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In the present report, we give conditions guaranteeing, respectively, the existence and uniqueness
of a solution to the Cauchy initial value problem

u′(t) = f(t, u(τ(t))), (1)
u(0) = c0, (2)

defined on the interval R+ = [0,+∞[ .
Everywhere below it is assumed that c0 is a positive number, τ : R+ → R+ is a measurable and

bounded on every finite interval contained in R+ function, satisfying the inequality

τ(t) ≥ t for t ∈ R+ , (3)

while f : R+ × R → R is a function from the Carathéodory space.
We use the following notation and definitions.
Lloc(R+) is the space of real functions, defined on R+ , which are Lebesgue integrable on every

finite interval contained in R+ ;

f∗(t, y) = max
{
|f(t, x)| : |x| ≤ y

}
for t ∈ R+ , y > 0;

f∗(t, y) = min
{
|f(t, x)| : y ≤ x ≤ c0

}
for t ∈ R+ , 0 < y ≤ c0.

We say that a function f : R+ × R → R belongs to the Carathéodory space if f(t, · ) : R → R
is continuous for almost all t ∈ R+ ,

f( · , x) ∈ Lloc(R+) for x ∈ R,

and
f∗( · , y) ∈ Lloc(R+) for y ∈ R+ .

A solution to problem (1), (2) is sought in the space of functions u : R+ → R which are absolutely
continuous on every finite interval contained in R+ .

The solution u to problem (1), (2) is said to be vanishing at infinity if

lim
t→+∞

u(t) = 0.

If τ(t) ≡ t and on the set R+ × R the inequality

|f(t, x)| ≤ g(t)|x|+ h(t)
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is fulfilled, where g, h ∈ Lloc(R+), then, according to the Wintner theorem (see [5]), problem (1), (2)
has at least one solution in R+ and each maximally extended to the right solution to this problem
is defined on R+ .

In the general case, when inequality (3) holds and τ(t) ̸≡ t, Wintner’s condition does not
guarantee the solvability of problem (1), (2).

Moreover, the following proposition is valid.

Proposition 1. Let the function f admit the estimate

f(t, x) ≤ −g(t)|x| − h(t) for t ∈ R+ , x ∈ R,

where g, h ∈ Lloc(R+) are nonnegative functions. If, moreover, the function τ is nondecreasing and
the inequalities

lim sup
t→+∞

τ(t)∫
t

g(s) ds > 1, (4)

+∞∫
0

h(s) ds > c0 (5)

hold, then problem (1), (2) has no solution.

Proposition 2. Let the function f admit the estimate

f(t, x) ≥ g(t)|x| for t ∈ R+ , x ∈ R,

where g ∈ Lloc(R+) is a nonnegative function. If, moreover, the function τ is nondecreasing and
inequality (4) holds, then problem (1), (2) has no solution.

As examples, we consider the differential equations

u′(t) = −g(t)|u(τ(t))| − h(t), (6)
u′(t) = g(t)|u(τ(t))|+ h(t), (7)

where g, h ∈ Lloc(R+) are nonnegative functions.
Propositions 1 and 2 yield the following corollary.

Corollary 1. If inequalities (4) and (5) hold (inequality (4) holds), then problem (6), (2) (problem
(7), (2)) has no solution.

It is easy to see that if for some r > 0 the function f∗( · , r) is integrable on R+ and satisfies the
inequality

c0 +

+∞∫
0

f∗(t, r) dt ≤ r,

then problem (1), (2) has at least one solution.
The above Propositions 1 and 2, containing the sufficient conditions for the unsolvability of

problem (1), (2), concern the case, where

+∞∫
0

f∗(t, y) dt = +∞ for y > 0.
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In this case the questions on the solvability and unique solvability of the above mentioned problem
still remain unstudied (see, for example, [1–4,6] and the references therein). The results we obtained
fill this gap to some extent.

The following theorem is valid.

Theorem 1. If
f(t, 0) = 0, f(t, x) ≤ 0 for t > 0, x > 0, (8)

then problem (1), (2) has at least one nonnegative solution. And if along with (8) the condition

+∞∫
0

f∗(t, y) dt = +∞ for 0 < y ≤ c0 (9)

holds, then that solution is vanishing at infinity.

Sketch of the Proof of Theorem 1. Since the function τ is bounded on every finite interval, there
exists a sequence of positive numbers (ak)

+∞
k=1 such that for every natural k in the interval [0, ak]

the inequality
1 + τ(t) < ak+1

holds.
Denote

τk(t) =

{
τ(t) + 1

k for 0 ≤ t ≤ ak,

ak+1 for ak < t ≤ ak+1,

and for each k in the interval [0, ak+1] consider the Cauchy problem

u′(t) = f(t, u(τk(t))), (10)
u(ak+1) = x, (11)

where x ∈ R+ .
Based on condition (8), it can be proved that for every x ∈ R+ problem (10), (11) in the interval

[0, ak+1] has a unique solution u( · ;x) which continuously depends on the parameter x. Also,

u(t; 0) ≡ 0,

and
u(t, x) ≥ x for 0 ≤ t ≤ ak+1, x > 0.

Since
u(0; 0) = 0, lim

x→+∞
u(0;x) = +∞,

there exists a positive number xk such that

u(0;xk) = c0.

Therefore, for every natural k problem (10), (2) has a solution uk such that

0 < uk(t) ≤ c0 for 0 ≤ t ≤ ak+1,

|u′k(t)| ≤ f∗(t, c0) for almost all t ∈ (0, ak+1).
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According to these last two inequalities and the Arzelà-Ascoli lemma, the sequence (uk)
+∞
k=1 contains

a subsequence (ukm)
+∞
m=1 which is uniformly converging on every finite interval contained in R+ .

Evidently, the function
u(t) = lim

m→+∞
ukm(t) for t ∈ R+

is a nonnegagive, nonincreasing solution to problem (1), (2). In addition,

0 ≤ u(t) ≤ c0 −
t∫

0

f∗(s, δ) ds for t ∈ R+ ,

where
δ = lim

t→+∞
u(t).

From the last inequality it follows that if condition (9) is satisfied, then δ = 0, i.e. the solution u
is vanishing at infinity.

Remark 1. If condition (8) holds and the function τ satisfies a more stringent condition than (3)

ess inf
{
τ(s)− s : 0 ≤ s ≤ t

}
> 0 for t > 0, (12)

then every nonnegative solution to problem (1), (2) is positive. It should be noted that condition
(12) cannot be replaced by the condition

ess inf
{
τ(s)− s : t0 ≤ s ≤ t

}
> 0 for t ≥ t0,

no matter how small the positive number t0 is. Indeed, if

0 < λ < 1, α = (1− λ)−1, p = α c1−λ
0 /t0,

τ(t) =

{
t for 0 ≤ t < t0,

t+ 1 for t ≥ t0,

then the function

u(t) =

{
c0(1− t/t0)

α for 0 ≤ t < t0,

0 for t ≥ t0

is a nonnegative but not positive solution to the differential equation

u′(t) = −p|u(τ(t))|λ sgn(u(τ(t)))

under the initial condition (2).

Remark 2. According to Proposition 1, condition (8) in Theorem 1 cannot be replaced by the
condition

f(t, x) ≤ 0 for t ∈ R+ , x ∈ R+ ,

i.e. the requirement
f(t, 0) ≡ 0

cannot be removed from (8).



REPORTS OF QUALITDE, Volume 3, 2024 225

As an example, we consider the differential equation

u′(t) = −
n∑

i=1

pi(t)fi(u(τ(t))), (13)

where pi ∈ Lloc(R+) (i = 1, . . . , n), and fi : R → R (i = 1, . . . , n) are continuous functions.
Theorem 1 implies the following corollary.

Corollary 2. Let the functions pi and fi (i = 1, . . . , n) be nonnegative in R+, and

fi(0) = 0 (i = 1, . . . , n). (14)

Then problem (13), (2) has at least one nonnegative solution. And if along with the above conditions
the following conditions

+∞∫
0

pm(t) dt = +∞, fm(x) > 0 for x > 0 (15)

are satisfied for some m ∈ {1, . . . , n}, then that solution is vanishing at infinity.
So far we have been able to prove the unique solvability of problem (1), (2) only in the case

where τ is a step function of the type

τ(t) = tk for tk−1 < t ≤ tk (k = 1, 2, . . . ), (16)

where t0 = 0, and (tk)
+∞
k=1 is some increasing and unbounded sequence of positive numbers.

In particular, the following theorem is proved.
Theorem 2. Let the function τ have the form (16), and let the function f be nonincreasing in the
second argument and satisfy the equality

f(t, 0) = 0 for t ∈ R+ .

Then problem (1), (2) has a unique solution, admitting the representation

u(t) = ck −
tk∫
t

f(s, ck) ds for tk−1 ≤ t ≤ tk (k = 1, 2, . . . ),

where (ck)
+∞
k=1 is a sequence of positive numbers such that

ck −
tk∫

tk−1

f(s, ck) ds = ck−1 (k = 1, 2, . . . ).

Corollary 3. Let the function τ have the form (16), let the functions pi (i = 1, . . . , n) be non-
negative, and let the functions fi (i = 1, . . . , n) be nonnegative and satisfy equalities (14). Then
problem (13), (2) has a unique solution, admitting the representation

u(t) = ck +

n∑
i=1

fi(ck)

tk∫
t

pi(s) ds for tk−1 ≤ t ≤ tk (k = 1, 2, . . . ),

where (ck)
+∞
k=1 is a sequence of positive numbers such that

ck +

n∑
i=1

fi(ck)

tk∫
tk−1

pi(s) ds = ck−1 (k = 1, 2, . . . ).
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Remark 3. It is evident that if the conditions of Theorem 2 (of Corollary 3) are satisfied, then a
solution to problem (1), (2) (to problem (13), (2)) is positive and vanishes at infinity if

+∞∫
0

f(t, y) dt = −∞ for y > 0

(if for some m ∈ {1, . . . , n} conditions (15) are satisfied).
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