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1 Introduction
In recent years, there has been a significant development of interest in the implementation of a qual-
itative process of mixing in flows in two-dimensional rectangular cavities without the participation
of physical mixers in the process itself. This becomes possible when the flow of an incompressible
viscous liquid is periodically excited in a rectangular cavity with the help of tangential velocities
applied to its walls. The results obtained in this direction relate to problems in which the side
walls in a rectangular cavity are free from loads, which is physically impossible to implement. The
purpose of the research is to build a similar model, which is proposed in [1,4], considering the case
of fixed side walls in a rectangular cavity. Moreover, the goal is to find periodic points of the third
order and establish their type.

2 Setting of the problem and the main results
The movement of individual flow particles is considered in a known velocity field and is reduced
to solving the advection equations, which are a system of first-order ordinary differential equations
with a complex functional dependence in the right-hand parts:

dxi(t)

dt
= f(x, y),

dyi(t)

dt
= g(x, y), i = 1, n (2.1)

with the initial conditions
xi(t) = xi0, yi(t) = yi0, i = 1, n.

Two-dimensional slow flow of an incompressible viscous fluid can be represented in terms of a
biharmonic problem. If such a motion is so slow that the inertial forces containing the squares of
the velocities can be neglected compared to the viscous terms, then the stream function ψ satisfies
the biharmonic equation

∆2ψ = 0. (2.2)

In rectangular coordinates, the Euler components of the velocity vector u and v are defined as

u =
∂ψ

∂y
, v = −∂ψ

∂x
.

Flow in a rectangular cavity |x| ≤ a, |y| ≤ b is caused by the given tangential velocities Utop(x)
and Ubot(x) on the upper (y = b) and lower (y = −b) walls, respectively, and the side walls x = a
are stationary (Figure 1).
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Figure 1: Geometry of a rectangular cavity.

ψ = 0,
∂ψ

∂y
= ±U(x), y = ±b, |x| ≤ a, (5)

where

U(x) = Utop(x) = −Ubot(x) = U
(1)
1 cos

πx

2a
− U

(2)
1 sin

πx

a
. (6)

A detailed description of the construction of the solution to problem (2), (4), and (5) is
considered in [3, 4]. The resulting solution de�nes the velocity �eld, that is, the right-hand
sides of the advection equations (1).

Important for studying the advection of a passive non-inertial particle is the knowledge
of the periodic points of the process of order p, that is, such initial conditions in the
advection equation (1), when the point accurately returns to its initial position in p
periods. A fundamental element of the analysis of the advection process is the classi�cation
of periodic points into elliptical and hyperbolic.

We will classify the type of periodic point analytically by determining the eigenvalue λ1
and λ2 of the Jacobian matrix of the linearized system (1) in the vicinity of the considered
point. If λ1 and λ2 are complex conjugate, the point is of elliptic type. If λ1 and λ2 =

1
λ1

are valid, the time point is of hyperbolic type.
There can also be a situation of λ1 = λ2 = ±1, which corresponds to the degenerate

case where the periodic point is parabolic: in this case, any small change in the velocity
�eld causes the periodic point to become elliptical or hyperbolic.

The Jacobian elements of the matrix M are calculated by solving system (1) for four
initial conditions (x+ ϵ, y), (x− ϵ, y), (x, y+ ϵ), (x, y− ϵ), where (x, y) are the rectangular
coordinates of a periodic point, and ϵ is an arbitrarily small value

Mxx =
x(0,pT )(x+ϵ,y)−x(0,pT )(x−ϵ,y)

2ϵ
, Mxy =

x(0,pT )(x,y+ϵ)−x(0,pT )(x,y−ϵ)

2ϵ
,

Myx =
y(0,pT )(x+ϵ,y)−y(0,pT )(x−ϵ,y)

2ϵ
, Mxy =

y(0,pT )(x,y+ϵ)−y(0,pT )(x,y−ϵ)

2ϵ
,

(7)
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Figure 1. Geometry of a rectangular cavity.

Boundary conditions for equation (2.2) have the form

ψ = 0,
∂ψ

∂x
= 0, x = ±a, |y| ≤ b, (2.3)

ψ = 0,
∂ψ

∂y
= ±U(x), y = ±b, |x| ≤ a, (2.4)

where
U(x) = Utop(x) = −Ubot(x) = U

(1)
1 cos

πx

2a
− U

(2)
1 sin

πx

a
. (2.5)

A detailed description of the construction of the solution to problem (2.2), (2.3), and (2.4) is
considered in [2,3]. The resulting solution defines the velocity field, that is, the right-hand sides of
the advection equations (2.1).

Important for studying the advection of a passive non-inertial particle is the knowledge of the
periodic points of the process of order p, that is, such initial conditions in the advection equation
(2.1), when the point accurately returns to its initial position in p periods. A fundamental element
of the analysis of the advection process is the classification of periodic points into elliptical and
hyperbolic.

We will classify the type of periodic point analytically by determining the eigenvalue λ1 and λ2
of the Jacobian matrix of the linearized system (2.1) in the vicinity of the considered point. If λ1
and λ2 are complex conjugate, the point is of elliptic type. If λ1 and λ2 = 1

λ1
are valid, the time

point is of hyperbolic type.
There can also be a situation of λ1 = λ2 = ±1, which corresponds to the degenerate case

where the periodic point is parabolic: in this case, any small change in the velocity field causes the
periodic point to become elliptical or hyperbolic.

The Jacobian elements of the matrix M are calculated by solving system (2.1) for four initial
conditions (x+ ϵ, y), (x− ϵ, y), (x, y+ ϵ), (x, y− ϵ), where (x, y) are the rectangular coordinates of
a periodic point, and ϵ is an arbitrarily small value,

Mxx =
x(0,pT )(x+ ϵ, y)− x(0,pT )(x− ϵ, y)

2ϵ
, Mxy =

x(0,pT )(x, y + ϵ)− x(0,pT )(x, y − ϵ)

2ϵ
,

Myx =
y(0,pT )(x+ ϵ, y)− y(0,pT )(x− ϵ, y)

2ϵ
, Mxy =

y(0,pT )(x, y + ϵ)− y(0,pT )(x, y − ϵ)

2ϵ
,

(2.6)
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where p is the order of the periodic point.
The condition that the determinant of the matrix M must be equal to one is used when checking

the accuracy of calculations.
Figure 2 shows periodic points (in red), which have the following coordinates: AL = (−2.01, 0),

AC = (0, 0), AR = (2.01, 0). Coordinates of periodic points and parameters U (1)
1 and U

(2)
1 in (2.5)

were selected according to the following algorithm:

(1) periodic points AL and AC must belong to the same flow line;

(2) points AL and AR are equidistant from the central point AC .

With such values of U (1)
1 and U

(2)
1 , the periodic points AL and AC pass into each other in a half-

period τ = 1
2 T (T = 2, τ varies from 0 to 1

2 T ), exchange positions (the transition occurs clockwise),
and the right AR remains stationary.
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Figure 3. Picture of streamlines in a rectangular cavity a = 3 and b = 1 with unmovable
side walls over the half period 1

2
T < t < T .

In the time period from 1
2 T to T , the found velocity at the boundaries changes its value to

the opposite, begins to act in the opposite direction. In this case, the left periodic point remains
stationary, and the central and right point move into each other, changing their positions (the
transition occurs counter-clockwise). The corresponding picture of streamlines along with the
observed points is shown in Figure 3. In three full periods T , the points will return to their original
positions.
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Thus, the found points are periodic points of the third order of the elliptic type. The type of
these points was determined numerically and analytically according to the methodology proposed
in this work. These points play an important role in the theory of mixing liquids and are called
“ghost rods”.
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