
158 E. Korobko

Application of the Retract Principle
to Find Solutions of Discrete Nonlinear Equations

E. Korobko1,2

1Lomonosov Moscow State University, Moscow, Russia
2Plekhanov Russian University of Economics, Moscow, Russia

E-mail: jakovi300195@ya.ru

Let us show using the example of several nonlinear difference equations the possibility of esti-
mating the properties of the solutions using a discrete analogue of the retract principle. To describe
this principle, we need to consider a system of discrete equations

∆Y (k) = F (k, Y (k)), k ∈ N(k0), (0.1)

where Y = (Y0, . . . , Yn−1)
T and

F (k, Y ) =
(
F1(k, Y ), . . . , Fn(k, Y )

)T
: N(k0)× Rn → Rn. (0.2)

A solution Y = Y (k) of system (0.1) is defined as a function Y : N(k0) → Rn satisfying (0.1) for
each k ∈ N(k0). The initial problem

Y (k0) = Y 0 = (Y 0
0 , . . . , Y

0
n−1)

T ∈ Rn

defines a unique solution to (0.1). Obviously, if F (k, Y ) is continuous with respect to Y , then the
initial problem (0.1), (0.2) defines a unique solution Y = Y (k0, Y

0)(k), where Y (k0, Y
0) indicates a

dependence of the solution on the initial point (k0, Y
0), which depends continuously on the value

Y 0. Let bi, ci : N(k0) → R, i = 1, . . . , n be given functions, satisfying

bi(k) < ci(k), k ∈ N(k0), i = 1, . . . , n.

Define auxiliary functions Bi, Ci : N(k0)× R → R, i = 1, . . . , n as

Bi(k, Y ) := −Yi−1 + bi(k), Ci(k, Y ) := Yi−1 − ci(k),

and auxiliary sets

Ωi
B :=

{
(k, Y ) : k ∈ N(k0), Bi(k, Y ) = 0, Bj(k, Y ) ≤ 0, Cp(k, Y ) ≤ 0,

∀ j, p = 1, . . . , n, j ̸= i
}
,

Ωi
C :=

{
(k, Y ) : k ∈ N(k0), Ci(k, Y ) = 0, Bj(k, Y ) ≤ 0, Cp(k, Y ) ≤ 0,

∀ j, p = 1, . . . , n, p ̸= i
}
,

where i = 1, . . . , n.
Playing a crucial role in the proofs and being suitable for applications, the following lemma is

a slight modification of [3, Theorem 1] (see [5, Theorem 2] also).
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Definition 0.1. The set Ω is called the regular polyfacial set with respect to the discrete sys-
tem (0.1) if

bi(k + 1)− bi(k) < Fi(k, Y ) < ci(k + 1)− bi(k),

for every i = 1, . . . , n and every (k, Y ) ∈ Ωi
B and if

bi(k + 1)− ci(k) < Fi(k, Y ) < ci(k + 1)− ci(k),

for every i = 1, . . . , n and every (k, Y ) ∈ Ωi
C .

To formulate the following theorem, we need to define sets

Ω(k) =
{
(k, Y ) : Y = (Y1, . . . , Yn) ∈ Rn, bi(k) < Yi < ci(k), i = 1, . . . , n

}
,

Ωi(k) =
{
(Y ) : Y ∈ R, bi(k) < Yi < ci(k), i = 1, . . . , n

}
.

Theorem 0.1 ([4, Theorem 4]). Let F : N(k0)×Ω → Rn. Let, moreover, Ω be regular with respect
to the discrete system (0.1), and let the function

Gi(w) := w + Fi(k, Y1, . . . , Yi−1, w, Yi+1, . . . , Yn)

be monotone on Ωi(k) for every fixed k ∈ N(k0), each fixed i ∈ {1, . . . , n}, and every fixed

(Y1, . . . , Yi−1, Yi+1, . . . , Yn)

such that (k, Y1, . . . , Yi−1, w, Yi+1, . . . , Yn) ∈ Ω. Then, every initial problem Y (k0) = Y ∗ with
Y ∗ ∈ Ω(k0) defines a solution Y = Y ∗(k) of the discrete system (0.1), satisfying the relation

Y ∗(k) ∈ Ω(k)

for every k ∈ N(k0).
Now we formulate a result which is proved in [3] by a retract method sometimes called an Anti-

Liapunov method due to the assumptions used being often an opposite to those used when Liapunov
method is applied (such an approach goes back to Ważewski, who formulated his topological method
formulated for ordinary differential equations). The following theorem is a slight modification
of [3, Theorem 1] (see [5, Theorem 2] also).
Theorem 0.2. Assume that the function F (k, Y ) satisfies (0.1) and is continuous with respect to
Y . Let the inequality

Fi(k, Y ) < bi(k + 1)− bi(k)

hold for every i = 1, . . . , n and every (k, Y ) ∈ Ωi
B. Let, moreover, the inequality

Fi(k, Y ) > ci(k + 1)− ci(k)

hold for every i = 1, . . . , n and every (k, Y ) ∈ Ωi
C . Then, there exists a solution Y = Y (k),

k ∈ N(k0) of system (0.1), satisfying the inequalities

bi(k) < Yi−1(k) < ci(k)

for every k ∈ N(k0) and i = 1, . . . , n.
Definition 0.2. A function uupp : B → R is said to be an approximate solution to equation (0.1)
of an order g, where g : N(k0) → R, if

lim
k→∞

[
∆3uupp(k)± kαunupp(k)

]
g(k) = 0.

If the main term (i.e. the term being asymptotically leading) in uupp(k) is a power-type function,
we say that it is a power-type approximate solution.



160 E. Korobko

1 Discrete analogue of Emden–Fowler second-order
non-linear equation

Now let us consider the following second-order non-linear equation

∆2u(k)± kαum(k) = 0, (1.1)

where u : N(k0) → R is an unknown solution, ∆u(k) is its first-order forward difference, i.e.,

∆u(k) = u(k + 1)− u(k),

∆2(k) is its second-order forward difference, i.e.,

∆2u(k) = ∆(∆u(k)) = u(k + 2)− 2u(k + 1) + u(k),

and α, m are real numbers. A function u = u∗ : N(k0) → R is called a solution of equation (1.1) if
the equality

∆2u∗(k)± kα(u∗(k))m = 0

holds for every k ∈ N(k0).
Equation (1.1) is a discretization of the classical Emden–Fowler second-order differential equa-

tion (we refer, e.g., to [2])
y′′ ± xαym = 0,

where the second-order derivative is replaced by a second-order forward difference and the contin-
uous independent variable is replaced by a discrete one.
Remark 1.1. We need to assume m ̸= 0, m ̸= 1, s + 2 ̸= 0, and s + 2 − ms ̸= 0, that is, m ̸= 0,
m ̸= 1, α ̸= −2, and α ̸= −2m.

Let us define

s =
α+ 2

m− 1
,

a =
[
∓ s(s+ 1)

]1/(m−1)
, (1.2)

and
b =

as(s+ 1)

s+ 2−ms
.

Remark 1.2. If, in formula (1.2), either the upper variant of sign is in force (i.e. −) and s(s+1) > 0
or in (1.2) lower variant of sign in force (i.e. +) and s(s+1) < 0, then the constant m has the form
of a ratio m1/m2 of relatively prime integers m1, m2, and m2 is odd, the difference m1−m2 is odd
as well. If this convention holds, formula (1.2) defines two or at least one value. As equation (1.1)
splits into two equations, when formulating the results, we assume that a concrete variant is fixed
(either with the sign + or with the sign −).

Previously in [1,7,8] the conditions on the existence of a power-type solution of equation (1.1)
were discussed.

Theorem 1.1. If there exist γ ∈ (0, 1), s and εi > 0, i = 1, 2, 3, 4, such that P ≡ γ+s+1
s+1 and

Q ≡ γ+s+2
ms and at least one of the following four conditions is true

(1) ms > 0, s > −1, ε3 < ε1P , ε4 < ε2P , ε1 < ε3Q, ε2 < ε4Q;

(2) ms < 0, s > −1, ε3 < ε1P , ε4 < ε2P , ε2 < −ε3Q, ε1 < −ε4Q;



REPORTS OF QUALITDE, Volume 3, 2024 161

(3) ms < 0, −2 ̸= s < −1, ε4 < −ε1P , ε3 < −ε2P , ε2 < −ε3Q, ε1 < −ε4Q;

(4) ms > 0, −2 ̸= s < −1, ε4 < −ε1P , ε3 < −ε2P , ε1 < ε3Q, ε2 < ε4Q,

then there exists K such that for all k0 > K there exists a solution u(k) to equation (1.1) such that
for all k ∈ N(k0) the following inequalities

− ε1
kγ

<
(
u(k)− a

ks
− b

ks+1

)( b

ks+1

)−1
<

ε2
kγ

, (1.3)

− ε3
kγ

<
(
∆u(k)−∆

( a

ks

)
−∆

( b

ks+1

))(
∆
( b

ks+1

))−1
<

ε4
kγ

, (1.4)

− ε1
kγ

+O
(1
k

)
<

(
∆2u(k)−∆2

( a

ks

)
−∆2

( b

ks+1

))(
∆2

( b

ks+1

) ms

s+ 2

)−1
<

ε2
kγ

+O
(1
k

)
(1.5)

hold.

Theorem 1.2. If there exist s > −1 and εi > 0, i = 1, 2, 3, 4, such that one of the following
conditions hold

(1) ms > 0, ε3 < ε1, ε2 > ε4, ε3 >
ms

s+ 2
ε1, ε4 >

ms

s+ 2
ε2;

(2) ms < 0, ε3 < ε1, ε2 > ε4, ε3 > − ms

s+ 2
ε2, ε4 > − ms

s+ 2
ε1,

then for some K for all k0 > K there exist a solution u(k) to equation (1.1) such that for all
k ∈ N(k0) and γ = 0 (1.3)–(1.5) hold.

To prove these theorems we had to transform the discrete second-order non-linear equation to
the system of two discrete equations, and applying theorems in preliminaries we get the above
theorems. For more details to the proof we refer to [1, 7].

2 Another second-order non-linear difference equation
Let us consider the problem of the existence of a nontrivial solution to the equation

∆2v(k) = −ks(∆v(k))3 (2.1)

such that the limit limk→∞ v(k) exists and is finite. More exactly, under the condition s > 1, we
prove the existence of a solution to equation (2.1) such that the limit

lim
k→∞

v(k) = 0.

Theorem 2.1. Let s > 1. Let εi, γi, i = 1, 2 be fixed positive numbers such that ε2 < ε1 < 1,
γ2 < γ1 < 1. Then there exists a solution v = v(k) to equation (2.1) such that

−ε1|c|k−α < v(k)− ck−α < γ1|c|k−α,

−ε2γ2∆
(
|c|k−α

)
< ∆v(k)− (∆(ck−α)) < γ2∆

(
|c|k−α

)
,

and
∆2v(k) = O(1)

for all k ∈ Z∞
k0

provided that k0 is sufficiently large.

Opposite to the equation in the previous chapter where Theorem 0.1 was used, in this case
Theorem 0.2 is applied (for details see [6]).
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3 Conclusion
In this article we discussed two different non-linear discrete equations. To prove some properties to
its solutions, we used the retract principle described in this article. It can be concluded that other
nonlinear discrete differential equations can be investigated in a similar way.
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