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1 Introduction
In this paper, we introduce the definition of p-median of a measurable function which is the key
concept in the definition of p-oscillation and generalized Kurzweil integral. This new integral is
based on minimization of sums of p-oscillations instead of ordinary oscillations which leads to a
wider class of integrable functions. We introduce its definition in Section 4. However, it is not
obvious how to compute p-oscillation of a given function. It leads us to question if it is possible to
classify p-medians of a given function for any p. We can answer this question for p = 1, p = 2 and
p = ∞.

2 Preliminaries
Let M be an arbitrary subset of R, then µ(M) is the Lebesgue measure of M and, for p ∈ [1,∞],
Lp(M) is, as usual, the space of real valued functions measurable on M and such that ‖f‖p < ∞,
where

‖f‖p =
(∫

M

|f(x)|p dx
) 1

p

if p ∈ [1,∞) and ‖f‖∞ = ess sup
x∈M

|f(x)|

is the usual norm on Lp(M).

3 Median and p-median
Next definition was used in [5] (c.f. Definition 2.5 therein) and it is an analogue of median of
random variable in probability and statistics, cf. e.g. [6, Section 1.4].

Definition 3.1 (Median). Let f : [a, b] → R be a measurable function. We say that the number
λ ∈ R is the median of the function f on [a, b] if there exists a measurable set M ⊂ [a, b] such that
µ(M) = 1

2 (b− a), f ≤ λ on M and f ≥ λ on [a, b] \M .

Definition 3.2 (p-median). Let I ⊂ R be a bounded interval and f ∈ Lp(I) for some p ∈ [1,∞].
We say that the number c(p) ∈ R is the p-median of the function f on I if

inf
c∈R

‖f − c‖p = ‖f − c(p)‖p.

Remark 3.1. The existence of p-median is obvious. Indeed, since the function g(c) := ‖f − c‖p is
non-negative, continuous and its limits at ±∞ are +∞, it follows that it has a minimum.
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As we will prove later, median coincides with p-median for p = 1. We will also show that
for p = 2 the p-median coincides with the integral mean value of the given function, while for
p = ∞ it is simply the arithmetic mean of essential supremum and infimum of the given function.
Furthermore, if f ∈ L∞(I), then the relations ess inf f ≤ c(p) ≤ ess sup f hold for all p ∈ [1,∞].

First, we will show that median of a measurable function always exist.

Proposition 3.1. Every measurable function f : [a, b] → R has a median.

Proof. Let a measurable function f : [a, b] → R be given and

S1 :=
{
λ ∈ R; µ

(
f−1((−∞, λ))

)
≤ b− a

2

}
,

S2 :=
{
λ ∈ R; µ

(
f−1((λ,+∞))

)
≤ b− a

2

}
.

The monotonicity of measure implies that h1(λ) := µ(f−1((−∞, λ))) is non-decreasing on R and
h2(λ) := µ(f−1((λ,+∞))) is non-increasing on R. Moreover,

0 ≤ hi(λ) ≤ b− a for all λ ∈ R and i ∈ {1, 2}.

Denote Ak := f−1((−∞, k)) for k ∈ N. Then Ak ⊂ Ak+1 for each k and in view of the continuity
of measure we get

lim
k→∞

µ(Ak) = µ
( ∞⋃

k=1

Ak

)
= b− a.

Therefore, there is a k1 ∈ N such that µ(f−1((−∞, k1))) >
b−a
2 . Hence, S1 is bounded from above.

Next, we will show that it is non-empty. To this aim, put Bk := f−1((−∞,−k)) for k ∈ N. We
have Bk+1 ⊂ Bk for each k and all these sets have finite measures. Thus, using the continuity of
measure again, we obtain

lim
k→∞

µ(Bk) = µ
( ∞⋂

k=1

Bk

)
= 0.

Therefore, there is a k2 ∈ N such that

µ
(
f−1((−∞,−k2))

)
<

b− a

2
.

In other words, S1 6= ∅. Analogously, we can prove that S2 is nonempty and bounded from below.
Obviously, λ1 = supS1 < ∞ and −∞ < λ2 = inf S2. Moreover, it is easy to see that λ2 ≤ λ1.

Indeed, if the opposite was true, we could find numbers c1, c2 such that λ1 < c1 < c2 < λ2. In such
a case we would have

µ
(
f−1((−∞, c1))

)
>

b− a

2
and µ

(
f−1((c2,+∞))

)
>

b− a

2

a contradiction, since
f−1((−∞, c1)) ∩ f−1((c2,∞)) = ∅,

while
f−1((−∞, c1)) ∪ f−1((c2,∞)) = [a, b].

Let λ2 < λ1 and let an arbitrary ξ ∈ (λ2, λ1) be given. Then we can choose ξ1 ∈ S1 and ξ2 ∈ S2

in such a way that λ2 < ξ2 < ξ < ξ1 < λ1. By the definitions of the sets S1, S2, we have

µ
(
f−1((−∞, ξ])

)
≤ µ

(
f−1((−∞, ξ1))

)
≤ b− a

2
and µ

(
f−1((ξ,∞))

)
≤ µ

(
f−1((ξ2,∞))

)
≤ b− a

2
.
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Thus,

µ
(
f−1((−∞, ξ])

)
+ µ

(
f−1((ξ,∞))

)
≤ µ

(
f−1((−∞, ξ1))

)
+ µ

(
f−1((ξ2,∞))

)
≤ b− a. (3.1)

On the other hand, f−1((−∞, ξ]) ∪ f−1((ξ,∞)) = [a, b] and this together with (3.1) yields

µ
(
f−1((−∞, ξ])

)
+ µ

(
f−1((ξ,∞))

)
= b− a,

i.e. any ξ ∈ (λ1, λ2) is the median of f .
It remains to consider the case λ1 = λ2. Thus, let λ∗ := λ1 = λ2. Then, since (−∞, λ∗) ⊂ S1,

we have µ(f−1((−∞, λ))) ≤ 1
2(b− a) for all λ < λ∗ and, thanks to the continuity of measure,

µ
(
f−1((−∞, λ∗))

)
= lim

λ→λ∗
µ
(
f−1((−∞, λ))

)
≤ b− a

2
. (3.2)

Similarly,
µ(f−1(λ∗,∞)) ≤ b− a

2
. (3.3)

If one of the relations (3.2), (3.3) reduces to the equality, then λ∗ will be the median of f . Indeed,
if µ(f−1(λ∗,∞)) = b−a

2 , then for M = f−1(λ∗,∞)), we have

f(M) = (λ∗,∞), µ(M) =
b− a

2
and f([a, b] \M) ⊂ (−∞, λ∗].

Now, assume that both inequalities (3.2) and (3.3) are strict. Then, as obviously

[a, b] = f−1
(
((−∞, λ∗))

)
∪ f−1({λ∗}) ∪ f−1(((λ∗,∞))),

the set f−1({λ∗}) is nonempty and µ(f−1({λ∗})) > 0. We can define

h(t) = µ
(
[a, t] ∩ f−1({λ∗})

)
for t ∈ [a, b].

As h is continuous on [a, b], h(a) = 0 and h(b) = b− a, we can find a t0 ∈ [a, b] such that

h(t0) = µ
(
[a, t0] ∩ f−1({λ∗})

)
=

b− a

2
− µ(f−1(−∞, λ∗)) > 0.

Furthermore,
f−1({λ∗}) = A ∪B,

where
A := [a, t0] ∩ f−1

(
{λ∗}

)
and B := (t0, b] ∩ f−1

(
{λ∗}

)
are disjoint. Simultaneously,

µ
(
A ∪ f−1(−∞, λ∗)

)
=

b− a

2
, µ

(
B ∪ f−1((λ∗,∞))

)
=

b− a

2
,

f(x) ≤ λ∗ for x ∈ A ∪ f−1((−∞, λ∗)) and f(x) ≥ λ∗ for x ∈ B ∪ f−1((λ∗,∞)).

It follows easily that λ∗ is the median of the function f .

Example 3.1. Median doesn’t have to be uniquely determined, as shown by the following example.
The median of the function f : [0, 2] → R given by the formula

f(x) =

{
0 if x ∈ [0, 1),

1 if x ∈ [1, 2]

can be any number from the interval [0, 1]. Indeed, let M = [0, 1). Then given an arbitrary
λ ∈ [0, 1], we have f ≤ λ on M and f ≥ λ on [0, 2] \M .

On the other hand, it is easy to verify that if p > 1, then all the p-medians of the function f
on [0, 2] are equal to 1

2 .
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Example 3.2. The median of the function sinx on [−π, π] is zero, as well as all its p-medians with
p > 1 (shown in [3]).

Example 3.3. The median of the function sinx on the interval [0, π] equals 1
2

√
2 because sinx ≥

√
2
2

for all x ∈ [π4 ,
3π
4 ] and sinx ≤

√
2
2 for all x ∈ [0, π4 ) ∪ (3π4 , π]. On the other hand, its p-median c(∞)

for p = ∞ equals 1
2 , while

c(2) =
1

π

π∫
0

sinx dx =
2

π
.

Proposition 3.2. Median of the continuous function f : [a, b] → R is uniquely determined.

Proof. For a contradiction, let us suppose that f has two medians λ1, λ2 such that λ1 < λ2. Then,
by the definition of the median, there are measurable sets M1,M2 ⊂ [a, b], of measure b−a

2 and such
that

f(x) ≤ λ1 for all|; x ∈ M1 and f(x) ≥ λ1 for all|; x ∈ [a, b] \M1

and
f(x) ≤ λ2 for all|; x ∈ M2 and f(x) ≥ λ2 for all|; x ∈ [a, b] \M2.

Using these properties, we get

b− a

2
= µ(M2) ≥ µ

(
f−1((−∞, λ2))

)
≥ µ(M1) + µ

(
f−1((λ1, λ2))

)
=

b− a

2
+ µ

(
f−1((λ1, λ2))

)
.

It follows that µ(f−1((λ1, λ2))) = 0. However, the preimage of an open interval (λ1, λ2) under a
continuous mapping f must be an open set. Therefore, f−1((λ1, λ2)) is an open set of measure
zero, so it must be empty. Thus, the range Hf of the function f must be a subset of the set
[0, λ1] ∪ [λ2,∞]. Since the continuous image of the interval [a, b] is again an interval, it must be
either Hf ⊂ [0, λ1] or Hf ⊂ [λ2,∞]. But, in the former case it is f(x) ≤ λ1 for all x ∈ [a, b] which
implies that λ2 can not be the median of f . Similarly, in the latter case we have f(x) ≥ λ2 for
all x ∈ [a, b] which means that λ1 can not be the median of f . These conclusions contradicts our
assumption, of course.

Proposition 3.3. Let I ⊂ R be a bounded interval and f ∈ L∞(I). Put

A := ess inf
x∈I

f(x) and B := ess sup
x∈I

f(x).

Then
inf
c∈R

‖f − c‖p = inf
c∈[A,B]

‖f − c‖p for all p ∈ [1,∞].

Furthermore,
inf
c∈R

‖f − c‖∞ =
∥∥∥f − A+B

2

∥∥∥
∞

=
B −A

2
.

Proof.
(i) First, let us prove the first part of the statement, i.e. that the sought number c will always lie
in the interval [A,B]. In other words, we want to show that

inf
z∈[A,B]

‖f − z‖p ≤ ‖f − c‖p for all c ∈ (−∞, A) ∪ (B,∞).

If c ∈ (B,∞), then for almost all x ∈ [a, b] we have

|f(x)− c| = c− f(x) > B − f(x) = |f(x)−B|.
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Consequently, |f(x)− c|p > |f(x)−B|p for a.e. x ∈ I and, thus, ‖f − c‖p ≥ ‖f −A‖p.
In case p = ∞ we have

‖f − c‖∞ ≥ ‖f −B‖∞ if c > B and ‖f − c‖∞ ≥ ‖f −A‖∞ if c < A.

To summarize,
inf
c∈R

‖f − c‖p = inf
c∈[A,B]

‖f − c‖p for all p ∈ [1,∞].

(ii) Let us prove the remaining part of the statement. If c ∈ R is an arbitrary constant, then

ess inf(f(x)− c) = A− c and ess sup(f(x)− c) = B − c.

Thus
‖f − c‖∞ = max

{
|A− c|, |B − c|

}
.

Function y(c) = max{|A− c|, |B − c|} has a minimum for c = A+B
2 and, therefore,

inf
c∈R

‖f − c‖∞ = max
{∣∣∣A− A+B

2

∣∣∣, ∣∣∣B − A+B

2

∣∣∣} =
B −A

2
.

Remark 3.2. Analogously, if instead of p-norm we consider the supremum norm ‖f‖ = sup
x∈I

|f(x)|,
we get

inf
c∈R

‖f − c‖ =
∥∥∥f − 1

2

(
sup f(x) + inf f(x)

)∥∥∥.
Proposition 3.4. Let I ⊂ R be a bounded interval and f ∈ L2(I). Then

inf
c∈R

‖f − c‖2 =
∥∥∥∥f − 1

µ(I)

∫
I

f(t) dt

∥∥∥∥
2

.

In other words, for p = 2 the p-median of f equals to the integral mean value of f .

Proof. Let c ∈ R. Since L2(I) ⊂ L1(I) for I bounded, both integrals
∫
I

f(x) dx and
∫
I

f2(x) dx exist

and are finite. Therefore,

g(c) := ‖f − c‖22 =
∫
I

(f(x)− c)2 dx =

∫
I

f2(x) dx− 2c

∫
I

f(x) dx+ c2µ(I).

This is a quadratic function of c with a positive leading coefficient and thus it must have a minimum.
Its derivative is

g′(c) = −2

∫
I

f(x) dx+ 2c µ(I).

Hence
g′(c) = 0 if and only if c =

1

µ(I)

∫
I

f(x) dx.

This is its stationary point, and the function g takes a minimum there. Therefore, it is also a
minimum of the function ‖f − c‖2.
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4 Oscillations and HKp integral

In this section we introduce the notions of oscillation which is the key concept in the definition of
HKSp integral. Next definition is taken from [5, Definition 2.3].

Definition 4.1 (Oscillations). Let I ⊂ R be a bounded interval and p ∈ [1,∞]. We define the
p-oscillation of a measurable function f : I → R as

oscp(f, I) := (µ(I))
− 1

p inf
c∈R

‖f − c‖p.

Here and in what follows we set 1
p = 0 if p = ∞.

The following proposition is taken from [5, Proposition 2.6].

Proposition 4.1 (Oscillation and median relation). Let λ ∈ R be the median of the function f on
the bounded interval I ⊂ R and p ∈ [1,∞]. Then

oscp(f, I) ≤ (µ(I))
− 1

p ‖f − λ‖p ≤ 2
1− 1

p oscp(f, I).

In particular, for p = 1 we get

osc1(f, I) = (µ(I))−1‖f − λ‖1. (4.1)

It implies that
inf
c∈R

‖f − c‖1 = ‖f − λ‖1.

In other words, median coincides with p-median for p = 1.
Next, we will introduce the new definition of generalized Kurzweil integral based on minimiza-

tion of sum of p-oscillations instead of ordinary oscillations which leads to a wider class of integrable
functions.

Definition 4.2. We say that {[ai, bi], xi}ni=1 (n ∈ N) is a tagged partition of the interval I ⊂ R
if the intervals [ai, bi] are non-overlapping, their union is I and xi ∈ [ai, bi] for every i ∈ {1, . . . , n}.

Definition 4.3. Let an arbitrary positive function δ : [a, b] → R+ be given. We say that the tagged
partition {[ai, bi], xi}ni=1 is δ-fine if

[ai, bi] ⊂ (xi − δ(xi), xi + δ(xi)) for all i ∈ {1, . . . , n}.

Definition 4.4 (Generalized Kurzweil integral). Let I ⊂ R be an interval, f , F be functions
measurable on I. We say that F is an indefinite HKp integral of a function f if for all ε > 0 there
exists δε : I → R+ such that

n∑
i=1

oscp
(
F − f(xi)x, [ai, bi]

)
< ε

holds for each δε-fine tagged partition {[ai, bi], xi}ni=1 of the interval I.
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5 Examples
Example 5.1. Next example shows that even if the p-median c(p) is determined uniquely for all
p∈[1,∞], the function p 7→ c(p) need not be monotone, in general. Indeed, for the function

f(x) =

{
sin2 x if x ∈ [0, π],

sinx if x ∈ (π, 2π]

we have c(1) = c(∞) = 0. On the other hand, c(2) is negative, as by Proposition 3.4 we have

c(2) =
1

2π

2π∫
0

f(x) dx =
1

2π

(π
2
− 2

)
< 0.

Example 5.2. Let f(x) =

{
1 if x ∈ J,

0 if x ∈ I \ J,
where I ⊂ R is bounded interval and J ⊂ I its

subinterval.
It was shown in [3, Example 2.2.6] that the p-medians c(p) of this function are uniquely deter-

mined and they are explicitly given by the formula

c(p) =
((µ(I \ J)

µ(J)

) 1
p−1

+ 1
)−1

for p ∈ (1,∞).

Notice that the limit of p-medians as p → +∞ is indeed the arithmetic mean of essential suprema
and infima, i.e lim

p→+∞
c(p) = 1

2 = c(∞). Further, notice also that

lim
p→1+

c(p) = 1 = c(1) if µ(J) > µ(I \ J) and lim
p→1+

c(p) = 0 = c(1) if µ(J) < µ(I \ J),

i.e. the limit of p-medians c(p) as p → 1+ is indeed the median of f .
If µ(I \ J) = µ(J), then c(p) = 1

2 for all p ∈ (1,∞], while the median of f is not unique as it
can be any number from the interval [0, 1].

5 Examples

Example 5.1. Next example shows that even if the p-median c(p) is determined uniquely for all p∈[1,∞],
the function p 7→ c(p) need not be monotone, in general. Indeed, for the function

f(x) =

{
sin2 x if x ∈ [0, π],

sinx if x ∈ (π, 2π]

we have c(1) = c(∞) = 0. On the other hand, c(2) is negative, as by Proposition 3.11 we have

c(2) =
1

2π

∫ 2π

0

f(x) dx =
1

2π

(π
2
− 2
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Example 5.2. Let f(x) =
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µ(J)

) 1
p−1 + 1

)−1

for p ∈ (1,∞).

Notice that the limit of p-medians as p → +∞ is indeed the arithmetic mean of essential suprema
and infima, i.e lim

p→+∞
c(p) = 1

2 = c(∞). Further, notice also that

lim
p→1+

c(p) = 1 = c(1) if µ(J) > µ(I \ J) and lim
p→1+

c(p) = 0 = c(1) if µ(J) < µ(I \ J),

i.e. the limit of p-medians c(p) as p → 1+ is indeed the median of f .
If µ(I \ J) = µ(J), then c(p) = 1

2 for all p ∈ (1,∞], while the median of f is not unique at it can be
any number from the interval [0, 1].

Figure 1: Graph of function c(p) in case µ(I\J)
µ(J)

= 2

Example 5.3. Let

f(x) =


8 if x ∈ [0, 1],

0 if x ∈ (1, 6],

−4 if x ∈ (6, 10].

Then the p-median c(p) of f on [0, 10] is determined uniquely for any p ∈ [1,∞], but no explicit formula
for c(p) is available. One can verify that c(1) = c(3) = 0, while c(2) < 0 and c(∞) > 0. Thus, the function
p 7→ c(p) is not monotone. Notice that the arithmetic mean of suprema and infima is c(∞) = 2, while
the integral mean value evaluates c(2) = − 4

5 .

6

Figure 1. Graph of function c(p) in case µ(I\J)
µ(J) = 2

Example 5.3. Let

f(x) =


8 if x ∈ [0, 1],

0 if x ∈ (1, 6],

−4 if x ∈ (6, 10].
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Then the p-median c(p) of f on [0, 10] is determined uniquely for any p ∈ [1,∞], but no explicit
formula for c(p) is available. One can verify that c(1) = c(3) = 0, while c(2) < 0 and c(∞) > 0.
Thus, the function p 7→ c(p) is not monotone. Notice that the arithmetic mean of suprema and
infima is c(∞) = 2, while the integral mean value evaluates c(2) = −4

5 .
For a given p > 1 let us denote again g(c) := ‖f−c‖pp. Obviously, g(c) = (8−c)p+5|c|p+4(4+c)p

and g is continuous [−4, 8]. Furthermore, g′(c) = −p(8 − c)p−1 + 5p|c|p−1 sgn c + 4p(4 + c)p−1 for
c 6= 0. One can verify that g′ is continuous and increasing on [−4, 0) ∪ (0, 8], while g′(−4) < 0,
g′(8) > 0 and g′(0−) = g′(0+) = p(4p − 8p−1)). In particular, for a given p ∈ (1,∞), there
is exactly one point c(p) ∈ (−4, 8) such that g′(c(p)) = 0. This defines implicitly the function
p 7→ c(p). In addition, g is decreasing on [−4, c(p)] and increasing on [c(p), 8]. Finally, notice that
g′(0−) = g′(0+) = 0 if and only if 8p−1 = 4p, i.e. if and only if p = 3, i.e. c(3) = 0.

For a given p > 1 let us denote again g(c) := ∥f − c∥pp. Obviously, g(c) = (8− c)p + 5|c|p + 4(4 + c)p

and g is continuous [−4, 8]. Furthermore, g′(c) = −p (8− c)p−1 + 5p |c|p−1 sgn c+ 4p (4 + c)p−1 for c ̸= 0.
One can verify that g′ is continuous and increasing on [−4, 0) ∪ (0, 8], while g′(−4) < 0, g′(8) > 0
and g′(0−) = g′(0+) = p(4p − 8p−1)). In particular, for a given p ∈ (1,∞), there is exactly one point
c(p) ∈ (−4, 8) such that g′(c(p)) = 0. This defines implicitly the function p 7→ c(p). In addition, g is
decreasing on [−4, c(p)] and increasing on [c(p), 8]. Finally, notice that g′(0−) = g′(0+) = 0 if and only
if 8p−1 = 4p, i.e. if and only if p = 3, i.e. c(3) = 0.

Figure 2: Graph of c(p)

6 Open problems

� (Uniqueness of p-median) Let I ⊂ R be a bounded interval and f ∈ Lp(I) for some p ∈ (1,∞]. Is
there unique number c(p) ∈ R such that

inf
c∈R

∥f − c∥p = ∥f − c(p)∥p ?

We have proved the uniqueness of p-medians if p > 1 for step function, analogously as in Example
5.3., but still we don’t know if there is uniqueness in general for f ∈ Lp(I). If yes, it would be
interesting to investigate properties of function p 7→ c(p).

� (Limits of p-medians) In Example 5.2 we have seen that for the function f considered there the
limit of p-medians c(p) as p → ∞ is c(∞) and the limit of c(p) as p → 1+ is the median of f. The
question is whether this is true in general.

� (Properties of p-medians) Is function p 7→ c(p) continuous? Is it differentiable? Is it true that
lim

p→1+
c′(p) = 0?

References
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Figure 2. Graph of c(p)

6 Open problems
• (Uniqueness of p-median) Let I ⊂ R be a bounded interval and f ∈ Lp(I) for some p ∈ (1,∞].

Is there a unique number c(p) ∈ R such that

inf
c∈R

‖f − c‖p = ‖f − c(p)‖p ?

We have proved the uniqueness of p-medians if p > 1 for step function, analogously as in
Example 5.3, but still we don’t know if there is uniqueness in general for f ∈ Lp(I). If yes, it
would be interesting to investigate properties of function p 7→ c(p).

• (Limits of p-medians) In Example 5.2 we have seen that for the function f considered there
the limit of p-medians c(p) as p → ∞ is c(∞) and the limit of c(p) as p → 1+ is the median
of f . The question is whether this is true in general.

• (Properties of p-medians) Is function p 7→ c(p) continuous? Is it differentiable? Is it true that
lim
p→1+

c′(p) = 0?
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