The Averaging Method for Optimal Control Problems of Systems of Integro-Differential Equations

Roksolana Lakhva

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine E-mail: roksolanalakhva@knu.ua

Viktoriia Mogylova

National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" E-mail: mogylova.viktoria@gmail.com

Vasyl Kravets

Dmytro Motornyi Tavria State Agrotechnological University Melitopol, Zaporizhzhia obl., Ukraine E-mail: v_i_kravets@ukr.net

Abstract

This work is devoted to the optimal control of systems of integro-differential equations with rapidly oscillating coefficients and a small parameter. Using the averaging method, it has been proven that the optimal control of the averaged problem, which is a system of ordinary differential equations, is nearly optimal for the original problem. That is, it minimizes the quality criterion with an accuracy up to ε .

1 Problem statement

We consider the nonlinear optimal control problem of integro-differential system with rapidly oscillating coefficients:

$$\begin{cases} \dot{x} = X\left(\frac{t}{\varepsilon}, x, \int_{0}^{t} \varphi(t, s, x(s)) \, ds, u(t)\right), \\ x(0) = x_0, \end{cases}$$
(1.1)

and a cost function:

$$J_{\varepsilon}[u] = \int_{0}^{1} L(t, x_{\varepsilon}(t), u(t)) dt + \phi(x_{\varepsilon}(T)) \longrightarrow \inf.$$
(1.2)

Here, $\varepsilon > 0$ is a small parameter, T > 0 is a constant, x is the phase vector in the domain $D \subset \mathbb{R}^d$, u(t) - m-dimensional control vector from a certain functional set.

 \mathbf{T}

Furthermore, x(t, u) is the solution to the Cauchy problem (1.1), (1.2) corresponding to the control u(t). Disregarding the dependence on u, we denote it simply as x(t).

We assume that there exists a function $X_0(x, u)$ such that, for uniformly $x \in \mathbb{R}^d$ and $u \in U$, the following limit exists:

$$\lim_{\varepsilon \to 0} \int_{0}^{t} \left[X\left(\frac{t}{\varepsilon}, x, \varphi_1(t, x), u\right) - X_0(x, u) \right] d\tau,$$
(1.3)

where

$$\varphi_1(t,x) = \int_0^t \varphi(t,s,x) \, ds,$$

 $t \in [0, T], s \in [0, T].$

Note that condition (1.3) means the integral continuity of the function $X(\frac{\tau}{\varepsilon}, x, \varphi(\tau, x), u)$ at the point $\varepsilon = 0$ on the $[0, T], x \in D, u \in U$.

The optimal control problems (1.1), (1.2) with rapidly oscillating coefficients correspond to a simpler optimal control problem

$$\begin{cases} \dot{\xi} = X_0(\xi, u(t)), \\ \xi(0) = x_0, \end{cases}$$
(1.4)

with a cost function:

$$J_0[u] = \int_0^T L(t,\xi(t),u(t)) dt + \phi(\xi(T)) \longrightarrow \inf.$$
(1.5)

For problems (1.1), (1.2), we assume that the following conditions hold.

Condition 1.1. The admissible controls are m-dimensional vector functions $u(\cdot)$ such that $u(\cdot) \in U$ – a compact set in $L^2((0,T))$.

Condition 1.2. The function X(t, x, y, u) is defined and continuous with respect to the collection of variables in the domain

$$Q_0 = \Big\{ t \in [0,T], \ x \in D \subset \mathbb{R}^d, \ y \in \mathbb{R}^n, \ u \in U \in \mathbb{R}^m \Big\}.$$

(1) X(t, x, y, u) satisfies the linear growth condition with respect to x, y in Q_0 , i.e. there exists a constant M > 0 such that

$$|X(t, x, y, u)| \le M(1 + |x| + |y|)$$

for any $(t, x, y, u) \in Q_0$.

(2) X(t, x, y, u) satisfies the Lipschitz condition with respect to $x \in D \subset \mathbb{R}^d$ and $u \in \mathbb{R}^m$ in Q_0 , with constant λ :

$$|X(t, x, y, u) - X(t, x_1, y_1, u_1)| \le \lambda (|x - x_1| + |y - y_1| + |u - u_1|)$$

for any $(t, x, y, u), (t, x_1, y_1, u_1) \in Q_0$.

Condition 1.3. The function $\varphi(t, s, x)$ is defined and continuous in the domain $Q_1 = \{t \in [0,T], s \in [0,T], x \in D\}$ and satisfies the linear growth and the Lipschitz conditions with respect to x, i.e., $\exists L_{\varphi}$ such that

$$\begin{aligned} \left|\varphi(t,s,x) - \varphi(t,s,x_1)\right| &\leq L_{\varphi}|x - x_1|, \\ \left|\varphi(t,s,x)\right| &\leq L_{\varphi}(1+|x|)\end{aligned}$$

Condition 1.4. Uniformly with respect to $x \in D$, $u \in \mathbb{R}^m$, the limit (1.3) exists.

Condition 1.5. The function L(t, x, u) is defined and continuous with respect to the collection of arguments in the domain $Q_1 = \{t \in [0, T], x \in \mathbb{R}^d, u \in \mathbb{R}^m\}$, where:

- (1) L(t, x, u) is uniformly bounded on [0, T] with $u \in \mathbb{R}^m$ and continuous with respect to $x \in \mathbb{R}^d$.
- (2) L(t, x, u) satisfies the Lipschitz condition with respect to u in Q_1 with constant $\lambda > 0$.
- (3) The function $\phi : \mathbb{R}^d \to \mathbb{R}$ is continuous with respect to x.

According to Conditions 1.1, 1.2 and Theorem 3.1 from [1], it follows that for any continuous admissible control u(t), the solution of the Cauchy problem X(t, u) exists and is unique on the entire interval [0, T]. The problems (1.1), (1.4) make sense for all admissible controls.

2 Main results

The following theorem guarantees the closeness of solutions of the corresponding Cauchy problems (1.1), (1.4) for small ε on a finite time interval.

Theorem 2.1. Let Conditions 1.1–1.3 hold. Then for any $\eta > 0$, there exists $\varepsilon_0 = \varepsilon_0(\eta)$ such that $0 < \varepsilon \leq \varepsilon_0$, for the solutions x(t, u), $\xi(t, u)$ of the Cauchy problems (1.1) and (1.4) satisfy the following estimate

$$|x(t,u) - \xi(t,u)| \le \eta,$$

for all $t \in [0,T]$ and all admissible controls u(t).

Proof. We will choose the fixed $\eta > 0$. For any $\varepsilon > 0$ and any admissible control u(t), we estimate the difference between x(t, u) and $\xi(t, u)$. For simplicity, let's denote x(t, u) = x(t) and $\xi(t, u) = \xi(t)$. We will also omit the dependence of x(t) on ε .

Since U is compact in $L^2((0,T))$, for the given η , there exists a finite grid. Thus, for the chosen control u(t) from the grid such that $\frac{\eta e^{-\lambda}}{4\lambda}$: $u_1(t), \ldots, u_n(t)$, where $N = N(\eta)$. Then, for the chosen control u(t), there exists a subsequence $u_i(t)$ from the grid such that

$$\|u(\cdot) - u_j(\cdot)\|_{L_2} \le \frac{\eta}{4\lambda} e^{-\lambda}.$$

Thus, since u(t) is compact in $L^2((0,T))$, all u(t) satisfy the inequality, where there exists K > 0 such that

$$\int_{0}^{T} |u(t)| \, dt \le K.$$

Then

$$|x(t)| \le |x_0| + MT + M \int_0^T \left(|x(s)| + L_{\varphi} \int_0^s \left(1 + |x(\tau)| \right) d\tau \right) ds.$$

Since, by the Bellman–Gronwall inequality, we get

$$|x(t)| \le C, \quad |\xi(t)| \le C,$$
 (2.1)

where C is a constant. The estimate for $|\xi(t)|$ was obtained in the same way.

Since Assumption 1.2, we get

$$\begin{aligned} |x(t) - \xi(t)| &\leq \int_{0}^{t} \left| X\left(\frac{s}{\varepsilon}, x(s), \int_{0}^{s} \varphi(s, \tau, x(\tau)) \, d\tau, u_{j}(s)\right) - X_{0}(\xi(s), u_{j}(s)) \right| \, ds \\ &+ 2\lambda \bigg(\int_{0}^{T} |u(s) - u_{j}(s)|^{2} \, ds \bigg)^{\frac{1}{2}} \leq I_{1} + \frac{\eta}{2} \, e^{-\lambda T}. \end{aligned}$$

Then we will evaluate I_1 using Conditions 1.2, 1.3, we have

$$I_{1} \leq \int_{0}^{t} \left(\lambda |x(s) - \xi(s)| + \int_{0}^{s} |x(t) - \xi(t)| L_{\varphi} \, d\tau\right) ds + \int_{0}^{t} \left(X\left(\frac{s}{\varepsilon}, \xi(s), \int_{0}^{s} \varphi(s, \tau, \xi(\tau)) \, d\tau, u_{j}(s)\right) - X_{0}(\xi(s), u_{j}(s))\right) ds. \quad (2.2)$$

Since any function from $L^2((0,T))$ can be approximated in the L^2 – norm by a continuous function, and any continuous function on a closed interval can be approximated by a piecewise constant function, for $u_j(t)$ we take a continuous function $u_c(t)$ and a piecewise constant function $u_c(t)$ such that the inequalities hold:

$$||u_j - u_{c_j}||_{L^2} < \frac{\eta}{16\lambda} e^{-\lambda T},$$
 (2.3)

$$\|u_{c_j}(t) - u_{p_j}(t)\|_{L_2} < \frac{\eta}{16\lambda} e^{-\lambda T}$$
(2.4)

for all $t \in [0, T]$.

Using estimates (2.3) and (2.4), we evaluate the last integral from (2.2):

$$\int_{0}^{t} \left(X\left(\frac{s}{\varepsilon}, \xi(s), \int_{0}^{s} \varphi(s, \tau, \xi(\tau)) \, d\tau, u_{j}(s) \right) - X_{0}(\xi(s), u_{j}(s)) \right) ds$$

$$\leq \int_{0}^{t} \left(X\left(\frac{s}{\varepsilon}, \xi(s), \int_{0}^{s} \varphi(s, \tau, \xi(\tau)) \, d\tau, u_{p}(s) \right) - X_{0}(\xi(s), u_{p}(s)) \right) ds + \frac{\eta}{4} e^{-\lambda T}.$$

We split the integral from the last inequality into two integrals, and I_2 and I_3

$$\begin{split} \int_{0}^{t} \left[X\left(\frac{s}{\varepsilon}, \xi(s), \int_{0}^{s} \varphi(s, \tau, \xi(\tau)) \, d\tau, u_{p}(s) \right) - X_{0}(\xi(s), u_{p}(s)) \right] ds \\ &= \int_{0}^{t} \left[X\left(\frac{s}{\varepsilon}, \xi(s), \int_{0}^{s} \varphi(s, \tau, \xi(\tau)) \, d\tau, u_{p}(s) \right) - X\left(\frac{s}{\varepsilon}, \xi(s), \int_{0}^{s} \varphi(s, \tau, \xi(s)) \, d\tau, u_{p}(s) \right) \right] ds \\ &+ \int_{0}^{t} \left[X\left(\frac{s}{\varepsilon}, \xi(s), \int_{0}^{s} \varphi(s, \tau, \xi(s)) \, d\tau, u_{p}(s) \right) - X_{0}(\xi(s), u_{p}(s)) \right] ds = I_{2} + I_{3}. \end{split}$$

If necessary, by dividing the segment [0,T] with points $\{t_k\}_0^R$ $(t_0 = 0, t_R = T)$, it can be assumed that on each interval $[t_k, t_{k+1})$, all components of the vector function $u_p(t)$ take constant values, i.e., $u_p(t_k) = u_p(t_k)$ for $t \in [t_k, t_{k+1})$. Here, the natural $R = R(\eta)$ is fixed for a fixed choice of η .

Now, let us choose a natural n and divide the segment [0, T] into equal n parts using the points $t_i = i \cdot n^{-1}$ (i = 0, n). We assume n is large enough such that each interval $[t_k, t_{k+1})$ contains points t_i . As a result, we obtain n intervals of the form $[t_i, t_{i+1})$. If, for some k and i, $t_i < t_k < t_{i+1}$, the interval $[t_i, t_{i+1})$ is divided into two intervals, $[t_i, t_k)$ and $[t_k, t_{i+1})$. Consequently, the segment [0, T] is divided into no more than n + R intervals, each with a length not exceeding $\frac{1}{n}$. The division

points are again denoted as t_i , and the total number of intervals $[t_i, t_{i+1})$ is denoted by $K = K(\eta)$. Clearly, $K \le n + R$, and $u_p(t) = u_p(t_i)$ for $t \in [t_i, t_{i+1})$. Let us denote $\xi_i = \xi(t_i)$, and $u_p(t_i) = u_{pi}$. Then

$$\begin{split} I_{2} &\leq \sum_{i=0}^{K-1} \int_{t_{i}}^{t_{i+1}} \left[X\left(\frac{s}{\varepsilon}, \xi(s), \int_{0}^{s} \varphi(s, \tau, \xi(\tau)) \, d\tau, u_{pi}\right) - X\left(\frac{s}{\varepsilon}, \xi_{i}, \int_{0}^{s} \varphi(s, \tau, \xi_{i}) \, d\tau, u_{pi}\right) \right] ds \\ &+ \sum_{i=0}^{K-1} \int_{t_{i}}^{t_{i+1}} \left[X\left(\frac{s}{\varepsilon}, \xi_{i}, \int_{0}^{s} \varphi(s, \tau, \xi_{i}) \, d\tau, u_{pi}\right) - X\left(\frac{s}{\varepsilon}, \xi(s), \int_{0}^{s} \varphi(s, \tau, \xi(s)) \, d\tau, u_{pi}\right) \right] ds \\ &\leq \sum_{i=0}^{K-1} \lambda \int_{t_{i}}^{t_{i+1}} |\xi(s) - \xi_{i}| \, ds + \int_{t_{i}}^{t_{i+1}} \int_{0}^{s} L_{\varphi} |\xi(\tau) - \xi_{i}| \, d\tau \, ds + \sum_{i=0}^{K-1} \lambda \int_{t_{i}}^{t_{i+1}} |\xi_{i} - \xi(\tau)| \, ds + \int_{t_{i}}^{t_{i+1}} \int_{0}^{s} L_{\varphi} |\xi_{i} - \xi(s)| \, d\tau \, ds \\ &\leq 2 \sum_{i=0}^{K-1} \lambda \frac{MT(1+C)}{n^{2}} \left(1 + \int_{t_{i}}^{t_{i+1}} ds \int_{0}^{s} L_{\varphi} \, d\tau\right) \leq \lambda MT(1+C) \frac{n+R}{n^{2}} \left(1 + L_{\varphi} \frac{T}{n}\right). \end{split}$$

Then, for a chosen $\eta > 0$, there exists a number n such that for all $\varepsilon > 0$, the following holds:

$$I_2 \le \frac{\eta}{8} e^{-\lambda T}.$$

For estimating the integral I_3 , we split it over the interval [0, T] into a sum of integrals

$$\begin{aligned} \left| \int_{0}^{t} \left[X\left(\frac{s}{\varepsilon}, \xi(s), \int_{0}^{s} \varphi(s, \tau, \xi(s)) \, d\tau, u_{p}(s) \right) - X_{0}(\xi(s), u_{p}(s)) \right] ds \right| \\ & \leq \sum_{i=0}^{K-1} \lambda \int_{t_{i}}^{t_{i+1}} |\xi(s) - \xi_{i}| \, ds + \int_{t_{i}}^{t_{i+1}} ds \int_{0}^{s} L_{\varphi} |\xi(s) - \xi_{i}| \, d\tau + \sum_{i=0}^{K-1} \lambda \int_{t_{i}}^{t_{i+1}} |\xi(s) - \xi_{i}| \, ds + I_{4}, \end{aligned}$$

where

$$I_4 = \sum_{i=0}^{K-1} \int_{t_i}^{t_{i+1}} \left[X\left(\frac{s}{\varepsilon}, \xi(s), \int_0^s \varphi(s, \tau, \xi_i) \, d\tau, u_{pi}\right) - X_0(\xi_i, u_{pi}) \right] ds.$$

In terms of $\varphi_1(t, x)$, we have

$$\int_{t_i}^{t_{i+1}} \left[X\left(\frac{s}{\varepsilon}, \xi_i, \varphi_1(s, \xi_i), u_{pi}\right) - X_0(\xi_i, u_{pi}) \right] ds$$

$$= \int_{0}^{t_{i+1}} \left[X\left(\frac{s}{\varepsilon}, \xi_i, \varphi_1(s, \xi_i), u_{pi}\right) - X_0(\xi_i, u_{pi}) \right] ds$$

$$+ \int_{0}^{t_i} \left[X\left(\frac{s}{\varepsilon}, \xi_i, \varphi_1(s, \xi_i), u_{pi}\right) - X_0(\xi_i, u_{pi}) \right] ds. \quad (2.5)$$

To estimate (2.5), it is necessary to use the lemma.

Lemma 2.1. The convergence in (2.5) is uniform with respect to ξ_i , u_{pi} , and $t_i \in [0,T]$, by subsequence $\varepsilon_n \to 0$.

Since K is fixed, then, due to the proven lemma, Condition 1.3 holds for small ε_n (depending on K), but independent of ξ_i , u_{pi} and t_i , we have

$$I_6 \le \frac{\eta}{8} e^{-\lambda T}.$$

So we have established that for small enough ε_n

$$|x_{\varepsilon_n}(t) - \xi(t)| < \eta, \ t \in [0, T].$$

We get

$$\sum_{i=0}^{K-1} \int_{t_i}^{t_{i+1}} \left(X\left(\frac{s}{\varepsilon}, \xi_i, \int_0^s \varphi(s, \tau, \xi_i) \, d\tau, u_{pi}\right) - X_0(\xi_i, u_{pi}) \right) ds < \frac{\eta}{16} e^{-\lambda T}.$$

So,

$$I_3 \le \frac{\eta}{8} e^{-\lambda T}.$$

Hence, the following can be obtained from the proof of I_2 ,

$$I_1 \le \lambda \left(\int_0^t |x(s) - \xi(s)| \, ds + \int_0^s L_{\varphi} |x(\tau) - \xi(\tau)| \, d\tau \right) + \frac{\eta}{4} \, e^{-\lambda T} \le \frac{\eta}{2} \, e^{-\lambda T}.$$

The reasoning outlined above can be applied to each function $u_1(t), u_2(t), \ldots, u_n(t)$ from the constructed grid. Due to its finiteness, there exists a unique choice i for each function in the system.

Thus, from an arbitrary sequence of solutions $x_{\varepsilon_n}(t)$ of problem (1.1), one can select a subsequence of solutions $x_{\varepsilon_n}(t)$, which converges uniformly for $t \in [0,T]$ to the same limiting function $\xi(t)$. Therefore, the entire family x_{ε} converges uniformly in $t \in [0,T]$, $u \in U$ as $\varepsilon \to 0$ to $\xi(t)$.

The theorem is proved.

Theorem 2.2. Let

$$J_{\varepsilon}^{*} = \inf_{u(\cdot) \in U} J_{\varepsilon}[u],$$

$$J_{0}^{*} = \inf J_{0}[u].$$

Let Conditions 1.1–1.5 hold. Then problems (1.1), (1.2) and (1.4), (1.5) have solutions $(x_{\varepsilon}^{*}(t), u_{\varepsilon}^{*}(t)), (\xi^{*}(t), u^{*}(t)), respectively.$ Moreover,

(1)

 $J_{\varepsilon}^* \to J_0^* \text{ as } \varepsilon \to 0.$

(2) For any $\eta > 0$, there exists ε_0 such that for $\varepsilon < \varepsilon_0$,

$$|J_{\varepsilon}^* - J_{\varepsilon}(u^*)| < \eta$$

i.e., the optimal control of the averaging problem is nearly optimal for the original problem.

(3) There exists a sequence $\varepsilon_n \to 0$, $n \to \infty$, such that

$$x_{\varepsilon_n}^*(t) \to \xi^*(t)$$
 uniformly on $[0,T],$ (2.6)

and

$$u_{\varepsilon_n}^*(t) \to u^*(t) \text{ in } L^2((0,T)).$$
 (2.7)

If the averaging problem (1.4), (1.5) has a unique solution, then the convergence results (2.6) and (2.7) hold for all $\varepsilon \to 0$.

Proof.

(1) First, let us prove the continuity of $J_{\varepsilon}(u)$ with respect to $u \in L^2((0,1))$ for each $\varepsilon > 0$.

Let $u_1(t), u_2(t)$ be arbitrary admissible controls for problem (1.1), (1.2), and let $x(t, u_1), x(t, u_2)$ be the corresponding trajectories.

Using Condition 1.2 and Gronwall's inequality, we have

$$\sup_{t \in [0,1]} |x(t,u_1) - x(t,u_2)| \le \lambda ||u_1 - u_2||_{L^2} e^{\lambda}.$$
(2.8)

Thus,

$$|J_{\varepsilon}(u_{1}) - J_{\varepsilon}(u_{2})| \leq \lambda ||u_{1} - u_{2}||_{L^{2}} + \int_{0}^{T} \left[L(t, x(t, u_{2}), u_{1}(t)) - L(t, x(t, u_{2}), u_{2}(t)) \right] dt + \left| \Phi(x(T, u_{1})) - \Phi(x(T, u_{2})) \right|.$$
(2.9)

Estimate (2.1) is uniform for any admissible control u(t).

Thus, from (2.1), we have that x(t, u) does not go beyond the boundaries of the area B_c -sphere of radius C with center at for $t \in [0, T]$.

Due to (1) from Condition 1.5 and Cantor's theorem, the function L(t, x, u) will be uniformly continuous with respect to $x \in B_c$, uniformly relative to $t \in [0, T]$ and $u \in \mathbb{R}^m$. Therefore, from (2.8) and (2.9), the continuity of $J_{\varepsilon}(u)$ with respect to the L^2 -norm follows.

By similar considerations, we establish the continuity of the functional $J_0(u)$ with respect to u. Now, considering the compactness of the set of admissible controls, we establish the existence of $(x_{\varepsilon}^*(t), u_{\varepsilon}^*(t))$ and $(\xi^*(t), u^*(t))$ – optimal solutions of (1.1), (1.2) and (1.4), (1.5), respectively.

Now, we prove that $J_{\varepsilon}^* \to J_0^*$ as $\varepsilon \to 0$. Choose an arbitrary $\eta > 0$ and fix it. Then

$$J_{\varepsilon}^* \leq J_{\varepsilon}(u^*) = J_0^* + J_{\varepsilon}(u^*) - J_0(u^*).$$

But

then

$$|J_{\varepsilon}(u^*) - J_0(u^*)| \le \int_0^T \left| L(t, x(t, u^*), u^*(t)) - L(t, \xi(t), u^*(t)) \right| dt + \left| \Phi(x(T, u^*)) - \Phi(\xi(T)) \right|.$$
(2.10)

From Theorem 2.1 we have

$$\max_{t \in [0,1]} |x(t, u^*) - \xi^*(t)| \to 0, \ \varepsilon \to 0.$$
(2.11)

Now, considering the uniform continuity of the function L(t, x, u) with respect to $x \in B_c$, uniformly for $t \in (0, T]$ and $u \in \mathbb{R}^m$, it follows from (2.10), (2.11) and Condition 1.5 that there exists $\varepsilon_0 > 0$ such that for $\varepsilon < \varepsilon_0$, we have

 $|I_{\bullet}(u^*) - I_{\bullet}| < n$

$$J_{\varepsilon}^* < J_0^* + \eta.$$

$$(2.12)$$

From other side, as $\varepsilon < \varepsilon_0$, we get

$$J_0^* \le J_0(u_{\varepsilon}^*) = J_{\varepsilon}^* + \left(J_0(u_{\varepsilon}^*) - J_{\varepsilon}(u_{\varepsilon}^*)\right).$$
(2.13)

Therefore

$$J_0^* < J_\varepsilon^* + \eta.$$

From (2.12) and (2.13) it follows that

$$J_{\varepsilon}^* \to J_0^*, \ \varepsilon \to 0.$$
 (2.14)

Then, statement (1) is proved.

The proof of statement (2) follows from the following inequality

$$|J_{\varepsilon}^* - J_{\varepsilon}(u^*)| \le |J_{\varepsilon}^* - J_0^*| + |J_0(u^*) - J_{\varepsilon}(u^*)|.$$

Let's move on to the proof of the next statement. Since u is compact in $L^2((0,1))$, it follows that from the family u_{ε}^* , we can extract a subsequence $u_{\varepsilon_n}^*$ that converges in $L^2((0,1))$.

Let

$$\lim_{\varepsilon_n \to 0} u^*_{\varepsilon_n} = u_0. \tag{2.15}$$

Consider the auxiliary systems. Using the auxiliary systems and Theorem 2.1, through simple considerations, we obtain

$$\sup_{t \in [0,T]} |x_{\varepsilon_n}^*(t) - \xi(t)| \to 0, \quad \varepsilon_n \to 0.$$
(2.16)

Accordingly,

$$J_{\varepsilon_{n}}^{*} = J_{\varepsilon_{n}}(u_{\varepsilon_{n}}^{*}) = \int_{0}^{T} L(t, x_{\varepsilon_{n}}^{*}(t), u_{\varepsilon_{n}}^{*}(t)) dt + \Phi(x_{\varepsilon_{n}}^{*}(T))$$

$$= \int_{0}^{T} L(t, x_{\varepsilon_{n}}^{*}(t), u_{\varepsilon_{n}}^{*}(t)) dt + \phi(X_{\varepsilon_{n}}^{*}(T)) + \int_{0}^{T} \left[L(t, x_{\varepsilon_{n}}^{*}(t), u_{\varepsilon_{n}}^{*}(t)) - L(t, x_{\varepsilon_{n}}^{*}(t), u_{0}(t)) \right] dt. \quad (2.17)$$

From (2) of Condition 1.5 and (2.15), it follows that the last term in (2.17) tends to zero as $\varepsilon_n \to 0$. Let's consider the limit in equation (2.17) as $\varepsilon_n \to 0$, using (2.14) and (2.16), we have

$$J_0^* = \int_0^T L(t,\xi(t),u_0(t)) \, dt + \Phi(\xi(T)).$$

Thus, $(\xi(t), u_0(t))$ is the optimal solution of the averaged problem (1.4), (1.5), proving statement (3).

If the problem (1.4), (1.5) has a unique solution, as shown earlier, it follows that any convergent sequence $(x_{\varepsilon_n}^*(t), u_{\varepsilon_n}^*(t))$ converges to the only uniquely defined solution. This completes the proof of statement (4).

References

 V. Mogylova, R. Lakhva and V. I. Kravets, The problem of optimal control for systems of integro-differential equations. (Ukrainian) Nelīnīinī Koliv. 26 (2019), no. 3, 386–407.