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We consider the following stochastic functional-differential neutral equation on Hilbert space
with delay parameter h € (0, 1]:

d(u(t) + g(u(t — h),u(?))) = (f(ul = h),u(t)) + Au(t)) dt + o(u(t — h),u(t)) dW(t), t =0, (0.1)
u(t) = ¢(t), t e [~h,0]. (0.2)

Here A is an inifinitesimal generator of a strong continuous semigroup {S(t),t > 0} of bounded
linear operators in real separable Hilbert space H. The noise W(t) is a Q-Wiener process on
separable Hilbert space K. For any h € (0,1) denote C}, := C(|—h,0], H), a space of continuous
H-valued functions with a norm.

[¢llcy, == sup lo(t)|n-
te[—h,0]

Below we denote || - || as || - ||. The functions f and g map H x H into H and o : H x H — LY,
where L) = L(Ql/QK, H) is the space of Hilbert—Schmidt operators from Q'?K to a H. Finally,
¢ : [—h,0] x Q — H is the initial condition on probability space (2, F, P).

We consider the limiting behavior of invariant measures of equation (0.1), (0.2) when delay
parameter h converges to zero.

1 Preliminaries

Let (2, F, P) be a complete probability space equipped with a normal filtration { F;; ¢ > 0} generated
by the Q-Wiener process W on (2, F, P) with the linear bounded covariance operator such that
tr@ < oo.

We assume that there exist a complete orthonormal system e in K and a sequence of nonneg-
ative real numbers \p such that Qe = Areg, k=1,2,..., and

oo
Z A < 00.
k=1
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o0
The Wiener process admits the expansion W (t) = > \iSk(t)ex, where Si(t) are real valued Brow-
k=1

nian motions mutually independent on (£2, F, P).

Let Uy = Q (U) and L% = Ly(Uy, H) be the space of all Hilbert—Schmidt operators from Uy to
H with the inner product (®, ¥)L3 = tr [@Q¥*] and the norm [®]|zg , respectively.

Lemma 1.1 (Stochastic Gronwall Lemma [5,10]). Let Z, H be nonnegative stochastic processes
adapted to filtration, M be a continuous local martingale. Then:

1. If M(0) = 0 and there exist K,C > 0 such that

t
/ sup (Z(u))ds+ M(t) + C,
u€(0, s]

0

then for all 0 < o < 1 there exist Cy,Co > 0 such that

E( sup (Z(t))o‘) < 0C YT
t€[0,T]

2. If M(0) =0, H(0) = 0 and there exists K > 0 such that

t
/sup u))ds + M(t) + H(t),
u€l0,s]

0

then for all0 < o < 1 and 8 > % there exist Cs,Cy > 0 such that

E<t§Eé% }(zu»a) < CyeO 7 (B s ]H<t>)”3)“/ g

3. If H(t) is non-negative, then for all 0 < o < 1 there exists Co > 0 such that

E( sup (Z(t))a) < (C’a—i—l)eo‘KT(E( sup H(t))”‘).

te[0,7T] t€[0,T

Definition 1.1 (Mild solution). A continuous F; adapted stochastic process u : [—h,T] x Q@ — H
is a mild solution for (0.1), (0.2) for ¢ € [0,T] if it satisfies the integral equation

u(t) = S(t)(¢(0) + g(d(=h), $(0))) — g(ult — h), u(t)) — /AS(t = s)g(u(s = h), u(s)) ds

+ /S (t—s) —h),u(s))ds + / S(t —s)o(u(s —h),u(h))dW (s),
0 0

and u(t) = ¢(t) a.s. for t € [—h,0].

A non-delay equation will look as follows

d(u(t) + g(u(t),u(®))) = (f(u®),u(®)) + Au(t)) dt + o(u(t),u(t)) dW(t), t>0, (1.1)
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For starting function ¢ and delay parameter h € (0,1) we denote mild solution of equation (0.1),
(0.2) as u”(t, $). For starting point v we denote mild solution of equation (1.1), (1.2) as u®(t, v).

Let (Z,d) be a polish space with metric d. Suppose for every p € (0,1] and ¢ € C([—p,0], Z),
{XP*(t,0,¢),t > 0} is a stochastic process in the state space C(|—p,0],Z) with initial value ¢ at
initial time 0. Similarly, assume for every = € Z, {X°(¢,0,z),t > 0} is a stochastic process in the
state space Z with initial value x at initial time 0. We also assume that the probability transition
operators of X° are Feller.

UCy(Z) is the Banach space of all bounded uniformly continuous functions defined on Z with
uniform norm.

Given p € (0,1], define an operator T, : C([—p,0],Z) = Z by T,¢ = ¢(0), and 7, : C([-1,0], Z)
— C(1=p,0),Z) by Ty(s) = 6(s).

Condition (C1). For every compact set K C C([—1,0],Z), t > 0, and n > 0,

lim sup P(d(Xp(t,O, ¢)(0),X0(t,0,Tp¢)) > 77) =0.
=0 6eT, K

Theorem 1.1 ([4]). Assume (C1) holds true and p, € (0,1]. Let u* be an invariant measure of
XPin C([—pn, 0], Z) for alln € N. Suppose {uPn}22 | is tight in a sense that for every e > 0 there
exists compact set K1 C C([—1,0],Z) such that

pr (Tp, K1) > 1 — ¢, (1.3)

for alln € N. Then we have:

[e.9]

1. The sequence {uf™ o Tp_nl}n:1 1s tight;

2. If pp, = 0 and p is a probability measure in Z such that puf™ o Tp_n1 — 1 weakly, then p must
be an invariant measure of X°.

Proof.
1. Given € > 0, let K C C([-1,0],Z) be the compact set satisfying (1.3). Denote by Ky =
{#(0): ¢ € K1}. Then K is a compact subset of Z and for all n € N,

P o Ty H(Ko) >y (Tp, K1) > 1 - ¢, (1.4)

which shows that {u" o T, !} is tight.

2. We need to prove that for all ¢ € UC,(Z) and t > 0,
[ Box.0,2)0dn) = [ w(anda). (1.5)
Z A
One can notice that
[owwer ot = [ wm, e i
Z C([~pn,0],2)

= [ s@axmeoowrdc= [ w090 de

C([fpn,o},Z) C([prhO]:Z)
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which with (1.4) yields that
] [Eec o o T, o) — [ vt o7,
7 7

< / E|6(XO(t,0,T,,€)) — w(X?"(£,0,€)(0))|u (d€)
C([=pn,01,2)

< / E[(XO(£,0,T,,£)) — (X7 (t,0,€)(0))|*" (d€)

Ton K1

+ / E|¢(X°(t,0,T),8)) — (X (t,0,£)(0))|u (d€)
C([=pn,0,2)\Tp,, K1

< / Bl (X°(10,T),8)) — b(X (.0.)(0) | (d) + 2esup [w(a)].  (L6)
’TPnKl

Since 1 € UCy(Z) and for € > 0, there exists 7 > 0 such that
[Y(u) —¥(v)] <e,

if d(u,v) < n. Then we get

[ BB 00.7,,6) — wx (0, 0) i ()

7—PnK1

_ /( / B(XO(E, 0, T, €)) — (X7 (£, 0, ) (0)) [ P dw>) (de)
Ton K1 {d(9(XO0(t,0,Tp,8)),9(XPn (£,0,£)(0)))>n}

i /( / WB(XO(t,0, T, )~ (X7 (£,0,€)(0)) | P >) (d€)

Ton K1 {d(@(XO(£,0,Tp,€)) 1 (X P (£,0,€)(0)))<n}

<2supli(@)|- sup P({d(0(X°(1,0.7,, ), 0(X” (1,0,)(0) 2 n}) +e. (L7)

IEGZ fe%nKl

Then, from (C1) and (1.6), (1.7) we can deduce that

< e+ 2 suplu(a)),
z€Z

‘ / E¢(XO(t,0,2))u’" o T, ! (dx) — / Y(x)pr o T, (da)
Z Z

and since € > 0 is arbitrary and p" o T - I — 1 weakly, we get that p is an invariant measure for
X0 by (1.5). O
2 Conditions on functions
Condition (H1). If 0(—A) is the spectrum of (—A), we have

Reo(—A) > 4§ >0,

and A~! is compact in H.
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It follows from [6] that for 0 < o < 1 one can define fractional power (—A)“, which is closed
linear operator with domain D(—A)“. We denote H, to be a Banach space D(—A)* with the norm

[ulla := [(=A) %,

which is equivalent to the graph norm of (—A)®. This way Hy = H. It follows from [3, Section 1.4]
that if A~! is compact, then S(t) is compact for ¢ > 0. Next, it follows from [6, Theorem 3.2,
p. 48] that under assumption (H1) semigroup S(t) is continuous with respect to uniform operator
topology for ¢ > 0. Thus, using [6, Theorem 3.3, p. 48|, we may conclude that the operator A has
a compact resolvent. Consequently, from [3, Theorem 1.4.8], we have the following result.

Proposition 2.1. Under condition (H1) the embedding H, C Hg is compact if 0 < 3 < o < 1.

Proposition 2.2 ([3, Theorem 1.4.3]). Under condition (H1), for every a > 0 there exists Co, > 0
such that
I(=A)*S(t)|| < Cat™ ™™,

fort > 0. In particular,
IS < Coe™,

fort > 0.
Proposition 2.3 ([1]). Let p > 2, T > 0 and let ® be an LS valued, predictable process such that

T
E/||<I>(t)||7zo dt < o,
2
0

Then there is a constant My > 0 such that

/St—s §) dW (s)

E sup <MTE/H<I> ||

te[0,7]
Condition (H2). The mappings f : H x H — H and o : H x H — L§ are continuous and satisfy:
1. There exist a positive constant K > 0 such that
I1f (s )| + [lo(u, v)ll g < K (1 + Jlull + [[o]])
for all u,v € H.
2. There exist a positive constant L > 0 such that
1 (u,0) = f(ur, v0)II” + o (u, ) = o(ur, v0) 79 < L1+ [lu = w|* + o = v1]]?)

for all w,v,uy,v1 € H.

Condition (H3). There exist positive constants a € (0,1) and M, € (0,1) such that for all
u,v,u1,v1 € H the function g : H x H — H,, satisfies

lg(u, v) = g(ur, 1) %, < My([lu —w|® + [|lo = vi]?).

Condition (H4). The initial condition ¢ : [—h,0] x Q@ — H is an Fp-measurable random variable,
independent of W, which has continuous trajectories.

Remark. It is easy to see from [9], that under conditions above equation (0.1), (0.2) have unique
mild solution, and this solution have an invariant measure.
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3 Main results

Lemma 3.1. Suppose that (H1)—(H4) hold. Then for every compact set K in Cp, t >0 andn >0
the following holds

lim sup P(Hu (t, &) — O(t,Thg)H 217) =0.
h—)OgeTh

Sketch of the proof.
Step 1. Rewrite solutions u"(¢, &) and u°(t, T),€) using Definition 1 as follows

uP(t,€) = S(t)(£(0) — g(&(—h),£(0)))

t

+g(u(t — &), u"(t,€)) - /AS(t — 8)g(u"(s — h, €),u"(s,€)) ds

0

+/S(t—s)f(uh(s—h,g),uh(s,f)) ds—i—/S(t—s)a(uh(s—h,g),uh(s,f)) dW (s),
0 0

and
u®(t, Thé) = S()(Thé — g(Thé, Thé))

t
+ g(u’(t, ), v’ (t, The)) — /AS(t — 8)g(u’(s, Tp€),u’(s, Tht)) ds
¢ t
+/S (t—s9)f(u' (s, ThE),u (s, ThE) d5+/S (t — 8)o (u’(s, Thé), u’ (s, Th€)) dW (s).
0 0

Step 2. Estimate E|ju”(t,&) —u®(t, T,€)||? from conditions (H1)-(H4) and Propositions 2.1-2.3 and
using Lemma 1.1 (Stochastic Gronwall Lemma).

Step 3. Proposition of the lemma is a direct consequence of Chebyshev inequality. O

Given h € [0,1], let p*(r,&;t, -) be the transition probability function of u” (¢, &) with 0 < r <t
and € € Cj,. Denote by M" —collection of all limit points of probability measure

n

1
o [0t
n

0
Then we have the following result.
Theorem 3.1. Suppose that (H1)—(H4) hold. Then:

1. The union |J M" is tight;
he(0,1]

2. If hy — 0 and ph» € M then there exist a subsequence hin) and an invariant measure
1’ € MO such that p*m o Th:i , 10 weakly.
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Proof.

1. Direct consequence of [9)].

2. By first item we know that {u""} is tight and hence by Theorem 1.1 and Lemma 3.1 we infer

that sequence {u"n o T, Ll};‘f:l is also tight. Consequently, there exists a subsequence h,,, and
a probability measure p* such that g oT h ! — u* weakly. By Theorem 1.1 and Lemma 3.1
nk

we find that p* is invariant and p* € M. O

As an immediate corollary of Theorem 3.1, we have the following result.

Theorem 3.2. Suppose that (H1)-(H4) hold and h,, — 0. Then, if u"» and u° are the unique
invariant measures of equations (0.1), (0.2) and (1.1), (1.2) correspondingly, then p — u° weakly.
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