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1 Introduction
The qualitative study of parameter depending systems of autonomous ordinary differential equa-
tions requires the study of limit sets and their bifurcations. With respect to applications, equi-
libria, limit cycles, homoclinic orbits and invariant manifolds play a crucial role. In case of
planar autonomous systems a lot of methods for qualitative investigations has been established
(see [1, 8]), nevertheless there are unsolved basic questions [9]. According to the results of H. Du-
lac, Yu. Ilyasenko and J. Ecale a planar polynomial autonomous system has only a finite number
of limit cycles (individual finiteness) [7,12]. The question for the maximum number of limit cycles
of polynomial systems in dependence of the the degree of the polynomials and their bifurcations
(Hilberts sixteenth problem) is still open. It has been proved that the cyclicity of a focus and of a
period annulus (continuum of periodic orbits) of quadratic systems is three [27].

It is well known that already in the case of of quadratic polynomial three-dimensional au-
tonomous systems new limit sets exist and new bifurcation scenarios occur [2, 10, 11, 14, 29]. The
motivation for our work is to due two papers [4, 5] of V. Bulgakov devoted to the bifurcation of
limit cycles in polynomial three-dimensional systems. In the first paper the focus is on Hopf bi-
furcation using the approach of Y. Bibikov [3] which essentially coincides with the center manifold
approach [28]. In the second paper Bulgakov and Grin [5] proved that the system

ẋ = a0x− a1y + a2xy + a3y
2 + a4xz + a5yz,

ẏ = a1x+ a0y − a2x
2 − a3xy + a4yz − a5xz,

ż = 2(a0z + a4z
2); (x, y, z) ∈ R3,

(1.1)

where ai ∈ R (i = 0, 5) are system parameters, has infinitely many (continuum) limit cycles, which
represent intersection curves of the family of invariant surfaces z = (x2+y2)/k, k ∈ R\{0} and the
plane z = −a0/a4. But the results presented in the mentioned paper [5] are local. For system (1.1)
under consideration, the non-local existence of an infinite number of limit cycles is proved in [25].
The focus was also on Hopf bifurcation of the reduced system on the invariant manifolds, but since
these manifolds are no center manifolds this type of bifurcation did not explain the existence of
limit cycles in the three-dimensional system. The underlying mechanism to generate a continuum
of limit cycles is related to the existence of a period annulus.

In planar systems it is usual to define a limit cycles as an isolated periodic solution [1, 8]. To
be able to speak about a continuum of limit cycles we have to use another definition of a limit
cycle. In the monograph of C. Chicone [6] we find the following definition: A limit cycle Γ is a
periodic orbit that is either the ω-limit set or the α-limit set of some point in the phase space with
the periodic orbit removed. This monograph further emphasizes that the above definitions are not
equivalent to each other in general, but they are equivalent in the case of real analytical systems.
We will use Chicones definition in what follows.
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The goal of our work is to perturb system (1.1) and find such a perturbed non-autonomous
system in which the continuum of limit cycles retained its existence.

2 Preliminaries
In paper [15] V. I. Mironenko introduced the concept of a reflecting function to study the qualitative
behavior of solutions of ODE systems. This function is now known as the Mironenko reflecting
function (MRF) and has been successfully used to solve many problems in qualitative theory of
ODE [16–18,20].

ODE systems with the same MRF have the same translation operator (see [13]) on any inter-
val (−β, β), and 2ω-periodic ODE systems with the same MRF have the same mapping on the
period [−ω, ω] (Poincare mapping). Therefore, some qualitative properties (such as the existence
of periodic solutions and their stability) of solutions of ODE systems that have the same MRF are
common.

So it is advisable to look for perturbations that do not change the MRF (the so-called admissible
perturbations) of known (well-studied) systems. If we manage to find admissible perturbations, then
we thereby know which perturbations not change the qualitative properties of the solutions inherent
in the solutions of the original unperturbed system.

For example, in papers [21–24, 26], admissible perturbations of various systems, such as the
Lorenz-84 system, Langford system, generalized Langford system and Hindmarsh-Rose system,
were obtained, and the qualitative properties of solutions of perturbed systems were also studied.

To search for admissible perturbations, we can use theorem from [19], which we formulate here
in the form of the following lemma.

Lemma 2.1. Let the vector functions ∆i(t, x) (i = 1,m, where m ∈ N or m = ∞) be solutions of
the equation

∂∆

∂t
+

∂∆

∂x
X − ∂X

∂x
∆ = 0 (2.1)

and αi(t) be any scalar continuous odd functions. Then the MRF of any perturbed system of the
form

ẋ = X(t, x) +
m∑
i=1

αi(t)∆i(t, x), t ∈ R, x ∈ D ⊂ Rn

is equal to the MRF of the system

ẋ = X(t, x), t ∈ R, x ∈ D ⊂ Rn. (2.2)

3 Main results
For system (1.1), we look for admissible perturbations of the form ∆·α(t), where α(t) is an arbitrary
continuous scalar odd function and

∆ =

( l∑
i+j+k=0

qijk x
iyjzk,

l∑
i+j+k=0

rijk x
iyjzk,

l∑
i+j+k=0

sijk x
iyjzk

)T

,

where qijk, rijk, sijk ∈ R, i, j, k, l ∈ N ∪ {0}. For the polynomial ∆ under consideration, relation
(2.1) takes the form

∂∆(x, y, z)

∂(x, y, z)
X(x, y, z) ≡ ∂X(x, y, z)

∂(x, y, z)
∆(x, y, z). (3.1)
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Substituting ∆ into relation (3.1) and using the method of indefinite coefficients we obtain a system
of equations for qijk, rijk, sijk. As a result, we obtained the following theorem.

Theorem 3.1. Let αi(t) (i = 1, 3) be arbitrary scalar continuous odd functions. Then for a2 =
a3 = 0, the MRF of system (1.1) coincides with the MRF of the system

ẋ = (a0x− a1y + a4xz + a5yz)(1 + α1(t)) + xα2(t) + yα3(t),

ẏ = (a1x+ a0y + a4yz − a5xz)(1 + α1(t)) + yα2(t)− xα3(t),

ż = 2z(a0 + a4z)(1 + α1(t)).

(3.2)

Proof. For a2 = a3 = 0, the right-hand side of system (1.1) is

X =
(
a0x− a1y + a4xz + a5yz, a0y + a1x+ a4yz − a5xz, 2(a0 + a4z)z

)T

and its Jacobi matrix is

∂X

∂(x, y, z)
=

a0 + a4z −a1 + a5z a4x+ a5y
a1 − a5z a0 + a4z a4y − a5x

0 0 2(a0 + 2a4z)

 .

Let us write out the vector factors for αi(t) from the right-hand side of system (3.2):

∆1 =

a0x− a1y + a4xz + a5yz
a0y + a1x+ a4yz − a5xz

2z(a0 + a4z)

 , ∆2 =

x
y
0

 , ∆3 =

 y
−x
0

 .

By successively checking identity (3.1) for each vector-multiplier ∆i we will make sure that it is
true. Let us show this, for example, for ∆1. The Jacobi matrix is

∂∆1

∂(x, y, z)
=

a0 + a4z −a1 + a5z a4x+ a5y
a1 − a5z a0 + a4z a4y − a5x

0 0 2(a0 + 2a4z)

 .

Hence we obtain

∂∆1

∂(x, y, z)
X =

a0 + a4z −a1 + a5z a4x+ a5y
a1 − a5z a0 + a4z a4y − a5x

0 0 2(a0 + 2a4z)

a0x− a1y + a4xz + a5yz
a0y + a1x+ a4yz − a5xz

2(a0 + a4z)z


≡

a0 + a4z −a1 + a5z a4x+ a5y
a1 − a5z a0 + a4z a4y − a5x

0 0 2(a0 + 2a4z)

a0x− a1y + a4xz + a5yz
a0y + a1x+ a4yz − a5xz

2z(a0 + a4z)

 =
∂X

∂(x, y, z)
∆1.

Then the assertion of the theorem follows from Lemma 2.1.

If, as usual, we consider non-negative time, then the requirement that the functions αi(t) be odd
is not essential, since they can be continued in an odd way continuously to the negative semi-axis
of time (assuming that αi(0) = 0).

In some cases, it is possible to find solutions of system (1.1) corresponding to limit cycles.
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Lemma 3.1. Suppose a2 = a3 = 0 and a4 ̸= 0. Then ∀ k ∈ R \ {0} such that a0k/a4 < 0, system
(1.1) has a solution

x(t) =

√
−a0k

a4
cos

((a0a5
a4

+ a1

)
t
)
,

y(t) =

√
−a0k

a4
sin

((a0a5
a4

+ a1

)
t
)
,

z(t) = −a0
a4

(3.3)

corresponding to the cycle x2 + y2 = −a0k/a4, z = −a0/a4. Moreover, for a1 ̸= −a0a5/a4 this
solution is 2π|a4|

|a0a5+a1a4| -periodic.

The assertions of the lemma are proved by direct substitution of (3.3) into system (1.1).
The following theorem tells us about the cases when system (3.2) has infinitely many periodic

solutions, and what is the character of the stability of these solutions.

Theorem 3.2. Let αi(t) (i = 1, 3) be scalar twice continuously differentiable odd functions, a4 ̸= 0,
a1 ̸= −a0a5/a4 and the right-hand side of system (3.2) be 2π|a4|

|a0a5+a1a4| -periodic with respect to time t.
Then ∀ k ∈ R\{0} such that a0k/a4 < 0, a solution of system (3.2), satisfying the initial conditions

x
( −π|a4|
|a0a5 + a1a4|

)
=

√
−a0k

a4
, y

( −π|a4|
|a0a5 + a1a4|

)
= 0, z

( −π|a4|
|a0a5 + a1a4|

)
= −a0

a4
, (3.4)

is 2π|a4|
|a0a5+a1a4| -periodic. Moreover, the character of stability of this solution and solution (3.3) of

system (1.1) with the same initial conditions (3.4) coincides.

Figure 1. Phase portrait of periodic solutions of system (3.2) for a0 = 4, a1 = 5, a4 = −1,
a5 = 1, αi(t) = sin(i · t) (i = 1, 3) and satisfying the initial conditions x(−π) = 2

√
k,

y(−π) = 0, z(−π) = 4 (blue for k = 1, red for k = 4, and green for k = 9).
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The proof of the theorem follows from the coincidence of the mappings over the period for
systems (1.1) and (3.2).

Example. Let a0 = 4, a1 = 5, a2 = a3 = 0, a4 = −1, a5 = 1. Then, by Lemma 3.1, ∀k ∈ (0,+∞)
system (1.1) has 2π-periodic solution (3.3). If αi(t) = sin (i · t) (i = 1, 3), then the right-hand
side of system (3.2) is 2π-periodic. Therefore, by Theorem 3.2, ∀ k ∈ (0,+∞) system (3.2) has
2π-periodic solution which satisfies the initial conditions x(−π) = 2

√
k , y(−π) = 0, z(−π) = 4 (see

Figure 1).

4 Conclusion
Admissible perturbations were found for system (1.1) in the case when a2 = a3 = 0. The resulting
perturbed non-autonomous systems have the same Mironenko reflecting function as the original
unperturbed system. Solutions of different systems of ODEs with the same Mironenko reflecting
function have many of the same qualitative properties. In particular, we proved that admissibly
perturbed systems have infinitely many periodic solutions and that the character of their stability
coincides with the character of stability of the corresponding solutions of unperturbed systems.
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