a1a4|

)
= −a0

a4
, (3.4)

is 2π|a4|
|a0a5+a1a4| -periodic. Moreover, the character of stability of this solution and solution (3.3) of

system (1.1) with the same initial conditions (3.4) coincides.

Figure 1. Phase portrait of periodic solutions of system (3.2) for a0 = 4, a1 = 5, a4 = −1,
a5 = 1, αi(t) = sin(i · t) (i = 1, 3) and satisfying the initial conditions x(−π) = 2

√
k,

y(−π) = 0, z(−π) = 4 (blue for k = 1, red for k = 4, and green for k = 9).



REPORTS OF QUALITDE, Volume 3, 2024 213

The proof of the theorem follows from the coincidence of the mappings over the period for
systems (1.1) and (3.2).

Example. Let a0 = 4, a1 = 5, a2 = a3 = 0, a4 = −1, a5 = 1. Then, by Lemma 3.1, ∀k ∈ (0,+∞)
system (1.1) has 2π-periodic solution (3.3). If αi(t) = sin (i · t) (i = 1, 3), then the right-hand
side of system (3.2) is 2π-periodic. Therefore, by Theorem 3.2, ∀ k ∈ (0,+∞) system (3.2) has
2π-periodic solution which satisfies the initial conditions x(−π) = 2

√
k , y(−π) = 0, z(−π) = 4 (see

Figure 1).

4 Conclusion
Admissible perturbations were found for system (1.1) in the case when a2 = a3 = 0. The resulting
perturbed non-autonomous systems have the same Mironenko reflecting function as the original
unperturbed system. Solutions of different systems of ODEs with the same Mironenko reflecting
function have many of the same qualitative properties. In particular, we proved that admissibly
perturbed systems have infinitely many periodic solutions and that the character of their stability
coincides with the character of stability of the corresponding solutions of unperturbed systems.
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It is a rather common belief that, for analysing problems having a variational structure, vari-
ational methods are more powerful and give better results than topological ones. In this note we
exhibit a class of variational problems for which the topological approach reveals instead much
more effective. Namely, we look for positive regular solutions of the prescribed mean curvature
problem −div

( ∇u√
1 + |∇u|2

)
= λf(u) in Ω,

u = 0 on ∂Ω,

(1)

where Ω is a bounded planar domain, the function f grows superlinearly, and λ is a real parameter.
In a recent paper Figueiredo and Rădulescu proved the existence of positive solutions for (1)

assuming that f is a superlinear function having critical exponential growth at infinity with respect
to the Moser–Trudinger inequality in R2, also providing in their article detailed history, motivations,
and references concerning this topic. Precisely, in [6] they proved the following result.

Theorem 1 ([6, Theorem 1.1]). Assume that

(h1) Ω is a bounded domain in R2 having a smooth boundary ∂Ω,

(h2) f : R → R is a continuous function,

(h3) there exists α0 > 0 such that

lim
s→+∞

f(s)

exp(αs2)
= 0 for α > α0 and lim

s→+∞

f(s)

exp(αs2)
= +∞ for α < α0,

(h4) lim
s→0

f(s)
s = 0,

(h5) the function s 7→ f(s)
s is increasing in (0,+∞),

(h6) there exists p > 32
7

√
2 ≈ 6.465 and λ > 0 such that, for all s > 0,

f(s) ≥ sp−1,

(h7) for all s > 0,

f(s)s ≥ p

s∫
0

f(t) dt,

where p is the same exponent as in (h6).
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Then, there exists a constant λ∗ > 0 such that problem (1) has at least one positive weak solution
u ∈ C1(Ω) provided that λ > λ∗.

Example. A paradigmatic model for f is provided by the function

f(s) = (s+)p−1 exp(α0s
2), (2)

where p > 2 and α0 > 0 are given exponents and s+ = max{s, 0}.

The proof of Theorem 1 produced in [6] strongly exploits the variational structure of problem
(1) and cleverly combines a truncation argument [8], along with the use of the Nehari manifold
method [4], Moser iteration techniques [10], and Stampacchia estimates [9].

The aim of this note is to show that Theorem 1 can be significantly improved, as well as
extended in several directions, through a few minor modifications of a result recently established
by Omari and Sovrano in [11], namely Theorem 2.2 therein. Like there, we consider here a more
general problem than (1), specifically−div

( ∇u√
1 + |∇u|2

)
= f(x, u,∇u;λ) in Ω,

u = 0 on ∂Ω,

(3)

where λ plays the role of a parameter and

(k1) Ω is a bounded domain in R2 with a boundary ∂Ω of class C2,

(k2) f : Ω× R× R2 × (0,+∞) → R is a continuous function.

The following notion of solution for problem (3) is adopted in the sequel.

Definition. By a solution of (3) we mean a function u ∈ W 2,q(Ω) for all finite q ≥ 1, which satisfies
the equation almost everywhere in Ω and the boundary condition everywhere on ∂Ω. A solution
u is said strictly positive if u(x) > 0 in Ω and ∂νu(x) < 0 on ∂Ω, ν = ν(x) being the unit outer
normal to Ω at x ∈ ∂Ω.

We also introduce the set

S =
{
(u, λ) ∈ C1(Ω)× (0,+∞) : u is a strictly positive solution of (3) for some λ > 0

}
and we endow S with the product topology of C1(Ω)× R.

Since the right-hand side of the equation in (3) also depends on the gradient of the solution, the
variational structure of this problem may be lost, thus ruling out the use of critical point theory
in any existence proof. As a consequence, Theorem 2.2 in [11] is proven via topological methods
and perturbative techniques. Specifically, assuming a structure condition on f expressed by (k3)
below, the quasilinear problem (3) is first interpreted, when λ is large, as a small perturbation of
a limiting semilinear problem for which the existence of a priori bounds for the possible positive
solutions is known from [7] or [1, 2, 5]. Then, the existence of a connected branch C of positive
solutions (u, λ) ∈ S of (3), bifurcating from 0 as λ → +∞, is eventually established by relying on
a fixed point index calculation inspired to [1] and by using a general Leray-Schauder continuation
theorem on metric ANRs stated in [3].

Hence, the following two results can be obtained. The first one, Theorem 2 below, improves and
generalises the result in [6]. Indeed, with respect to Theorem 1, Theorem 2 allows to remove, as far
as problem (1) is concerned, assumptions (h3), (h5), (h7), which therefore reveal to be of a merely
technical nature related to the method of proof, as well as to extend the range of the admissible
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exponents p from the interval (327
√
2,+∞), considered in Theorem 1, to the natural one (2,+∞).

Accordingly, eliminating (h3) permits f to exhibit a totally arbitrary behaviour at infinity. In
particular, when considering the model given by (2), no additional restrictions on p ∈ (2,+∞) are
needed.

Theorem 2. Assume (k1), (k2),

(k3) f(x, s, ξ;λ) = λg(x, s, ξ) + h(x, s, ξ), where

(k3,1) g : Ω×R×R2 → R is a continuous function for which there exist a finite exponent p > 2
and a function w ∈ C0(Ω) such that

lim
(s,ξ)→(0,0)

g(x, s, ξ)

|s|p−2s
= w(x) uniformly in Ω,

(k3,2) h : Ω× R× RN → R is a continuous function such that

lim
(s,ξ)→(0,0)

h(x, s, ξ)

s
= 0 uniformly in Ω,

(k4) w(x) > 0 for all x ∈ Ω.

Then, there exist a constant λ∗ ≥ 0 and a connected component C of S such that projRC =
(λ∗,+∞) and

lim
λ→+∞

max
{
‖u‖C1 : (u, λ) ∈ C

}
= 0.

Proof. The proof of Theorem 2 essentially exploits the same argument we developed for establishing
Theorem 2.2 in [11], under the choice µ = 0 in assumption (H3) therein. While Steps 3.1, 3.3, and
3.4 in [11] remain unchanged, a few differences occur in Step 3.2 in order to get the conclusions of
Lemmas 3.5 and 3.7 in [11] for the semilinear problem{

−∆v = σv + w(x)|v|p−2v in Ω,

v = 0 on ∂Ω,
(4)

where w and p come from (k3.1) and σ ∈ R is a given constant. Indeed, if (k4) holds, the non-
existence result of Lemma 3.5 in [11] can be obtained just by testing (4) against a positive principal
eigenfunction of −∆ in H1

0 (Ω), whereas the a priori estimates of Lemma 3.7 in [11] now follow
directly from Theorem 1.1 in [7] and the linear elliptic regularity theory.

The second result is a variant of Theorem 3 where the function w, considered in (k3.1) and (k4),
is allowed to change sign, provided that its nodal domains satisfy certain conditions, introduced
in [1, 5] and exploited in [11] in a context similar to the present one. Namely, we assume that

(k5) w ∈ C2(Ω),

(k6) Ω+ = {x ∈ Ω : w(x) > 0} 6= ∅, Ω− = {x ∈ Ω : w(x) < 0} 6= ∅, and Ω0 = {x ∈ Ω : w(x) =
0} is such that ∂Ω0 ⊂ Ω; the boundaries ∂(intΩ0), ∂Ω+, and ∂Ω− are of class C2; Ω0 has a
finite number of connected components, that we denote by D+

i , D−
j , and D±

k .

Hence, we can represent Ω0 in the form

Ω0 =
∪
i

D+
i ∪

∪
j

D−
j ∪

∪
k

D±
k ,

where the components D+
i , D−

j , and D±
k are supposed to satisfy:
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(k7) for each i, ∂D+
i ⊂ Ω

+ and there exist γ1,i > 0, a neighbourhood U+
i of ∂D+

i , and ω+
i : U

+
i →

]0,+∞[ such that
w(x) = ω+

i (x) dist(x, ∂D
+
i )

γ1,i for all x ∈ Ω+ ∩ U+
i ,

(k8) for each j, ∂D−
j ⊂ Ω

− and there exist γ2,j > 0, a neighbourhood U−
j of ∂D−

j , and ω−
j : U

−
j →

]−∞, 0[ such that
w(x) = ω−

j (x) dist(x, ∂D
−
j )

γ2,j for all x ∈ Ω− ∩ U−
j ,

(k9) for each k, the following alternative holds

(k9,1) if int(D±
k ) = ∅, then

– ∂D±
k = Γk are of class C2,

– there exist γ3,k > 0, a neighbourhood U+
k of Γk, and ω+

k : U
+
k → ]0,+∞[ such that

w(x) = ω+
k (x) dist(x,Γk)

γ3,k for all x ∈ Ω+ ∩ U+
k , (5)

– there exist γ4,k > 0, a neighbourhood U−
k of Γk, and α−

k : U
−
k → ]−∞, 0[ such that

w(x) = ω−
k (x) dist(x,Γk)

γ4,k for all x ∈ Ω− ∩ U−
k , (6)

(k9,2) if int(D±
k ) 6= ∅, then

– ∂D±
k = Γ+

k ∪ Γ−
k , with Γ+

k ∩ Γ−
k = ∅, Γ+

k ⊂ Ω
+, Γ−

k ⊂ Ω
− of class C2,

– there exist γ3,k > 0, a neighbourhood U+
k of Γ+

k , and ω+
k : U

+
k → ]0,+∞[ satisfying

condition (5),
– there exist γ4,k > 0, a neighbourhood U−

k of Γ−
k , and ω−

k : U
−
k → ]−∞, 0[ satisfying

condition (6).

Let us define
D+ =

∪
i

D+
i , D− =

∪
j

D−
j , D± =

∪
k

D±
k .

The set D+ (respectively, D−) is constituted by the connected components D+
i (respectively, D−

j )
of Ω0, that are surrounded by regions of positivity (respectively, negativity) of w. Instead, D±

is constituted by the connected components D−
j of Ω0, that are in between a region of positivity

and one of negativity of w. D± can be either a “thin” nodal set, like when assuming condition (7)
below, or a “thick” nodal set, that is, a set of positive measure. Figure 1, taken from [11], illustrates
an admissible nodal configuration for the function w.
Remark. Suppose that the function w ∈ C2(Ω) satisfies the following condition introduced in [2]:

Ω+ 6= ∅, Ω− 6= ∅, Ω0 = Ω
+ ∩ Ω

− ⊂ Ω, and ∇w(x) 6= 0 for all x ∈ Ω0. (7)
In this case, D+, D−, and int(D±) are all empty sets and assumption (H9.1) holds. Indeed,
let Γk be a connected component of Ω0. Then, condition (5) is satisfied taking γ1,k = 1 and
ω+
k : U+

k → ]0,+∞[ defined by

ω+
k (x) =

−|∇w(x)| if x ∈ U+
k \ Γk,

w(x)

dist(x,Γk)
if x 6∈ U+

k \ Γk,

where U+
k is a suitable tubular neighbourhood of Γk. Condition (6) can be verified similarly.

Theorem 3. Assume (k1)–(k3) and (k5)–(k9). Then, the same conclusions of Theorem 2 hold.
Proof. Theorem 3 is a direct consequence of Theorem 2.2 in [11], when the choice µ = 0 in assump-
tion (H3) therein is made.
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D+
2

D−
1

D±
1 D±

2

D+
1

D±
3

D±
4

D±
6 D±

5

Ω

Figure 1: Example of an admissible nodal configuration for the weight function w. The sets
Ω+, Ω0, and Ω− are respectively the union of the grey, the red, and the yellow regions. Here,
D+ =

⋃2
i=1 D

+
i , D

± =
⋃6
k=1 D

±
k , and D− = D−1 .

Remark. Suppose that the function w ∈ C2(Ω) satisfies the following condition introduced
in [2]:

Ω+ 6= ∅, Ω− 6= ∅, Ω0 = Ω+ ∩ Ω− ⊂ Ω, and ∇w(x) 6= 0 for all x ∈ Ω0. (7)

In this case, D+, D−, and int(D±) are all empty sets and assumption (H9.1) holds. Indeed,
let Γk be a connected component of Ω0. Then, condition (5) is satisfied taking γ1,k = 1 and
ω+
k : U+

k → ]0,+∞[ defined by

ω+
k (x) =


−|∇w(x)| if x ∈ U+

k \ Γk,
w(x)

dist(x,Γk) if x 6∈ U+
k \ Γk,

where U+
k is a suitable tubular neighbourhood of Γk. Condition (6) can be verified similarly.

Theorem 3. Assume (k1)–(k3) and (k5)–(k9). Then, the same conclusions of Theorem 2 hold.

Proof. Theorem 3 is a direct consequence of Theorem 2.2 in [11], when the choice µ = 0 in
assumption (H3) therein is made.
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In the present report, we give conditions guaranteeing, respectively, the existence and uniqueness
of a solution to the Cauchy initial value problem

u′(t) = f(t, u(τ(t))), (1)
u(0) = c0, (2)

defined on the interval R+ = [0,+∞[ .
Everywhere below it is assumed that c0 is a positive number, τ : R+ → R+ is a measurable and

bounded on every finite interval contained in R+ function, satisfying the inequality

τ(t) ≥ t for t ∈ R+ , (3)

while f : R+ × R → R is a function from the Carathéodory space.
We use the following notation and definitions.
Lloc(R+) is the space of real functions, defined on R+ , which are Lebesgue integrable on every

finite interval contained in R+ ;

f∗(t, y) = max
{
|f(t, x)| : |x| ≤ y

}
for t ∈ R+ , y > 0;

f∗(t, y) = min
{
|f(t, x)| : y ≤ x ≤ c0

}
for t ∈ R+ , 0 < y ≤ c0.

We say that a function f : R+ × R → R belongs to the Carathéodory space if f(t, · ) : R → R
is continuous for almost all t ∈ R+ ,

f( · , x) ∈ Lloc(R+) for x ∈ R,

and
f∗( · , y) ∈ Lloc(R+) for y ∈ R+ .

A solution to problem (1), (2) is sought in the space of functions u : R+ → R which are absolutely
continuous on every finite interval contained in R+ .

The solution u to problem (1), (2) is said to be vanishing at infinity if

lim
t→+∞

u(t) = 0.

If τ(t) ≡ t and on the set R+ × R the inequality

|f(t, x)| ≤ g(t)|x|+ h(t)
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is fulfilled, where g, h ∈ Lloc(R+), then, according to the Wintner theorem (see [5]), problem (1), (2)
has at least one solution in R+ and each maximally extended to the right solution to this problem
is defined on R+ .

In the general case, when inequality (3) holds and τ(t) ̸≡ t, Wintner’s condition does not
guarantee the solvability of problem (1), (2).

Moreover, the following proposition is valid.

Proposition 1. Let the function f admit the estimate

f(t, x) ≤ −g(t)|x| − h(t) for t ∈ R+ , x ∈ R,

where g, h ∈ Lloc(R+) are nonnegative functions. If, moreover, the function τ is nondecreasing and
the inequalities

lim sup
t→+∞

τ(t)∫
t

g(s) ds > 1, (4)

+∞∫
0

h(s) ds > c0 (5)

hold, then problem (1), (2) has no solution.

Proposition 2. Let the function f admit the estimate

f(t, x) ≥ g(t)|x| for t ∈ R+ , x ∈ R,

where g ∈ Lloc(R+) is a nonnegative function. If, moreover, the function τ is nondecreasing and
inequality (4) holds, then problem (1), (2) has no solution.

As examples, we consider the differential equations

u′(t) = −g(t)|u(τ(t))| − h(t), (6)
u′(t) = g(t)|u(τ(t))|+ h(t), (7)

where g, h ∈ Lloc(R+) are nonnegative functions.
Propositions 1 and 2 yield the following corollary.

Corollary 1. If inequalities (4) and (5) hold (inequality (4) holds), then problem (6), (2) (problem
(7), (2)) has no solution.

It is easy to see that if for some r > 0 the function f∗( · , r) is integrable on R+ and satisfies the
inequality

c0 +

+∞∫
0

f∗(t, r) dt ≤ r,

then problem (1), (2) has at least one solution.
The above Propositions 1 and 2, containing the sufficient conditions for the unsolvability of

problem (1), (2), concern the case, where

+∞∫
0

f∗(t, y) dt = +∞ for y > 0.
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In this case the questions on the solvability and unique solvability of the above mentioned problem
still remain unstudied (see, for example, [1–4,6] and the references therein). The results we obtained
fill this gap to some extent.

The following theorem is valid.

Theorem 1. If
f(t, 0) = 0, f(t, x) ≤ 0 for t > 0, x > 0, (8)

then problem (1), (2) has at least one nonnegative solution. And if along with (8) the condition

+∞∫
0

f∗(t, y) dt = +∞ for 0 < y ≤ c0 (9)

holds, then that solution is vanishing at infinity.

Sketch of the Proof of Theorem 1. Since the function τ is bounded on every finite interval, there
exists a sequence of positive numbers (ak)

+∞
k=1 such that for every natural k in the interval [0, ak]

the inequality
1 + τ(t) < ak+1

holds.
Denote

τk(t) =

{
τ(t) + 1

k for 0 ≤ t ≤ ak,

ak+1 for ak < t ≤ ak+1,

and for each k in the interval [0, ak+1] consider the Cauchy problem

u′(t) = f(t, u(τk(t))), (10)
u(ak+1) = x, (11)

where x ∈ R+ .
Based on condition (8), it can be proved that for every x ∈ R+ problem (10), (11) in the interval

[0, ak+1] has a unique solution u( · ;x) which continuously depends on the parameter x. Also,

u(t; 0) ≡ 0,

and
u(t, x) ≥ x for 0 ≤ t ≤ ak+1, x > 0.

Since
u(0; 0) = 0, lim

x→+∞
u(0;x) = +∞,

there exists a positive number xk such that

u(0;xk) = c0.

Therefore, for every natural k problem (10), (2) has a solution uk such that

0 < uk(t) ≤ c0 for 0 ≤ t ≤ ak+1,

|u′k(t)| ≤ f∗(t, c0) for almost all t ∈ (0, ak+1).
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According to these last two inequalities and the Arzelà-Ascoli lemma, the sequence (uk)
+∞
k=1 contains

a subsequence (ukm)
+∞
m=1 which is uniformly converging on every finite interval contained in R+ .

Evidently, the function
u(t) = lim

m→+∞
ukm(t) for t ∈ R+

is a nonnegagive, nonincreasing solution to problem (1), (2). In addition,

0 ≤ u(t) ≤ c0 −
t∫

0

f∗(s, δ) ds for t ∈ R+ ,

where
δ = lim

t→+∞
u(t).

From the last inequality it follows that if condition (9) is satisfied, then δ = 0, i.e. the solution u
is vanishing at infinity.

Remark 1. If condition (8) holds and the function τ satisfies a more stringent condition than (3)

ess inf
{
τ(s)− s : 0 ≤ s ≤ t

}
> 0 for t > 0, (12)

then every nonnegative solution to problem (1), (2) is positive. It should be noted that condition
(12) cannot be replaced by the condition

ess inf
{
τ(s)− s : t0 ≤ s ≤ t

}
> 0 for t ≥ t0,

no matter how small the positive number t0 is. Indeed, if

0 < λ < 1, α = (1− λ)−1, p = α c1−λ
0 /t0,

τ(t) =

{
t for 0 ≤ t < t0,

t+ 1 for t ≥ t0,

then the function

u(t) =

{
c0(1− t/t0)

α for 0 ≤ t < t0,

0 for t ≥ t0

is a nonnegative but not positive solution to the differential equation

u′(t) = −p|u(τ(t))|λ sgn(u(τ(t)))

under the initial condition (2).

Remark 2. According to Proposition 1, condition (8) in Theorem 1 cannot be replaced by the
condition

f(t, x) ≤ 0 for t ∈ R+ , x ∈ R+ ,

i.e. the requirement
f(t, 0) ≡ 0

cannot be removed from (8).
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As an example, we consider the differential equation

u′(t) = −
n∑

i=1

pi(t)fi(u(τ(t))), (13)

where pi ∈ Lloc(R+) (i = 1, . . . , n), and fi : R → R (i = 1, . . . , n) are continuous functions.
Theorem 1 implies the following corollary.

Corollary 2. Let the functions pi and fi (i = 1, . . . , n) be nonnegative in R+, and

fi(0) = 0 (i = 1, . . . , n). (14)

Then problem (13), (2) has at least one nonnegative solution. And if along with the above conditions
the following conditions

+∞∫
0

pm(t) dt = +∞, fm(x) > 0 for x > 0 (15)

are satisfied for some m ∈ {1, . . . , n}, then that solution is vanishing at infinity.
So far we have been able to prove the unique solvability of problem (1), (2) only in the case

where τ is a step function of the type

τ(t) = tk for tk−1 < t ≤ tk (k = 1, 2, . . . ), (16)

where t0 = 0, and (tk)
+∞
k=1 is some increasing and unbounded sequence of positive numbers.

In particular, the following theorem is proved.
Theorem 2. Let the function τ have the form (16), and let the function f be nonincreasing in the
second argument and satisfy the equality

f(t, 0) = 0 for t ∈ R+ .

Then problem (1), (2) has a unique solution, admitting the representation

u(t) = ck −
tk∫
t

f(s, ck) ds for tk−1 ≤ t ≤ tk (k = 1, 2, . . . ),

where (ck)
+∞
k=1 is a sequence of positive numbers such that

ck −
tk∫

tk−1

f(s, ck) ds = ck−1 (k = 1, 2, . . . ).

Corollary 3. Let the function τ have the form (16), let the functions pi (i = 1, . . . , n) be non-
negative, and let the functions fi (i = 1, . . . , n) be nonnegative and satisfy equalities (14). Then
problem (13), (2) has a unique solution, admitting the representation

u(t) = ck +

n∑
i=1

fi(ck)

tk∫
t

pi(s) ds for tk−1 ≤ t ≤ tk (k = 1, 2, . . . ),

where (ck)
+∞
k=1 is a sequence of positive numbers such that

ck +

n∑
i=1

fi(ck)

tk∫
tk−1

pi(s) ds = ck−1 (k = 1, 2, . . . ).
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Remark 3. It is evident that if the conditions of Theorem 2 (of Corollary 3) are satisfied, then a
solution to problem (1), (2) (to problem (13), (2)) is positive and vanishes at infinity if

+∞∫
0

f(t, y) dt = −∞ for y > 0

(if for some m ∈ {1, . . . , n} conditions (15) are satisfied).
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Abstract

This work generalizes an approach for approximating stochastic delay systems of integral
type by stochastic systems without delay. The proposed scheme is based on expanding the
solution using Taylor’s formula with respect to the delay parameter h, where [−h, 0] is the delay
interval, and provides convergence results in the mean square metric.

Introduction

Stochastic delay differential equations are mathematical models of real-world processes in the nat-
ural sciences that evolve under the influence of random factors and whose future behavior depends
on past states. It is well known [2] that continuous (or integrable) functions serve as initial data
here, making the phase space of such equations infinite-dimensional, which significantly complicates
their study. One possible approach to investigating these equations is the scheme proposed in [1],
which approximates the initial problem for systems with delay by a Cauchy problem for systems of
ordinary differential equations (ODEs). As the dimension of such systems increases, their solutions
approach the solutions of the original initial problem for the delayed system in the uniform metric.
This scheme is based on an old idea by M . M. Krasovskii, related to expanding the solution of the
delayed system using Taylor’s formula with respect to h, where [−h, 0] is the delay interval.

This work generalizes such an approach to stochastic systems.

1 Problem statement and the main result

Let (Ω,F , P ) be a complete probability space with a filtration {Ft}, t ≥ 0, relative to which a
scalar Wiener process W (t), t ≥ 0, is adapted. Without loss of generality, and to simplify the
exposition, we will assume it is one-dimensional.
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Let h > 0 represent the delay interval, on which a continuous deterministic initial function ϕ(t)
is defined. Denote by C = C([−h, 0], Rd) the class of continuous d-dimensional vector functions
ϕ : [−h, 0] → Rd with the supremum norm

∥ϕ∥ = sup
t∈[−h,0]

|ϕ(t)|,

where | · | denotes the Euclidean norm in Rd.
We consider the following initial value problem for a system of stochastic functional-differential

equations: 
dx(t) = f

(
t, x(t),

0∫
−h

x(t+ θ) dθ

)
dt+ σ

(
t, x(t),

0∫
−h

x(t+ θ) dθ

)
dW (t),

x(t) = ϕ(t), t ∈ [−h, 0],

(1.1)

where the functions f, σ : [0, T ]×Rd×Rd → Rd are defined, continuous in all variables, and satisfy
the following conditions: there exists a constant L > 0 such that:

(1) Linear Growth Condition:

|f(t, x, y)|2 + |σ(t, x, y)|2 ≤ L
(
1 + |x|2 + |y|2

)
,

for any t ∈ [0, T ], x, y ∈ Rd.

(2) Lipschitz Condition:∣∣f(t, x1, y1)− f(t, x2, y2)
∣∣2 + ∣∣σ(t, x1, y1)− σ(t, x2, y2)

∣∣2 ≤ L
(
|x1 − x2|2 + |y1 − y2|2

)
.

We will understand the solution to the initial value problem (1.1) in the standard sense [3, p. 61].

Definition 1.1. An Ft-adapted stochastic process with continuous trajectories is called a strong
solution to the initial value problem (1.1) on [0, T ] if:

1. x(t) = ϕ(t), t ∈ [−h, 0];

2. x(t) = ϕ(0) +

t∫
0

f

(
s, x(s),

0∫
−h

x(s+ θ) dθ

)
ds+

t∫
0

σ

(
s, x(s),

0∫
−h

x(s+ θ) dθ

)
dW (s),

with probability 1.

Note that equation (1.1) induces abstract mappings from the space C to Rd of the following
form:

f1(t, ϕ) = f

(
t, ϕ(0),

0∫
−h

ϕ(θ) dθ

)
, σ1(t, ϕ) = σ

(
t, ϕ(0),

0∫
−h

ϕ(θ) dθ

)
.

From conditions (1) and (2), we have:

|f1(t, ϕ)|2 + |σ1(t, ϕ)|2 ≤ L
(
1 + (1 + h2)∥ϕ∥2

)
,

|f1(t, ϕ)− f1(t, ψ)|2 + |σ1(t, ϕ)− σ1(t, ψ)|2 ≤ L
(
(1 + h2)∥ϕ− ψ∥2

)
.
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Therefore, the conditions of the existence and uniqueness theorem for a strong continuous
solution of problem (1.1) on [0, T ] are satisfied, and sup

t∈[0,T ]
E |x(t)|2 <∞.

Based on the system of stochastic functional differential equations (1.1), we construct a system of
stochastic differential equations without delay, which we call the approximating system, as follows.
Fix m ∈ N and partition the interval [−h, 0] with points −hj

m , j = 0,m, into m parts.
Define functions zj(t) ∈ Rd on [0, T ] as solutions to the following Cauchy problems:

dz0(t) = f
(
t, z0(t),

h

m

m∑
j=1

zj(t)
)
dt+ σ

(
t, z0(t),

h

m

m∑
j=1

zj(t)
)
dW (t),

dzj(t) =
m

h

[
zj−1(t)− zj(t)

]
, j = 1,m,

zj(0) = ϕ
(
− hj

m

)
, j = 0,m.

(1.2)

Definition 1.2. System (1.2) is called an approximating system for system (1.1) in the mean
square sense on [0, T ] if

sup
t∈[0,T ]

E
∣∣∣x(t− hj

m

)
− zj(t)

∣∣∣2 −→ 0, m→ ∞, j = 0,m.

The main result of this work is the following theorem.

Theorem 1.1. Under conditions (1) and (2) system (1.2) is an approximating system in the mean
square sense for the initial problem (1.1), uniformly over j = 0,m, i.e.,

sup
j=0,m

sup
t∈[0,T ]

E
∣∣∣x(t− hj

m

)
− zj(t)

∣∣∣2 −→ 0, m→ ∞.

2 Proof of the main result
To prove the theorem, we need a lemma about estimating the mean square modulus of continuity
of the solution to problem (1.1).

Lemma 2.1 (On the Modulus of Continuity). Under conditions (1) and (2), for the solution of
the initial problem (1.1), the following relation holds:

sup
t1∈[−h,T ]

E sup
t2∈[t1,t1+l]

|x(t2)− x(t1)|2 ≤ C
(
T, ∥ϕ∥, h,

)
−→ 0, l → 0.

Proof. Since the solution to the initial problem (1.1) exists on [0, T ] and has a bounded second
moment, by the linear growth condition, we have

|x(t)|2 ≤ 3

(
|ϕ(0)|2 +

∣∣∣∣
t∫

0

f

(
s, x(s),

0∫
−h

x(s+ θ) dθ

)
ds

∣∣∣∣2

+

∣∣∣∣
t∫

0

σ

(
s, x(s),

0∫
−h

x(s+ θ) dθ

)
dW (s)

∣∣∣∣2
)
. (2.1)

Next, note the inequality

sup
t∈[0,T ]

sup
θ∈[−h,0]

|x(t+ θ)|2 ≤ ∥ϕ∥2 + sup
t∈[0,T ]

|x(t)|2. (2.2)
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Considering (2.2), the Cauchy–Bunyakovsky inequality and using maximal inequality for stochastic
integrals, from (2.1) we get

E sup
s∈[0,t]

|x(s)|2 ≤ 3|ϕ(0)|2 + 3T 2L∥ϕ∥2h2 + 3T 2L

+ 6TL

t∫
0

E sup
τ∈[0,s]

|x(τ)|2 dτ + 12L

t∫
0

(
1 + h2∥ϕ∥2 + h2E sup

τ∈[0,s]
|x(τ)|2

)
dτ.

Applying Gronwall’s inequality, we obtain

E sup
s∈[0,t]

|x(s)|2 ≤ C3

(
T, ∥ϕ∥, h

)
. (2.3)

Next, if t1 ≥ 0, we have

E sup
t∈[t1,t1+l]

|x(t)− x(t1)|2

≤ 2

(
l

t1+l∫
t1

L

(
1 + E |x(t)|2 + E

∣∣∣∣
0∫

−h

x(t+ θ) dθ

∣∣∣∣2) dt
+ E sup

t∈[t1,t1+l]

∣∣∣∣
t∫

t1

σ

(
s, x(s),

0∫
−h

x(s+ θ) dθ

)
dW (s)

∣∣∣∣2
)
.

Using (2.3) and the previous inequality, and considering (2.2), we obtain

E sup
t∈[t1,t1+l]

|x(t2)− x(t1)| ≤ C
(
T, ∥ϕ∥, h, l

)
−→ 0, l → 0.

If t1, t1 + l ∈ [−h, 0], then, by the definition of the solution, we have

E sup
t2∈[t1,t1+l]

|x(t2)− x(t1)|2 = sup
t2∈[t1,t1+l]

|ϕ(t2)− ϕ(t1)|2 −→ 0, l → 0,

due to the uniform continuity of the function ϕ(t), which completes the proof of the lemma.

Continuation of the Proof of Theorem 1.1: Let us proceed with the proof of the main theorem. It
is well known that the trajectories of the solution to (1.1) are continuous but nowhere differentiable
functions, so we smooth the solution as follows. For any sufficiently small µ > 0, we set

xµ(t) =
1

µ

t+h∫
t

x(s) ds, t ∈ [−h, T ],

where, for t ≥ T , we extend the process x(s) by a constant random variable due to continuity. It
is obvious that the process xµ(t) has smooth trajectories with probability 1, and

ẋµ(t) =
1

µ

[
x(t+ h)− x(t)

]
.

Using the mean value theorem, we have

sup
t∈[−h,T ]

E |x(t)− xµ(t)|2 = sup
t∈[−h,T ]

E |x(t)− x(θ)|2,
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where θ = θ(ω) is a random variable with θ ∈ [t, t+ µ]. Therefore,

sup
t∈[−h,T ]

E |x(t)− x(θ)|2 ≤ sup
t∈[−h,T ]

E sup
s∈[t,t+µ]

|x(t)− x(s)|2 ≤ C
(
T, ∥ϕ∥, h, µ

)
−→ 0, µ→ 0,

by the lemma on the modulus of continuity. Let yj(t) = x(t− hj
m ), and introduce the differences

Nj(t) = E |yj(t)− zj(t)|2, j = 0,m,

where zj(t) are solutions of system (1.2). Note that by the classical existence and uniqueness
theorems for the Cauchy problem for systems of stochastic equations without delay, considering
conditions (1) and (2), we obtain that system (1.2) for each natural m has a unique strong solution
defined on [0, T ]. The proof now proceeds through several steps.

Step 1. We decompose (1.2) into two systems and represent its solution as a sum:

zj(t) = z
(1)
j (t) + z

(2)
j (t),

where z(1)j is the solution of the system

h

m
ż
(1)
0 = x(t)− z

(1)
1 (t),

h

m
ż
(1)
j = z

(1)
j−1(t)− z

(1)
j (t), j = 1,m,

z
(1)
j (0) = x

(
− hj

m

)
,

and z
(2)
j is the corresponding solution of

h

m
ż
(2)
1 = −z(2)1 (t) + z0(t)− x(t),

h

m
ż
(2)
j = z

(2)
j−1(t)− z

(2)
j (t), j = 1,m,

z
(2)
j (0) = 0.

For brevity, denote the norm
∥ξ∥2 =

√
E ξ2 .

Then,
sup

t∈[0,T ]

∥∥∥x(t− hj

m

)
− zj(t)

∥∥∥
2
≤ sup

t∈[0,T ]
∥yj(t)− z

(1)
j (t)∥2 + sup

t∈[0,T ]
∥z(2)j (t)∥2. (2.4)

Step 2. At this step, we estimate the first term in (2.4). We show that the following inequality
holds:

sup
t∈[0,T ]

∥yj(t)− z
(1)
j (t)∥2 ≤ α

(
T, ∥ϕ∥, h, h

m

)
−→ 0, m→ ∞. (2.5)

Step 3. To estimate the second term in (2.4), using the method of variation of constants, we obtain
the inequality

E z(2)1 (t) ≤ sup
t∈[0,T ]

E |z0(t)− x(t)|2 = EN0(t).
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Step 4. We estimate z0(t)− x(t). From the Lipschitz condition (2), we have

EN0(t) ≤ 2(T + 1)

t∫
0

[
E |x(s)− z0(s)|2

]
+ E

∣∣∣∣
0∫

−h

x(s+ θ) dθ − h

m

m−1∑
j=0

zj(s)

∣∣∣∣2 dt.
However,

0∫
−h

x(s+ θ) dθ − h

m

m∑
j=1

zj(s) =

m−1∑
j=0

h

m
x(s+ ρj)−

h

m

m∑
j=1

zj(s),

where ρj(ω) ∈ (− h
m (j + 1),− h

m j) by the mean value theorem. Then

h

m

m−1∑
j=0

(
s(s+ ρ)− x

(
s− hj

m

))
+
h

m

m∑
j=1

(
x
(
s− hj

m

)
− zj(s)

)
,

so

EN0(t) ≤ 2(T + 1)

×
t∫

0

[
EN0(s)+

2h2

m2

(
E
( m∑
j=1

∣∣∣x(s+ ρ)−x
(
s−hj

m

)∣∣∣)2+E
( m∑
j=1

∣∣∣x(s−hj

m

)
−zj(s

)∣∣∣)2)] ds. (2.6)

Let us estimate the sums in inequality (2.6). For the first of them, by the lemma on the modulus
of continuity, we have

E
( m∑

j=1

∣∣∣x(s+ ρ)− x
(
s− hj

m

)∣∣∣)2

≤ m

m∑
j=1

E
∣∣∣x(s+ ρ)− x

(
s− hj

m

)∣∣∣2 ≤ m2C
(
T, ∥ϕ∥, l, h

m

)
. (2.7)

For the second sum, we have the estimate

E
( m∑

j=1

∣∣∣x(s− hj

m

)
− zj(s)

∣∣∣)2

≤ m

m∑
j=1

E
∣∣∣x(s− hj

m

)
− zj(s)

∣∣∣2 ≤ m2α2
(
T, ∥ϕ∥, h, h

m

)
, (2.8)

under estimate (2.5). Then, from (2.6)–(2.8), we get

EN0(t) ≤ 2(T + 1)L

t∫
0

EN0(s) ds+ 2(T + 1)T2h2
(
C
(
T, ∥ϕ∥, l, h

m

)
+ α2

(
T, ∥ϕ∥, h, h

m

))
.

From this, using Gronwall’s lemma, we obtain the estimate

EN0(t) ≤ 2(T + 1)T2h2
(
C
(
T, ∥ϕ∥, l, h

m

)
+ α2

(
T, ∥ϕ∥, h, h

m

))
e2(T+1)LT .

This last estimate proves the theorem.
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Along with estimates of the growth with an unlimited increase in time of solutions to dif-
ferential equations and systems, their oscillatory properties are of great theoretical and practical
interest. It is all the more surprising that their respective quantitative Lyapunov-type asymptotic
characteristics were introduced quite recently.

Let us recall the definition of the characteristic frequencies [6,8] of a scalar function y : R+ → R
(these are also called Sergeev frequencies); here and subsequently R+ stands for [0,+∞).

Let κ ∈ {−, 0,+, ∗}. For a given number t > 0, we will denote by νκ(y, t) depending on the
value of κ:

• the number of sign changes of y on the half-interval [0, t), if κ = −;

• the number of zeros of y on the half-interval [0, t), if κ = 0;

• the number of roots (i.e. the number of zeros taking into account their multiplicity) of y on
the half-interval [0, t), if κ = +;

• the number of hypermultiple roots of y on the half-interval [0, t), if κ = ∗. In this case, a
simple zero of the function y is counted once, and a multiple one is counted infinitely many
times regardless of its actual multiplicity.

Definition 1. The upper (lower) characteristic frequency of signs, zeros, roots, and hyperroots of
a scalar function y : R+ → R is the quantity

ν̂κ[y] = lim
t→+∞

π

t
νκ(y, t)

(
ν̌κ[y] = lim

t→+∞

π

t
νκ(y, t)

)
,

for κ = −, 0,+, ∗, respectively.

A generalization of the concept of characteristic frequency to the case of a vector function, i.e.
for solutions of differential systems, was given in [9, 10], where the oscillation exponents (called
there the total and vector frequencies) were introduced and their basic properties were established.
Let us recall their definition.

Definition 2. The weak upper (lower) oscillation exponent of signs, zeros, roots, or hyperroots of
a vector function x : R+ → Rn is the quantity

ν̂κ◦ (x) = lim
t→+∞

inf
a∈Rn

∗

π

t
νκ(〈x, a〉, t)

(
ν̌κ◦ (x) = lim

t→+∞
inf
a∈Rn

∗

π

t
νκ(〈x, a〉, t)

)
,

for κ = −, 0,+, ∗, respectively, where 〈 · , · 〉 is the scalar product and the asterisk in the subscript
denotes the removal of zero.
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Note that the quantities defined above are, generally speaking, points of the extended real line
R ≡ R t {−∞,+∞}, which we endow with the standard order and the order topology.

To describe the dependence (usually discontinuous) of various characteristics of solutions to
differential equations and systems on their right-hand sides, V. M. Millionshchikov proposed using
the Baire classification of discontinuous functions and obtained a number of key results in this
direction (see, for example, series of papers [4, 5]).

For a given n ∈ N, denote by M̃ n the set of systems

ẋ = A(t)x, x ∈ Rn, t ∈ R+, (1)

with continuous functions A : R+ → Rn×n (which we identify with the systems they define) and
the compact-open topology induced by the metric

ρ0(A,B) = sup
t∈R+

min
{
|A(t)−B(t)|, (t+ 1)−1

}
, A,B ∈ M̃ n.

The subset of M̃ n consisting of systems corresponding to linear homogeneous nth-order equations

y(n) + a1(t)y
(n−1) + · · ·+ an−1(t)ẏ + an(t)y = 0, t ∈ R+,

will be denoted by Ẽ n. Further, the subspaces of M̃ n and Ẽ n singled out by the condition of
boundedness on the half-line R+ will be denoted by M n and E n, respectively.

I. N. Sergeev established [7] that the least upper characteristic frequency of signs of an equation
a ∈ Ẽ n given by the equality ω1(a) = inf

y∈S∗(a)
ν̂−[y], a ∈ Ẽ n, where S∗(A) is the set of non-zero

solutions to the system A, belongs to the second Baire class. In [8], the characteristic frequencies
are considered as functionals on the Cartesian product of the space of equations Ẽ n and the space
Rn
∗ of initial conditions. It is shown that the upper and lower frequencies of zeros and the upper

frequency of roots belong to the third Baire class, and the lower frequency of roots belongs to
the second one. These results are strengthened and refined in the paper [9], where it is proved,
in particular, that the upper and lower frequencies of signs belong to the second and third Baire
classes, respectively.

I. N. Sergeev proved [11] that the largest lower oscillation exponent of hyperroots given by the
equality ζ̂∗(A) = sup

x∈S∗(A)
ν̌∗[x], A ∈ M̃ n, on each of the spaces M n and E n is exactly of the second

Baire class.
The question on the Baire classification of other oscillation characteristics of solutions to linear

differential equations and systems has up till now remained open. The present paper contains some
results in this direction. To state these we need some more notation.

Let M and N be classes of subsets of a metric space M . We say [11, [3, pp. 266–267] that
a function f : M → R belongs to the class (M ,∗ ) (or (∗,N )), if for every r ∈ R, the inclusion
f−1((r,+∞]) ∈ M holds (respectively, f−1([r,+∞]) ∈ N ). Recall that Fσ denotes the class of all
countable unions of closed sets, and Fσδ denotes the class of countable intersections of sets from
the class Fσ. Additionally, we denote by XA( · , · ) the Cauchy operator of the system A.

Theorem 1. For any n ≥ 2, the following statements hold:

(1) the functional M̃ n × Rn
∗ → R defined by (A, ξ) 7→ ν̌∗(XA( · , 0)ξ) is of the class (Fσ,

∗ ) and,
in particular, belongs to the second Baire class;

(2) the functional M̃ n × Rn
∗ → R defined by (A, ξ) 7→ ν̂∗(XA( · , 0)ξ) is of the class (∗, Fσδ) and,

in particular, belongs to the third Baire class.
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Corollary 1. For any system A ∈ M̃ n, its spectra of the weak oscillation exponents of hyperroots,
i.e. the sets {ν̌∗◦(XA( · , 0)ξ) : ξ ∈ Rn

∗} and {ν̂∗◦(XA( · , 0)ξ) : ξ ∈ Rn
∗} are Suslin [3, p. 204] subsets

of the extended real line R.

When studying the oscillation exponents of roots, it is natural to require that solutions be
infinitely differentiable and to endow the space of systems with the corresponding topology. Let
us denote by C∞M̃ n the set of systems (1) with infinitely differentiable coefficients. We equip the
set C∞M̃ n with the metric

ρ∞(A,B) =

∞∑
k=0

2−k sup
t∈R+

min
{
|A(k)(t)−B(k)(t)|, (t+ 1)−1

}
, A,B ∈ C∞M̃ n,

inducing the C∞-compact-open topology.

Theorem 2. For any n ≥ 2, the following statements hold:

(1) the functional C∞M̃ n × Rn
∗ → R defined by (A, ξ) 7→ ν̌+◦ (XA( · , 0)ξ) is of the class (Fσ,

∗ )
and, in particular, belongs to the second Baire class;

(2) the functional C∞M̃ n × Rn
∗ → R defined by (A, ξ) 7→ ν̂+◦ (XA( · , 0)ξ) is of the class (∗, Fσδ)

and, in particular, belongs to the third Baire class;

(3) the functional C∞M̃ n → R defined by A 7→ supx∈S∗(A) ν̌
+
◦ (x) is of the class (Fσ,

∗ ) and, in
particular, belongs to the second Baire class.

Corollary 2. For any system A ∈ C∞M̃ n, its spectra of the weak oscillation exponents of roots,
i.e. the sets {ν̌+◦ (XA( · , 0)ξ) : ξ ∈ Rn

∗} and {ν̂+◦ (XA( · , 0)ξ) : ξ ∈ Rn
∗} are Suslin subsets of the

extended real line R.
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We consider the following stochastic functional-differential neutral equation on Hilbert space
with delay parameter h ∈ (0, 1]:

d(u(t) + g(u(t− h), u(t))) = (f(u(t− h), u(t)) +Au(t)) dt+ σ(u(t− h), u(t)) dW (t), t ≥ 0, (0.1)
u(t) = ϕ(t), t ∈ [−h, 0]. (0.2)

Here A is an inifinitesimal generator of a strong continuous semigroup {S(t), t ≥ 0} of bounded
linear operators in real separable Hilbert space H. The noise W (t) is a Q-Wiener process on
separable Hilbert space K. For any h ∈ (0, 1) denote Ch := C([−h, 0],H), a space of continuous
H-valued functions with a norm.

∥ϕ∥Ch
:= sup

t∈[−h,0]
∥ϕ(t)∥H .

Below we denote ∥ · ∥H as ∥ · ∥. The functions f and g map H ×H into H and σ : H ×H → L0
2,

where L0
2 = L(Q1/2K,H) is the space of Hilbert–Schmidt operators from Q1/2K to a H. Finally,

ϕ : [−h, 0]× Ω → H is the initial condition on probability space (Ω,F , P ).
We consider the limiting behavior of invariant measures of equation (0.1), (0.2) when delay

parameter h converges to zero.

1 Preliminaries
Let (Ω, F, P ) be a complete probability space equipped with a normal filtration {Ft; t ≥ 0} generated
by the Q-Wiener process W on (Ω, F, P ) with the linear bounded covariance operator such that
trQ <∞.

We assume that there exist a complete orthonormal system ek in K and a sequence of nonneg-
ative real numbers λk such that Qek = λkek, k = 1, 2, . . . , and

∞∑
k=1

λk <∞.
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The Wiener process admits the expansion W (t) =
∞∑
k=1

λkβk(t)ek, where βk(t) are real valued Brow-

nian motions mutually independent on (Ω, F, P ).
Let U0 = Q

1
2 (U) and L2

0 = L2(U0,H) be the space of all Hilbert–Schmidt operators from U0 to
H with the inner product (Φ,Ψ)L2

0 = tr [ΦQΨ∗] and the norm ∥Φ∥L0
2

, respectively.

Lemma 1.1 (Stochastic Gronwall Lemma [5, 10]). Let Z, H be nonnegative stochastic processes
adapted to filtration, M be a continuous local martingale. Then:

1. If M(0) = 0 and there exist K,C ≥ 0 such that

Z(t) ≤ K

t∫
0

sup
u∈[0,s]

(Z(u)) ds+M(t) + C,

then for all 0 < α < 1 there exist C1, C2 > 0 such that

E
(

sup
t∈[0,T ]

(Z(t))α
)
≤ CαC1e

C2KT .

2. If M(0) = 0, H(0) = 0 and there exists K ≥ 0 such that

Z(t) ≤ K

t∫
0

sup
u∈[0,s]

(Z(u))ds+M(t) +H(t),

then for all 0 < α < 1 and β > 1+α
1−α there exist C3, C4 > 0 such that

E
(

sup
t∈[0,T ]

(Z(t))α
)
≤ C3e

C4KT
(
E
(

sup
t∈[0,T ]

H(t)
)β)α/β

.

3. If H(t) is non-negative, then for all 0 < α < 1 there exists Cα ≥ 0 such that

E
(

sup
t∈[0,T ]

(Z(t))α
)
≤ (Cα + 1)eαKT

(
E
(

sup
t∈[0,T ]

H(t)
)α)

.

Definition 1.1 (Mild solution). A continuous Ft adapted stochastic process u : [−h, T ]× Ω → H
is a mild solution for (0.1), (0.2) for t ∈ [0, T ] if it satisfies the integral equation

u(t) = S(t)(ϕ(0) + g(ϕ(−h), ϕ(0)))− g(u(t− h), u(t))−
t∫

0

AS(t− s)g(u(s− h), u(s)) ds

+

t∫
0

S(t− s)f(u(s− h), u(s)) ds+

t∫
0

S(t− s)σ(u(s− h), u(h)) dW (s),

and u(t) = ϕ(t) a.s. for t ∈ [−h, 0].

A non-delay equation will look as follows

d
(
u(t) + g(u(t), u(t))

)
=

(
f(u(t), u(t)) +Au(t)

)
dt+ σ(u(t), u(t)) dW (t), t ≥ 0, (1.1)

u(0) = ϕ(0). (1.2)
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For starting function ϕ and delay parameter h ∈ (0, 1) we denote mild solution of equation (0.1),
(0.2) as uh(t, ϕ). For starting point v we denote mild solution of equation (1.1), (1.2) as u0(t, v).

Let (Z, d) be a polish space with metric d. Suppose for every ρ ∈ (0, 1] and ϕ ∈ C([−ρ, 0], Z),
{Xρ(t, 0, ϕ), t ≥ 0} is a stochastic process in the state space C([−ρ, 0], Z) with initial value ϕ at
initial time 0. Similarly, assume for every x ∈ Z, {X0(t, 0, x), t ≥ 0} is a stochastic process in the
state space Z with initial value x at initial time 0. We also assume that the probability transition
operators of X0 are Feller.

UCb(Z) is the Banach space of all bounded uniformly continuous functions defined on Z with
uniform norm.

Given ρ ∈ (0, 1], define an operator Tρ : C([−ρ, 0], Z) → Z by Tρϕ = ϕ(0), and Tρ : C([−1, 0], Z)
→ C([−ρ, 0], Z) by Tρϕ(s) = ϕ(s).

Condition (C1). For every compact set K ⊂ C([−1, 0], Z), t ≥ 0, and η > 0,

lim
ρ→0

sup
ϕ∈TρK

P
(
d
(
Xρ(t, 0, ϕ)(0), X0(t, 0, Tρϕ)

)
≥ η

)
= 0.

Theorem 1.1 ([4]). Assume (C1) holds true and ρn ∈ (0, 1]. Let µρn be an invariant measure of
Xρn in C([−ρn, 0], Z) for all n ∈ N. Suppose {µρn}∞n=1 is tight in a sense that for every ε > 0 there
exists compact set K1 ⊂ C([−1, 0], Z) such that

µρn(TρnK1) > 1− ε, (1.3)

for all n ∈ N. Then we have:

1. The sequence {µρn ◦ T−1
ρn }∞n=1 is tight;

2. If ρn → 0 and µ is a probability measure in Z such that µρn ◦ T−1
ρn → µ weakly, then µ must

be an invariant measure of X0.

Proof.
1. Given ε > 0, let K1 ⊂ C([−1, 0], Z) be the compact set satisfying (1.3). Denote by K0 =
{ϕ(0) : ϕ ∈ K1}. Then K0 is a compact subset of Z and for all n ∈ N,

µρn ◦ T−1
ρn (K0) ≥ µρn(TρnK1) > 1− ε, (1.4)

which shows that {µρn ◦ T−1
ρn } is tight.

2. We need to prove that for all ψ ∈ UCb(Z) and t > 0,∫
Z

Eψ(X0(t, 0, x))µ (dx) =

∫
Z

ψ(x)µ (dx). (1.5)

One can notice that∫
Z

ψ(x)µρn ◦ T−1
ρn (dx) =

∫
C([−ρn,0],Z)

ψ(Tρnξ)µ
ρn dξ

=

∫
C([−ρn,0],Z)

ψ
(
TρnX

ρn(t, 0, ξ)
)
µρn dξ =

∫
C([−ρn,0],Z)

ψ
(
Xρn(t, 0, ξ)(0)

)
µρn dξ,
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which with (1.4) yields that∣∣∣∣ ∫
Z

Eψ(X0(t, 0, x))µρn ◦ T−1
ρn (dx)−

∫
Z

ψ(x)µρn ◦ T−1
ρn (dx)

∣∣∣∣
≤

∫
C([−ρn,0],Z)

E
∣∣ψ(X0(t, 0, Tρnξ))− ψ(Xρn(t, 0, ξ)(0))

∣∣µρn (dξ)
≤

∫
TρnK1

E
∣∣ψ(X0(t, 0, Tρnξ))− ψ(Xρn(t, 0, ξ)(0))

∣∣µρn (dξ)
+

∫
C([−ρn,0],Z)\TρnK1

E
∣∣ψ(X0(t, 0, Tρnξ))− ψ(Xρn(t, 0, ξ)(0))

∣∣µρn (dξ)
≤

∫
TρnK1

E
∣∣ψ(X0(t, 0, Tρnξ))− ψ(Xρn(t, 0, ξ)(0))

∣∣µρn (dξ) + 2ε sup
x∈Z

|ψ(x)|. (1.6)

Since ψ ∈ UCb(Z) and for ε > 0, there exists η > 0 such that

|ψ(u)− ψ(v)| < ε,

if d(u, v) < η. Then we get∫
TρnK1

E
∣∣ψ(X0(t, 0, Tρnξ))− ψ(Xρn(t, 0, ξ)(0))

∣∣µρn (dξ)
=

∫
TρnK1

( ∫
{d(ψ(X0(t,0,Tρnξ)),ψ(X

ρn (t,0,ξ)(0)))≥η}

∣∣ψ(X0(t, 0, Tρnξ))−ψ(Xρn(t, 0, ξ)(0))
∣∣µρnP (dω)) (dξ)

+

∫
TρnK1

( ∫
{d(ψ(X0(t,0,Tρnξ)),ψ(X

ρn (t,0,ξ)(0)))<η}

∣∣ψ(X0(t, 0, Tρnξ))−ψ(Xρn(t, 0, ξ)(0))
∣∣µρnP (dω)) (dξ)

≤ 2 sup
x∈Z

|ψ(x)| · sup
ξ∈TρnK1

P
({
d
(
ψ(X0(t, 0, Tρnξ)), ψ(X

ρn(t, 0, ξ)(0))
)
≥ η

})
+ ε. (1.7)

Then, from (C1) and (1.6), (1.7) we can deduce that∣∣∣∣ ∫
Z

Eψ(X0(t, 0, x))µρn ◦ T−1
ρn (dx)−

∫
Z

ψ(x)µρn ◦ T−1
ρn (dx)

∣∣∣∣ ≤ ε+ 2ε sup
x∈Z

|ψ(x)|,

and since ε > 0 is arbitrary and µρn ◦ T−1
ρn → µ weakly, we get that µ is an invariant measure for

X0 by (1.5).

2 Conditions on functions
Condition (H1). If σ(−A) is the spectrum of (−A), we have

Reσ(−A) > δ > 0,

and A−1 is compact in H.
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It follows from [6] that for 0 ≤ α ≤ 1 one can define fractional power (−A)α, which is closed
linear operator with domain D(−A)α. We denote Hα to be a Banach space D(−A)α with the norm

∥u∥α := ∥(−A)αu∥,

which is equivalent to the graph norm of (−A)α. This way H0 = H. It follows from [3, Section 1.4]
that if A−1 is compact, then S(t) is compact for t > 0. Next, it follows from [6, Theorem 3.2,
p. 48] that under assumption (H1) semigroup S(t) is continuous with respect to uniform operator
topology for t > 0. Thus, using [6, Theorem 3.3, p. 48], we may conclude that the operator A has
a compact resolvent. Consequently, from [3, Theorem 1.4.8], we have the following result.

Proposition 2.1. Under condition (H1) the embedding Hα ⊂ Hβ is compact if 0 ≤ β < α ≤ 1.

Proposition 2.2 ([3, Theorem 1.4.3]). Under condition (H1), for every α ≥ 0 there exists Cα > 0
such that

∥(−A)αS(t)∥ ≤ Cαt
−αe−δt,

for t > 0. In particular,
∥S(t)∥ ≤ C0e

−δt,

for t > 0.

Proposition 2.3 ([1]). Let p > 2, T > 0 and let Φ be an L0
2 valued, predictable process such that

E

T∫
0

∥Φ(t)∥p
L0
2
dt <∞.

Then there is a constant MT > 0 such that

E sup
t∈[0,T ]

∥∥∥∥
t∫

0

S(t− s)Φ(s) dW (s)

∥∥∥∥ ≤MTE

T∫
0

∥Φ(s)∥p
L0
2
ds.

Condition (H2). The mappings f : H ×H → H and σ : H ×H → L0
2 are continuous and satisfy:

1. There exist a positive constant K > 0 such that

∥f(u, v)∥+ ∥σ(u, v)∥L0
2
≤ K

(
1 + ∥u∥+ ∥v∥

)
for all u, v ∈ H.

2. There exist a positive constant L > 0 such that

∥f(u, v)− f(u1, v1)∥2 + ∥σ(u, v)− σ(u1, v1)∥2L0
2
≤ L

(
1 + ∥u− u1∥2 + ∥v − v1∥2

)
for all u, v, u1, v1 ∈ H.

Condition (H3). There exist positive constants α ∈ (0, 1) and Mg ∈ (0, 1) such that for all
u, v, u1, v1 ∈ H the function g : H ×H → Hα satisfies

∥g(u, v)− g(u1, v1)∥2Hα
≤Mg

(
∥u− u1∥2 + ∥v − v1∥2

)
.

Condition (H4). The initial condition ϕ : [−h, 0]×Ω → H is an F0-measurable random variable,
independent of W , which has continuous trajectories.
Remark. It is easy to see from [9], that under conditions above equation (0.1), (0.2) have unique
mild solution, and this solution have an invariant measure.
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3 Main results
Lemma 3.1. Suppose that (H1)–(H4) hold. Then for every compact set K in Ch, t > 0 and η > 0
the following holds

lim
h→0

sup
ξ∈ThK

P
(∥∥uh(t, ξ)− u0(t, Thξ)

∥∥ ≥ η
)
= 0.

Sketch of the proof.

Step 1. Rewrite solutions uh(t, ξ) and u0(t, Thξ) using Definition 1 as follows

uh(t, ξ) = S(t)
(
ξ(0)− g(ξ(−h), ξ(0))

)
+ g

(
uh(t− h, ξ), uh(t, ξ)

)
−

t∫
0

AS(t− s)g
(
uh(s− h, ξ), uh(s, ξ)

)
ds

+

t∫
0

S(t− s)f
(
uh(s− h, ξ), uh(s, ξ)

)
ds+

t∫
0

S(t− s)σ
(
uh(s− h, ξ), uh(s, ξ)

)
dW (s),

and

u0(t, Thξ) = S(t)(Thξ − g(Thξ, Thξ))

+ g
(
u0(t, Thξ), u

0(t, Thξ)
)
−

t∫
0

AS(t− s)g
(
u0(s, Thξ), u

0(s, Thξ)
)
ds

+

t∫
0

S(t− s)f
(
u0(s, Thξ), u

0(s, Thξ)
)
ds+

t∫
0

S(t− s)σ
(
u0(s, Thξ), u

0(s, Thξ)
)
dW (s).

Step 2. Estimate E∥uh(t, ξ)−u0(t, Thξ)∥2 from conditions (H1)–(H4) and Propositions 2.1–2.3 and
using Lemma 1.1 (Stochastic Gronwall Lemma).

Step 3. Proposition of the lemma is a direct consequence of Chebyshev inequality.

Given h ∈ [0, 1], let ph(r, ξ; t, · ) be the transition probability function of uh(t, ξ) with 0 ≤ r ≤ t
and ξ ∈ Ch. Denote by Mh –collection of all limit points of probability measure

1

n

n∫
0

ph(0, 0; t, · ) dt.

Then we have the following result.

Theorem 3.1. Suppose that (H1)–(H4) hold. Then:

1. The union
⋃

h∈[0,1]
Mh is tight;

2. If hn → 0 and µhn ∈ Mhn, then there exist a subsequence hk(n) and an invariant measure
µ0 ∈ M0 such that µhk(n) ◦ T−1

hk(n)
→ µ0 weakly.
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Proof.

1. Direct consequence of [9].

2. By first item we know that {µhn} is tight and hence by Theorem 1.1 and Lemma 3.1 we infer
that sequence {µhn ◦T−1

hn
}∞n=1 is also tight. Consequently, there exists a subsequence hnk

and
a probability measure µ∗ such that µhnk ◦T−1

hnk
→ µ∗ weakly. By Theorem 1.1 and Lemma 3.1

we find that µ∗ is invariant and µ∗ ∈ M0.

As an immediate corollary of Theorem 3.1, we have the following result.

Theorem 3.2. Suppose that (H1)–(H4) hold and hn → 0. Then, if µhn and µ0 are the unique
invariant measures of equations (0.1), (0.2) and (1.1), (1.2) correspondingly, then µhn → µ0 weakly.
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We study a non-linear differential system with mixed boundary conditions on a compact interval
[a, b]

x′(t) = f1(t, x(t), y(t)), t ∈ [a, b],

y′(t) = f2(t, x(t), y(t)), t ∈ [a, b],
(1)

x(a) = x(b), (2)
ϕ(y) = d, (3)

where x : [a, b] → Rp, y : [a, b] → Rq, d ∈ Rq. It is supposed that f1, f2 are continuous as functions
f1 : [a, b]×U ×V → Rp, f2 : [a, b]×U ×V → Rq, where bounded sets U ⊂ Rp, V ⊂ Rq are specified
later (see (4)). We also assume the continuity of ϕ : V → Rq. Continuously differentiable solutions
of problem (1)–(3) are considered. For problem (1)–(3) we will use an approach similar to that
of [2, 3].

For vectors x = col(x1, . . . , xn) ∈ Rn the notation |x| = col(|x1|, . . . , |xn|) is used and the
inequalities between vectors are understood componentwise; the operations max and min for vectors
are understood similarly. I denotes the identity matrix. For a non-negative vector ϱ, we define the
componentwise ϱ-neighbourhood of a point z by putting

Oϱ(z) =
{
ξ ∈ Rn : |ξ − z| ≤ ϱ

}
.

The ϱ-neighbourhood of a set Ω ⊂ Rn is then defined as Oϱ(Ω) =
⋃
z∈Ω

Oϱ(z). The particular sets Ω

and values of ϱ used in the assumptions are specified below in (4), (5).
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We will use a reduction of the given problem to a family of simpler auxiliary boundary value
problems [2]. Let us fix certain compact convex sets Va ⊂ Rq, Vb ⊂ Rq and U ⊂ Rp, take some
positive vectors ϱU ∈ Rp, ϱV ∈ Rq and put

U = OϱU (U ), V = OϱV (C (Va,Vb)), (4)

where
C (X,Y ) =

{
(1− θ)x+ θy : x ∈ X, y ∈ Y, 0 ≤ θ ≤ 1

}
.

It is convenient to choose the sets U , Va, Vb as some parallelepipeds. We will consider solutions
(x, y) of problem (1)–(3) with values x(a) = x(b) ∈ U , y(a) ∈ Va, y(b) ∈ Vb and range in U × V .

Introduce the notation

δU×V (fk) =
1

2

(
max

[a,b]×U×V
fk − min

[a,b]×U×V
fk

)
, k = 1, 2,

and assume that the positive vectors ϱU , ϱV can be chosen so that

ϱU ≥ b− a

2
δU×V (f1), ϱV ≥ b− a

2
δU×V (f2). (5)

Let f1, f2 satisfy the Lipchitz condition on U , V :∣∣fk(t, x, y)− fk(t, x̃, ỹ)
∣∣ ≤ Kk1|x− x̃|+Kk2|y − ỹ|, k = 1, 2, (6)

for t ∈ [a, b], {x, x̃} ⊂ U , {y, ỹ} ⊂ V , where K11, K12, K21, K22 are positive matrices of dimensions
p × p, p × q, q × p, q × q. We assume that the maximal in modulus eigenvalue of the matrix

K =

(
K11 K12

K21 K22

)
is small enough:

r(Q) < 1, (7)
where Q = 3

10 (b− a)K.
We introduce the vectors of parameters z ∈ Rp, γ ∈ Rq, λ ∈ Rq by formally putting

z = x(a) = x(b), γ = y(a), λ = y(b)

and, instead of problem (1)–(3), consider the following two auxiliary boundary value problems with
periodic and two-point linear separated conditions at a and b:

x′(t) = f1(t, x, y), t ∈ [a, b], (8)
x(a) = z, x(b) = z (9)

and

y′(t) = f2(t, x, y), t ∈ [a, b], (10)
y(a) = γ, y(b) = λ. (11)

As will be seen from statements below, there is a certain relation to the original problem
depending on the choice of the values of z, γ and λ. Let us relate problems (8), (9) and (10), (11)
to the sequences of functions

xm+1(t, z, γ, λ) = z +

t∫
a

f1
(
s, xm(s, z, γ, λ), ym(s, z, γ, λ)

)
ds

− t− a

b− a

b∫
a

f1
(
s, xm(s, z, γ, λ), ym(s, z, γ, λ)

)
ds (12)
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and

ym+1(t, z, γ, λ) = γ +

t∫
a

f2
(
s, xm(s, z, γ, λ), ym(s, z, γ, λ)

)
ds

− t− a

b− a

b∫
a

f2
(
s, xm(s, z, γ, λ), ym(s, z, γ, λ)

)
ds+

t− a

b− a
(λ− γ), (13)

where t ∈ [a, b], m = 0, 1, . . . ,

x0(t, z) = z, y0(t, γ, λ) = γ +
t− a

b− a
(λ− γ).

Theorem 1. Let conditions (5), (6), (7) be fulfilled. Then, for all fixed z ∈ U , γ ∈ Va, λ ∈ Vb:

1. Each of the functions of sequence (12) has range in U , is continuosly differentiable on [a, b],
and satisfies conditions (9). The limit

x∞(t, z, γ, λ) = lim
m→∞

xm(t, z, γ, λ) (14)

exists uniformly in (t, z, γ, λ) ∈ [a, b] × U × Va × Vb. Function (14) satisfies the boundary
condition (9).

2. Each of the functions of sequence (13) has range in V , is continuosly differentiable on [a, b],
and satisfies conditions (11). The limit

y∞(t, z, γ, λ) = lim
m→∞

ym(t, z, γ, λ) (15)

exists uniformly in (t, z, γ, λ) ∈ [a, b] × U × Va × Vb. Function (15) satisfies the boundary
condition (11).

3. The functions x∞( · , z, γ, λ), y∞( · , z, γ, λ) form the unique continuously differentiable solution
of the system of integral equations

x(t) = z +

t∫
a

f1(s, x(s), y(s)) ds−
t− a

b− a

b∫
a

f1(s, x(s), y(s)) ds,

y(t) = γ +
t− a

b− a
(λ− γ) +

t∫
a

f2(s, x(s), y(s)) ds−
t− a

b− a

b∫
a

f2(s, x(s), y(s)) ds.

4. The following error estimate holds:∣∣x∞(t, z, γ, λ)− xm(t, z, γ, λ)
∣∣ ≤ 10

9
α1(t)

{
Qm(Ip+q −Q)−1

(
δU×V (f1)
δU×V (f2)

)}p

1

,

∣∣y∞(t, z, γ, λ)− ym(t, z, γ, λ)
∣∣ ≤ 10

9
α1(t)

{
Qm(Ip+q −Q)−1

(
δU×V (f1)
δU×V (f2)

)}p+q

p+1

,

where
α1(t) = 2(t− a)

(
1− t− a

b− a

)
, t ∈ [a, b],

and {u}p1 = col(u1, u2, . . . , up), {u}p+q
p+1 = col(up+1, up+2, . . . , up+q) for a vector u ∈ Rn.
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The idea of proof is to show that (12), (13) are Cauchy sequences in the Banach spaces
C([a, b],Rp) and C([a, b],Rq), respectively.

Under conditions of Theorem 1, functions (14), (15) are solutions of the Cauchy problems for
the forced systems

x′(t) = f1(t, x(t), y(t)) + ∆U (z, γ, λ), x(a) = z,

y′(t) = f2(t, x(t), y(t)) + ∆V (z, γ, λ), x(a) = γ,

where ∆U : U ×Va×Vb → Rp and ∆V : U ×Va×Vb → Rp are the mappings given by the formulas

∆U (z, γ, λ) = − 1

b− a

b∫
a

f1
(
s, x∞(s, z, γ, λ), y∞(s, z, γ, λ)

)
ds,

∆V (z, γ, λ) =
1

b− a
(λ− γ)− 1

b− a

b∫
a

f2
(
s, x∞(s, z, γ, λ), y∞(s, z, γ, λ)

)
ds.

Theorem 2. Under the assumptions of Theorem 1, the limit functions (14), (15) of sequences (12),
(13) form a solution of the boundary value problem (1)–(3) if and only if the parameters (z, γ, λ)
satisfy the system of p+ 2q equations

∆U (z, γ, λ) = 0, ∆V (z, γ, λ) = 0, Λ(z, γ, λ) = 0, (16)

where
Λ(z, γ, λ) = ϕ(y∞( · , γ, λ))− d. (17)

The proof can be carried out similarly to [1, 2]. The next statement shows that the system of
determining equations (16) determines all possible solutions of the original non-linear boundary
value problem (1)–(3) having range in U × V .

Theorem 3. Let the assumptions of Theorem 1 hold.

1. If there exist some (z∗, γ∗, λ∗) ∈ U × Va × Vb satisfying the system of determining equations
(16), then problem (1)–(3) has a solution (x∗, y∗) such that

x∗(a) = x∗(b) = z∗, y∗(a) = γ∗, y∗(b) = λ∗

and, moreover,
x∗( · ) = x∞( · , z∗, γ∗, λ∗), y∗( · ) = y∞( · , z∗, γ∗, λ∗).

2. If the boundary value problem (1)–(3) has a solution (x∗, y∗) with the range in U × V , then
the system of determining equations (16) is satisfied with

z = x∗(a), γ = y∗(a), λ = y∗(b).

The proof can be carried out by analogy to [1, 2].
The solvability of system (16), under additional conditions, can be proved if a solution of an

approximate determining system

∆U,m(z, γ, λ) = 0, ∆V,m(z, γ, λ) = 0, Λm(z, γ, λ) = 0,

has been found, where m is fixed and ∆U,m, ∆V,m, Λm are defined similarly to (17) with x∞,
y∞ replaced by xm, ym. Practical calculations using Maple confirm the constructiveness of the
proposed approach.
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In this note, which is based on the paper [12], we discuss stability of two geometrically distinct
equilibria u∗ = 0 and u∗ = π of the equation

u′′ + q(t)u′ + r(t) sinu = 0, (0.1)

where q, r : R → R are continuous T -periodic functions. This equation can be understood as
a generalisation of the equation of motion of free damped pendulum consisting of a point mass
m attached to the massless rod of the length ℓ, whose suspension point oscillates vertically. The
pendulum is a system with one degree of freedom, described by the coordinate φ, and its equation
of motion is of the form

~G

ϕ ℓ

x

y

m

ψ(t)

φ′′ +
b

m
φ′ +

(g
ℓ
+
ψ′′(t)

ℓ

)
sinφ = 0, (0.2)

where b ≥ 0 is the damping coefficient, g denotes the gravitational acceleration, and ψ ∈ C2(R) is
a T -periodic function determining the oscillations of the suspension point.

If the suspension point is fixed, i.e., if ψ(t) ≡ const . on R, then the situation is simple, because
equation (0.2) becomes autonomous (with constant coefficients). One can apply a standard tech-
nique of the dynamical systems theory to show that the lower equilibrium φ∗ = 0 is stable and the
the upper equilibrium φ∗ = π is unstable.

If ψ(t) ̸≡ const . on R, then the situation is much more complicated. The complications are not
connected with the linearizations of (0.2) at its equilibria, but with the use of stability/instability
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criteria. The linearizations obtained are non-autonomous and thus, verifying all the hypotheses
of the stability/instability criteria is far from being trivial. It is well known that, without some
additional assumptions, stability/instability of the linearized equation does not guarantee stabil-
ity/instability of the corresponding solution to the original non-linear equation (see, e. g., [10, Sec-
tion 3]).

1 History of the problem
The history of the problem goes back to the beginning of the 20th century to works of Stephenson
(see, e.g., the paper [2] for overview and historical background). Stephenson considered “small”
deflections from the upper equilibrium of the pendulum with harmonic oscillations of the suspension
point. Therefore, he studied stability and the approximate solutions to the linear second-order
differential equations with a non-constant coefficient

θ′′ ±
(g
ℓ
− A

ℓ
Ω2 sin(Ωt)

)
θ = 0,

which are known as Mathieu equations. In the first half of the 20th century, these problems were
studied by many mathematicians such as Van der Pol, Strutt, Hirsh, Erdleyi, Lowenstern, etc.
However, the works of Bogolyubov (published in 1950) and Kapitza (published in 1951) became
really important for the field of non-linear dynamics.

In the paper [3], N. N. Bogolyubov applied the method of averaging to the study of stability of
the upper equilibrium φ∗ = π of the pendulum with a harmonically oscillating suspension point,
namely, of the equation

φ′′ +
b

m
φ′ +

(g
ℓ
− A

ℓ
Ω2 sin(Ωt)) sinφ = 0, (1.1)

where A > 0 is the amplitude of oscillations and Ω > 0 is their angular frequency. Bogolyubov
shows in [3] that if

A

ℓ
≪ 1 and Ω >

√
2
ℓ

A

√
g

ℓ
, (1.2)

then the equilibrium φ∗ = π of the pendulum equation (1.1) is stable. Moreover, it follows from
his results that if (1.2) is satisfied, then the lower equilibrium φ∗ = 0 of the pendulum equation is
also stable and equation (1.1) possesses approximate “quasistatic solutions”

φ1,2(t) ≈ α1,2 −
A

ℓ
sin(α1,2) sin(Ωt),

where α1,2 = ± arccos
(
− 2gℓ2

A2Ω2

)
.

P. L. Kapitza studied in [7] stability of the upper equilibrium of the undamped pendulum
with a harmonically oscillating suspension point. His approach is based on the physical reasoning
together with the method of averaging, whereas he derived the same condition for stability of the
upper equilibrium of the pendulum as Bogolyubov. Denote by θ the angle between the rod of the
pendulum and the positive semi-axis of the y-axis (tj. θ = π−φ). Kapitza claims in [7] (see also [8])
that if (1.2) is satisfied, then the upper equilibrium θ∗ = 0 and the lower equilibrium θ∗ = π of
the pendulum are stable and, moreover, there are two the so-called “quasistatic balances” of the
pendulum given by the formula

θ1,2(t) ≈ λ1,2 +
A

ℓ
sin(λ1,2) sin(Ωt),

where λ1,2 = ± arccos
( 2gℓ
A2Ω2

)
.
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2 Basic Notions
Consider the second-order differential equation

u′′ = h(t, u, u′), (2.1)

where h : [a,∞[×R2 → R is a continuous function.

Definition 2.1. A point ũ ∈ R is called an equilibrium of equation (2.1) if h(t, ũ, 0) ≡ 0 on [a,∞[ .

As usual, we reduce the question of stability/instability of the equilibria of (2.1) into the question
of stability/instability of constant solutions to the planar system

y′1 = y2,

y′2 = h(t, y1, y2).
(2.2)

Definition 2.2. The solution y0 : [a,∞[→ R2 to system (2.2) is said to be:

(1) Lyapunov stable if for any ε > 0 and any t0 ≥ a, there exists δ(ε, t0) > 0 such that every
solution y to system (2.2) with ∥y(t0)−y0(t0)∥ ≤ δ(ε, t0) both exists for all t ≥ t0 and satisfies

∥y(t)− y0(t)∥ ≤ ε for t ≥ t0.

Otherwise, it is said to be Lyapunov unstable.

(2) Krasovskii stable if for any t0 ≥ a, there exist δ(t0) > 0 and R(t0) > 0 such that every
solution y to system (2.2) with ∥y(t0)− y0(t0)∥ ≤ δ(t0) both exists for all t ≥ t0 and satisfies

∥y(t)− y0(t)∥ ≤ R(t0)∥y(t0)− y0(t0)∥ for t ≥ t0.

Otherwise, it is said to be Krasovskii unstable.

(3) Attractive if for any t0 ≥ a, there exists δ(t0) > 0 such that every solution y to system (2.2)
with ∥y(t0)− y0(t0)∥ ≤ δ(t0) both exists for all t ≥ t0 and satisfies

lim
t→∞

∥y(t)− y0(t)∥ = 0.

(4) Asymptotically stable, if it is both stable and attractive.

It is clear that if the solution y0 : [a,∞[→ Rn to system (2.2) is Krasovskii stable, then it is
Lyapunov stable as well. The converse implication does not hold in general.

Definition 2.3. A solution u0 : [a,∞[→ R to equation (2.1) is said to be Lyapunov (Krasovskii)
stable (resp. attractive) if the corresponding solution y0 = (u0, u

′
0) to system (2.2) is Lyapunov

(Krasovskii) stable (resp. attractive).
By Lyapunov (Krasovskii) stability (resp. attractivity) of an equilibrium ũ of equation (2.1)

we understand Lyapunov (Krasovskii) stability (resp. attractivity) of the corresponding constant
solution u0(t) := ũ to equation (2.1).

Since the coefficients r, q in pendulum-like equation (0.1) are supposed to be T -periodic, the
linearizations of (0.1) along its equilibria are second-order ODEs with periodic coefficients There-
fore, it is not surprising that, in the proofs of stability/instability of the equilibria of (0.1), we
apply Floquet theory for the linear equation

u′′ + q(t)u′ + p(t)u = 0 (2.3)
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in which a T -periodic coefficient p : R → R depends on the given equilibrium. It is well-known
that stability criteria for equation (2.3) can be formulated in terms of Floquet multipliers but,
unfortunately, the those criteria are not effective. In our results, we formulate stability criteria
for the equilibria of (0.1) in terms of the classes V+(T ) and V−(T ) introduced for the the linear
periodic problem

u′′ + q(t)u′ + p(t)u = 0; u(0) = u(T ), u′(0) = u′(T ). (2.4)

Definition 2.4. We say that a pair of functions (p, q) ∈ L([0, T ]) × L([0, T ]) belongs to the set
V+(T ) (resp. V−(T )) if for any function v : [0, T ] → R, which is absolutely continuous together
with its first derivative and satisfies

v′′(t) + q(t)v′(t) + p(t)v(t) ≥ 0 for a. e. t ∈ [0, T ], v(0) = v(T ), v′(0) = v′(T ),

the inequality v(t) ≥ 0 t ∈ [0, T ] (resp. v(t) ≤ 0 for t ∈ [0, T ]).

In other words, (p, q) ∈ V+(T ) (resp. (p, q) ∈ V−(T )) if and only if Green’s function of the
periodic problem (2.4) exists and is positive (resp. negative). In another terminology, (p, q) ∈
V+(T ) (resp. (p, q) ∈ V−(T )) if and only if the anti-maximum principle (resp. maximum principle)
holds for periodic problem (2.4).

3 Main results
We first formulate two general results for pendulum-like equation (0.1) in terms of Floquet multi-
pliers of the linear equations

u′′ + q(t)u′ + r(t)u = 0 (3.10)

and
u′′ + q(t)u′ − r(t)u = 0, (3.1π)

which are in fact linearizations of (0.1) at its equilibria u∗ = 0 and u∗ = 0, respectively.

Proposition 3.1. Let ϱ1, ϱ2 ∈ C be Floquet multipliers of equation (3.10) (resp. equation (3.1π)).
Then:

(1) If |ϱ1| < 1 and |ϱ2| < 1, then the equilibrium u∗ = 0 (resp. the equilibrium u∗ = π) of equation
(0.1) is asymptotically Krasovskii stable and consequently, asymptotically Lyapunov stable.

(12) If |ϱk| > 1 for some k ∈ {1, 2}, then the equilibrium u∗ = 0 (resp. the equilibrium u∗ = π) of
equation (0.1) is Krasovskii unstable.

Remark 3.1. Since equations (3.10) and (3.1π) are equations with periodic coefficients, Proposi-
tion 3.1 can be easily reformulated in terms of Lyapunov exponents as well as in terms of stability
of linearized equations as follows:

(A) If
T∫
0

q(s) ds > 0 and the linear equation (3.10) (resp. equation (3.1π)) is asymptotically

Lyapunov stable, then the equilibrium u∗ = 0 (resp. the equilibrium u∗ = π) of equation
(0.1) is asymptotically Lyapunov stable.

(B) If
T∫
0

q(s) ds > 0 and the linear equation (3.10) (resp. equation (3.1π)) is Lyapunov unstable,

then the equilibrium u∗ = 0 (resp. the equilibrium u∗ = π) of equation (0.1) is Krasovskii
unstable.
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One can see that asymptotic Krasovskii stability/instability of the equilibria of (0.1) is more
or less completely described in terms of Floquet multipliers of their linearizations. However, it is a
far more delicate question to guarantee Lyapunov instability of the equilibria of equation (0.1).

Proposition 3.2. Let q(t) ≡ Const ., equation (3.1π) be disconjugate on R and have a real Floquet
multiplier ϱ satisfying ϱ > 1. Then, the equilibrium u∗ = π of equation (0.1) is Lyapunov unstable.

Remark 3.2. Similarly as in Remark 3.1, Proposition 3.2 can be reformulated in terms of instability
of the linearized equation:

(C) If q(t) ≡ q0 > 0 and the linear equation (3.1π) is disconjugate on R and Lyapunov unstable,
then the equilibrium u∗ = π of equation (0.1) is Lyapunov unstable.

Now, we provide stability criteria for the equilibria of (0.1) in terms of the classes V+(T ) and
V−(T ).

Theorem 3.1. The following conclusions hold:

(1) If
T∫
0

q(s) ds > 0 and (r, q) ∈ IntV+(T ), then the equilibrium u∗ = 0 of equation (0.1) is

asymptotically Krasovskii stable and consequently, asymptotically Lyapunov stable.

(2) If q(t) ≡ q0 > 0 and (r, q0) ∈ V−(T ), then the equilibrium u∗ = 0 of equation (0.1) is Lyapunov
unstable and consequently, Krasovskii unstable.

(3) If
T∫
0

q(s) ds > 0 and (−r, q) ∈ IntV+(T ), then the equilibrium u∗ = π of equation (0.1) is

asymptotically Krasovskii stable and consequently, asymptotically Lyapunov stable.

(4) If q(t) ≡ q0 > 0 and (−r, q0) ∈ V−(T ), then the equilibrium u∗ = π of equation (0.1) is
Lyapunov unstable and consequently, Krasovskii unstable.

Let us mention here that some effective conditions for the inclusions (p, q) ∈ V+(T ) and (p, q) ∈
V−(T ) are derived, e.g., in [1, 6, 13] (see also [4, 11] for the case of q(t) ≡ 0).

Theorem 3.2. If
T∫
0

q(s) ds > 0 and

(r, q) ∈ IntV+(T ), (−r, q) ∈ IntV+(T ),

then both equilibria u∗ = 0 and u∗ = π of equation (0.1) are asymptotically Lyapunov stable and
there exists a T -periodic solution uper to equation (0.1) such that

0 < uper(t) < π for t ∈ R. (3.2)

Remark 3.3. It seems that under the hypotheses of the previous theorem, the solution uper should
be unique. Unfortunately, we cannot prove this fact.

However, it follows from the proof of Theorem 3.2 and [5, Proposition 3.1] that if uper in the
previous theorem is a unique T -periodic solution satisfying (3.2), then it is Lyapunov unstable.

Applying the results of [9,11,13], we can derive from Theorem 3.1(1,3,4) the following effective
criteria for equation (1.1), i.e., for pendulum equation (0.2) with ψ(t) := A sin(Ωt).
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Corollary 3.1. Let b > 0 and either(A
ℓ

)2
Ω2

[
1−

( π

e
2πA
ℓ −1

)2]
≤ −g

ℓ
+

( b

2m

)2
≤ 0 (3.3)

or
A

ℓ
≤ 1

2π
ln(1 + π), 0 ≤ −g

ℓ
+
( b

2m

)2
≤ 4 ln(1 + π)

π3

(A
ℓ

)2
Ω2.

Then, the equilibrium φ∗ = 0 of equation (1.1) is asymptotically Lyapunov stable.

Corollary 3.2. Let b > 0 and

A

ℓ
≤ 1

2π
ln(1 + π),

g

ℓ
+
( b

2m

)2
≤ 4 ln(1 + π)

π3

(A
ℓ

)2
Ω2. (3.4)

Then, the equilibrium φ∗ = π of equation (1.1) is asymptotically Lyapunov stable.

Remark 3.4. The second inequality in (3.4) can be rewritten into the form

Ω ≥

√
π3

4 ln(1 + π)

ℓ

A

√
g

ℓ
+
( b

2m

)2
.

It is clear that the requirement on Ω in Corollary 3.2 is stronger than condition (1.2) derived by
Bogolyubov and Kapitza under the assumption A

ℓ ≪ 1. On the other hand, in their approaches,
the assumption A

ℓ ≪ 1 is essential (Kapitza chose A
ℓ = 0.05 in his example), but we require quite

weaker and the explicit assumption A
ℓ ≤ 1

2π ln(1 + π) ≈ 0.22.

Corollary 3.3. If b ≥ 0 and Ω2 ≤ g
A , then the equilibrium φ∗ = π of equation (1.1) is Lyapunov

unstable.

Corollary 3.4. If A
ℓ < 1 and (Aℓ )

2Ω2 ≤ g
ℓ , then there exists b0 > 0 such that for any b ∈ [0, b0 [,

the equilibrium φ∗ = π of equation (1.1) is Lyapunov unstable.

Remark 3.5. Instability criterion provided in Theorem 3.13.1 cannot be applied to equation (1.1).
If q(t) := b

m > 0 and r(t) := g
ℓ −

A
ℓ Ω2 sin(Ωt), then (q, r) cannot belong to the class V−(T ), because

the inequality
T∫
0

r(s) ds < 0 is a necessary condition for the validity of the inclusion (q, r) ∈ V−(T )

with q(t) := Const .

Corollary 3.5. Let b > 0 and conditions (3.3) and (3.4) hold. Then, both equilibria φ∗ = 0 and
φ∗ = π of equation (1.1) are asymptotically Lyapunov stable and, moreover, there exists a 2π

Ω -
periodic solution φper to equation (1.1) satisfying

0 < φper(t) < π for t ∈ R.

The solution φper in the previous corollary corresponds to the “quasistatic solution” of Bo-
golyubov as well as to the “quasistatic balance” of Kapitza described in Section 1. On pictures
below, there are the results of some numerical simulations showing that free damped pendulum
with periodically oscillating suspension point can actually move periodically if its both lower and
upper equilibria are asymptotically stable.
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1 Introduction

Let J = [0, 1], ∥x∥ = max{|x(t)| : t ∈ J} be the norm in C(J), while ∥x∥L1 =
1∫
0

|x(t)|dt is the

norm in L1(J).
We discuss the singular fractional differential equation

Dαx(t) + µ f
(
t, x(t), Dβx(t)

)
= 0, (1.1)

depending on the real parameter µ. Here α ∈ (1, 2], β ∈ (0, α−1], f satisfies the local Carathéodory
conditions on J× (0,∞)×R, lim

x→0+
f(t, x, y) = ∞ for a.e. t ∈ J and y ∈ R, and Dγ is the Riemann–

Liouville fractional derivative of order γ.
Together with equation (1.1) the boundary conditions

x(0) = 0, x(1) = 0, (1.2)
max

{
x(t) : t ∈ J

}
= A (1.3)

are considered, where A > 0 is given.
We are looking for a value of the parameter µ in (1.1) for which problem (1.1)–(1.3) has a

positive solution.

Definition. We say that x : J → R is a positive solution of problem (1.1)–(1.3) if

(a) x,Dβx ∈ C(J), Dαx ∈ L1(J), x > 0 on (0, 1),

(b) x satisfies the boundary conditions (1.2), (1.3),

(c) there exists µ∗ > 0 such that (1.1) for µ = µ∗ holds for a.e. t ∈ J .

The special case of (1.1) (for α = 2, β = 1) is the differential equation

x′′(t) = µf(t, x(t), x′(t)).

The existence result for solutions of this equation satisfying the boundary conditions (1.2), (1.3)
was given in [1].

The Riemann–Liouville fractional derivative Dγx of order γ > 0, γ ̸∈ N, of a function x : J → R
is defined as [3, 4]

Dγx(t) =
dn

dtn

t∫
0

(t− s)n−γ−1

Γ(n− γ)
x(s)ds,
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where n = [γ] + 1 and [γ] means the integral part of γ. If γ ∈ N, then Dγx(t) = x(γ)(t). The
Riemann–Liouville fractional integral Iγx of order γ > 0 of a function x : J → R is given as

Iγx(t) =

t∫
0

(t− s)γ−1

Γ(γ)
x(s)ds

and I0 is the identity operator. Γ is the Euler gamma function.
We work with the following growth conditions for the function f in (1.1):

(H1) There exists m > 0 such that

f(t, x, y) ≥ m(1− t)2−α for a.e. t ∈ J and all (x, y) ∈ (0,∞)× R.

(H2) For a.e. t ∈ J and all (x, y) ∈ (0,∞)× R,

f(t, x, y) ≤ ϕ(t)g(x) + ρ(t)
(
p(x) + w(|y|)

)
,

where ϕ, ρ ∈ L1(J), g ∈ C(0,∞), p, w ∈ C[0,∞) are positive, g is nonincreasing, p, w are
nondecreasing and

lim
κ→0+

κ

1∫
0

ϕ(t)g(κt(1− t))dt = 0, lim
v→∞

w(v)

v
= 0.

The existence results for problem (1.1)–(1.3) are proved by the combination of the regularization
and sequential techniques with the Leray–Schauder degree method.

2 Preliminaries
Let α, β be from (1.1) and

G(t, s) =


(t(1− s))α−1 − (t− s)α−1

Γ(α)
if 0 ≤ s ≤ t ≤ 1,

(t(1− s))α−1

Γ(α)
if 0 ≤ t ≤ s ≤ 1.

Then for h ∈ L1(J)
1∫

0

G(t, s)h(s)ds = −Iαh(t) + Iαh(t)
∣∣
t=1

tα−1,

and

Dβ

1∫
0

G(t, s)h(s)ds = −Iα−βh(t) + tα−β−1

1∫
0

(1− s)α−1

Γ(α− β)
h(s)ds (2.1)

since
Dβtα−1 =

tα−β−1Γ(α)

Γ(α− β)
.

Let X = {x ∈ C(J) : Dβx ∈ C(J)}. X is a Banach space equipped with the norm

∥x∥∗ = max
{
∥x∥, ∥Dβx∥

}
.
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Lemma 2.1. Let h ∈ L1(J). Then

x(t) =

1∫
0

G(t, s)h(s)ds (2.2)

is the unique solution in X of the equation

Dαx(t) + h(t) = 0, (2.3)

satisfying the Dirichlet condition (1.2).

Proof. By [2, Lemma 2.2], x is the unique solution of problem (2.3), (1.2) in C(J). Since α−β ≥ 1,
Iα−βh ∈ C(J). Hence (2.1) and (2.2) give Dβx ∈ C(J). Consequently, x ∈ X.

Lemma 2.2. Let m > 0 be from (H1), h ∈ L1(J), h(t) ≥ m(1− t)2−α for a.e. t ∈ J and let

K =
m

2Γ(α− 1)
.

Then
1∫

0

G(t, s)h(s)ds ≥ Kt(1− t) for t ∈ J.

3 Regular problems
For n ∈ N, let

fn(t, x, y) =


f(t, x, y) if x ≥ 1

n
,

f
(
t,
1

n
, y
)

if x <
1

n

for a.e. t ∈ J and y ∈ R. Then fn satisfies the local Carathéodory conditions on J × R2.
We now discuss the regular fractional differential equation

Dαx(t) + µfn
(
t, x(t), Dβx(t)

)
= 0 (3.1)

together with the boundary conditions (1.2) and

max
{
x(t) : t ∈ J

}
= λA, (3.2)

where A > 0 is from (1.3) and λ ∈ (0, 1].

Lemma 3.1. Let (H1) and (H2) hold and let K > 0 be from Lemma 2.2. Then there exists a
positive constant P independent of λ ∈ (0, 1] such that for solutions x of problem (3.1), (1.2), (3.2)
with µ = µx in (3.1) the estimates

∥Dβx∥ < P, 0 < µx ≤ 4A

K

hold and x > 0 on (0, 1).
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Let Y = X × R and an operator L acting on Y × [0, 1] be given by the formula

L(x, µ, λ)(t) = µ

1∫
0

G(t, s)
(
m(1− λ)(1− s)2−α + λfn

(
s, x(s), Dβx(s)

))
ds,

where m > 0 is from (H1).

Lemma 3.2. Let (H1) hold. Then L : Y × [0, 1] → X and L is a completely continuous operator.

Let A > 0 be from (1.3), K > 0 from Lemma 2.2 and P > 0 from Lemma 3.1. Let

Ω =
{
(x, µ) ∈ Y : ∥x∥ < A+ 1, ∥Dβx∥ < P, |µ| < 4A

K
+ 1

}
and “deg” stand for the Leray–Schauder degree, I be the identical operator on Y , θ = (0, 0) ∈ Y .

Lemma 3.3. Let (H1) and (H2) hold. Then problem (3.1), (1.2), (1.3) has at least one positive
solution.

Sketch of the proof.

Step 1. Let K : Ω× [0, 1] → Y ,

K(x, µ, λ) =
(
L(x, µ, λ),Λ(x, µ, λ)

)
,

where Λ : Y × [0, 1] → R,

Λ(x, µ, λ) = λ
(
max

{
x(t) : t ∈ J

}
+min

{
x(t) : t ∈ J

})
+ (1− λ)x

(1
2

)
+ µ.

K is a compact operator. Since K(x, µ, λ) ̸= (x, µ) for (x, µ) ∈ ∂Ω, λ ∈ [0, 1] and K( · , · , 0) is an
odd operator, we conclude from the Borsuk antipodal theorem and the homotopy property that
deg (I − K( · , · , 0),Ω, θ) ̸= 0 and

deg
(
I − K( · , · , 1),Ω, θ

)
̸= 0. (3.3)

Step 2. Let H : Ω× [0, 1] → Y ,

H(x, µ, λ) =
(
L(x, µ, 1), Φ(x, µ, λ)

)
,

where Φ : Ω× [0, 1] → R,

Φ(x, µ, λ) = max
{
x(t) : t ∈ J

}
+min

{
x(t) : t ∈ J

}
− λA+ µ,

and A > 0 is from (1.3). H is a compact operator and if H(x∗, µ∗, 1) = (x∗, µ∗) for some (x∗, µ∗) ∈ Ω,
then x∗ is a positive solution of problem (3.1), (1.2), (1.3) for µ = µ∗ in (3.1). Since H(x, µ, λ) ̸=
(x, µ) for (x, µ) ∈ ∂Ω and λ ∈ [0, 1], we conclude from H( · , · , 0) = K( · , · , 1), the homotopy
property and (3.3) that

deg
(
I −H( · , · , 1),Ω, θ

)
̸= 0.

Hence there exists a fixed point (x0, µ0) ∈ Ω of H( · , · , 1). Therefore x0 is a positive solution of
problem (3.1), (1.2), (1.3) for µ = µ0 in (3.1).
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4 Problem (1.1)–(1.3)
Theorem 4.1. Let (H1) and (H2) hold. Then problem (1.1)–(1.3) has at least one positive solution.

Sketch of the proof. By Lemmas 3.1 and 3.3, for each n ∈ N there exists a positive solution xn ∈ X
of problem (3.1), (1.2), (1.3) for µ = µn in (3.1), xn > 0 on (0, 1), ∥xn∥ = A, ∥Dβxn∥ < P and
0 < µn ≤ 4A/K. Hence the sequence {(xn, µn)} is bounded in X × R. We begin by proving that
{µn} has a positive lower bound ∆ > 0 and the sequences {xn} {Dβxn} are equicontinuous on
J . Consequently, {(xn, µn)} is relatively compact in Y . Without loss of generality we can assume
that {(xn, µn)} is convergent in Y and let (x, ρ) ∈ Y be its limit. Then ρ ≥ ∆, x(t) ≥ ∆Kt(1− t),
∥Dβx∥ ≤ P , x satisfies the boundary condition (1.2), (1.3) and

lim
n→∞

fn
(
t, xn(t), D

βxn(t)
)
= f

(
t, x(t), Dβx(t)

)
for a.e. t ∈ J.

Letting n → ∞ in the equality

xn(t) = µn

1∫
0

G(t, s)fn
(
s, xn(s), D

βxn(s)
)

ds,

we get

x(t) = ρ

1∫
0

G(t, s)f
(
s, x(s), Dβx(t)

)
ds, t ∈ J,

by the Lebesgue dominated convergence theorem. Consequently, x is a positive solution of problem
(1.1)–(1.3) for µ = ρ in (1.1).

Example. Let r1, r2 ∈ L1(J) and q1 ∈ C(J) be nonnegative, q2 ∈ C(J) be positive, ν, τ ∈ (0, 1)
and

f(t, x, y) = r1(t) +
q1(t)

xν
+ q2(t)e

x + r2(t)|y|τ for a.e. t ∈ J, x > 0, y ∈ R.

Then f satisfies the local Carathéodory conditions on J × (0,∞) × R, and the conditions (H1),
(H2). Hence, by Theorem 4.1, there exists a positive solution of the problem

Dαx(t) + µ
(
r1(t) +

q1(t)

(x(t))ν
+ q2(t)e

x(t) + r2(t)|Dβx(t)|τ
)
= 0,

x(0) = 0, x(1) = 0, max
{
x(t) : t ∈ J

}
= A, A > 0.
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1 Problem statement
In this paper, we extend the classical Levinson theorem to infinite-dimensional stochastic systems.
Specifically, we analyze differential equations in a Banach space that are asymptotically equivalent
to the corresponding stochastic equations.

In particular, we consider the following linear differential equation in a Banach space X:

dx = Axdt (1.1)

and the equation of stochastic differential equations:

dy = Ay dt+B(t)y dt+D(t)y dW (t), (1.2)

where A, B(t), D(t) are continuous linear operators in a Banach space L(X). W (t) is a standard
scalar Wiener process defined for t ≥ 0 on a probability space (Ω,F , P ) and the filtration {Ft, t ≥
0}, the process W (t) is Ft-adapted.

We will define asymptotic equivalence in the following mean square sense.

Definition 1.1. If for each solution y(t) of equation (1.2) there exists a corresponding solution
x(t) of equation (1.1) such that

lim
t→∞

E
[
∥x(t)− y(t)∥2

]
= 0,

then system (1.2) is called asymptotically mean square equivalent to system (1.1).

2 Main results
Our main result is a generalization of the classical Levinson’s theorem to stochastic systems in
Banach spaces.

Theorem 2.1. Let for operator A from system (1.1) σ(A) = σ0(A) ∪ σ−(A), where σ0(A), σ−(A)
are spectral sets with σ0(A) ⊂ iℜ and σ−(A) lies in the left half-plane. For the Riesz P0 projector,
corresponding to σ0(A) we have

sup
−∞<t<∞

∥eP0At∥ < ∞.
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If in addition
∞∫
0

∥B(t)∥ dt < ∞,

∞∫
0

∥D(t)∥2 dt < ∞,

then system (1.2) is asymptotically mean square equivalent to system (1.1).

Proof.
I) The spectral operators are defined using the Riesz integral:

P0 = − 1

2πi

∮
Γ0

Rµ dµ,

P− = − 1

2πi

∮
Γ−

Rµ dµ,

where the contours Γ0 and Γ− enclose regions with the corresponding spectra, and Rµ is the
resolvent of the operator A.

We have a decomposition of the Banach space X into a direct sum of spaces:

X = X0 ⊕X−.

Therefore, we obtain the decomposition of the operator A:

A = P0A+ P−A.

Additionally, using the property of the operator exponential we get

X(t) = eP−At + eP0At = X1(t) +X2(t) (2.1)

Considering σ(P−A) = σ−(A), and also noting that according to the compactness of the spectral
set, max

µ∈σ−(A)
{Re (µ)} < −α < 0, we have:

∥X1(t)∥ = ∥eP−At∥ ≤ ae−αt, t ≥ t0 ≥ 0.

The estimate on the norm of X2(t) is obtained directly from the next condition:

∥X2(t)∥ ≤ b, t ∈ R.

II) Let X(t) = eAt. Then, using the method of variation of an arbitrary constant (see [4, p. 234]),
we obtain that the initial system is equivalent to:

y(t) = X(t− t0)y(t0) +

t∫
t0

X(t− τ)B(τ)y(τ) dτ +

t∫
t0

X(t− τ)D(τ)y(τ) dW (τ).

Taking into account the decomposition (2.1), we get:

y(t) = X(t− t0)y(t0) +

t∫
t0

X1(t− τ)B(τ)y(τ) dτ +

t∫
t0

X2(t− τ)B(τ)y(τ) dτ

+

t∫
t0

X1(t− τ)D(τ)y(τ) dW (τ) +

t∫
t0

X2(t− τ)D(τ)y(τ) dW (τ).
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Considering the relation:

X2(t− τ) = eP0A(t−τ) = eA(t−t0)eA(t0−τ)P0 = eA(t−t0)eP0A(t0−τ) = X(t− t0)X2(t0 − τ),

we obtain

y(t) = X(t− t0)

[
y(t0) +

∞∫
t0

X2(t0 − τ)B(τ)y(τ) dτ +

∞∫
t0

X2(t0 − τ)D(τ)y(τ) dW (τ)

]

+

t∫
t0

X1(t− τ)B(τ)y(τ) dτ +

t∫
t0

X1(t− τ)D(τ)y(τ) dW (τ)

−
∞∫
t

X2(t− τ)D(τ)y(τ) dW (τ)−
∞∫
t

X2(t− τ)B(τ)y(τ) dτ.

To this solution we compare the solution of equation (1.1) with the initial conditions:

x(t0) = y(t0) +

∞∫
t0

X2(t0 − τ)B(τ)y(τ) dτ +

∞∫
t0

X2(t0 − τ)D(τ)y(τ) dW (τ).

We need to prove the correctness of such correspondence, as well as the asymptotic equivalence (in
the mean square sense).
III) Correctness of the definition of a solution of the similar system (convergence in the mean square
sense).

For the expectation, we have the following estimate:

E
(
∥y(t)∥2

)
≤ 3∥X(t− t0)∥2E

(
∥y(t0)∥2

)
+ 3E

(∥∥∥∥
t∫

t0

X(t− τ)B(τ)y(τ) dτ

∥∥∥∥2)+ 3E

(∥∥∥∥
t∫

t0

X(t− τ)D(τ)y(τ) dW (τ)

∥∥∥∥2).
Using the Cauchy–Schwarz inequality, we get:

E

(∥∥∥∥
t∫

t0

X(t− τ)B(τ)y(τ) dτ

∥∥∥∥2) ≤ E

(( t∫
t0

∥y(τ)∥ ∥X(t− τ)∥ ∥B(τ)∥ dτ
)2)

= E

(( t∫
t0

∥y(τ)∥
√
∥X(t− τ)∥

√
∥B(τ)∥

√
∥X(t− τ)∥

√
∥B(τ)∥ dτ

)2)

≤ E

( t∫
t0

∥X(t− τ)∥ ∥B(τ)∥ dτ
t∫

t0

∥X(t− τ)∥ ∥B(τ)∥ ∥y(τ)∥2 dτ
)

=

t∫
t0

∥X(t− τ)∥ ∥B(τ)∥ dτ
t∫

t0

∥X(t− τ)∥ ∥B(τ)∥E
(
∥y(τ)∥2

)
dτ

≤ max
t>0

∥X(t)∥2
+∞∫
0

∥B(τ)∥ dτ
t∫

t0

∥X(t− τ)∥ ∥B(τ)∥E
(
∥y(τ)∥2

)
dτ.
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And also, for the estimate of the stochastic part we have:

E

(∥∥∥∥
t∫

t0

X(t− τ)D(τ)y(τ) dW (τ)

∥∥∥∥2)

≤
t∫

t0

E
(∥∥X(t− τ)D(τ)y(τ)

∥∥2) dτ ≤
t∫

t0

∥X(t− τ)∥2 ∥D(τ)∥2E
(
∥y(τ)∥2

)
dτ.

Taking into account that

max
t>0

∥X(t)∥2 ≤ max
t>0

(
∥X1(t)∥+ ∥X2(t)∥

)2 ≤ 2(a2 + b2) ≤ 4max{a2, b2},

we obtain the estimate:

E
(
∥y(t)∥2

)
≤ 12max{a2, b2}

(
E
(
∥y(t0)∥2

))
+ 12max{a2, b2}

( +∞∫
0

∥B(τ)∥ dτ
t∫

t0

∥B(τ)∥E
(
∥y(τ)∥2

)
dτ

)

+ 12max{a2, b2}
( t∫

t0

∥D(τ)∥2E
(
∥y(τ)∥2

)
dτ

)
.

From Gronwall’s inequality we get

E
(
∥y(t)∥2

)
≤ 12max{a2, b2}E

(
∥y(t0)∥2

)
e
12max{a2,b2}

t∫
t0

(K1∥B(τ)∥+∥D(τ)∥2) dτ

≤ 12max{a2, b2}E
(
∥y(t0)∥2

)
e
12max{a2,b2}

∞∫
t0

(K1∥B(τ)∥+∥D(τ)∥2) dτ

≤ K̂E
(
∥y(t0)∥2

)
,

where
K̂ = 12max{a2, b2}e12max{a2,b2}(K2

1+K1).

Thus, we can also conclude that the integrals
∞∫

t0

X2(t0 − τ)B(τ)y(τ) dτ,

∞∫
t0

X2(t0 − τ)D(τ)y(τ) dW (τ)

converge in the mean square sense.

IV) We will estimate in mean square the norm of the difference between the corresponding solutions
x(t) and y(t). Since

x(t) = X(t− t0)x(t0),

with the given initial condition x(t0), we have

E
(
∥y(t)− x(t)∥2

)
= E

(∥∥∥∥
t∫

t0

X1(t− τ)B(τ)y(τ) dτ +

t∫
t0

X1(t− τ)D(τ)y(τ) dW (τ)
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−
∞∫
t

X2(t− τ)D(τ)y(τ)dW (τ)−
∞∫
t

X2(t− τ)B(τ)y(τ) dτ

∥∥∥∥2)

≤ 4E

(∥∥∥∥
t∫

t0

X1(t− τ)B(τ)y(τ) dτ

∥∥∥∥2)+ 4E

(∥∥∥∥
t∫

t0

X1(t− τ)D(τ)y(τ) dW (τ)

∥∥∥∥2)

+ 4E

(∥∥∥∥
∞∫
t

X2(t− τ)B(τ)y(τ) dτ

∥∥∥∥2)+ 4E

(∥∥∥∥
∞∫
t

X2(t− τ)D(τ)y(τ) dW (τ)

∥∥∥∥2). (2.2)

The third and fourth terms in (2.2) can be easily upper-bounded as

K̂E(∥y(t0)∥2
)
b2
( ∞∫

t

∥B(τ)∥ dτ
)2

and K̂E
(
∥y(t0)∥2

)
b2

∞∫
t

∥D(τ)∥2 dτ,

respectively. It is obvious that these expressions tend to zero as t → ∞. The first term in (2.2) can
be estimated using the Cauchy–Schwarz inequality as

K̂E
(
∥y(t0)∥2

)( t∫
t0

ae−α(t−τ)∥B(τ)∥ dτ
)2

.

Taking into account the absolute integrability of the operator B(t), we derive the following result:

t∫
t0

e−α(t−τ)∥B(τ)∥ dτ =

t/2∫
t0

e−α(t−τ)∥B(τ)∥ dτ +

t∫
t/2

e−α(t−τ)∥B(τ)∥ dτ

≤ e−αt/2

t/2∫
t0

∥B(τ)∥ dτ +

t∫
t/2

∥B(τ)∥ dτ

≤ e−αt/2

∞∫
0

∥B(τ)∥dτ +

t∫
t/2

∥B(τ)∥ dτ.

Since the last expression tends to zero as t → ∞, the first term in (2.2) also tends to zero as t → ∞.
By a similar splitting of the integral into intervals [t0, t/2] and [t/2, t], we will obtain an estimate

for the second term in (2.2), which will also tend to zero.
Proof is completed.

3 Example
Let’s consider the integro-differential equation

dx = (−λx(t) +

t∫
t0

K(t, s)x(s) ds) dt

in the Hilbert space L2[0,+∞) (where K(t, s) self-adjoint kernel such that K(t, s) ∈ L2[[0,+∞)2],
Re (λ) > 0).
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This equation is asymptotically mean square equivalent to the equation

dx =

(
− λx(t) + b(t)x(t) +

t∫
t0

K(t, s)x(s) ds

)
dt+D(t)x(t) dW (t),

provided b(t) ∈ L1[0,+∞), D(t) ∈ L2[0,+∞), Re (λ) ≥ sup
ν∈σ(K)

Re(ν).
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In the paper, necessary conditions of optimality of the delay parameter containing in the phase
coordinates, the initial vector and initial function, the control function are obtained for the quasi-
linear neutral optimization problem with the discontinuous initial condition.

Let Rn be the n-dimensional vector space of points x = (x1, . . . , xn)T ; let I = [t0, t1] be a
fixed interval and let σ > 0, τ2 > τ1 > 0 be given numbers,with t0 + max{σ, τ2} < t1. Suppose
that O ⊂ Rn, U ⊂ Rr are compact and convex sets. Further, the n × n-dimensional matrix
function A(t, x) is continuous on the set I × O and continuously differentiable with respect to
xi, i = 1, 2, . . . , n; the n-dimensional function f(t, x, y, u) is continuous on the set I × O2 × U and
continuously differentiable with respect to x, y, u. We denote by Φ and Ω the sets of continuously
differentiable initial functions φ(t) ∈ O, t ∈ I1 = [τ̂ , t0], where τ̂ = t0 −max{σ, τ2} and measurable
control functions u(t) ∈ U , t ∈ I, respectively.

To each element

w = (τ, x0, φ(t), u(t)) ∈W = (τ1, τ2)×O × Φ× Ω

we assign the quasi-linear controlled neutral functional-differential equation

ẋ(t) = A(t, x(t))ẋ(t− σ) + f
(
t, x(t), x(t− τ), u(t)

)
, t ∈ I (1)

with the discontinuous initial condition

x(t) = φ(t), t ∈ [τ̂ , t0), x(t0) = x0. (2)

The condition (2) is called the discontinuous initial condition because in general φ(t0) ̸= x0. Dis-
continuity at the initial moment may be related to the instant change in a dynamical process
(changes of investment, environment and so on).

Definition 1. Let w ∈W , a function x(t) = x(t;w) ∈ O, t ∈ [τ̂ , t1] is called a solution of equation
(1) with condition (2) or a solution corresponding to the element w if it satisfies condition (2) and
is absolutely continuous on the interval I and satisfies equation (1) almost everywhere on I.



REPORTS OF QUALITDE, Volume 3, 2024 269

Let the scalar-valued functions qi(τ, x0, x), i = 0, 1, . . . , l, be continuously differentiable on
[τ1, τ2]×O2.

Definition 2. An element w = (τ, x0, φ(t), u(t)) ∈ W is said to be admissible if there exists the
corresponding solution x(t) = x(t;w), satisfying the conditions

qi(τ, x0, x(t1)) = 0, i = 1, 2, . . . , l. (3)

By W0 we denote the set of admissible elements.

Definition 3. An element w0 = (τ0, x00, φ0(t), u0(t)) ∈W0 is said to be optimal if for an arbitrary
element w ∈W0 the inequality

q0(τ0, x00, x0(t1)) ≤ q0(τ, x0, x(t1)) (4)

holds, where x0(t) = x(t;w0).

(1)–(4) is called the quasi-linear neutral optimization problem with the discontinuous initial
condition.

Theorem 1. Let w0 = (τ0, x00, φ0(t), u0(t)) ∈ W0 be an optimal element and let x0(t) be the
corresponding solution, with

t0 + τ0 ̸∈ {t1 − σ, t1 − 2σ, . . . }

and the function u0(t) is continuous at the point t0+τ0. Then there exist a vector π = (π0, . . . , πl) ̸=
0, with π0 ≤ 0, and a solution (χ(t), ψ(t)) of the systemχ̇(t) = −ψ(t)

{ ∂

∂x

[
A[t]ẋ0(t− σ)

]
+ fx[t]

}
− ψ(t+ τ0)fy[t+ τ0],

ψ(t) = χ(t) + ψ(t+ σ)A[t+ σ], t ∈ I

with the initial condition

χ(t1) = ψ(t1) = πQ0x, χ(t) = ψ(t) = 0, t > t1,

where

Q = (q0, q1, . . . , ql)T , Q0x =
∂Q(τ0, x00, x0(t1))

∂x
,

∂

∂x

[
A[t]ẋ0(t− σ)

]
=

∂

∂x

[
A(t, x)ẋ0(t− σ)

]
x=x0(t)

, A[t] = A(t, x0(t)),

fy[t] = fy
(
t, x0(t), x0(t− τ0), u0(t)

)
,

such that the following conditions hold:

– the condition for the delay τ0

πQ0τ = ψ(t0 + τ0)
[
f
(
t0 + τ0, x0(t0 + τ0), x00, u0(t0 + τ0)

)
− f

(
t0 + τ0, x0(t0 + τ0), φ0(t0), u0(t0 + τ0)

)]
+

t1∫
t0

ψ(t)fy[t]ẋ0(t− τ0) dt;

– the condition for the initial vector x00(
πQ0x0 + χ(t0)

)
x00 = max

x0∈O

(
πQ0x0 + χ(t0)

)
x0;
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– the condition for the initial function φ0(t)

t0∫
t0−σ

ψ(t+ σ)A[t+ σ]φ̇0(t) dt+

t0∫
t0−τ0

ψ(t+ τ0)fy[t+ τ0]φ0(t) dt

= max
φ(t)∈Φ

t0∫
t0−σ

ψ(t+ σ)A[t+ σ]φ̇(t) dt+

t0∫
t0−τ0

ψ(t+ τ0)fy[t+ τ0]φ(t) dt;

– the condition for the control function u0(t)

t1∫
t0

ψ(t)fu[t]u0(t) dt = max
u(t)∈Ω

t1∫
t0

ψ(t)fu[t]u(t) dt.

Theorem 1 is proved by the scheme given in [2] on the basis of the representation formula of a
solution [1]. The case when A(t, x) = A(t) and Q does not depend on the parameter τ is considered
in [3]. Now we consider a particular case of the problem (1)–(4):

ẋ(t) = A(t)ẋ(t− σ) +B(t)x(t) + C(t)x(t− τ) +D(t)u(t), t ∈ I, (5)
x(t) = φ(t), x(t0) = x0, (6)

qi(τ, x(t1)) = 0, i = 1, 2, . . . , l, (7)
q0(τ, x(t1)) → min . (8)

Here A(t), B(t), C(t) and D(t) are the continuous matrix functions with dimensions n × n and
n× r, respectively; φ(t) is a fixed initial function; x0 is a fixed initial vector. In this case we have
w = (τ, u(t)) ∈W = (τ1, τ2)× Ω and w0 = (τ0, u0(t));

Q(τ, x) = (q0(τ, x), . . . , ql(τ, x))T , Q0x =
∂Q(τ0, x0(t1))

∂x
.

Theorem 2. Let w0 = (τ0, u0(t)) be an optimal element for problem (5)–(8) and let x0(t) be the
corresponding solution, with

t0 + τ0 ̸∈ {t1 − σ, t1 − 2σ, . . . }

and the function u0(t) is continuous at the point t0+τ0. Then there exist a vector π = (π0, . . . , πl) ̸=
0 with π0 ≤ 0, and a solution (χ(t), ψ(t)) of the system{

χ̇(t) = −ψ(t)B(t)− ψ(t+ τ0)C(t+ τ0),

ψ(t) = χ(t) + ψ(t+ σ)A(t+ σ), t ∈ I

with the initial condition

χ(t1) = ψ(t1) = πQ0x, χ(t) = ψ(t) = 0, t > t1,

such that the following conditions hold:

– the condition for the delay τ0

πQ0τ = ψ(t0 + τ0)C(t0 + τ0)[x0 − φ(t0)] +

t1∫
t0

ψ(t)C(t)ẋ0(t− τ0) dt;



REPORTS OF QUALITDE, Volume 3, 2024 271

– the condition for the control function u0(t)

t1∫
t0

ψ(t)D(t)u0(t) dt = max
u(t)∈Ω

t1∫
t0

ψ(t)D(t)u(t) dt.
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1 Introduction
The study of liquid films flowing down vertical fibers is a topic of significant interest in fluid
dynamics due to its wide range of industrial applications, such as in heat exchangers, desalination
processes, and fiber coating technologies, one can find a review of industrial applications in [1].
The dynamics of such films are influenced by various factors including gravity, viscosity, surface
tension, and the geometry of the fiber. This introduction aims to provide an overview of the current
research in this area, highlighting key contributions from recent and well-cited studies.

Ruan et al. (2021) presented a comprehensive framework using control-volume methods to
model liquid films on vertical fibers. Their work included both numerical simulations and experi-
mental validations, demonstrating the formation of traveling wave solutions and droplet patterns
on fibers [8]. Similarly, Kalliadasis and Chang (2020) focused on direct numerical simulations of
thin film flows, employing domain mapping techniques to solve the Navier–Stokes equations [4].

Quere (2003) offered an extensive review of the fluid dynamics involved in coating fibers, high-
lighting various flow regimes observed in experiments [7]. Kalliadasis and Chang (1994) provided
a detailed analysis of droplet formation processes during the coating of vertical fibers, using both
experimental and theoretical approaches to elucidate the underlying mechanisms [4]. This founda-
tional work is supported by later studies such as those by Ji and Witelski (2017), who examined
the three-dimensional dynamics of thin liquid films under various conditions, revealing complex
behaviours observed in experiments [3].

2 Setting of the problem and the main results
Following the framework of Ruan et al. [2, 8] which is based on a control-volume approach, we
expresses the conservation of mass and axial momentum via a coupled system for the fluid film
radius h(x, t) and the mean axial velocity u(x, t):

ut + a
(u2
2

)
x
+ bκx = c

[(h2 − 1)ux]x
h2 − 1

+ 1− u

g(h)
in ΩT , (2.1)

2hht + a[u(h2 − 1)]x = 0 in ΩT , (2.2)
u = hx = 0 on ∂Ω× (0, T ), (2.3)

u(x, 0) = u0(x), h(x, 0) = h0(x), (2.4)
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where Ω ⊂ R1 is an open interval, ΩT := Ω×(0, T ). Here, the dimensionless parameter a represents
the square of the Froude number, b is the reciprocal of the Bond number, c represents the ratio of
axial viscous to gravitational forces, and g(h) = h2 − 1 represents the axial velocity profile. The
film thickness is given by h(x, t) − 1, and κ represents the combined azimuthal and streamwise
curvatures of the free surface:

κ =
(
1− 1

2
h2x

)
h−1 − hxx.

Time evolution of solutions for thin liquid film models with full and approximated curvature terms
was compared for example in [6], where the authors showed that the qualitative behaviour of
solutions (with periodic boundary conditions) is almost the same.

Let us denote by
v = h2 − 1.

Then we can rewrite (2.1) and (2.2) in the following form:

ut + a
(u2
2

)
x
+ bκx = c

(v ux)x
v

+ 1− u

v
in ΩT , (2.5)

vt + a(uv)x = 0 in ΩT . (2.6)

Integrating (2.6) in Ωt, we find that v(x, t) satisfies∫
Ω

v(x, t) dx =

∫
Ω

v0(x) dx :=M > 0 ∀ t > 0. (2.7)

Furthermore, we assume that the initial data (v0, u0) satisfy

h0 > 1, i.e. v0 := h20 − 1 > 0 for all x ∈ Ω,
√
v0 ∈ H1(Ω), h0h

2
0,x, v0u

2
0,− log(v0) ∈ L1(Ω).

(2.8)

Definition 2.1. A pair (h, u) is a weak solution to (2.5), (2.6) with the boundary conditions (2.3)
and the initial conditions (h0, u0) if 1 6 h ∈ C(QT ), v = h2 − 1, and u satisfy the regularity
properties

√
v ∈ L∞(0, T ;H1(Ω)), − log(v), vu2 ∈ L∞(0, T ;L1(Ω)),

hh2x ∈ L∞(0, T ;L1(Ω)), h−
1
4hx ∈ L4(ΩT ),√

hhxx, χ{v>0}

√
v ux, u ∈ L2(ΩT ),

and the following holds∫∫
ΩT

vϕt dx dt+

∫
Ω

v0ϕ(x, 0) dx+ a

∫∫
ΩT

uvϕx dx dt = 0,

∫∫
ΩT

uvψt dx dt+

∫
Ω

u0v0ψ(x, 0) dx+
a

2

∫∫
ΩT

χ{v>0}vu
2ψx dx dt

+ 2b

∫∫
ΩT

(
1− 1

2
h2x − hhxx

)
hxψ dx dt+ b

∫∫
ΩT

((
1− 1

2
h2x

)
h−1 − hxx

)
vψx dx dt

− c

∫∫
ΩT

χ{v>0}vuxψx dx dt+

∫∫
ΩT

(v − u)ψ dx dt = 0

for all ϕ ∈ C∞
c (ΩT ) and ψ ∈ C∞

c (ΩT ) such that ϕ(x, T ) = ψ(x, T ) = 0.
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We note that the set v = 0 coincides with the set h = 1. Based on Definition 2.1, we will
establish the existence of weak solutions to the problem and prove the following theorem.

Theorem. Let the initial data (h0, u0) satisfy (2.7), (2.8) and T > 0. Then there exists a weak
solution (h, u) in the sense of Definition 2.1, where v = h2− 1. Moreover, the set {v( · , t) = 0} has
Lebesgue measure zero for any t ∈ [0, T ].

The proof of Theorem is based on the method of energy-entropy a priori estimates which was
active developed in [5, 9].
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1 Introduction
Conditions for the existence of solutions of systems of integro-differential equations and bounda-
ry-value problems for these systems are considered in [8, 9]. A general theory for these systems
is developed and effective methods for solving them are proposed. In this paper, we study the
x-parametric family of nonlinear boundary-value problems for integro-differential equations

∂V

∂t
= f

(
x, t, ψ(t) +

x∫
0

V (ξ, t) dξ, V

)
, V ∈ Rn, (x, t) ∈ [0, ω]× [0, T ], (1.1)

g
(
x, V (x, 0), V (x, T )

)
= 0, x ∈ [0, ω], (1.2)

where the functions f : [0, ω]× [0, T ]× R2n → Rn and g : [0, ω]× Rn × Rn → Rn are continuous.
Our study is based on the parametrization method [10, 12] proposed by Dzhumabaev. The

parametrization method was developed to various boundary-value problems for some types of dif-
ferential equations [2, 13, 15], such that Fredholm integro-differential equations [3–7, 17], delay dif-
ferential equations [16], hyperbolic equations [1, 14] etc. The application of this method made it
possible to derive the solvability conditions for the above problems.

This approach can also be applied to study the nonlinear nonlocal boundary value problem for
the system of partial differential equations (m = 1, 2, . . . )

∂m+1u

∂t∂xm
= f

(
x, t,

∂m−1u

∂xm−1
,
∂mu

∂xm

)
, u ∈ Rn, (x, t) ∈ [0, ω]× (0, T ),

∂ku

∂xk

∣∣∣
x=0

= ψk(t), t ∈ [0, T ], k = 0, 1, . . . ,m− 1,

g

(
x,
∂mu(x, t)

∂xm

∣∣∣
t=0

,
∂mu(x, t)

∂xm

∣∣∣
t=T

)
= 0.

Therefore, the study of problem (1.1), (1.2) is of interest from the point of view of its application
to nonlocal boundary value problems for a class of partial differential equations.

In the present paper, we propose a modified algorithm of the parametrization method for finding
an isolated solution of problem (1.1), (1.2) and derive sufficient conditions for the existence of such
a solution.
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2 Setting of the problem and the main results
We consider the nonlinear nonlocal boundary value problem (1.1), (1.2) for the x-parametric family
of integro-differential equations.

A solution of problem (1.1), (1.2) is a function V (x, t) ∈ C([0, ω] × [0, T ]Rn), which is contin-
uously differentiable on [0, T ] (at fixed x ∈ [0, ω]) and satisfies the system of integro-differential
equations (1.1) and the boundary conditions (1.2).

We take h > 0, Nh = T (N ∈ N), and make the partition [0, ω] × [0, T ) =
N⋃
r=1

Ωr, where

Ωr = [0, ω]× [(r − 1)h, rh), r = 1, N .
We will use the following notations.

- C([0, ω],Rn(N+1)) is the space of systems of functions λ(x) = (λ1(x), λ2(x), . . . , λN+1(x)) with
the norm

∥λ∥1 = max
x∈[0,ω]

max
r=1,(N+1)

∥λr(x)∥,

here the functions λr : [0, ω] → Rn are continuous, r = 1, (N + 1);

- C([0, ω]× [0, T ],Ωr, R
nN ) is the space of systems of functions

V [x, t] =
(
V1(x, t), V2(x, t), . . . , VN (x, t)

)
with the norm ∥∥V [ · ]

∥∥
2
= max

r=1,N
max
x∈[0,ω]

sup
t∈[tr−1,tr)

∥Vr(x, t)∥,

where the functions Vr(x, t) ∈ C(Ωr) have finite limits lim
t→tr−0

Vr(x, t) uniform in x, x ∈ [0, ω]

(r = 1, N);

The restriction of the function V (x, t) into Ωr is denoted by Vr(x, t), i.e. Vr(x, t) = V (x, t),
(x, t) ∈ Ωr, r = 1, N .

Let us set additional parameters

λr(x) = Vr(x, (r − 1)h), r = 1, N

and
λN+1(x) = lim

t→T−0
VN (x, t), x ∈ [0, ω],

and introduce the functions

Ṽr(x, t) = Vr(x, t)− λr(x) on Ωr, r = 1, N.

We then obtain the family of multipoint nonlinear boundary value problems for integro-diffe-
rential equations with parameters

∂Ṽr
∂t

= f

(
x, t, ψ(t) +

x∫
0

λr(ξ) dξ +

x∫
0

Ṽr(ξ, t) dξ, λr(x) + Ṽr

)
, (x, t) ∈ Ωr, r = 1, N, (2.1)

Ṽr(x, (r − 1)h) = 0, x ∈ [0, ω], r = 1, N, (2.2)
g
(
x, λ1(x), λN+1(x)

)
= 0, x ∈ [0, ω], (2.3)

λr(x) + lim
t→rh−0

Ṽr(x, t)− λr+1(x) = 0, x ∈ [0, ω], r = 1, N. (2.4)
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It can be easily shown that the families of problems (1.1), (1.2) and (2.1)–(2.4) are equivalent.
Suppose that for all r = 1, N + 1 and x ∈ [0, ω] the family of parameters λr(x) is known.

Then the functions Ṽr(x, t), (x, t) ∈ Ωr (r = 1, N), can be determined from the Cauchy problem
(2.1), (2.2). For a fixed x ∈ [0, ω], this problem is equivalent to the family of mixed type systems
of integral equations

Ṽr(x, t) =

t∫
(r−1)h

f

(
x, τ, ψ(t) +

x∫
0

λr(ξ) dξ +

x∫
0

Ṽr(ξ, τ) dξ, λr(x) + Ṽr(x, τ)

)
dτ, (2.5)

t ∈ [(r − 1)h, rh], r = 1, N.

By substituting the values of lim
t→rh−0

Ṽr(x, t), found from (2.5), into (2.3) and (2.4), we obtain

g
(
x, λ1(x), λN+1(x)

)
= 0,

λr(x) +

rh∫
(r−1)h

f

(
x, t, ψ(t) +

x∫
0

(
λr(ξ) + Ṽr(ξ, τ)

)
dξ, λr(x) + Ṽr(x, t)

)
dt− λr+1(x) = 0.

This is a system of nonlinear functional equations in parameters λr(x), x ∈ [0, ω], r = 1, N + 1.
We rewrite this system in the form

Q1,h

(
x, λ(x),

x∫
0

λ(ξ) dξ, Ṽ

)
= 0, λ(x) ∈ Rn(N+1), x ∈ [0, ω]. (2.6)

Condition 2.1. There exists h > 0 : Nh = T (N ∈ N), such that the family of systems of
implicit nonlinear Fredholm integral equations (2.6), where Ṽ = 0, has a solution λ(0)(x) =

(λ
(0)
1 (x), λ

(0)
2 (x), . . . , λ

(0)
N+1(x)) ∈ C([0, ω],Rn(N+1)).

Let Condition 2.1 be met. We denote the solution of the Cauchy problem (2.1), (2.2), corre-
sponding to λr(x) = λ

(0)
r (x), by Ṽ (0)

r (x, t). Let us define the function

V (0)(x, t) =

{
λ
(0)
r (x) + Ṽ

(0)
r (x, t) for (x, t) ∈ Ωr, r = 1, N,

λ
(0)
N+1(x) for (x, t) ∈ [0, ω] ∪ {T}.

We choose some numbers ρλ > 0, ρ
Ṽ
> 0, ρV > 0 and define the following sets:

S(λ(0)(x), ρλ) =
{
λ(x) ∈ C([0, ω],Rn(N+1)) : ∥λ− λ(0)∥1 < ρλ

}
,

S(Ṽ (0)(x, [t]), ρ
Ṽ
) =

{
Ṽ (x, [t]) ∈ C(Ω,Ωr,RnN ) :

∥∥(Ṽ − Ṽ (0))[ · ]
∥∥
2
< ρ

Ṽ

}
,

S(V (0)(x, t), ρV ) =
{
V (x, t) ∈ C(Ω,Rn) : max

(x,t)∈Ω
∥V (x, t)− V (0)(x, t)∥ < ρV

}
,

Gf (x, ρV ) =
{
(x, t, u, v)∈Ω× R2n : (x, t)∈Ω, ∥u− u(0)(x, t)∥<ω · ρV , ∥v − v(0)(x, t)∥<ρV

}
,

Gg(x, ρλ) =
{
(x,w1, w2) ∈ [0, ω]× R2n : ∥w1 − V (0)(x, 0)∥ < ρλ, ∥w2 − V (0)(x, T )∥ < ρλ

}
.

Condition 2.2. The function f(x, t, u, v) has uniformly continuous partial derivatives f ′u, f ′v in
Gf (x, ρu, ρv) and the following inequalities hold:

∥f ′u(x, t, u, v)∥ ≤ L1, ∥f ′v(x, t, u, v)∥ ≤ L2 ∀ (x, t, u, v) ∈ Gf (x, ρu, ρv).
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The function g(x,w1, w2) has uniformly continuous partial derivatives g′w1
, g′w2

in Gg(x, ρλ) and
the following inequalities hold:

∥g′w1
(x,w1, w2)∥ ≤ L3, ∥g′w2

(x,w1, w2)∥ ≤ L4, (x,w1, w2) ∈ Gg(x, ρλ).

Here Li (i = 1, 4) are some constants.

Let Condition 2.2 be met. We take the pair (λ(0)(x), Ṽ (0)(x, [t])) and determine the sequence
(λ(k)(x), Ṽ (k)(x, [t])), k = 1, 2, . . . , by the following algorithm.

Step 1.

(i) Find λ(1)(x) = (λ
(1)
1 (x), λ

(1)
2 (x), . . . , λ

(1)
N+1(x)) ∈ C([0, ω],Rn(N+1)) by solving the family of

systems of implicit nonlinear Fredholm integral equations (2.6), where Ṽ = Ṽ (0).

(ii) By solving the family of Cauchy problems (2.1), (2.2), where λ(x) = λ1(x), find the system
of functions Ṽ (1)(x, [t]).

(iii) Define the function

V (1)(x, t) =

{
λ
(1)
r (x) + Ṽ

(1)
r (x, t) for (x, t) ∈ Ωr, r = 1, N,

λ
(1)
N+1(x) for (x, t) ∈ [0, ω] ∪ {T}.

Step k.

(i) Find λ(k)(x) = (λ
(k)
1 (x), λ

(k)
2 (x), . . . , λ

(k)
N+1(x)) ∈ C([0, ω],Rn(N+1)) by solving the family of

systems of implicit nonlinear Fredholm integral equations (2.6), where Ṽ = Ṽ (k−1).

(ii) By solving the family of Cauchy problems (2.1), (2.2), where λ(x) = λ2(x), find the system
of functions Ṽ (2)(x, [t]).

(iii) Define the function

V (k)(x, t) =

{
λ
(k)
r (x) + Ṽ

(k)
r (x, t) for (x, t) ∈ Ωr, r = 1, N,

λ
(k)
N+1(x) for (x, t) ∈ [0, ω] ∪ {T}.

The following statement represents sufficient conditions for the existence of an isolated solution
of the family of boundary value problems with parameters (2.1)–(2.4).

Theorem 2.1. Let for some h > 0 : Nh = T (N = 1, 2, . . . ), ρλ > 0, ρ
Ṽ
> 0, ρV > 0 fulfill

Condition 2.1 and Condition 2.2 are met, the Jacobi matrix ∂Q1,h(x,w̃1,w̃2,Ṽ )
∂w̃1

has an inverse for x ∈

[0, ω] (w̃1 = λ(x), w̃2 =
x∫
0

λ(ξ) dξ) and for all (λ(x), Ṽ (x, [t])) ∈ S(λ(0)(x), ρλ)× S(Ṽ (0)(x, [t]), ρ
Ṽ
),

and let the following inequalities hold:

(1)
∥∥∥∥( ∂

∂w̃1
Q1,h

(
x, λ(x),

x∫
0

λ(ξ) dξ, Ṽ

))−1∥∥∥∥ ≤ γ1(h), x ∈ [0, ω], γ1(h) – const;

(2) q1(h) = γ1(h)e
h·γ1(h)L1ω (L1ω + L2)

2h2

1− (L1ω + L2)h
< 1;
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(3) γ1(h)

1− q1(h)
eh·γ1(h)L1ω max

x∈[0,ω]

∥∥∥∥Q1,h

(
x, λ(0)(x),

x∫
0

λ(0)(ξ) dξ, Ṽ (0)

)∥∥∥∥ < ρλ;

(4) γ1(h)

1−q1(h)
eh·γ1(h)L1ω · (L1ω + L2)h

1− (L1ω + L2)h
max
x∈[0,ω]

∥∥∥∥Q1,h

(
x, λ(0)(x),

x∫
0

λ(0)(ξ) dξ, Ṽ (0)

)∥∥∥∥ < ρ
Ṽ

;

(5) ρλ + ρ
Ṽ
< ρV .

Then for any x ∈ [0, ω] the sequence of pairs(
λ(k)(x), Ṽ (k)(x, [t])

)
∈ S(λ(0)(x), ρλ)× S(Ṽ (0)(x, [t]), ρ

Ṽ
)

converges to (λ∗(x), Ṽ ∗(x, [t])); an isolated solution of problem (2.1)–(2.4) in S(λ(0)(x), ρλ) ×
S(Ṽ (0)(x, [t]), ρ

Ṽ
). Moreover, the following estimates hold:

∥λ∗ − λ(0)∥1 ≤
h · γ1(h)
1− q1(h)

eh·γ1(h)L1ω (L1ω + L2)h

1− h(L1ω + L2)
max
r=1,N

K̃r,

∥Ṽ ∗ − Ṽ (0)∥2 ≤
(L1ω + L2)h

1− (L1ω + L2)h
∥λ∗ − λ(0)∥1,

where

K̃r = sup
(x,t)∈Ωr

∥∥∥∥f(x, t,
x∫

0

λ(0)r (ξ) dξ, λ(0)r (x)

)∥∥∥∥, r = 1, N.

The proof of Theorem 2.1 is based on the sequential implementation of the steps of the proposed
algorithm. To find the solution of the nonlinear operator equation with respect to the family of
parameters for each fixed x ∈ [0, ω], a sharper version of the local Hadamard theorem [12, p. 41] is
used.
Remark. The conditions of Theorem 2.1 are sufficient for the feasibility and convergence of the
proposed algorithm.

Due to the equivalence of problems (2.1)–(2.4) and problems (1.1), (1.2), the following statement
is true.

Theorem 2.2. Let for some h > 0 : Nh = T (N = 1, 2, . . . ), ρλ > 0, ρ
Ṽ
> 0 and ρV > 0 all

conditions of Theorem 2.1 are met. Then for any x ∈ [0, ω] the sequence of functions V (k)(x, t) ∈
S(V (0)(x, t), ρV ) converges to V ∗(x, t), an isolated solution of problem (1.1), (1.2) in S(V (0)(x, t), ρV )
and the following estimate holds:

max
(x,t)∈Ω

∥∥V ∗(x, t)− V (0)(x, t)
∥∥ ≤ h · γ1(h)

1− q1(h)
eh·γ1(h)L1ω h · (L1ω + L2)

(1− h(L1ω + L2))2
·K,

where

K = max
r=1,N

sup
(x,t)∈Ωr

∥∥∥∥f(x, t,
x∫

0

(V (0)(ξ, t)− V (0)(ξ, (r − 1)h)) dξ, V (0)(x, t)− V (0)(x, (r − 1)h)

)∥∥∥∥.
Theorem 2.2 is a corollary of Theorem 2.1.
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Abstract
We prove theorems on the stability of solutions of one-dimensional stochastic differential

equations controlled by rough paths with arbitrary positive Holder exponent.

1 Introduction
Consider the one-dimensional stochastic differential equation

dYt = f(Yt)dXt, t ∈ R+, (1.1)

where Xt is a random process whose paths are a.s. Holder continuous of order α ∈ (0, 1) and
f : R → R is a deterministic function with bounded continuous derivatives of any order m ∈
{0, . . . , [1/α] + 1}.

In the present paper, we prove that the conditions ensuring the existence and uniqueness of
solutions of Eq. (1.1) also guarantee the continuous dependence of the solutions on the initial data
on any finite interval; the Lyapunov stability of the zero solution of Eq. (1.1) is studied on the
basis of the stability of the zero solution of the corresponding ordinary differential equation (ODE)
dZt = f(Zt)dt. Here a solution of Eq. (1.1) is understood as a solution of a stochastic differential
equation weakly controlled by the corresponding rough path [1]. To define solutions, we need a
number of notions introduced in the papers [1] and [2].

2 Definition of rough paths
Fix some T > 0 and α ∈ (0, 1]. Let V be a finite-dimensional Euclidean space. By Cα([0, T ], V )
and Cα

2 ([0, T ], V ) we denote the sets of functions f : [0, T ] → V and g : [0, T ]2 → V , respectively,
with finite norms

∥f∥α := sup
s,t∈[0,T ], s ̸=t

|ft − fs|
|t− s|α

,

∥g∥α,2 := sup
s,t∈[0,T ],s ̸=t

|gs,t|
|t− s|α

.

Further, for a function of two variables gs,t we write ∥g∥α instead of ∥g∥α,2. For a function ft of
one variable, by fs,t we denote the increment ft − fs.

For an integer non-negative k and finite-dimensional Euclidean spaces V and W , by Ck
b (V,W )

we denote the set of functions h : V →W with finite norm

∥h∥Ck
b
:=

k∑
i=0

∥Dih∥∞,
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where
∥Dih∥∞ = sup

t∈[0,T ]
|Diht|.

Set n = [1/α]. By C α([0, T ], V ) we denote the set of Holder α-continuous rough paths, i.e., the
set of elements X = (1,X1, . . . ,Xn) such that Xi ∈ Ciα

2 ([0, T ], V ⊗i) for any i = 1, . . . , n, and any
s, u, t ∈ [0, T ] there holds the Cheng identity

Xs,t = Xs,u �Xu,t,

where (
Xs,u �Xu,t

)i
=

i∑
j=0

Xj
s,u ⊗Xi−j

u,t .

Note that the operation � defines multiplication on the tensor algebra T (n)(V ) =
n⊕

i=0
V ⊗i, where

V ⊗0 = R. Thus, an element X : [0, T ]2 → T (n)(V ) is uniquely determined by the values X0,t,
t ∈ [0, T ], because Xs,t = (X0,s)

−1 �X0,t. In what follows, we write Xt instead of X0,t.
A rough path X = (1,X1, . . . ,Xn) is said to be geometric if

Sym (Xi
s,t) =

1

i!
(X1

s,t)
⊗i ∀ i = 1, . . . , n.

The set of geometric rough paths will be denoted by C α
g ([0, T ], V ).

We say that an element X ∈ C α([0, T ], V ) is a rough path over X ∈ Cα([0, T ], V ) if X1
0,t = Xt

for any t ∈ [0, T ].

Definition of weakly controlled rough paths
Let X ∈ Cα([0, T ], V ) and let X = (1,X1, . . . ,Xn) be a rough path over X. Let W be a finite-
dimensional Euclidean space. We say that a function Yt ∈ Cα([0, T ],W ) is weakly controlled by the
rough path X ∈ C α([0, T ], V ) if there exist functions Y (1) : [0, T ] → L(V,W ), . . . , Y (n−1) : [0, T ] →
L(V ⊗(n−1),W ) such that

Ys,t = Y (1)
s X1

s,t + · · ·+ Y (n−1)
s Xn−1

s,t +RY,n
s,t ,

Y
(1)
s,t = Y (2)

s X1
s,t + · · ·+ Y (n−1)

s Xn−2
s,t +RY,n−1

s,t ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Y
(n−2)
s,t = Y (n−1)

s X1
s,t +RY,2

s,t ,

Y
(n−1)
s,t = RY,1

s,t ;

and the norm ∥RY,i∥iα is finite for each of the remainder terms RY,i, i = 1, . . . , n. The function
Y (i) will be called the i-th rough derivative of Y .

Define the Banach space

Dα
X([0, T ],W ) =

{
(Y, Y (1), . . . , Y (n−1)) : Y ∈ Cα([0, T ],W ),

n∑
i=1

∥RY,i∥iα <∞
}

with the seminorm ∥∥(Y, Y (1), . . . , Y (n−1))
∥∥
Dα

X
=

n∑
i=1

∥RY,i∥iα.
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The norm of an element Y = (Y, Y (1), . . . , Y (n−1)) ∈ Dα
X([0, T ],W ) is defined by the formula

∥Y∥Dα
X
:=

n−1∑
i=0

|Y (i)
0 |+

∥∥(Y, Y (1), . . . , Y (n−1))
∥∥
Dα

X
,

where Y (0)
t = Yt.

3 Definition of the integral over rough paths
Let V and W be some finite-dimensional Euclidean spaces,

X = (1,X1, . . . ,Xn) ∈ C α([0, T ], V ), Y ∈ Cα([0, T ],L(V,W )),

(Y, Y (1), . . . , Y (n−1)) ∈ Dα
X([0, T ],L(V,W )).

Take some s, t ∈ [0, T ], s < t, and let P be an arbitrary finite partition of the interval [s, t] by
points.

The rough path integral
t∫
s
Yr dXr is defined as the following limit of integral sums (if the limit

exists, then it is finite and does not depend on the choice of partitions of the interval [s, t] by
points):

t∫
s

Yr dXr := lim
|P|→0

∑
[u,v]∈P

n−1∑
i=0

Y (i)
u Xi+1

u,v .

4 Definition of rough paths on a half-line
Let X : R+ → R; i.e., assume that for each T > 0 the restriction X|[0,T ] belongs to the space
Cβ([0, T ],R), β ∈ ( 1

n+1 ,
1
n ]. For each i ∈ {1, . . . , n} we define Xi

s,t =
(Xs,t)i

i! , s, t ∈ R+. The element
X = (1,X1, . . . ,Xn)R2

+ → T (n)(R) is called a geometric rough path over X. The set of geometric
rough paths is denoted by C β

g (R+,R).
We say that a function Y ∈ Cα(R+,R), 1

n+1 < α < β, is weakly controlled by a geometric
rough path X ∈ C β

g (R+,R) if there exist Y (i) : R+ → R, i ∈ {1, . . . , n − 1}, such that the iα-
Holder norms of RY,i, i ∈ {1, . . . , n}, are finite on each bounded segment R+. We say that a vector
function Y = (Y, Y (1), . . . , Y (n−1)) belongs to the set Dα

X(R+,R) if for each T > 0 its restriction
Y|[0,T ] belongs to the space Dα

X([0, T ],R).

5 Stochastic differential equations weakly controlled
by rough paths with arbitrary positive Holder exponent

Suppose that on a complete probability space (Ω,F , P ) with a flow (Ft)t≥0 of σ-algebras are given
an Ft-adapted random process Xt, t ∈ R+, such that almost all trajectories of Xt belong to the
space Cβ(R+,R), β ∈ ( 1

n+1 ,
1
n ]. Define a process X · = (1,X1

0, · , . . . ,X
n
0, · ) as a random variable a.s.

taking values in C β
g (R+,R) a.s., where Xi

s,t =
(Xs,t)i

i! .
Let Y ∈ Cα([0, T ],R), (Y, Y (1), Y (2), . . . , Y (n−1)) ∈ Dα

X([0, T ],R); f ∈ Cn
b (R,R). Define Zt =

f(Yt). By analogy with the Faà di Bruno’s formula, we set

Z(k) =
k∑

j=1

Djf(Y )Bk,j(Y
(1), . . . , Y (k−j+1)), k = 1, . . . , n− 1, (5.1)
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where the Bk,j(x1, . . . , xk−j+1) – are Bell polynomials.
Consider the stochastic differential equation

dYt = f(Yt)dXt, t ∈ R+. (5.2)

Definition 5.1. Let ξ : Ω → R be an F0-measurable random variable. A solution of Eq. (5.2)
with the initial condition Y0 = ξ is an F-measurable random variable Y = (Y, Y (1), . . . , Y (n−1))
with values in Dα

X(R+,R) a.s., 1
n+1 < α < β, such that the random process Yt is Ft-adapted and

a.s. the equality

Yt = ξ +

t∫
0

f(Ys) dXs

holds for all t ∈ R+, where the rough derivatives of the function f(Y ), occurring in the definition
of the integral on the right-hand side, are determined by formulas (5.1). A solution of Eq. (5.2)
with the initial condition Y0 = ξ is said to be unique if for two arbitrary solutions Y, Y of Eq.
(5.2) with the initial condition Y0 = ξ one has the equality P (Y = Y) = 1.

Consider the ODE
dZt = f(Zt)dt, t ∈ R. (5.3)

Let St = etVf , t ∈ R, be the flow generated by Eq. (5.3), i.e., Zt = StZ0, where the operator
Vf : C(R,R) → C(R,R) acts according to the rule (Vfg)t = f(gt).

The following assertion was proved in [1].

Proposition 5.1 ([1]). Let α, β ∈ ( 1
n+1 ,

1
n ], α < β, X = (1,X1, . . . ,Xn) ∈ C β

g (R+,R) a.s. If
f ∈ Cn+1

b (R,R), then for any F0-measurable random variable ξ : Ω → R there exists a unique
solution Y = (Y, Y (1), . . . , Y (n−1)) of Eq. (1.1) with the initial condition Y0 = ξ, and a.s. one has

Yt = SX0,tξ, Y
(i)
t = Di−1

f f(Yt), i ∈ {1, . . . , n− 1}, t ∈ R+.

6 Continuous dependence of solutions on the initial data
Along with Eq. (5.2), consider the perturbed equation

dYt = f̃(Yt)dXt, t ∈ R+. (6.1)

Theorem 6.1. Let α, β ∈ ( 1
n+1 ,

1
n ], α < β, p ≥ 1, T > 0, X = (1,X1, . . . ,Xn) ∈ C β

g (R+,R) a.s.,
ξ : Ω → R be a F0-measurable random variable; f ∈ Cn+1

b (R,R). If E∥X∥pα,[0,T ] < ∞, then for
any ε > 0 there exists δ = δ(ε, T ) such that for any f̃ ∈ Cn+1

b (R,R) and F0-measurable random
variable ξ̃ : Ω → R such that

∥f̃ − f∥Cn+1
b

+ E|ξ̃ − ξ|p ≤ δ,

there holds the inequality
n−1∑
i=0

E∥Ỹ (i) − Y (i)∥pα,[0,T ] ≤ ε,

where Y = (Y, Y (1), . . . , Y (n−1)) is a solution of Eq. (5.2) with the initial condition Y0 = ξ and
Ỹ = (Ỹ , Ỹ (1), . . . , Ỹ (n−1)) is a solution of Eq. (6.1) with the initial condition Y0 = ξ̃.
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Proof. Assume that the assertion in the theorem does not hold; i.e., there exists an ε0 > 0 such
that for any δk = 1

k , k ∈ N, there exist fk ∈ Cn+1
b (R,R) and F0-measurable random variables

ξk : Ω → R such that

∥fk − f∥Cn+1
b

+ E|ξk − ξ|p ≤ δk,

n−1∑
i=0

E∥Y (i)
k − Y (i)∥pα,[0,T ] ≥ ε0,

where Yk = (Yk, Y
(1)
k , . . . , Y

(n−1)
k ) is a solution of equation

dYt = fk(Yt)dXt, t ∈ R+,

with the initial condition
Y0 =

(
ξk, fk(ξk), Dfk(ξk)fk(ξk), . . .

)
.

Let Sk,t = etVfk be the flow corresponding to the equation dZt = fk(Zt)dt. By Proposition 1 we get

Yt = SXt−X0ξ, Y
(i)
t = Di−1

f f(Yt),

Yk,t = Sk,Xt−X0ξk, Y
(i)
k,t = Di−1

fk
fk(Yk,t).

Without loss of generality we may assume that X0 = 0. Set g(τ) = Sτξ, gk(τ) = Sk,τξk,
ψk(τ) = gk(τ)− g(τ), τ ∈ R. Thus,

∥Yk − Y ∥α,[0,T ] = sup
s ̸=t

|ψk(Xt)− ψk(Xs)|
|t− s|α

= sup
s ̸=t

|(Xt −Xs)Dψk(Xs + θk(Xt −Xs))|
|t− s|α

≤ ∥X∥α,[0,T ]∥Dψk∥∞.

Since E∥X∥pα,[0,T ] <∞, we have

lim
k→∞

E∥Yk − Y ∥pα,[0,T ] = 0.

Take arbitrary i ∈ {1, . . . , n− 1}. Denote

h(y) = Di−1
f f(y), hk(y) = Di−1

fk
fk(y), φk(y) = hk(y)− h(y), y ∈ R.

Then

∥Y (i)
k − Y (i)∥α,[0,T ] = sup

s ̸=t

|hk(Yk,t)− hk(Yk,s)− h(Yt) + h(Ys)|
|t− s|α

= sup
s ̸=t

|(Yk,t − Yk,s)Dφk(Yk,s + θk(Yk,t − Yk,s))|
|t− s|α

+ sup
s ̸=t

|h(Yk,t)− h(Yk,s)− h(Yt) + h(Ys)|
|t− s|α

≤ ∥Yk − Y ∥α,[0,T ]∥Dφk∥∞ + ∥Dh∥∞∥Yk − Y ∥α,[0,T ] + C∥D2h∥∞
(
∥Yk − Y ∥α,[0,T ] + |ξk − ξ|

)
.

Hence,
lim
k→∞

E∥Y (i)
k − Y (i)∥pα,[0,T ] = 0.

Therefore,

lim
k→∞

n−1∑
i=0

E∥Y (i)
k − Y (i)∥α,[0,T ] = 0.

The resulting contradiction completes the proof of the theorem.
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7 Lyapunov stability of solutions on the half-line
Let us proceed to the stability analysis of the zero solution of Eq. (5.2) under the assumption that
f(0) = 0. Additionally, we assume that the function f ∈ Cn+1(R,R) is such that no solution Zt,
t ≥ 0, of Eq. (5.3) has blow-ups. In what follows, the zero solution of Eq. (5.2) is understood as
the solution Y ≡ 0 of Eq. (5.2) with the zero initial condition Y0 = 0.

Definition 7.1. We say that the zero solution of Eq. (5.2) is stable in probability if for any ε1,
ε2 > 0 there exists δ = δ(ε1, ε2) > 0 such that for each F0-measurable random variable ξ : Ω → R,
|ξ| ≤ δ a.s., there holds the inequality

P
(
sup
t≥0

|Yt| ≥ ε1

)
≤ ε2,

where Y = (Y, Y (1), . . . , Y (n−1)) is the solution of Eq. (5.2) with the initial condition Y0 = ξ.
We say that the zero solution of Eq. (5.2) is asymptotically stable in probability if it is stable in
probability and there exists a ∆ > 0 such that for any F0-measurable random variable ξ : Ω → R,
|ξ| ≤ ∆ a.s., one has the convergence in probability Yt

P

t→+∞
// 0 . Let p ≥ 1; we say that the zero

solution of Eq. (5.2) is p-stable if for each ε > 0 there exists a δ = δ(ε) > 0 such that for any
F0-measurable random variable ξ : Ω → R, |ξ| ≤ δ a.s., there holds the inequality sup

t≥0
E|Yt|p ≤ ε.

Theorem 7.1. Let Xt
P

t→+∞
// +∞ and let the expectation E

(
sup

t∈[0,T ]
|Xt|

)
is finite for each T > 0.

If the zero solution of Eq. (5.3) is Lyapunov stable (respectively, asymptotically stable) for t ≥ 0,
then the zero solution of Eq. (5.2) is stable in probability (respectively, asymptotically stable in
probability).

Proof. Without loss of generality, we can assume that X0 = 0. Let Zt be the solution of Eq. (5.3)
with the initial condition Z0 = ξ, then Yt = ZXt . Fix arbitrary ε1, ε2 > 0.

Since Xt
P

t→+∞
// +∞ , for any ε2 > 0 there exists τ = τ(ε2) > 0 such that

P (Xt ≥ 0 ∀ t > τ) ≥ 1− ε2
2
.

Since E
(

sup
t∈[0,τ ]

|Xt|
)

is finite, it follows by the Chebyshev inequality that there exists a constant

M =M(τ, ε2) > 0 such that

P
(
|Xt| ≤M ∀ t ∈ [0, τ ]

)
≥ 1− ε2

2
.

Assume that the zero solution of Eq. (5.3) is Lyapunov stable for t ≥ 0. Then there exists a
δ = δ(ε1,M) > 0 such that for any F0-measurable random variable ξ : Ω → R, |ξ| ≤ δ a.s., one has
the inequality sup

t≥−M
|Zt| ≤ ε1.

Thus, we have

P
(
sup
t≥0

|Yt| > ε1

)
= P

(
sup
t≥0

|ZXt | > ε1

)
≤ P

(
∃ t ≥ 0 : Xt < −M

)
≤ P

(
∃ t ∈ [0, τ ] : Xt < −M

)
+ P

(
∃ t > τ : Xt < 0

)
≤ ε2

2
+
ε2
2

= ε2.

Thus, the zero solution of Eq. (5.2) is stable in probability.
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Consequently, the zero solution of Eq. (5.3) is asymptotically stable for t ≥ 0. Then there exists
a ∆ > 0 such that for any F0-measurable random variable ξ : Ω → R, |ξ| ≤ ∆ a.s., the solution Zt

of Eq. (5.3) with the initial condition Z0 = ξ has the following property: the convergence

Zt t→+∞
// 0

holds with probability 1. Take arbitrary ε1, ε2 > 0. There exists δ = δ(ε1) such that

P
(
|Zt| ≤ ε1 ∀ t ≥ δ

)
= 1.

Since Xt
P

t→+∞
// +∞ , there exists δ1 > 0 such that

P
(
∃ t ≥ δ1 : Xt < δ

)
≤ ε2.

Thus,

P
(
|Yt| ≤ ε1 ∀ t ≥ δ1

)
= P

(
|ZXt | ≤ ε1 ∀ t ≥ δ1

)
= 1− P

(
∃ t ≥ δ1 : |ZXt | > ε1

)
≥ 1− P

(
∃ t ≥ δ1 : Xt < δ

)
≥ 1− ε2.

Hence, Yt P

t→+∞
// 0 , therefore, the zero solution of Eq. (5.2) is asymptotically stable in probability.

The proof of the theorem is complete.
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Let (X, d) be a compact metric space, f ≡ (f1, f2, . . . ) be a sequence of continuous mappings
from X to X. Along with the original metric d, we define on X an additional system of metrics

dfn(x, y) = max
0≤i≤n−1

d
(
f◦i(x), f◦i(y)

)
, f◦i ≡ fi ◦ · · · ◦ f1 ◦ idX , x, y ∈ X, n ∈ N.

For any n ∈ N and ε > 0, let N(f, ε, n) denote the maximum number of points in X whose
pairwise dfn-distances are greater than ε. Such a set of points is called (f, ε, n)-separated. Then the
topological entropy of a nonautonomous dynamical system (X, f) is the quantity

htop(f) = lim
ε→0

lim
n→∞

1

n
lnN(f, ε, n). (1)

Note that the topological entropy does not depend on the choice of a metric generating the given
topology on X, so definition (1) is correct.

Given a metric space M and a sequence of continuous mappings

f ≡ (f1, f2, . . . ), fk : M×X → X, (2)

we form a function
µ 7→ htop(f(µ, · )). (3)

For arbitrary M, X and for any sequence of mappings (2) function (3) belongs to the third
Baire class [4]. In the case when X is a Cantor perfect set [4] or a segment of the real line [5] and
M is the set of irrational numbers on the segment [0; 1] with the metric induced by the standard
metric of the real line, there is a sequence of mappings (2) for which function (3) is everywhere
discontinuous and does not belong to the second Baire class.

A natural question arises on the smallest Baire class to which function (3) belongs in the case
M = [0; 1].

Theorem. Let M = X = [0; 1], then there exists a sequence of continuous mappings (2) such that
the function (3) is everywhere discontinuous and does not belong to the second Baire class on the
space M.

Proof. Given a continuous function α : M → M

α(µ) =

0, if µ = 0,

µ
(
1− sin

1

µ

)
, if 0 < µ 6 1,
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we will construct a sequence of functions

αk( · ) = max
{1

k
, α◦[log2(k+4)]( · )

}
, k = 1, 2, . . .

([ · ] is the integer part of number) and a sequence of mappings from [0; 1]2 to [0; 1]

f ≡ (f1, f2, . . . ),

fk(µ, x) =


x, if 0 6 x 6 1− αk(µ),

2x− 1 + αk(µ), if 1− αk(µ) < x 6 1− αk(µ)

2
,

−2x+ 3− αk(µ), if 1− αk(µ)

2
< x 6 1.

By definition, the function fk is continuous on [0; 1]2.
Let E denote the set of those µ from [0; 1] for which the equality lim

k→∞
αk(µ) = 0 holds. It is

not empty because it contains zero.

Lemma 1. Let µ ∈ E, then
htop(f(µ, · )) = 0.

Proof. We recall another formula for calculating the topological entropy of a nonautonomous dy-
namical system [1]. For any ε > 0 and n ∈ N, denote by Bf (x, ε, n) the open ball {y ∈ X :

dfn(x, y) < ε}. A set U ⊂ X is called an (f, ε, n)-covering if

X ⊂
⋃
x∈U

Bf (x, ε, n).

Let S(f, ε, n) denote the minimum number of elements of an (f, ε, n)-covering, then the topological
entropy can be calculated by the formula

htop(f) = lim
ε→0

lim
n→∞

1

n
lnS(f, ε, n).

We fix ε > 0 and µ ∈ E, then there is a number k0 such that αk0(µ) < 1
2 ε and for any k > k0

the inequality αk(µ) 6 αk0(µ) holds. Let Uk0 ⊂ [0; 1] be a minimal (f(µ, · ), 12ε, k0)-covering of the
interval [0; 1]. The set Uk0 ∪ {x0}, where f◦k0(µ, x0) = 1− αk0(µ), due to the inclusion

fk
(
µ, [1− αk0(µ), 1]

)
⊂

[
1− αk0(µ), 1

]
,

for k > k0 is an (f(µ, · ), 12ε, k)-covering of the interval [0; 1], therefore

htop(f(µ, · )) 6 lim
k→∞

1

k
ln
(
|Uk0 |+ 1

)
= 0.

Lemma 1 is proved.

Lemma 2. Let µ /∈ E, then

htop(f(µ, · )) >
1

2
ln 2.
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Proof. Let µ /∈ E, then there exists a subsequence (αkj (µ))
∞
j=1 ⊂ (αk(µ))

∞
k=1 and a number q > 0

such that inf
j∈N

αkj (µ) = q.

For all j ∈ N, k ∈ {2kj , . . . , 2kj+1 − 1} and x ∈ [0; 1] the equality fk(µ, x) = f
2kj

(µ, x) holds.
Using the affine transformation φ we map the square [1 − αkj (µ), 1]

2 onto the square [0, 1]2, and
the mapping f

2kj
(µ, · )

∣∣
[1−αkj

(µ),1]
becomes the mapping

g(x) =


2x, if 0 6 x 6 1

2
,

2− 2x, if 1

2
< x 6 1.

For any n ∈ N, consider the set of points of the form

n∑
k=1

ak
2k

, where ak ∈ {0, 1}.

Using mathematical induction, we prove the equality

gn
( n∑

k=1

ak
2k

)
=

{
0, if an = 0,

1, if an = 1.
(4)

Indeed, for n = 1 we have g(0) = 0 and g(12) = 1.
Let

n∑
k=1

ak
2k

<
1

2
,

then
n∑

k=1

ak
2k

=
n∑

k=2

ak
2k

and

gn
( n∑

k=1

ak
2k

)
= g(n−1)

(
2

n∑
k=2

ak
2k

)
= g(n−1)

( n−1∑
k=1

ak+1

2k

)
=

{
0, if an = 0,

1, if an = 1.

Let
n∑

k=1

ak
2k

> 1

2
,

then a1 = 1 and

gn
( n∑

k=1

ak
2k

)
= g(n−1)

(
2− 2

n∑
k=1

ak
2k

)
= g(n−1)

(
1−

n−1∑
k=1

ak+1

2k

)
=

{
0, if an = 0,

1, if an = 1.

Thus, equality (4) is proved.
By (4), for ε < 1

q and n ∈ {1, . . . , 2kj+1 − 2kj − 1}, we have that d
f(µ, · )
2kj+n

-distance between any
preimages of two points

φ(−1)
( n∑

k=1

ak
2k

, 0
)

and φ(−1)
( n∑

k=1

ak
2k

+
1

2n
, 0
)
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under the mapping f◦(2kj−2)(µ, · ) is greater than ε, and therefore

N(f(µ, · ), ε, 2kj+1) > 2kj+1 − 2kj ,

whence we get
htop(f(µ, · )) > lim

ε→0
lim
j→∞

1

2kj+1
ln(22

kj+1−2kj ) =
1

2
ln 2.

Lemma 2 is proved.

Completion of the proof of the theorem. In the paper [2] it was established that the set E is an
Fσδ-set and is not a Gδσ-set. We use the following statement from [3]: if a functional h : M → R
belongs to the second Baire class, then the intersection of the closures of the sets h(E) and h(M\E)
is nonempty. By Lemmas 1 and 2, we have

htop(f(E, · )) 6 0 <
1

2
ln 2 6 htop(f(B \E, · )),

therefore, the function µ 7→ htop(f(µ, · )) does not belong to the second Baire class. Theorem is
proved.
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The differential equation
y′′ = α0p(t)f(t, y, y

′), (1)
where α0 ∈ {−1; 1}, p : [a, ω[→ ]0,+∞[ (−∞ < a < ω ≤ +∞) is a continuous function, f :
[a, ω[×∆Y0 ×∆Y1 → ]0,+∞[ is continuously differentiable, Yi ∈ {0,±∞}, ∆Yi is either [y0i , Yi[

1 or
]Yi, y

0
i ], is considered. We also suppose that the function f satisfies the conditions

lim
t↑ω

πω(t) · ∂f
∂t (t, v0, v1)

f(t, v0, v1)
= γ uniformly by v0 ∈ ∆Y0 , v1 ∈ ∆Y1 , (2)

lim
yk→Yk
yk∈∆Yk

vk · ∂f
∂vk

(t, v0, v1)

f(t, v0, v1)
= σk uniformly by t ∈ [a, ω[, vj ∈ ∆Yj , j ̸= k, k ∈ {0, 1}. (3)

By conditions (2), (3) the function f is in some sense close to regularly varying function by
every variable.

We call the measurable function φ : ∆Y →]0,+∞[ a regularly varying as z → Y of index σ if
for every λ > 0 we have

lim
z→Y
z∈∆Y

φ(λz)

φ(z)
= λσ. (4)

Here Y ∈ {0,±∞}, ∆Y is some one-sided neighbourhood of Y . If σ = 0, such function is called
slowly varying.

It follows from the results of the monograph [5] that regularly varying functions have the next
properties.

R1: The function φ(z) is regularly varying of index σ as z → Y if and only if the next represen-
tation takes place

φ(z) = zσθ(z),

where θ(z) is a slowly varying function as z → Y .

R2: If the function L : ∆Y 0 → ]0,+∞[ is slowly varying as z → Y0, the function φ : ∆Y → ∆Y 0

is regularly varying as z → Y , then the function L(φ) : ∆Y → ]0,+∞[ is slowly varying as
z → Y .

R3: If the function φ : ∆Y → ]0,+∞[ satisfies the condition

lim
z→Y
z∈∆

zφ′(z)

φ(z)
= σ ∈ R,

then φ is regularly varying as z → Y of index σ.
1As Yi = +∞ (Yi = −∞) assume y0

i > 0 (y0
i < 0).
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R4: For every regularly varying as z → Y function φ the property (4) takes place uniformly as
λ ∈ [c, d] for every segment [c, d] ⊂ ]0,+∞[ .

Definition. Solution y of the equation (1) is called Pω(Y0, Y1, λ0) if it is defined on [t0, ω[⊂ [a, ω[
and

lim
t↑ω

y(i)(t) = Yi (i = 0, 1), lim
t↑ω

(y′(t))2

y(t)y′′(t)
= λ0.

For different values of parameter λ0 the class of such solutions contains regularly slowly and
rapidly varying as t ↑ ω functions. Pω(Y0, Y1, λ0)-solutions of the equation (1) are regularly varying
functions as t ↑ ω of index λ0

λ0−1 if λ0 ∈ R \ {0, 1}.
A lot of works (see, for example, [2,3]) have been devoted to the establishing asymptotic repre-

sentations of Pω(Y0, Y1, λ0)-solutions of equations of the form (1), in which f(t, y, y′) ≡ φ0(y)φ1(y
′),

where φ0 and φ1 are regularly varying functions. For more general case as f depends only on y
and y′ asymptotic properties and necessary and sufficient conditions of existence of such solutions
of the equation (1) have been obtained in [1].

We need the next subsidiary notations.

πω(t) =

{
t as ω = +∞,

t− ω as ω < +∞,

Θi(z) = φi(z)|z|−σi (i = 0, 1),

J1(t) =

t∫
A1

ω

(
α0p(τ)|πω(τ)|γ+σ0

∣∣∣λ0 − 1

λ0

∣∣∣σ0
)
dτ,

A1
ω =


a, if

ω∫
a

p(τ)|πω(τ)|γ+σ0 dτ = +∞,

ω, if
ω∫

a

p(τ)|πω(τ)|γ+σ0 dτ < +∞,

J2(t) =
∣∣(1− σ0 − σ1)

∣∣ 1
1−σ0−σ1 sign y01

t∫
B2

ω

|J1(t)|
1

1−σ0−σ1 dτ,

B2
ω =


b, if

ω∫
b

|J1(t)|
1

1−σ0−σ1 dτ = +∞,

ω, if
ω∫
b

|J1(t)|
1

1−σ0−σ1 dτ < +∞.

The following theorem is obtained for the equation (1).

Theorem 1. Let in the equation (1) σ1 ̸= 1. Then for the existence of Pω(Y0, Y1, λ0)-solutions to
the equation (1) in cases λ0 ∈ R \ {0, 1}, it is necessary and if

λ0 ̸= σ1 − 1 or (σ1 − 1)(σ0 + σ1 − 1) > 0,

then also sufficient

πω(t)y
0
1y

0
0λ0(λ0 − 1) > 0, πω(t)α0y

0
1λ0(λ0 − 1) > 0 as t ∈ [a, ω[ ,
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lim
t↑ω

y00|πω(t)|
λ0

λ0−1 = Y0, lim
t↑ω

y01|πω(t)|
1

λ0−1 = Y1,

lim
t↑ω

πω(t)J
′
2(t)

J2(t)
=

λ0

λ0 − 1
, lim

t↑ω

πω(t)J
′
1(t)

J1(t)
=

1− σ0 − σ1
λ0 − 1

.

The next result is devoted to research Pω(Y0, Y1, λ0)-solutions in special and most complex case
λ0 = 0. In this case, such decisions or their first order derivatives will be slowly changing functions
as t ↑ ω, which significantly complicates the study. Therefore, consider the differential equation

y′′ = α0p(t)|y|σ0y′|σ1 exp
(
R
(∣∣ ln |πω(t)yy′|∣∣)), (5)

where α0, p are the same as in a general equation, and R is continuously differentiable, with a
monotone derivative, regularly variable at infinity function return order µ, 0 < µ < 1.

Theorem 2. Let
lim
t↑ω

R(| ln |πω(t)||)J(t)
πω(t) ln |πω(t)|J ′(t)

= 0.

Then, for the existence of Pω(Y0, Y1, 0)-solutions to the equation (5) for which there is a finite or
infinite boundary

lim
t↑ω

πω(t)y
′′(t)

y′(t)
,

the following conditions and inequalities are sufficient and sufficient

lim
t↑ω

y00|J(t)|
1−σ1

1−σ0−σ1 = Y0, lim
t↑ω

y01|I(t)|
1

1−σ1 = Y1,

lim
t↑ω

πω(t)I
′(t)

I(t)
= σ1 − 1, lim

t↑ω

πω(t)J
′(t)

J(t)
= 0,

I(t)

y01(1− σ1)
> 0,

y00y
0
1(1− σ1)J(t)

1− σ0 − σ1
> 0 as t ∈ ]a, ω[ .

In addition, for each such solution, the following asymptotic representations hold as t ↑ ω

y(t)

| exp(R(| ln |πω(t)y(t)y′(t)||))|y(t)|σ0 |
1

1−σ1

=
1− σ0 − σ1

1− σ1
|1− σ1|

1
1−σ1 J(t)[1 + o(1)],

y(t)

y′(t)
=

(1− σ0 − σ1)J(t)

(1− σ1)J ′(t)
[1 + o(1)],

where

I(t) = α0

t∫
Aω

p(τ) dτ, J(t) =

t∫
Bω

|I(τ)|
1

1−σ1 dτ,

the integration limits Aω, Bω are chosen so that the corresponding integrals are either 0, or ∞.

For differential equations of more specific type, one can get more detailed information about
Pω(Y0, Y1, 0)-solutions to the equation (3).

In [4] it was considered the differential equation

y′′ = mtσ1−2 exp(k lnγ t)|y|σ0 |y′|σ1 exp
((
| ln |yy′|

)µ) (6)

on the interval [t0; +∞[ (t0 > 0), where m ∈ ]−∞, 0[ , k ∈ ]0,+∞[ , γ, µ ∈ ]0; 1[ , σ0, σ1 ∈ R, σ0+σ1 ̸=
1, σ1 ̸= 1 is the equation of the form (1), where α0 = signm = −1, p(t) = mtσ1−2 exp(k lnγ t),



296 A. Vorobiova

φ0 = |y|σ0 , φ1 = |y|σ1 , R(z) = zµ. This function φ1 satisfies the condition S. Let us consider the
case, when ω = Y0 = Y1 = +∞.

If µ − γ < 0, then for the existence of P+∞(+∞,+∞, 0)-solutions of the equation (6) the
following condition

1− σ0 − σ1 > 0 (7)
is necessary and sufficient.

Moreover, for each such solution the following asymptotic representations take place as t → +∞

y
1−σ0−σ1

1−σ1 exp
( | ln |y(t)y′(t)||µ

σ1 − 1

)
=

1− σ0 − σ1
γk

exp
( k lnγ t

1− σ1

)
ln1−γ t[1 + o(1)],

y(t)

y′(t)
=

(1− σ0 − σ1)γk

(1− σ1)2
lnγ−1 t

t
[1 + o(1)].

Let us now consider the case µ−γ > 0. In this case for µ−γ > 0 for existence of P+∞(+∞,+∞, 0)-
solutions to the equation (6) the condition (7) is necessary and sufficient. Moreover, each such
solution satisfies the next asymptotic representations as t → +∞

y
1−σ0−σ1

1−σ1 exp
( | ln |y(t)y′(t)||µ

σ1 − 1

)
=

1− σ0 − σ1
µ(1− σ1)

exp
( k lnγ t

1− σ1

)
ln1−µ t[1 + o(1)],

y′(t)

y(t)
=

µ

σ0 + σ1 − 1
tσ1−2 lnγ−1 t[1 + o(1)].

In case µ = γ we obtain that for the existence of P+∞(+∞,+∞, 0)-solutions to the equation (6)
the condition (7) together with the condition

(1− σ1 − k)(1− σ1) > 0

is necessary and sufficient. Moreover, each such solution satisfies the next asymptotic representa-
tions as t → +∞

y
1−σ0−σ1

1−σ1 exp
( | ln |y(t)y′(t)||µ

σ1 − 1

)
=

1− σ0 − σ1
µ(1− σ1 − k)

exp
( k lnγ t

1− σ1

)
ln1−µ t[1 + o(1)],

y′(t)

y(t)
=

µ(1− σ1 − k)

(σ0 + σ1 − 1)(1− σ1)
tσ1−2 lnγ−1 t[1 + o(1)].
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