Initial Value Problem on an Infinite Interval for First Order Advanced Differential Equations

Nino Partsvania^{1,2}

¹Andrea Razmadze Mathematical Institute of Ivane Javakhishvili Tbilisi State University Tbilisi, Georgia ²International Black Sea University, Tbilisi, Georgia E-mail: nino.partsvania@tsu.ge

In the present report, we give conditions guaranteeing, respectively, the existence and uniqueness of a solution to the Cauchy initial value problem

$$u'(t) = f(t, u(\tau(t))),$$
 (1)

$$u(0) = c_0, \tag{2}$$

defined on the interval $\mathbb{R}_{+} = [0, +\infty[$.

Everywhere below it is assumed that c_0 is a positive number, $\tau : \mathbb{R}_+ \to \mathbb{R}_+$ is a measurable and bounded on every finite interval contained in \mathbb{R}_+ function, satisfying the inequality

$$\tau(t) \ge t \text{ for } t \in \mathbb{R}_+,\tag{3}$$

while $f : \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$ is a function from the Carathéodory space.

We use the following notation and definitions.

 $L_{loc}(\mathbb{R}_+)$ is the space of real functions, defined on \mathbb{R}_+ , which are Lebesgue integrable on every finite interval contained in \mathbb{R}_+ ;

$$f^*(t,y) = \max\{|f(t,x)|: |x| \le y\}$$
 for $t \in \mathbb{R}_+, y > 0;$

$$f_*(t,y) = \min \{ |f(t,x)| : y \le x \le c_0 \} \text{ for } t \in \mathbb{R}_+, \ 0 < y \le c_0 \}$$

We say that a function $f : \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$ belongs to the Carathéodory space if $f(t, \cdot) : \mathbb{R} \to \mathbb{R}$ is continuous for almost all $t \in \mathbb{R}_+$,

$$f(\cdot, x) \in L_{loc}(\mathbb{R}_+)$$
 for $x \in \mathbb{R}$,

and

$$f^*(\cdot, y) \in L_{loc}(\mathbb{R}_+)$$
 for $y \in \mathbb{R}_+$

A solution to problem (1), (2) is sought in the space of functions $u : \mathbb{R}_+ \to \mathbb{R}$ which are absolutely continuous on every finite interval contained in \mathbb{R}_+ .

The solution u to problem (1), (2) is said to be vanishing at infinity if

$$\lim_{t \to +\infty} u(t) = 0$$

If $\tau(t) \equiv t$ and on the set $\mathbb{R}_+ \times \mathbb{R}$ the inequality

$$|f(t,x)| \le g(t)|x| + h(t)$$

is fulfilled, where $g, h \in L_{loc}(\mathbb{R}_+)$, then, according to the Wintner theorem (see [5]), problem (1), (2) has at least one solution in \mathbb{R}_+ and each maximally extended to the right solution to this problem is defined on \mathbb{R}_+ .

In the general case, when inequality (3) holds and $\tau(t) \neq t$, Wintner's condition does not guarantee the solvability of problem (1), (2).

Moreover, the following proposition is valid.

Proposition 1. Let the function f admit the estimate

$$f(t,x) \leq -g(t)|x| - h(t) \text{ for } t \in \mathbb{R}_+, \ x \in \mathbb{R},$$

where $g, h \in L_{loc}(\mathbb{R}_+)$ are nonnegative functions. If, moreover, the function τ is nondecreasing and the inequalities

$$\limsup_{t \to +\infty} \int_{t}^{\tau(t)} g(s) \, ds > 1, \tag{4}$$

$$\int_{0}^{+\infty} h(s) \, ds > c_0 \tag{5}$$

hold, then problem (1), (2) has no solution.

Proposition 2. Let the function f admit the estimate

$$f(t,x) \ge g(t)|x|$$
 for $t \in \mathbb{R}_+$, $x \in \mathbb{R}$,

where $g \in L_{loc}(\mathbb{R}_+)$ is a nonnegative function. If, moreover, the function τ is nondecreasing and inequality (4) holds, then problem (1), (2) has no solution.

As examples, we consider the differential equations

$$u'(t) = -g(t)|u(\tau(t))| - h(t),$$
(6)

$$u'(t) = g(t)|u(\tau(t))| + h(t),$$
(7)

where $g, h \in L_{loc}(\mathbb{R}_+)$ are nonnegative functions.

Propositions 1 and 2 yield the following corollary.

Corollary 1. If inequalities (4) and (5) hold (inequality (4) holds), then problem (6), (2) (problem (7), (2)) has no solution.

It is easy to see that if for some r > 0 the function $f^*(\cdot, r)$ is integrable on \mathbb{R}_+ and satisfies the inequality

$$c_0 + \int_0^{+\infty} f^*(t,r) \, dt \le r,$$

then problem (1), (2) has at least one solution.

The above Propositions 1 and 2, containing the sufficient conditions for the unsolvability of problem (1), (2), concern the case, where

$$\int_{0}^{+\infty} f^*(t, y) dt = +\infty \text{ for } y > 0$$

In this case the questions on the solvability and unique solvability of the above mentioned problem still remain unstudied (see, for example, [1–4,6] and the references therein). The results we obtained fill this gap to some extent.

The following theorem is valid.

Theorem 1. If

$$f(t,0) = 0, \ f(t,x) \le 0 \ for \ t > 0, \ x > 0,$$
 (8)

then problem (1), (2) has at least one nonnegative solution. And if along with (8) the condition

$$\int_{0}^{+\infty} f_*(t, y) \, dt = +\infty \ for \ 0 < y \le c_0 \tag{9}$$

holds, then that solution is vanishing at infinity.

Sketch of the Proof of Theorem 1. Since the function τ is bounded on every finite interval, there exists a sequence of positive numbers $(a_k)_{k=1}^{+\infty}$ such that for every natural k in the interval $[0, a_k]$ the inequality

$$1 + \tau(t) < a_{k+1}$$

holds.

Denote

$$\tau_k(t) = \begin{cases} \tau(t) + \frac{1}{k} & \text{for } 0 \le t \le a_k, \\ a_{k+1} & \text{for } a_k < t \le a_{k+1}, \end{cases}$$

and for each k in the interval $[0, a_{k+1}]$ consider the Cauchy problem

$$u'(t) = f(t, u(\tau_k(t))),$$
(10)

$$u(a_{k+1}) = x,\tag{11}$$

where $x \in \mathbb{R}_+$.

Based on condition (8), it can be proved that for every $x \in \mathbb{R}_+$ problem (10), (11) in the interval $[0, a_{k+1}]$ has a unique solution $u(\cdot; x)$ which continuously depends on the parameter x. Also,

$$u(t;0) \equiv 0,$$

and

$$u(t,x) \ge x$$
 for $0 \le t \le a_{k+1}, x > 0$

Since

$$u(0;0) = 0, \quad \lim_{x \to +\infty} u(0;x) = +\infty.$$

there exists a positive number x_k such that

$$u(0;x_k) = c_0.$$

Therefore, for every natural k problem (10), (2) has a solution u_k such that

$$0 < u_k(t) \le c_0 \text{ for } 0 \le t \le a_{k+1},$$

$$|u'_k(t)| \le f^*(t, c_0) \text{ for almost all } t \in (0, a_{k+1}).$$

According to these last two inequalities and the Arzelà-Ascoli lemma, the sequence $(u_k)_{k=1}^{+\infty}$ contains a subsequence $(u_{k_m})_{m=1}^{+\infty}$ which is uniformly converging on every finite interval contained in \mathbb{R}_+ . Evidently, the function

$$u(t) = \lim_{m \to +\infty} u_{k_m}(t) \text{ for } t \in \mathbb{R}_+$$

is a nonnegagive, nonincreasing solution to problem (1), (2). In addition,

$$0 \le u(t) \le c_0 - \int_0^t f_*(s,\delta) \, ds \text{ for } t \in \mathbb{R}_+,$$

where

$$\delta = \lim_{t \to +\infty} u(t).$$

From the last inequality it follows that if condition (9) is satisfied, then $\delta = 0$, i.e. the solution u is vanishing at infinity.

Remark 1. If condition (8) holds and the function τ satisfies a more stringent condition than (3)

ess inf
$$\{\tau(s) - s: 0 \le s \le t\} > 0$$
 for $t > 0$, (12)

then every nonnegative solution to problem (1), (2) is positive. It should be noted that condition (12) cannot be replaced by the condition

ess inf
$$\{\tau(s) - s : t_0 \le s \le t\} > 0$$
 for $t \ge t_0$,

no matter how small the positive number t_0 is. Indeed, if

$$0 < \lambda < 1, \quad \alpha = (1 - \lambda)^{-1}, \quad p = \alpha c_0^{1 - \lambda} / t_0,$$

$$\tau(t) = \begin{cases} t & \text{for } 0 \le t < t_0, \\ t + 1 & \text{for } t \ge t_0, \end{cases}$$

then the function

$$u(t) = \begin{cases} c_0 (1 - t/t_0)^{\alpha} & \text{for } 0 \le t < t_0, \\ 0 & \text{for } t \ge t_0 \end{cases}$$

is a nonnegative but not positive solution to the differential equation

$$u'(t) = -p|u(\tau(t))|^{\lambda}\operatorname{sgn}(u(\tau(t)))$$

under the initial condition (2).

Remark 2. According to Proposition 1, condition (8) in Theorem 1 cannot be replaced by the condition

$$f(t,x) \le 0$$
 for $t \in \mathbb{R}_+$, $x \in \mathbb{R}_+$,

i.e. the requirement

$$f(t,0) \equiv 0$$

cannot be removed from (8).

As an example, we consider the differential equation

$$u'(t) = -\sum_{i=1}^{n} p_i(t) f_i(u(\tau(t))),$$
(13)

where $p_i \in L_{loc}(\mathbb{R}_+)$ (i = 1, ..., n), and $f_i : \mathbb{R} \to \mathbb{R}$ (i = 1, ..., n) are continuous functions. Theorem 1 implies the following corollary.

Corollary 2. Let the functions p_i and f_i (i = 1, ..., n) be nonnegative in \mathbb{R}_+ , and

$$f_i(0) = 0 \ (i = 1, \dots, n).$$
 (14)

Then problem (13), (2) has at least one nonnegative solution. And if along with the above conditions the following conditions

$$\int_{0}^{+\infty} p_m(t) dt = +\infty, \ f_m(x) > 0 \ for \ x > 0$$
(15)

are satisfied for some $m \in \{1, ..., n\}$, then that solution is vanishing at infinity.

So far we have been able to prove the unique solvability of problem (1), (2) only in the case where τ is a step function of the type

$$\tau(t) = t_k \text{ for } t_{k-1} < t \le t_k \ (k = 1, 2, \dots),$$
(16)

where $t_0 = 0$, and $(t_k)_{k=1}^{+\infty}$ is some increasing and unbounded sequence of positive numbers.

In particular, the following theorem is proved.

Theorem 2. Let the function τ have the form (16), and let the function f be nonincreasing in the second argument and satisfy the equality

$$f(t,0) = 0$$
 for $t \in \mathbb{R}_+$.

Then problem (1), (2) has a unique solution, admitting the representation

$$u(t) = c_k - \int_t^{t_k} f(s, c_k) \, ds \text{ for } t_{k-1} \le t \le t_k \ (k = 1, 2, \dots),$$

where $(c_k)_{k=1}^{+\infty}$ is a sequence of positive numbers such that

$$c_k - \int_{t_{k-1}}^{t_k} f(s, c_k) \, ds = c_{k-1} \ (k = 1, 2, \dots).$$

Corollary 3. Let the function τ have the form (16), let the functions p_i (i = 1, ..., n) be nonnegative, and let the functions f_i (i = 1, ..., n) be nonnegative and satisfy equalities (14). Then problem (13), (2) has a unique solution, admitting the representation

$$u(t) = c_k + \sum_{i=1}^n f_i(c_k) \int_t^{t_k} p_i(s) \, ds \text{ for } t_{k-1} \le t \le t_k \ (k = 1, 2, \dots),$$

where $(c_k)_{k=1}^{+\infty}$ is a sequence of positive numbers such that

$$c_k + \sum_{i=1}^n f_i(c_k) \int_{t_{k-1}}^{t_k} p_i(s) \, ds = c_{k-1} \ (k = 1, 2, \dots).$$

Remark 3. It is evident that if the conditions of Theorem 2 (of Corollary 3) are satisfied, then a solution to problem (1), (2) (to problem (13), (2)) is positive and vanishes at infinity if

$$\int_{0}^{+\infty} f(t,y) dt = -\infty \text{ for } y > 0$$

(if for some $m \in \{1, ..., n\}$ conditions (15) are satisfied).

References

- N. V. Azbelev, V. P. Maksimov, and L. F. Rakhmatullina, Introduction to the Theory of Functional-Differential Equations. (Russian) "Nauka", Moscow, 1991.
- [2] N. V. Azbelev, V. P. Maksimov and L. F. Rakhmatullina, *Elements of the Modern Theory of Functional Differential Equations. Methods and Applications*. (Russian) Institute for Computer Studies, Moscow, 2022.
- [3] N. V. Azbelev and L. F. Rakhmatullina, Theory of linear abstract functional-differential equations and applications. *Mem. Differential Equations Math. Phys.* 8 (1996), 1–102.
- [4] R. Hakl, A. Lomtatidze and J. Šremr, Some Boundary Value Problems for First Order Scalar Functional Differential Equations. Masaryk University, Brno, 2002.
- [5] P. Hartman, Ordinary Differential Equations. John Wiley, New York, 1964.
- [6] I. Kiguradze and B. Půža, Boundary Value Problems for Systems of Linear Functional Differential Equations. Masaryk University, Brno, 2003.