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Let us consider a one-parameter family of linear differential systems

ẋ = Aµ(t)x, x ∈ R2, t ≥ 0, (1µ)

whose coefficient matrix is of the form

Aµ(t) :=


dk diag[1,−1], 2k − 2 ≤ t < 2k − 1,

(µ+ bk)

(
0 1

−1 0

)
, 2k − 1 ≤ t < 2k, k ∈ N.

Here µk ∈ R is considered as a parameter; bk, dk are arbitrary real numbers.
E. Sorets and T. Spenser have shown in the paper [8] that major characteristic exponent of

differential equation

ẍ = −
(
K2
(
cos t+ cos(ωt+ θ)

)
+ E

)
x, x ∈ R2, t ≥ 0

is positive for all irrational ω ∈ R and for almost all θ ∈ R on the set of energy values E ≥ 0, such
that it’s relative Lebesque measure tends to 1 under increasing to infinity K.

L.-S. Young in the article [9], as a part, have established for all sufficiently big values of dk ≡
d > 0 and bk = kω, k ∈ N, where ω ∈ R \ Q satisfies some diophantine condition holding almost
everywhere, that the major characteristic exponent of system (1µ), which coincides for almost all
values of µ ∈ R, approximately equal to d.

In the papers [2, 3, 6] we considered the case when the inequality dk ≥ d > 0, k ∈ N, holds.
Particularly, in [2], we have proved under condition dk ≡ d > 4 ln 2 that major characteristic
exponent of system (1µ), is positive for the set of parameter µ with a positive Lebesque measure.

The theorem of the article [3] implies an absence of uniform on µ ∈ R and t ≥ 0 upper
estimations for a solution norms of system (1µ). Where as, the method developed in the paper
[6] essentially uses Parseval’s identity for trygonometric sums. It allows to prove an absence of
analogous estimations, which are uniform on µ and subexponential on t. Given there the proof of
system (1µ) major characteristic exponent positiveness unfortunately contains invalid statements.
The theorem of article [4], that implies the same conclusion, is wrong as well.

In this report we offer the way sufficient to complete the correct proof of specified result.
For all n ∈ N, an arbitrary α ∈ R and set χ = {x1, . . . , xn}, xi ∈ R, i = 1, n, let us denote

fi(x) = fi(x, xi) := ln |x− xi|, x ̸= xi,

and
f(x) = f(x, α, χ) := α+ n−1

n∑
i=1

fi(x).
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Lemma ( [7]). For all a, k, l, l̂ ∈ R such that l ≥ 1, l̂ > 0, k > 3 + 2l̂−1, and for every set
χ = {x1, . . . , xn} and number α ∈ R, that satisfy the conditions f(a) > −l, sup{f(x) : |x − a| ≤
1/2} < l, for Lebesque measure of the set

M = M(α, χ, a, k, l, l̂) :=
{
x ∈ K : sup

y∈K
f(y) > f(x) + l̂

}
,

where d̃ := e−lk, K := [a− d̃/k, a+ d̃/k], the estimation holds mesM ≤ 48k−2d̃/l̂.

Let us denote by XAµ(t, s), t, s ≥ 0, Cauchy matrix of system (1µ).

Theorem. The major characteristic exponent of system (1µ), considered as a function of parameter
µ, is positive on the set of positive Lebesgue measure in the case when the condition dk ≥ d > 0,
k ∈ N, holds.

Proof. Under

U(φ) ≡
(
cosφ − sinφ
sinφ cosφ

)
we denote the rotation matrix on the angle φ ∈ R counterclockwise.

According to estimations (40) from paper [6], the inequality holds

2π∫
0

XAµ(2k, 0 dµ ≥ 2π
k∏

j=1

ch dj ≥ 2π(1 + 2−1d2)k.

Hence, and because of the equality XAµ(2k, 2k − 1) = U(µ+ bk), we have the relation

2π∫
0

XAµ(2k − 1, 0) dµ ≥ 2π(1 + 2−1d2)k−1. (2)

Remark. In cited article Fk should been defined by the formula Fk = κkE + κk−1 sh dkI. Followed
by estimations (40) an equality in (41) is in general incorrect. Really, for every continuous function
f( · ) : R → (0,+∞) and numbers p > q the next formula holds [1, p. 167]

exp

{
1

p− q

p∫
q

ln f(t) dt

}
≤

p∫
q

1

p− q
ln f(t) dt. (3)

Whereas estimation (41) from paper [6] demands the opposite to (3) inequality. So all subsequent
statements of this article are not justified. Hence the conclusion of Theorem 2 in [6] cannot be
thought as sufficiently proved.

Here we give another way that allows to avoid the indicated failures.
From estimation (2) it follows the existence of γk ∈ [0, 2π] such that the inequality holds

∥XAγk
(2k, 0)∥ ≥ (1 + 2−1d2)k. (4)

Denote by xij(t, µ), i, j = 1, 2, the elements of matrix XAµ(t, 0).
In the papre [7] after the formula (36) we have proved that xij(2n−1, µ), i, j = 1, 2, is a uniform

polynome Pn,i,j(sinµ, cosµ) degree n− 1 on sinµ and cosµ.
For every real µ ̸= π(2−1 +m), m ∈ Z, the equality holds

Pn,i,j(sinµ, cosµ) = cosn µPn,i,j(tgµ, 1).
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In the opposite case when µ ̸= πm, m ∈ Z, we have the formula

Pn,i,j(sinµ, cosµ) = sinn µPn,i,j(1, ctgµ).

Denote

δn = δn(µ) :=


0, if | cosµ| ≥ 1√

2
,

1, if | cosµ| < 1√
2
.

The next relation is correct

Pn,i,j(sinµ, cosµ) = cosn
(
µ+ 2−1πδn(µ)

)
Pn,i,j

(
tg1−δn µ, ctgδn µ

)
. (5)

The equality

P̂n(tg
1−2δn(µ) µ) =

2∑
i=1

2∑
j=1

P 2
n,i,j

(
tg1−δn µ, tg−δn µ

)
defines a polynome P̂n( · ) : R → R.

Next formulas hold

∥XAµ(2n− 1, 0)∥2 = max
y∈R2

∥XAµ(2n− 1, 0)y∥2

∥y∥2
= max

ζ∈R

∥∥∥∥(x2ij(2n− 1, µ))2i,j=1

(
cos ζ
sin ζ

)∥∥∥∥2
= max

ζ∈R

2∑
i=1

(
xi1(2n− 1, µ) cos ζ + xi2(2n− 1, µ) sin ζ

)2
. (6)

They imply the inequalities

1

2

2∑
i=1

2∑
j=1

x2ij(2n− 1, µ) ≤
2∑

i=1

max
j∈{1,2}

x2ij(2n− 1, µ)

=

2∑
i=1

max
ζ∈{0,2−1π}

(
xi1(2n− 1, µ) cos ζ + xi2(2n− 1, µ) sin ζ

)2
≤

2∑
i=1

max
ζ∈R

(
xi1(2n− 1, µ) cos ζ + xi2(2n− 1, µ) sin ζ

)2 (5)
= ∥XAµ(2n− 1, 0)∥2

(6)
≤ max

ζ∈R

2∑
i=1

(
xi1(2n− 1, µ) cos ζ

)2
+
(
xi2(2n− 1, µ) sin ζ

)2 ≤ 2∑
i=1

2∑
j=1

x2ij(2n− 1, µ). (7)

Hence, for some κ ∈ [1, 2] we have the equalities

P̂n(tg
1−2δn(µ) µ)

(5)
=

2∑
i=1

2∑
j=1

cos−n
(
µ+ 2−1πδn(µ)

)
P 2
n,i,j(sinµ, cosµ)

= cos−n
(
µ+ 2−1πδn(µ)

) 2∑
i=1

2∑
j=1

x2ij(2n− 1, µ)

(7)
= κ cos−n

(
µ+ 2−1πδn(µ)

)
∥XAµ(2n− 1, 0)∥2. (8)
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For all µ ∈ R, such that δn(µ) = 0, the next estimation is correct∣∣ cos(µ+ 2−1πδn(µ))
∣∣ = | cosµ| ≥ 1√

2
.

In the opposite case the formulas hold∣∣ cos(µ+ 2−1πδn(µ))
∣∣ = ∣∣ cos(µ+ 2−1π)

∣∣ = | sinµ| =
√
1− cos2 µ ≥ 1√

2
.

The both cases united imply the inequality∣∣ cos(µ+ 2−1πδn(µ))
∣∣ ≥ 1√

2
, µ ∈ R. (9)

According to relation (10) from the paper [5], we have the estimation

∥XAµ(t, 0)∥ ≤ eth, where h := sup
k∈N

dk. (10)

From formulas (8)–(10) the next estimations follow

P̂n(tg
1−2δn(µ) µ)

(8), (9)
≤ 2n/2∥XAµ(2n− 1, 0)∥2

(10)
≤ 2n/2eh(2n−1). (11)

The relations (4) and (8) imply the inequalities

P̂n(tg
1−2δn(γn) γn)

(8)
≥ ∥XAγn

(2n− 1, 0)∥
(4)
≥(1 + 2−1d2)n−1. (12)

Due to main algebra theorem, there exist α ∈ R and βj ∈ C, j = 1, 2n− 2, such that

P̂n(ν) = α
2n−2∏
j=1

(ν − βj). (13)

Let us put in lemmas conditions (here [ · ] denotes a whole part of the number)

l := 1 + h, l̂ :=
d̂

4
, k := max

{
211d̂−1, 4 + 2[l̂−1]

}
, d̃ := e−lk, f( · ) := 1

2n− 2
ln P̂n( · ).

Denote γ̃n = tg1−2δn(γn) γn.
For all ν ∈ [γ̃n − d̃/k, γ̃n + d̃/k] there exists µ = µ(ν) ∈ [γn − d̃/k, γn + d̃/k] such that ν =

tg1−2δn(µ) µ.
Hence, as a consequence of formula (11), for such ν the estimation holds

f(ν)
(11)
≤ 1

2n− 2
ln(2n/2eh(2n−1)) =

n ln 2 + h(2n− 1)

2n− 2
≤ 1 + h. (14)

Denote d̂ := 1
2 ln(1 + 2−1d2).

Inequalities (12) imply the relation

f(γ̃n)
(12)
≥ 1

2n− 2
ln(1 + 2−1d2)n−1 ≥ 1

2
. (15)

Then, considering (13) and (14), due to lemma we have the inequality

mes

{
µ ∈

[
γn−

d̃

k
, γn+

d̃

k

]
:

1

2n− 2
ln P̂n(tg

δn γn) >
1

2n− 2
ln P̂n(tg

δn µ)+
d̂

4

}
≤ 48k−2d̃

4

d̂
. (16)
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For all µ = µ(ν) ∈ [γn − d̃/k, γn + d̃/k] the next formulas are correct

∣∣ cos (µ+ 2−1πδn(µ)
)∣∣− ∣∣ cos (γn + 2−1πδn(µ)

)∣∣
≥ −

∣∣∣ cos (µ+ 2−1πδn(µ)
)
− cos

(
γn + 2−1πδn(µ)

)∣∣∣ ≥ − d̃

k
. (17)

Thus, denote ε := d̃/k, for all µ ∈ [γn − ε, γn + ε] with exception of the set Wn which Lebesgue
measure mesWn ≤ ε

4
by the cause of (16) we have the estimations

1

2n− 1
ln ∥XAµ(2n− 1, 0)∥

(8), (16)
≥ 1

2n− 1
ln P̂n(tg

δn γn)

+
1

2n− 1
ln
∣∣ cosn(µ− 2−1πδn(µ))

∣∣− ∣∣ cos(γn + 2−1πδn(µ))
∣∣− d̂

4
(8), (17)

≥ 1

2n− 1
ln ∥XAγn

(2n− 1, 0)∥ − d̃

k
− d̂

4

(15)
≥ d̂

5
. (18)

The set of limit points of sequence {γk}∞k=1 is not empty.
Let us denote by γ∞ some of them.
For an arbitrary n ∈ N, there exists k(n) ≥ n such that |γk(n) − γ∞| < ε

2 .
Denote also

W∞ :=
⋃
m∈N

⋂
n≥m

Wk(n) = Lim
m→+∞

⋂
n≥m

Wk(n).

The next relations hold

mesW∞ = lim
m→+∞

mes
⋂
n≥m

Wk(n) ≤ lim
m→+∞

sup
n≥m

mesWk(n) ≤
ε

4
. (19)

We have the inclusions

M̃ :=
[
γ∞ − 2−1ε, γ∞ + 2−1ε

]
\W∞

=
⋂
m∈N

⋃
n≥m

(
[γ∞ − 2−1ε, γ∞ + 2−1ε] \Wk(n)

)
⊂
⋂
m∈N

⋃
n≥m

([
γk(n) − ε, γk(n) + ε

]
\Wk(n)

)
. (20)

Thus for all µ ∈ M̃ , as a consequence of formula (18), the next estimations are correct

λmax(Aµ) ≥ lim
n→+∞

1

2k(n)− 1
ln
∥∥XAµ(2k(n)− 1, 0)

∥∥ (18), (20)
≥ d̂

5
> 0.

As well, relations (19) imply the inequality

mes M̃ ≤ mes
[
γ∞ − 2−1ε, γ∞ + 2−1ε

]
−mesW∞ ≥ ε

4
.

The theorem is proved.
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