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Abstract
This work is devoted to the optimal control of systems of integro-differential equations with

rapidly oscillating coefficients and a small parameter. Using the averaging method, it has
been proven that the optimal control of the averaged problem, which is a system of ordinary
differential equations, is nearly optimal for the original problem. That is, it minimizes the
quality criterion with an accuracy up to ε.

1 Problem statement
We consider the nonlinear optimal control problem of integro-differential system with rapidly os-
cillating coefficients: 

ẋ = X

(
t

ε
, x,

t∫
0

φ(t, s, x(s)) ds, u(t)

)
,

x(0) = x0,

(1.1)

and a cost function:

Jε[u] =

T∫
0

L(t, xε(t), u(t)) dt+ ϕ(xε(T )) −→ inf . (1.2)

Here, ε > 0 is a small parameter, T > 0 is a constant, x is the phase vector in the domain
D ⊂ Rd, u(t) – m-dimensional control vector from a certain functional set.

Furthermore, x(t, u) is the solution to the Cauchy problem (1.1), (1.2) corresponding to the
control u(t). Disregarding the dependence on u, we denote it simply as x(t).

We assume that there exists a function X0(x, u) such that, for uniformly x ∈ Rd and u ∈ U ,
the following limit exists:

lim
ε→0

t∫
0

[
X
( t

ε
, x, φ1(t, x), u

)
−X0(x, u)

]
dτ, (1.3)
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where

φ1(t, x) =

t∫
0

φ(t, s, x) ds,

t ∈ [0, T ], s ∈ [0, T ].
Note that condition (1.3) means the integral continuity of the function X( τε , x, φ(τ, x), u) at the

point ε = 0 on the [0, T ], x ∈ D, u ∈ U .
The optimal control problems (1.1), (1.2) with rapidly oscillating coefficients correspond to a

simpler optimal control problem {
ξ̇ = X0(ξ, u(t)),

ξ(0) = x0,
(1.4)

with a cost function:

J0[u] =

T∫
0

L(t, ξ(t), u(t)) dt+ ϕ(ξ(T )) −→ inf . (1.5)

For problems (1.1), (1.2), we assume that the following conditions hold.

Condition 1.1. The admissible controls are m-dimensional vector functions u( · ) such that u( · ) ∈
U – a compact set in L2((0, T )).

Condition 1.2. The function X(t, x, y, u) is defined and continuous with respect to the collection
of variables in the domain

Q0 =
{
t ∈ [0, T ], x ∈ D ⊂ Rd, y ∈ Rn, u ∈ U ∈ Rm

}
.

(1) X(t, x, y, u) satisfies the linear growth condition with respect to x, y in Q0, i.e. there exists a
constant M > 0 such that

|X(t, x, y, u)| ≤ M
(
1 + |x|+ |y|

)
for any (t, x, y, u) ∈ Q0.

(2) X(t, x, y, u) satisfies the Lipschitz condition with respect to x ∈ D ⊂ Rd and u ∈ Rm in Q0,
with constant λ:∣∣X(t, x, y, u)−X(t, x1, y1, u1)

∣∣ ≤ λ
(
|x− x1|+ |y − y1|+ |u− u1|

)
for any (t, x, y, u), (t, x1, y1, u1) ∈ Q0.

Condition 1.3. The function φ(t, s, x) is defined and continuous in the domain Q1 = {t ∈
[0, T ], s ∈ [0, T ], x ∈ D} and satisfies the linear growth and the Lipschitz conditions with re-
spect to x, i.e., ∃Lφ such that∣∣φ(t, s, x)− φ(t, s, x1)

∣∣ ≤ Lφ|x− x1|,
|φ(t, s, x)| ≤ Lφ

(
1 + |x|

)
.

Condition 1.4. Uniformly with respect to x ∈ D, u ∈ Rm, the limit (1.3) exists.

Condition 1.5. The function L(t, x, u) is defined and continuous with respect to the collection of
arguments in the domain Q1 = {t ∈ [0, T ], x ∈ Rd, u ∈ Rm}, where:
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(1) L(t, x, u) is uniformly bounded on [0, T ] with u ∈ Rm and continuous with respect to x ∈ Rd.

(2) L(t, x, u) satisfies the Lipschitz condition with respect to u in Q1 with constant λ > 0.

(3) The function ϕ : Rd → R is continuous with respect to x.
According to Conditions 1.1, 1.2 and Theorem 3.1 from [1], it follows that for any continuous

admissible control u(t), the solution of the Cauchy problem X(t, u) exists and is unique on the
entire interval [0, T ]. The problems (1.1), (1.4) make sense for all admissible controls.

2 Main results
The following theorem guarantees the closeness of solutions of the corresponding Cauchy problems
(1.1), (1.4) for small ε on a finite time interval.
Theorem 2.1. Let Conditions 1.1–1.3 hold. Then for any η > 0, there exists ε0 = ε0(η) such
that 0 < ε ≤ ε0, for the solutions x(t, u), ξ(t, u) of the Cauchy problems (1.1) and (1.4) satisfy the
following estimate

|x(t, u)− ξ(t, u)| ≤ η,

for all t ∈ [0, T ] and all admissible controls u(t).
Proof. We will choose the fixed η > 0. For any ε > 0 and any admissible control u(t), we estimate
the difference between x(t, u) and ξ(t, u). For simplicity, let’s denote x(t, u) = x(t) and ξ(t, u) =
ξ(t). We will also omit the dependence of x(t) on ε.

Since U is compact in L2((0, T )), for the given η, there exists a finite grid. Thus, for the chosen
control u(t) from the grid such that ηe−λ

4λ : u1(t), . . . , un(t), where N = N(η). Then, for the chosen
control u(t), there exists a subsequence uj(t) from the grid such that

∥u( · )− uj( · )∥L2 ≤ η

4λ
e−λ.

Thus, since u(t) is compact in L2((0, T )), all u(t) satisfy the inequality, where there exists K > 0
such that

T∫
0

|u(t)| dt ≤ K.

Then

|x(t)| ≤ |x0|+MT +M

T∫
0

(
|x(s)|+ Lφ

s∫
0

(
1 + |x(τ)|

)
dτ

)
ds.

Since, by the Bellman–Gronwall inequality, we get

|x(t)| ≤ C, |ξ(t)| ≤ C, (2.1)

where C is a constant. The estimate for |ξ(t)| was obtained in the same way.
Since Assumption 1.2, we get

|x(t)− ξ(t)| ≤
t∫

0

∣∣∣∣X(
s

ε
, x(s),

s∫
0

φ(s, τ, x(τ)) dτ, uj(s)

)
−X0(ξ(s), uj(s))

∣∣∣∣ ds
+ 2λ

( T∫
0

|u(s)− uj(s)|2 ds
) 1

2

≤ I1 +
η

2
e−λT .
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Then we will evaluate I1 using Conditions 1.2, 1.3, we have

I1 ≤
t∫

0

(
λ|x(s)− ξ(s)|+

s∫
0

|x(t)− ξ(t)|Lφ dτ

)
ds

+

t∫
0

(
X

(
s

ε
, ξ(s),

s∫
0

φ(s, τ, ξ(τ)) dτ, uj(s)

)
−X0(ξ(s), uj(s))

)
ds. (2.2)

Since any function from L2((0, T )) can be approximated in the L2 – norm by a continuous function,
and any continuous function on a closed interval can be approximated by a piecewise constant
function, for uj(t) we take a continuous function uc(t) and a piecewise constant function uc(t) such
that the inequalities hold:

∥uj − ucj∥L2 <
η

16λ
e−λT , (2.3)

∥ucj (t)− upj (t)∥L2 <
η

16λ
e−λT (2.4)

for all t ∈ [0, T ].
Using estimates (2.3) and (2.4), we evaluate the last integral from (2.2):

t∫
0

(
X

(
s

ε
, ξ(s),

s∫
0

φ(s, τ, ξ(τ)) dτ, uj(s)

)
−X0(ξ(s), uj(s))

)
ds

≤
t∫

0

(
X

(
s

ε
, ξ(s),

s∫
0

φ(s, τ, ξ(τ)) dτ, up(s)

)
−X0(ξ(s), up(s))

)
ds+

η

4
e−λT .

We split the integral from the last inequality into two integrals, and I2 and I3

t∫
0

[
X

(
s

ε
, ξ(s),

s∫
0

φ(s, τ, ξ(τ)) dτ, up(s)

)
−X0(ξ(s), up(s))

]
ds

=

t∫
0

[
X

(
s

ε
, ξ(s),

s∫
0

φ(s, τ, ξ(τ)) dτ, up(s)

)
−X

(
s

ε
, ξ(s),

s∫
0

φ(s, τ, ξ(s)) dτ, up(s)

)]
ds

+

t∫
0

[
X

(
s

ε
, ξ(s),

s∫
0

φ(s, τ, ξ(s)) dτ, up(s)

)
−X0(ξ(s), up(s))

]
ds = I2 + I3.

If necessary, by dividing the segment [0, T ] with points {tk}R0 (t0 = 0, tR = T ), it can be
assumed that on each interval [tk, tk+1), all components of the vector function up(t) take constant
values, i.e., up(tk) = up(tk) for t ∈ [tk, tk+1). Here, the natural R = R(η) is fixed for a fixed choice
of η.

Now, let us choose a natural n and divide the segment [0, T ] into equal n parts using the points
ti = i ·n−1 (i = 0, n). We assume n is large enough such that each interval [tk, tk+1) contains points
ti. As a result, we obtain n intervals of the form [ti, ti+1). If, for some k and i, ti < tk < ti+1, the
interval [ti, ti+1) is divided into two intervals, [ti, tk) and [tk, ti+1). Consequently, the segment [0, T ]
is divided into no more than n + R intervals, each with a length not exceeding 1

n . The division
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points are again denoted as ti, and the total number of intervals [ti, ti+1) is denoted by K = K(η).
Clearly, K ≤ n+R, and up(t) = up(ti) for t ∈ [ti, ti+1). Let us denote ξi = ξ(ti), and up(ti) = upi.
Then

I2 ≤
K−1∑
i=0

ti+1∫
ti

[
X

(
s

ε
, ξ(s),

s∫
0

φ(s, τ, ξ(τ)) dτ, upi

)
−X

(
s

ε
, ξi,

s∫
0

φ(s, τ, ξi) dτ, upi

)]
ds

+

K−1∑
i=0

ti+1∫
ti

[
X

(
s

ε
, ξi,

s∫
0

φ(s, τ, ξi) dτ, upi

)
−X

(
s

ε
, ξ(s),

s∫
0

φ(s, τ, ξ(s)) dτ, upi

)]
ds

≤
K−1∑
i=0

λ

ti+1∫
ti

|ξ(s)− ξi| ds+
ti+1∫
ti

s∫
0

Lφ|ξ(τ)− ξi| dτ ds+
K−1∑
i=0

λ

ti+1∫
ti

|ξi − ξ(τ)| ds+
ti+1∫
ti

s∫
0

Lφ|ξi − ξ(s)| dτ ds

≤ 2

K−1∑
i=0

λ
MT (1 + C)

n2

(
1 +

ti+1∫
ti

ds

s∫
0

Lφ dτ

)
≤ λMT (1 + C)

n+R

n2

(
1 + Lφ

T

n

)
.

Then, for a chosen η > 0, there exists a number n such that for all ε > 0, the following holds:

I2 ≤
η

8
e−λT .

For estimating the integral I3, we split it over the interval [0, T ] into a sum of integrals

∣∣∣∣
t∫

0

[
X

(
s

ε
, ξ(s),

s∫
0

φ(s, τ, ξ(s)) dτ, up(s)

)
−X0(ξ(s), up(s))

]
ds

∣∣∣∣
≤

K−1∑
i=0

λ

ti+1∫
ti

|ξ(s)− ξi| ds+
ti+1∫
ti

ds

s∫
0

Lφ|ξ(s)− ξi| dτ +

K−1∑
i=0

λ

ti+1∫
ti

|ξ(s)− ξi| ds+ I4,

where

I4 =
K−1∑
i=0

ti+1∫
ti

[
X

(
s

ε
, ξ(s),

s∫
0

φ(s, τ, ξi) dτ, upi

)
−X0(ξi, upi)

]
ds.

In terms of φ1(t, x), we have

ti+1∫
ti

[
X
(s
ε
, ξi, φ1(s, ξi), upi

)
−X0(ξi, upi)

]
ds

=

ti+1∫
0

[
X
(s
ε
, ξi, φ1(s, ξi), upi

)
−X0(ξi, upi)

]
ds

+

ti∫
0

[
X
(s
ε
, ξi, φ1(s, ξi), upi

)
−X0(ξi, upi)

]
ds. (2.5)

To estimate (2.5), it is necessary to use the lemma.
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Lemma 2.1. The convergence in (2.5) is uniform with respect to ξi, upi, and ti ∈ [0, T ], by
subsequence εn → 0.

Since K is fixed, then, due to the proven lemma, Condition 1.3 holds for small εn (depending
on K), but independent of ξi, upi and ti, we have

I6 ≤
η

8
e−λT .

So we have established that for small enough εn

|xεn(t)− ξ(t)| < η, t ∈ [0, T ].

We get
K−1∑
i=0

ti+1∫
ti

(
X

(
s

ε
, ξi,

s∫
0

φ(s, τ, ξi) dτ, upi

)
−X0(ξi, upi)

)
ds <

η

16
e−λT .

So,
I3 ≤

η

8
e−λT .

Hence, the following can be obtained from the proof of I2,

I1 ≤ λ

( t∫
0

|x(s)− ξ(s)| ds+
s∫

0

Lφ|x(τ)− ξ(τ)| dτ
)
+

η

4
e−λT ≤ η

2
e−λT .

The reasoning outlined above can be applied to each function u1(t), u2(t), . . . , un(t) from the
constructed grid. Due to its finiteness, there exists a unique choice i for each function in the system.

Thus, from an arbitrary sequence of solutions xεn(t) of problem (1.1), one can select a subse-
quence of solutions xεn(t), which converges uniformly for t ∈ [0, T ] to the same limiting function
ξ(t). Therefore, the entire family xε converges uniformly in t ∈ [0, T ], u ∈ U as ε → 0 to ξ(t).

The theorem is proved.

Theorem 2.2. Let

J∗
ε = inf

u( · )∈U
Jε[u],

J∗
0 = inf J0[u].

Let Conditions 1.1–1.5 hold. Then problems (1.1), (1.2) and (1.4), (1.5) have solutions
(x∗ε(t), u

∗
ε(t)), (ξ∗(t), u∗(t)), respectively. Moreover,

(1)
J∗
ε → J∗

0 as ε → 0.

(2) For any η > 0, there exists ε0 such that for ε < ε0,

|J∗
ε − Jε(u

∗)| < η,

i.e., the optimal control of the averaging problem is nearly optimal for the original problem.

(3) There exists a sequence εn → 0, n → ∞, such that

x∗εn(t) → ξ∗(t) uniformly on [0, T ], (2.6)

and
u∗εn(t) → u∗(t) in L2((0, T )). (2.7)
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If the averaging problem (1.4), (1.5) has a unique solution, then the convergence results (2.6) and
(2.7) hold for all ε → 0.

Proof.
(1) First, let us prove the continuity of Jε(u) with respect to u ∈ L2((0, 1)) for each ε > 0.

Let u1(t), u2(t) be arbitrary admissible controls for problem (1.1), (1.2), and let x(t, u1), x(t, u2)
be the corresponding trajectories.

Using Condition 1.2 and Gronwall’s inequality, we have

sup
t∈[0,1]

|x(t, u1)− x(t, u2)| ≤ λ∥u1 − u2∥L2eλ. (2.8)

Thus,

|Jε(u1)− Jε(u2)| ≤ λ∥u1 − u2∥L2

+

T∫
0

[
L
(
t, x(t, u2), u1(t)

)
− L

(
t, x(t, u2), u2(t)

)]
dt+

∣∣Φ(x(T, u1))− Φ(x(T, u2))
∣∣. (2.9)

Estimate (2.1) is uniform for any admissible control u(t).
Thus, from (2.1), we have that x(t, u) does not go beyond the boundaries of the area Bc-sphere

of radius C with center at for t ∈ [0, T ].
Due to (1) from Condition 1.5 and Cantor’s theorem, the function L(t, x, u) will be uniformly

continuous with respect to x ∈ Bc, uniformly relative to t ∈ [0, T ] and u ∈ Rm. Therefore, from
(2.8) and (2.9), the continuity of Jε(u) with respect to the L2-norm follows.

By similar considerations, we establish the continuity of the functional J0(u) with respect to u.
Now, considering the compactness of the set of admissible controls, we establish the existence

of (x∗ε(t), u∗ε(t)) and (ξ∗(t), u∗(t)) – optimal solutions of (1.1), (1.2) and (1.4), (1.5), respectively.
Now, we prove that J∗

ε → J∗
0 as ε → 0. Choose an arbitrary η > 0 and fix it. Then

J∗
ε ≤ Jε(u

∗) = J∗
0 + Jε(u

∗)− J0(u
∗).

But

|Jε(u∗)− J0(u
∗)| ≤

T∫
0

∣∣∣L(t, x(t, u∗), u∗(t))− L
(
t, ξ(t), u∗(t)

)∣∣∣ dt+ ∣∣Φ(x(T, u∗))− Φ(ξ(T ))
∣∣. (2.10)

From Theorem 2.1 we have

max
t∈[0,1]

|x(t, u∗)− ξ∗(t)| → 0, ε → 0. (2.11)

Now, considering the uniform continuity of the function L(t, x, u) with respect to x ∈ Bc, uniformly
for t ∈ (0, T ] and u ∈ Rm, it follows from (2.10), (2.11) and Condition 1.5 that there exists ε0 > 0
such that for ε < ε0, we have

|Jε(u∗)− J0| < η,

then
J∗
ε < J∗

0 + η. (2.12)

From other side, as ε < ε0, we get

J∗
0 ≤ J0(u

∗
ε) = J∗

ε +
(
J0(u

∗
ε)− Jε(u

∗
ε)
)
. (2.13)
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Therefore
J∗
0 < J∗

ε + η.

From (2.12) and (2.13) it follows that

J∗
ε → J∗

0 , ε → 0. (2.14)

Then, statement (1) is proved.

The proof of statement (2) follows from the following inequality

|J∗
ε − Jε(u

∗)| ≤ |J∗
ε − J∗

0 |+
∣∣J0(u∗)− Jε(u

∗)
∣∣.

Let’s move on to the proof of the next statement. Since u is compact in L2((0, 1)), it follows that
from the family u∗ε, we can extract a subsequence u∗εn that converges in L2((0, 1)).

Let
lim
εn→0

u∗εn = u0. (2.15)

Consider the auxiliary systems. Using the auxiliary systems and Theorem 2.1, through simple
considerations, we obtain

sup
t∈[0,T ]

|x∗εn(t)− ξ(t)| → 0, εn → 0. (2.16)

Accordingly,

J∗
εn = Jεn(u

∗
εn) =

T∫
0

L
(
t, x∗εn(t), u

∗
εn(t)

)
dt+Φ(x∗εn(T ))

=

T∫
0

L
(
t, x∗εn(t), u

∗
εn(t)

)
dt+ ϕ(X∗

εn(T )) +

T∫
0

[
L
(
t, x∗εn(t), u

∗
εn(t)

)
− L

(
t, x∗εn(t), u0(t)

)]
dt. (2.17)

From (2) of Condition 1.5 and (2.15), it follows that the last term in (2.17) tends to zero as
εn → 0. Let’s consider the limit in equation (2.17) as εn → 0, using (2.14) and (2.16), we have

J∗
0 =

T∫
0

L(t, ξ(t), u0(t)) dt+Φ(ξ(T )).

Thus, (ξ(t), u0(t)) is the optimal solution of the averaged problem (1.4), (1.5), proving state-
ment (3).

If the problem (1.4), (1.5) has a unique solution, as shown earlier, it follows that any convergent
sequence (x∗εn(t), u

∗
εn(t)) converges to the only uniquely defined solution. This completes the proof

of statement (4).
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