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We consider the system
u′ = f1(u, v), v′ = f2(u, v) (S)

subject to the conditions
u(0) = u(ω), v(0) = v(ω), (P)

and
u(0) = c, sup

{
|u(t)|+ |v(t)| : t ≥ 0

}
< +∞. (B)

Here, f1 and f2 are Carathéodory functions on [0, ω] × R2, and ω-periodic with respect to the
independent variable.

Definition 1. Solutions (u1, v1) and (u2, v2) of (S), (P) are said to be consecutive if u1(t) ≤ u2(t)
for t ∈ [0, ω], u1 ̸≡ u2, and for every solution (u, v) of (S), (P) satisfying u1(t) ≤ u(t) ≤ u2(t) for
t ∈ [0, ω], either u1 ≡ u or u2 ≡ u holds.

Property O. We will say that (S), (P) possesses Property O if there exists ε > 0 such that every
solution (u, v) of (S), (P) satisfies

min
{
|v(t)| : t ∈ [0, ω]

}
≤ ε.

Remark 1. Consider the problem

u′ = λ cos2(3u)ψ(v), v′ = cos2 t sinu− 1

4
, u(0) = u(ω), v(0) = v(ω). (∗)

It is clear that for every c, function (u, v) := (π6 , c+
1
8 sin(2t)) is a solution of (∗), and consequently,

(∗) does not have Property O.

Hypothesis B. We will say that f1 : [0, ω]× R2 → R satisfies Hypothesis B if

f1(t, x, · ) : R → R is non-decreasing for a.e. t ∈ [0, ω], x ∈ R, (1)

and
f1(t, x, y) sgn y ≥ 0 for t ∈ [0, ω], x, y ∈ R.

Proposition 1. Let Hypothesis B hold, and

meas
{
t ∈ [0, ω] : f1(t, x, y) ̸= 0

}
> 0 for x ∈ R, y ∈ R \ {0}.

Then problem (S), (P) has Property O.

Property V. We will say that (S), (P) possesses Property V if for every pair (u1, v1) and (u2, v2)
of solutions of (S), (P), satisfying u1 ≡ u2, the identity v1 ≡ v2 is fulfilled.



182 A. Lomtatidze

Example presented in Remark 1 shows that (∗) does not have Property V.

Proposition 2. Let f1(t, x, y) := f0(t, x)ψ(y), where f0(t, x) ≥ h0(t) ≥ 0 for t ∈ [0, ω], x ∈ R,
h0 ̸≡ 0, and ψ is an increasing continuous function with ψ(0) = 0. Then (S), (P) possesses Property
V .

Hypothesis Lx. We will say that f1 satisfies Hypothesis Lx if (1) holds and for every r > 0 and
ε > 0, there exist prε ∈ L([0, w]) such that∣∣f1(t, x, y)− f1(t, x

′, y)
∣∣ ≤ prε(t)|x− x′| for t ∈ [0, w], |x− x′| ≤ ε, |y| ≤ r.

Definition 2. Function (α, β) : [0, w] → R2 is said to be a lower function of (S), (P) if β = β0+β1,
α, β0 ∈ AC([0, w]), β1 is non-decreasing, β′1(t) = 0 for a.e. t ∈ [0, ω], α(0) = α(ω), β(0+) ≥ β(ω−),
and

α′(t) = f1(t, α(t), β(t)), β′(t) ≥ f2(t, α(t)) for a.e. t ∈ [0, ω].

Analogously, (γ, δ) : [0, w] → R2 is said to be an upper function of (S), (P) if δ = δ0 + δ1, γ, δ0 ∈
AC([0, w]), δ1 is non-increasing, δ′1(t) = 0 for a.e. t ∈ [0, ω], γ(0) = γ(ω), δ(0+) ≤ δ(ω−), and

γ′(t) = f1(t, γ(t), δ(t)), δ′(t) ≤ f2(t, γ(t)) for a.e. t ∈ [0, ω].

Definition 3. Solution (u, v) of (S), (P) is said to be upper weakly stable (lower weakly stable) if
for every ε > 0, there exist a lower function (α, β) (resp. an upper function (γ, δ)) of (S), (P) such
that

u(t) ≤ α(t) ≤ u(t) + ε for t ∈ [0, ω], α ̸≡ u(
resp. u(t)− ε ≤ γ(t) ≤ u(t) for t ∈ [0, ω], γ ̸≡ u

)
.

Remark 2. Let f1(t, x, 0) ≡ 0, f2(t, 0) ≡ 0, ε0 > 0 and f2(t, · ) is non-increasing on [−ε0, ε0]. It is
not difficult to verify that solution (u, v) := (0, 0) is both u.w.s and l.w.s.

The next proposition (partially) justifies introduced terminology.

Proposition 3. Let Hypothesis Lx be fulfilled and (S), (P) possess Property V. Let, moreover,
(u, v) be a Lyapunov stable solution of (S), (P). Then (u, v) is both u.w.s and l.w.s.

Definition 4. Let α, γ ∈ C([0, ω]), α(t) ≤ γ(t) for t ∈ [0, ω], a ∈ [0, ω[ , α(a) < γ(a) and
c ∈ ]α(0), γ(0)[ . We say that (S), (P) possesses property Zαγ(a, c) if for every solution (u, v) of
(S), (P) satisfying α(t) ≤ u(t) ≤ γ(t) for t ∈ [0, ω], the inequality u(a) ̸= c holds.

Remark 3. It is clear that if (u1, v1) and (u2, v2) are consecutive solutions of (S), (P), then there
exist a ∈ [0, ω[ and c ∈ ]u1(a), u2(a)[ such that (S), (P) possesses Property Zu1u2(a, c).

Now we are able to formulate results.

Consecutive solutions
Theorem 1. Suppose that (S), (P) possesses Property O and (u1, v1) and (u2, v2) are solutions
of (S), (P) satisfying u1(t) ≤ u2(t) for t ∈ [0, ω]. Let, moreover, a ∈ [0, ω[ , u1(a) < u2(a),
c ∈ ]u1(a), u2(a)[ and (S), (P) possesses Property Zu1u2(a, c). Then there exist consecutive solutions
(u∗, v∗) and (u∗, v∗) of (S), (P) such that

u1(t) ≤ u∗(t) ≤ u∗(t) ≤ u2(t) for t ∈ [0, ω], u∗(a) < c < u∗(a).

Proposition 4. Let Hypothesis B hold, (u∗, v∗) and (u∗, v∗) are consecutive solutions of (S), (P)
and u∗(t) < u∗(t) for t ∈ [0, ω]. Then, if (u∗, v∗) is u.w.s, then (u∗, v∗) is not l.w.s and vice versa,
if (u∗, v∗) is l.w.s, then (u∗, v∗) is not u.w.s.
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Unstable solution
Theorem 2. Let Hypothesis B and Hypothesis Lx hold and (S), (P) possess Property O. Let,
moreover, (α, β) and (γ, δ) be lower and upper functions of (S), (P), α(t) ≤ γ(t) for t ∈ [0, ω],
a ∈ [0, ω[ , c ∈ ]α(a), γ(a)[ and (S), (P) possess property Zαγ(a, c). Then, there exist unstable
solution (u, v) of (S), (P) such that

α(t) ≤ u(t) ≤ γ(t) for t ∈ [0, w].

Corollary. Let Hypothesis B and Hypothesis Lx hold, problem (S), (P) possess Property O, and

f1(t, x+ ω1, y) = f1(t, x, y), f2(t, x+ ω1) = f2(t, x) for t ∈ [0, ω], x, y ∈ R,

where ω1 > 0. Let, moreover, (S), (P) be solvable and possess no more than countable many
solutions. Then (S), (P) has countably many unstable solutions.

Bounded solutions
Theorem 3. Let Hypothesis B and Hypothesis Lx hold, r0 > 0, h0 ∈ L([0, ω]) be nontrivial
non-negative, and

|f1(t, x, σr0)| ≥ h0(t) for t ∈ [0, ω], x ∈ R, σ ∈ {−1, 1}.

Let, moreover, (u∗, v∗) and (u∗, v∗) be consecutive solutions of (S), (P), u∗(t) < u∗(t) for t ∈ [0, ω],
and (u∗, v∗) is u.w.s ((u∗, v∗) is l.w.s). The, for every c ∈ ]u∗(0), u

∗(0)[ , problem (S), (B) has a
solution (u, v) such that

u∗(t) ≤ u(t) ≤ u∗(t), u(t) ≤ u(t+ ω) for t ≥ 0(
u∗(t) ≤ u(t) ≤ u∗(t), u(t) ≥ u(t+ ω) for t ≥ 0

) (2)

and

lim
n→+∞

max
{
|u∗(t)− u(t)| : t ∈ [nω, (n+ 1)ω]

}
= 0(

lim
n→+∞

max
{
|u∗(t)− u(t)| : t ∈ [nω, (n+ 1)ω]

}
= 0

)
.

If, moreover, the Cauchy problem for (S) is uniquely solvable, then all inequalities in (2) hold in
the strong sense.

As an example, we consider the system

u′ = f0(t, u)ψ(v), v′ = p0(t, u) sinu+ q(t). (S′)

Here, we suppose that

p0(t, x) ≤ p(t) for t ∈ [0, ω], x ∈ R,
0 ≤ h0(t) ≤ f0(t, x) ≤ h(t) for t ∈ [0, ω] x ∈ R, h0 ̸≡ 0,

and ψ ∈ C(R),
ψ(y) sgn y ≥ 0, |ψ(y)| ≤ 1 for y ∈ R.
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Solvability of (S′), (P)
Theorem 4. Let ∥h∥L < 2π and

∥∥[p]+∥∥L +

∣∣∣∣
ω∫

0

g(s) ds

∣∣∣∣ ≤ ∥∥[p]−∥∥L cos
∥h∥L
4

.

Then, for every k ∈ Z, there exists a solution (uk, vk) of (S′), (P) such that

Range(uk − 2kπ) ⊆
[π
2
− 1

4
∥h∥L,

3π

2
+

1

4
∥h∥L

]
and [π

2
+

1

4
∥h∥L,

3π

2
− 1

4
∥h∥L

]
∩ Range(uk − 2kπ) ̸= ∅.

In the next theorem, another localization of solutions is stated.

Theorem 5. Let ∥h∥L < π and

∥∥[p]+∥∥L +

∣∣∣∣
ω∫

0

g(s) ds

∣∣∣∣ < ∥∥[p]−∥∥L cos
∥h∥L
2

. (3)

Then, for every k ∈ Z, there exists solutions (u1k, v1k) and (u2k, v2k) of (S′),(P) such that

Range(u1k − 2kπ) ⊂
]
− π

2
,
π

2

[
, Range(u2k − 2kπ) ⊂

]π
2
,
3π

2

[
.

It is not difficult to verify the validity of

Proposition 5. Let ∥h∥L < π, i ∈ {0, 1} and

(−1)i+1

ω∫
0

q(s) ds >
∥∥[p]+∥∥L −

∥∥[p]−∥∥L cos
∥h∥L
2

.

Then, every solution (u, v) of (S′), (P) satisfies{
(−1)i

π

2
+ 2πn : n ∈ Z

}
∩ Rangeu = ∅.

Conservative solutions of (S′), (P)
Suppose in addition that

ψ is increasing on R. (4)
Then, by virtue of Proposition 1 and 2, (S′), (P) possesses Property O and Property V. Taking
into account Theorem 1, 4, 5 and Proposition 5, we get

Theorem 6. Let (4) hold, ∥h∥L < π and

∥∥[p]+∥∥L −
∥∥[p]−∥∥L cos

∥h∥L
2

<

∣∣∣∣
ω∫

0

q(s) ds

∣∣∣∣ ≤ ∥∥[p]−∥∥L cos
∥h∥L
4

−
∥∥[p]+∥∥L .

Then, for every k ∈ Z, there exist a pair of consecutive solutions (u1k, v1k) and (u2k, v2k) of (S′), (P)
such that:
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(1) If
ω∫
0

q(s) ds ≥ 0, then

Range(u1k − 2kπ) ⊆
[π
2
− 1

4
∥h∥L ,

3π

2

[
, Range(u2k − 2kπ) ⊂

]3π
2
,
7π

2

[
;

(2) If
ω∫
0

q(s) ds ≤ 0, then

Range(u1k − 2kπ) ⊂
]π
2
,
5π

2

[
, Range(u2k − 2kπ) ⊆

[5π
2
,
7π

2
+

1

4
∥h∥L

[
.

Theorem 7. Let (4) hold, ∥h∥L < π and (3) be fulfilled. Then, for every k ∈ Z, there exist two
pairs of consecutive solutions (u1k, v1k) and (u2k, v2k) and (u3k, v3k) and (u4k, v4k) of (S′), (P) such
that u2k(t) ≤ u3k(t) for t ∈ [0, ω],

Range(u1k − 2kπ) ⊆
]
− π

2
,
π

2

[
, Range(u2k − 2kπ) ⊂

]π
2
,
3π

2

[
and

Range(u3k − 2kπ) ⊂
]π
2
,
3π

2

[
, Range(u4k − 2kπ) ⊆

]3π
2
,
5π

2

[
.

If, moreover, p(t) ≤ 0 for t ∈ [0, ω], then (u1k, v1k) is u.w.s and (u4k, v4k) is l.w.s.

Unstable solutions of (S′), (P)

First note that Hypothesis Lx now reads as follows: for every ε > 0, there exists pε ∈ L([0, ω]) such
that ∣∣f0(t, x)− f0(t, x

′)
∣∣ ≤ pε(t)|x− x′| for t ∈ [0, ω], |x− x′| ≤ ε. (5)

Theorem 8. Let (5) be fulfilled, and the conditions of Theorem 6 (resp. Theorem 7) hold. Then
from every pair of consecutive solutions of (S′), (P), at least one of them is unstable. In particular,
(S′), (P) possesses at least countably many unstable solutions.

Theorem 9. Let (4) and (5) hold, p(t) ≤ 0 for t ∈ [0, ω], ∥h∥L < π, and

∣∣∣∣
ω∫

0

g(s) ds

∣∣∣∣ < ∥p∥L cos
∥h∥L
2

. (6)

Then, for every k ∈ Z, the problem (S′), (P) has an unstable solution (uk, vk) such that

Range(uk − 2kπ) ⊂
]π
2
,
3π

2

[
.

Bounded solution of (S′) and its asymptotics
First mention that under the assumptions of Theorem 4, one can show that for every c ∈ R, the
problem (S′), (B) is solvable. However, we are interested in the existence of non-periodic solutions
of (S′), (B).
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Theorem 10. Let (5) hold, and the conditions of Theorem 6 be fulfilled. Let, moreover, (u1k, v1k)
and (u2k, v2k) be solutions of (S′), (P) appearing in the conclusion of Theorem 6. Then, for every
k ∈ Z, there exists a non-periodic solution (uk, vk) of (S′), (B) such that

u1k(t) ≤ uk(t) ≤ u2k(t) for t ≥ 0.

Theorem 11. Let (4) and (5) hold, ∥h∥L < π, and (6) be fulfilled (clearly, conditions of Theorem
7 hold). Let, moreover, k ∈ Z and (uik, vik), i = 1, 2, 3, 4, be solutions of (S′), (P); their existence
is stated in Theorem 7.

Then, for every c ∈ ]u1k(0), u2k(0)[ , the problem (S′), (B) has a solution (uk, vk) such that

u1k(t) ≤ uk(t) ≤ u2k(t), uk(t) ≤ uk(t+ ω) for t ≥ 0, (7)

and
lim

n→+∞
max

{
|uk(t)− u2k(t)| : t ∈ [nω, (n+ 1)ω]

}
= 0,

while, for every c ∈ ]u3k(0), u4k(0)[ , the problem (S′), (B) possesses a solution (uk, vk) such that

u3k(t) ≤ uk(t) ≤ u4k(t), uk(t) ≥ uk(t+ ω) for t ≥ 0, (8)

and
lim

n→+∞
max

{
|uk(t)− u3k(t)| : t ∈ [nω, (n+ 1)ω]

}
= 0,

If, moreover, ψ is a Lipschitz function, then all inequalities in (7) and (8) hold in the strict sense.
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