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Consider a linear differential system

ẋ = A(t)x, x ∈ Rn, t ≥ 0, (1)

with continuous and bounded coefficient matrix A.
System (1) is said to be almost reducible [2] (or approximately similar, see [6]) if for any δ > 0

there exists a Lyapunov transformation reducing system (1) to the form

ẋ = Bx+Qδ(t)x, x ∈ Rn, t ≥ 0,

where B is a constant matrix and Qδ satisfy the condition ∥Qδ(t)∥ ≤ δ. Note that the matrix B is
the same for all δ > 0.

The property of almost reducibility plays a crucial role in many issues related to Erugin’s
problem on Lyapunov regularity of linear systems with almost periodic coefficients. This problem
was posed by N. P. Erugin at a mathematical seminar at the Institute of Physics and Mathematics of
Byelorussian Academy of Sciences in 1956. The original formulation of Erugin’s problem involved
proving the hypothesis of Lyapunov regularity of all systems with almost periodic coefficients,
see [4, pp. 121, 137] and also [5].

Erugin’s problem has been solved by V. M. Millionshchikov who has proved the following two
statements.

(i) Let H(A) be the hull of A, i.e. the uniform closure of all shifts Aτ (t) := A(t + τ). If A is
almost periodic, then almost all systems with coefficient matrices from H(A) are Lyapunov
regular [17].

(ii) There exists some Lyapunov irregular system (1) with almost periodic coefficients [19].

It should be noted that the proof in [19] is not completely constructive and use the following
result from [18].

(iii) If there exists a non-almost reducible system with coefficient matrix from H(A), then there
exists an irregular system with coefficient matrix from H(A) [18].

By virtue of (iii), to prove statement (ii) it is sufficient to construct some non-almost reducible
system with almost periodic coefficients. To this end V. M. Millionshchikov introduced a special
class of limit periodic linear systems and constructed the required system within that class. Now
such systems are usually called Millionshchikov systems. A comprehensive study of such systems
was made by A. V. Lipntskii in [8–15]. In particular, an explicit example of Lyapunov-irregular
Millionshchikov system is given in [8] (see also [21]). However, no effective tools are known for
recognising almost reducibility for these systems.



192 E. K. Makarov

A number of almost reducibility criteria are known for general systems and systems with almost
periodic coefficients, see e.g. [3, 7, 20]. However, most of these criteria are based on properties of
some solution sets for such systems. In [16] we propose a sufficient condition for almost reducibility
of Millionshchikov systems based on properties of periodic approximations to the system under
consideration. Our goal here is to give some corollaries of this result.

Let coefficient matrix A has the form

A(t) =

+∞∑
k=0

Ak(t+ τk), (2)

where Ak, k = 0, . . . ,+∞, are periodic matrices with the periods Tk and τk are arbitrary real
numbers. If each matrix Ak is everywhere continuous and series (2) converges uniformly on the
entire time axis R, then the matrix A is limit-periodic [1, p. 32] and, therefore, almost periodic.

In what follows we suppose that T0 = 2, Tk ∈ N, and Tk+1/Tk = mi ∈ N for all k = 0, . . . ,+∞.
We also suppose that mk > 1, k = 0, . . . ,+∞. Let

J =

(
0 −1
1 0

)
, D =

(
−1 0
0 1

)
.

Take some continuous function ω : [0, 1] → R such that ω(0) = ω(1) = 0 and
1∫
0

ω(t) dt = 1. Take

also a sequence φ : N → [0, π/2[ . As usually, the values of the sequence φ we denote by φk, k ∈ N.
Now let us define the matrices Ak by the following equalities:

A0(t) =

{
ω(t)D, for t ∈ [0, 1[ ,

0, for t ∈ [1, 2[
(3)

for k = 0 and

Ak(t) =

{
−φkω(t)J, for t ∈ [0, 1[ ,

0, for t ∈ [1, Ti[
(4)

for all k = 1, . . . ,+∞.
It can be easily shown that if

∞∑
k=1

φk < +∞,

then system (1) with the coefficient matrix A defined by (3) and (4) is limit periodic.

Definition 1. We say that system (1) with the coefficient matrix A defined by (3), (4), and (2)
with τk = 0 is a gathered Millionshchikov system.

Definition 2. System (1) with the coefficient matrix A defined by (3), (4), and (2) with τk ∈
2Z, is said to be a Millionshchikov system. We say that this system corresponds to a gathered
Millionshchikov system with the same matrices Ak, k = 0, . . . ,+∞.

Note that any gathered Millionshchikov system has the coefficient matrix of the form

A(t) =

+∞∑
k=0

Ak(t).

Let
Sm(t) =

m∑
k=0

Ak(t), m = 1, . . . ,+∞,
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where Ak are defined by (3) and (4). It can be easily seen that each matrix Sm is Tm-periodic.
Now for arbitrary m ∈ N consider a periodic linear system

ż = Sm(t)z, z ∈ R2, t ∈ R. (5)

Denote the Cauchy matrix of system (5) by Zm. Then the monodromy matrix of system (5) can be
written as Zm(Tm, 0) and the eigenvalues of Zm(Tm, 0) are the Floquet multipliers of system (5).
If these numbers are real, then we can find some real eigenvectors of Zm(Tm, 0) and the angle βm
between them.

Definition 3 ([16]). We say that gathered Millionshchikov system (1) is a real-type system if all
Floquet multipliers of each corresponding system (5) with m ∈ N are real.

Theorem 1 ([16]). Suppose that system (1) is a real-type gathered Millionshchikov system. If the
angle βm is separated from zero for all m ∈ N, then system (1) is almost reducible.

Definition 4. We say that a gathered Millionshchikov system (1) minorises another gathered
Millionshchikov system if the angles φk of the first system are not greater than the corresponding
angles of the second system.

Theorem 2. If system (1) satisfies conditions of Theorem 1, then all minorizing it gathered
Millionshchikov systems are almost reducible.

Theorem 3. If system (1) satisfies conditions of Theorem 1, then all corresponding to it Million-
shchikov systems are almost reducible.
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