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Abstract

This work generalizes an approach for approximating stochastic delay systems of integral
type by stochastic systems without delay. The proposed scheme is based on expanding the
solution using Taylor’s formula with respect to the delay parameter h, where [−h, 0] is the delay
interval, and provides convergence results in the mean square metric.

Introduction

Stochastic delay differential equations are mathematical models of real-world processes in the nat-
ural sciences that evolve under the influence of random factors and whose future behavior depends
on past states. It is well known [2] that continuous (or integrable) functions serve as initial data
here, making the phase space of such equations infinite-dimensional, which significantly complicates
their study. One possible approach to investigating these equations is the scheme proposed in [1],
which approximates the initial problem for systems with delay by a Cauchy problem for systems of
ordinary differential equations (ODEs). As the dimension of such systems increases, their solutions
approach the solutions of the original initial problem for the delayed system in the uniform metric.
This scheme is based on an old idea by M . M. Krasovskii, related to expanding the solution of the
delayed system using Taylor’s formula with respect to h, where [−h, 0] is the delay interval.

This work generalizes such an approach to stochastic systems.

1 Problem statement and the main result

Let (Ω,F , P ) be a complete probability space with a filtration {Ft}, t ≥ 0, relative to which a
scalar Wiener process W (t), t ≥ 0, is adapted. Without loss of generality, and to simplify the
exposition, we will assume it is one-dimensional.
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Let h > 0 represent the delay interval, on which a continuous deterministic initial function ϕ(t)
is defined. Denote by C = C([−h, 0], Rd) the class of continuous d-dimensional vector functions
ϕ : [−h, 0] → Rd with the supremum norm

∥ϕ∥ = sup
t∈[−h,0]

|ϕ(t)|,

where | · | denotes the Euclidean norm in Rd.
We consider the following initial value problem for a system of stochastic functional-differential

equations: 
dx(t) = f

(
t, x(t),

0∫
−h

x(t+ θ) dθ

)
dt+ σ

(
t, x(t),

0∫
−h

x(t+ θ) dθ

)
dW (t),

x(t) = ϕ(t), t ∈ [−h, 0],

(1.1)

where the functions f, σ : [0, T ]×Rd×Rd → Rd are defined, continuous in all variables, and satisfy
the following conditions: there exists a constant L > 0 such that:

(1) Linear Growth Condition:

|f(t, x, y)|2 + |σ(t, x, y)|2 ≤ L
(
1 + |x|2 + |y|2

)
,

for any t ∈ [0, T ], x, y ∈ Rd.

(2) Lipschitz Condition:∣∣f(t, x1, y1)− f(t, x2, y2)
∣∣2 + ∣∣σ(t, x1, y1)− σ(t, x2, y2)

∣∣2 ≤ L
(
|x1 − x2|2 + |y1 − y2|2

)
.

We will understand the solution to the initial value problem (1.1) in the standard sense [3, p. 61].

Definition 1.1. An Ft-adapted stochastic process with continuous trajectories is called a strong
solution to the initial value problem (1.1) on [0, T ] if:

1. x(t) = ϕ(t), t ∈ [−h, 0];

2. x(t) = ϕ(0) +

t∫
0

f

(
s, x(s),

0∫
−h

x(s+ θ) dθ

)
ds+

t∫
0

σ

(
s, x(s),

0∫
−h

x(s+ θ) dθ

)
dW (s),

with probability 1.

Note that equation (1.1) induces abstract mappings from the space C to Rd of the following
form:

f1(t, ϕ) = f

(
t, ϕ(0),

0∫
−h

ϕ(θ) dθ

)
, σ1(t, ϕ) = σ

(
t, ϕ(0),

0∫
−h

ϕ(θ) dθ

)
.

From conditions (1) and (2), we have:

|f1(t, ϕ)|2 + |σ1(t, ϕ)|2 ≤ L
(
1 + (1 + h2)∥ϕ∥2

)
,

|f1(t, ϕ)− f1(t, ψ)|2 + |σ1(t, ϕ)− σ1(t, ψ)|2 ≤ L
(
(1 + h2)∥ϕ− ψ∥2

)
.
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Therefore, the conditions of the existence and uniqueness theorem for a strong continuous
solution of problem (1.1) on [0, T ] are satisfied, and sup

t∈[0,T ]
E |x(t)|2 <∞.

Based on the system of stochastic functional differential equations (1.1), we construct a system of
stochastic differential equations without delay, which we call the approximating system, as follows.
Fix m ∈ N and partition the interval [−h, 0] with points −hj

m , j = 0,m, into m parts.
Define functions zj(t) ∈ Rd on [0, T ] as solutions to the following Cauchy problems:

dz0(t) = f
(
t, z0(t),

h

m

m∑
j=1

zj(t)
)
dt+ σ

(
t, z0(t),

h

m

m∑
j=1

zj(t)
)
dW (t),

dzj(t) =
m

h

[
zj−1(t)− zj(t)

]
, j = 1,m,

zj(0) = ϕ
(
− hj

m

)
, j = 0,m.

(1.2)

Definition 1.2. System (1.2) is called an approximating system for system (1.1) in the mean
square sense on [0, T ] if

sup
t∈[0,T ]

E
∣∣∣x(t− hj

m

)
− zj(t)

∣∣∣2 −→ 0, m→ ∞, j = 0,m.

The main result of this work is the following theorem.

Theorem 1.1. Under conditions (1) and (2) system (1.2) is an approximating system in the mean
square sense for the initial problem (1.1), uniformly over j = 0,m, i.e.,

sup
j=0,m

sup
t∈[0,T ]

E
∣∣∣x(t− hj

m

)
− zj(t)

∣∣∣2 −→ 0, m→ ∞.

2 Proof of the main result
To prove the theorem, we need a lemma about estimating the mean square modulus of continuity
of the solution to problem (1.1).

Lemma 2.1 (On the Modulus of Continuity). Under conditions (1) and (2), for the solution of
the initial problem (1.1), the following relation holds:

sup
t1∈[−h,T ]

E sup
t2∈[t1,t1+l]

|x(t2)− x(t1)|2 ≤ C
(
T, ∥ϕ∥, h,

)
−→ 0, l → 0.

Proof. Since the solution to the initial problem (1.1) exists on [0, T ] and has a bounded second
moment, by the linear growth condition, we have

|x(t)|2 ≤ 3

(
|ϕ(0)|2 +

∣∣∣∣
t∫

0

f

(
s, x(s),

0∫
−h

x(s+ θ) dθ

)
ds

∣∣∣∣2

+

∣∣∣∣
t∫

0

σ

(
s, x(s),

0∫
−h

x(s+ θ) dθ

)
dW (s)

∣∣∣∣2
)
. (2.1)

Next, note the inequality

sup
t∈[0,T ]

sup
θ∈[−h,0]

|x(t+ θ)|2 ≤ ∥ϕ∥2 + sup
t∈[0,T ]

|x(t)|2. (2.2)
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Considering (2.2), the Cauchy–Bunyakovsky inequality and using maximal inequality for stochastic
integrals, from (2.1) we get

E sup
s∈[0,t]

|x(s)|2 ≤ 3|ϕ(0)|2 + 3T 2L∥ϕ∥2h2 + 3T 2L

+ 6TL

t∫
0

E sup
τ∈[0,s]

|x(τ)|2 dτ + 12L

t∫
0

(
1 + h2∥ϕ∥2 + h2E sup

τ∈[0,s]
|x(τ)|2

)
dτ.

Applying Gronwall’s inequality, we obtain

E sup
s∈[0,t]

|x(s)|2 ≤ C3

(
T, ∥ϕ∥, h

)
. (2.3)

Next, if t1 ≥ 0, we have

E sup
t∈[t1,t1+l]

|x(t)− x(t1)|2

≤ 2

(
l

t1+l∫
t1

L

(
1 + E |x(t)|2 + E

∣∣∣∣
0∫

−h

x(t+ θ) dθ

∣∣∣∣2) dt
+ E sup

t∈[t1,t1+l]

∣∣∣∣
t∫

t1

σ

(
s, x(s),

0∫
−h

x(s+ θ) dθ

)
dW (s)

∣∣∣∣2
)
.

Using (2.3) and the previous inequality, and considering (2.2), we obtain

E sup
t∈[t1,t1+l]

|x(t2)− x(t1)| ≤ C
(
T, ∥ϕ∥, h, l

)
−→ 0, l → 0.

If t1, t1 + l ∈ [−h, 0], then, by the definition of the solution, we have

E sup
t2∈[t1,t1+l]

|x(t2)− x(t1)|2 = sup
t2∈[t1,t1+l]

|ϕ(t2)− ϕ(t1)|2 −→ 0, l → 0,

due to the uniform continuity of the function ϕ(t), which completes the proof of the lemma.

Continuation of the Proof of Theorem 1.1: Let us proceed with the proof of the main theorem. It
is well known that the trajectories of the solution to (1.1) are continuous but nowhere differentiable
functions, so we smooth the solution as follows. For any sufficiently small µ > 0, we set

xµ(t) =
1

µ

t+h∫
t

x(s) ds, t ∈ [−h, T ],

where, for t ≥ T , we extend the process x(s) by a constant random variable due to continuity. It
is obvious that the process xµ(t) has smooth trajectories with probability 1, and

ẋµ(t) =
1

µ

[
x(t+ h)− x(t)

]
.

Using the mean value theorem, we have

sup
t∈[−h,T ]

E |x(t)− xµ(t)|2 = sup
t∈[−h,T ]

E |x(t)− x(θ)|2,
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where θ = θ(ω) is a random variable with θ ∈ [t, t+ µ]. Therefore,

sup
t∈[−h,T ]

E |x(t)− x(θ)|2 ≤ sup
t∈[−h,T ]

E sup
s∈[t,t+µ]

|x(t)− x(s)|2 ≤ C
(
T, ∥ϕ∥, h, µ

)
−→ 0, µ→ 0,

by the lemma on the modulus of continuity. Let yj(t) = x(t− hj
m ), and introduce the differences

Nj(t) = E |yj(t)− zj(t)|2, j = 0,m,

where zj(t) are solutions of system (1.2). Note that by the classical existence and uniqueness
theorems for the Cauchy problem for systems of stochastic equations without delay, considering
conditions (1) and (2), we obtain that system (1.2) for each natural m has a unique strong solution
defined on [0, T ]. The proof now proceeds through several steps.

Step 1. We decompose (1.2) into two systems and represent its solution as a sum:

zj(t) = z
(1)
j (t) + z

(2)
j (t),

where z(1)j is the solution of the system

h

m
ż
(1)
0 = x(t)− z

(1)
1 (t),

h

m
ż
(1)
j = z

(1)
j−1(t)− z

(1)
j (t), j = 1,m,

z
(1)
j (0) = x

(
− hj

m

)
,

and z
(2)
j is the corresponding solution of

h

m
ż
(2)
1 = −z(2)1 (t) + z0(t)− x(t),

h

m
ż
(2)
j = z

(2)
j−1(t)− z

(2)
j (t), j = 1,m,

z
(2)
j (0) = 0.

For brevity, denote the norm
∥ξ∥2 =

√
E ξ2 .

Then,
sup

t∈[0,T ]

∥∥∥x(t− hj

m

)
− zj(t)

∥∥∥
2
≤ sup

t∈[0,T ]
∥yj(t)− z

(1)
j (t)∥2 + sup

t∈[0,T ]
∥z(2)j (t)∥2. (2.4)

Step 2. At this step, we estimate the first term in (2.4). We show that the following inequality
holds:

sup
t∈[0,T ]

∥yj(t)− z
(1)
j (t)∥2 ≤ α

(
T, ∥ϕ∥, h, h

m

)
−→ 0, m→ ∞. (2.5)

Step 3. To estimate the second term in (2.4), using the method of variation of constants, we obtain
the inequality

E z(2)1 (t) ≤ sup
t∈[0,T ]

E |z0(t)− x(t)|2 = EN0(t).
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Step 4. We estimate z0(t)− x(t). From the Lipschitz condition (2), we have

EN0(t) ≤ 2(T + 1)

t∫
0

[
E |x(s)− z0(s)|2

]
+ E

∣∣∣∣
0∫

−h

x(s+ θ) dθ − h

m

m−1∑
j=0

zj(s)

∣∣∣∣2 dt.
However,

0∫
−h

x(s+ θ) dθ − h

m

m∑
j=1

zj(s) =

m−1∑
j=0

h

m
x(s+ ρj)−

h

m

m∑
j=1

zj(s),

where ρj(ω) ∈ (− h
m (j + 1),− h

m j) by the mean value theorem. Then

h

m

m−1∑
j=0

(
s(s+ ρ)− x

(
s− hj

m

))
+
h

m

m∑
j=1

(
x
(
s− hj

m

)
− zj(s)

)
,

so

EN0(t) ≤ 2(T + 1)

×
t∫

0

[
EN0(s)+

2h2

m2

(
E
( m∑
j=1

∣∣∣x(s+ ρ)−x
(
s−hj

m

)∣∣∣)2+E
( m∑
j=1

∣∣∣x(s−hj

m

)
−zj(s

)∣∣∣)2)] ds. (2.6)

Let us estimate the sums in inequality (2.6). For the first of them, by the lemma on the modulus
of continuity, we have

E
( m∑

j=1

∣∣∣x(s+ ρ)− x
(
s− hj

m

)∣∣∣)2

≤ m

m∑
j=1

E
∣∣∣x(s+ ρ)− x

(
s− hj

m

)∣∣∣2 ≤ m2C
(
T, ∥ϕ∥, l, h

m

)
. (2.7)

For the second sum, we have the estimate

E
( m∑

j=1

∣∣∣x(s− hj

m

)
− zj(s)

∣∣∣)2

≤ m

m∑
j=1

E
∣∣∣x(s− hj

m

)
− zj(s)

∣∣∣2 ≤ m2α2
(
T, ∥ϕ∥, h, h

m

)
, (2.8)

under estimate (2.5). Then, from (2.6)–(2.8), we get

EN0(t) ≤ 2(T + 1)L

t∫
0

EN0(s) ds+ 2(T + 1)T2h2
(
C
(
T, ∥ϕ∥, l, h

m

)
+ α2

(
T, ∥ϕ∥, h, h

m

))
.

From this, using Gronwall’s lemma, we obtain the estimate

EN0(t) ≤ 2(T + 1)T2h2
(
C
(
T, ∥ϕ∥, l, h

m

)
+ α2

(
T, ∥ϕ∥, h, h

m

))
e2(T+1)LT .

This last estimate proves the theorem.
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