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1 Introduction

In this paper, we introduce the definition of p-median of a measurable function which is the key
concept in the definition of p-oscillation and generalized Kurzweil integral. This new integral is
based on minimization of sums of p-oscillations instead of ordinary oscillations which leads to a
wider class of integrable functions. We introduce its definition in Section 4. However, it is not
obvious how to compute p-oscillation of a given function. It leads us to question if it is possible to
classify p-medians of a given function for any p. We can answer this question for p =1, p = 2 and
p = 0.

2 Preliminaries

Let M be an arbitrary subset of R, then u(M) is the Lebesgue measure of M and, for p € [1, o],
LP(M) is, as usual, the space of real valued functions measurable on M and such that || f, < oo,
where

1
p
1fllp = (/\f(fﬁ)!p(hﬁ) if pefl,00) and |[flloc = esssup|f(z)|
i zeM
is the usual norm on LP(M).

3 Median and p-median

Next definition was used in [5] (c.f. Definition 2.5 therein) and it is an analogue of median of
random variable in probability and statistics, cf. e.g. [6, Section 1.4].

Definition 3.1 (Median). Let f : [a,b] — R be a measurable function. We say that the number
A € R is the median of the function f on [a,b] if there exists a measurable set M C [a, b] such that
p(M)=3(b—a), f<Aon Mand f>Xon [a,b]\ M.

Definition 3.2 (p-median). Let I C R be a bounded interval and f € LP(I) for some p € [1,00].
We say that the number ¢(p) € R is the p-median of the function f on I if

inf [|f —cll, = IIf = c()lp-

Remark 3.1. The existence of p-median is obvious. Indeed, since the function g(c) := || f — ¢|| is
non-negative, continuous and its limits at oo are +oo, it follows that it has a minimum.
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As we will prove later, median coincides with p-median for p = 1. We will also show that
for p = 2 the p-median coincides with the integral mean value of the given function, while for
p = o0 it is simply the arithmetic mean of essential supremum and infimum of the given function.
Furthermore, if f € L>°(I), then the relations essinf f < ¢(p) < esssup f hold for all p € [1, c0].

First, we will show that median of a measurable function always exist.

Proposition 3.1. Every measurable function f : [a,b] — R has a median.

Proof. Let a measurable function f : [a,b] — R be given and

S
S

Sui={ N e R u(f (=00, 1) < 752
Spi={A e R u(f (N H00)) < 757 |

The monotonicity of measure implies that h1(\) := u(f~!((—o0,)))) is non-decreasing on R and
ha(A) := u(f~((\,4+o0))) is non-increasing on R. Moreover,

S

[\)

0<hi(A\) <b—a forall AeR and i€ {1,2}.

Denote Ay := f~!((—o00,k)) for k € N. Then Aj, C Ay for each k and in view of the continuity
of measure we get

hmuAk (UAk)—b—a

Therefore, there is a k1 € N such that p(f~!((—o00,k1))) > 252 . Hence, S is bounded from above.
Next, we will show that it is non-empty. To this aim, put By := f~'((—o0, —k)) for £ € N. We
have Byi1 C By for each k and all these sets have finite measures. Thus, using the continuity of

measure again, we obtain
hm w(Bg) = ( ﬂ Bk>

Therefore, there is a ko € N such that

b—a
5

:U'(fil((_oo7 _kZ))) <

In other words, S1 # @. Analogously, we can prove that Sy is nonempty and bounded from below.

Obviously, Ay = sup S1 < 0o and —oco < Ay = inf S5. Moreover, it is easy to see that Ay < Aj.
Indeed, if the opposite was true, we could find numbers ¢1, ¢o such that \; < ¢; < ¢g < Ag. In such
a case we would have

b—a b—a

p(f (00, e1))) > and pi(fH((e2,+00))) > —

a contradiction, since
FH (=00, 1)) N f 1 ((e2,00)) = 2,
while
FH (=00, 1)) U f 7 ((e2,00)) = [a, B].
Let A2 < A1 and let an arbitrary £ € (A2, A1) be given. Then we can choose §; € S7 and & € Sy
in such a way that As < & < & < & < A1. By the definitions of the sets 51, Sa, we have

b—a b—a

and p(f71((€,00))) < u(fH (&2, 0))) <

p(fH(—00,€])) < u(fH(—00, 1)) <
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Thus,

p(F (=00, €D) + pu(F (€ 00)) < pu(fH((=00,60))) + u(f7H((&2,00))) <b—a.  (3.1)
On the other hand, f~1((—o00,&]) U f~1((£,00)) = [a,b] and this together with (3.1) yields

w(fH((=00,€])) + u(f (€, ) =b—a,

i.e. any £ € (A1, A2) is the median of f.
It remains to consider the case A\ = Ag. Thus, let A\* := Ay = A\g. Then, since (—oo, \*) C Sy,

we have pu(f~1((—o0,A))) < 3(b—a) for all A < A* and, thanks to the continuity of measure,

_ o e _ b—a
p(f (o0, A7) = lim (7~ (o0, A))) < 2. (32)
Similarly,
p(F A 00) < P20 (33)

If one of the relations (3.2), (3.3) reduces to the equality, then \* will be the median of f. Indeed,
if u(f71(\*,00)) = %52, then for M = f~1(\*,00)), we have

FOM) = (0%, 00), (M) = "5 and f([a,]\ M) C (o0, V']

Now, assume that both inequalities (3.2) and (3.3) are strict. Then, as obviously
[a,6] = f7H (=00, A))) U FHHA D) U FH((N, 00))),
the set f~1({\*}) is nonempty and u(f~1({\*})) > 0. We can define
h(t) = p(fa, t] N FH{A*})) for t € [a,b].
As h is continuous on [a,b], h(a) = 0 and h(b) = b — a, we can find a ty € [a,b] such that

hto) = u(la.to] N £ ((A')) = 25

— U (00, X)) > 0.

Furthermore,
FHNY) =AuB,
where

A= la,to) N fH({N}) and B := (to,b] N fH({A*})

are disjoint. Simultaneously,

_ . b—a _ . b—a
f(z) <X for o€ AU f71((—00,\*)) and f(x) > \* for 2 € BU f71((\*, 00)).
It follows easily that A* is the median of the function f. O

Example 3.1. Median doesn’t have to be uniquely determined, as shown by the following example.
The median of the function f : [0,2] — R given by the formula

0 if x€][0,1),
fwy=19 T
1 if z€l1,2]
can be any number from the interval [0,1]. Indeed, let M = [0,1). Then given an arbitrary

A €[0,1], we have f < Aon M and f > Aon [0,2]\ M.
On the other hand, it is easy to verify that if p > 1, then all the p-medians of the function f
on [0,2] are equal to 3.
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Example 3.2. The median of the function sinx on [—, 7] is zero, as well as all its p-medians with
p > 1 (shown in [3]).

S

Example 3.3. The median of the function sin  on the interval [0, 7] equals %\/5 because sinz > 72

for all z € [T, 2] and sina < g for all z € [0,Z) U (27, 7]. On the other hand, its p-median ¢(co)

)
for p = 0o equals % , while
™

1 2
c(2) = /sinxdx: —.
T ™

0

Proposition 3.2. Median of the continuous function f : [a,b] — R is uniquely determined.

Proof. For a contradiction, let us suppose that f has two medians A1, Ao such that A\; < Ay. Then,
by the definition of the median, there are measurable sets M, My C [a, b], of measure b*Ta and such
that

f(z) <Ay foralll; x € My and f(z) > Ay for all|; x € [a,b] \ M,

and
f(z) < Ao foralll; z € My and f(z) > Ay for all|; = € [a,b] \ Mo.

Using these properties, we get

b—a
2

b—a
2

= p(Mz) > p(f7H (=00, A2))) = p(My) + p(f7H((A, Ae))) = + (A, M)

It follows that p(f~1((A1,A2))) = 0. However, the preimage of an open interval (A1, A2) under a
continuous mapping f must be an open set. Therefore, f~1((A1,\2)) is an open set of measure
zero, so it must be empty. Thus, the range Hy of the function f must be a subset of the set
[0, A1] U [A2, 00]. Since the continuous image of the interval [a,b] is again an interval, it must be
either Hy C [0, A\1] or Hy C [Xg,00]. But, in the former case it is f(x) < Ay for all € [a, b] which
implies that A2 can not be the median of f. Similarly, in the latter case we have f(z) > Ao for
all € [a,b] which means that A\; can not be the median of f. These conclusions contradicts our
assumption, of course. O

Proposition 3.3. Let I C R be a bounded interval and f € L*°(I). Put

A :=essinf f(x) and B :=esssup f(z).

zel zel
Then
inf ||f —cl, = Cei[ng] If —ellp for all p € [L,00].
Furthermore, A B B4
R e
Proof.

(i) First, let us prove the first part of the statement, i.e. that the sought number ¢ will always lie
in the interval [A, B]. In other words, we want to show that

inf ||f =z, <||f—cl|p forall ¢ce€ (—o0,A)U(B,0).
z€[A,B]

If ¢ € (B, ), then for almost all z € [a, b] we have

[f(x) —c|=c— f(z) > B - f(z) = |f(z) - B|.



REPORTS OF QUALITDE, Volume 3, 2024 153

Consequently, |f(z) — c|P > |f(z) — B|P for a.e. x € I and, thus, ||f —c|, > ||f — Al
In case p = co we have

If = clloe 2 [If = Blloo if ¢ > B and [[f —cloc 2 [|f = Alleo if ¢ < A.
To summarize,
inﬂ%”f —¢|l, = inf | | f —cllp forall pe[l,o0].
ce

ce[A,B

(ii) Let us prove the remaining part of the statement. If ¢ € R is an arbitrary constant, then

essinf(f(z) —¢) = A—c and esssup(f(z) —¢) =B —c.

Thus
If = clloc = max {|A — |, |B —l}.
Function y(c) = max{|4 — ¢|,|B — ¢/} has a minimum for ¢ = 22 and, therefore,
A+ B A+ B B-A
inf||f—c||oo:max{‘A— i ,|B— i ‘}: : O
ceR 2 2 2
Remark 3.2. Analogously, if instead of p-norm we consider the supremum norm || f|| = sup |f(z)|,
zel
we get,

inf |17 el = || = 5 (sup f(2) + inf f£(2))]

Proposition 3.4. Let I C R be a bounded interval and f € L*(I). Then

. 1
inf 1 = lla = | - M/f(t)dt

2

In other words, for p = 2 the p-median of f equals to the integral mean value of f.

Proof. Let ¢ € R. Since L*(I) C L'(I) for I bounded, both integrals [ f(z)dz and [ f?(z)dx exist
T T

and are finite. Therefore,
9(e) = |If — e} = / (f(z) — &) dz = / f2() da — 2 / f(z)de + Eu(D).
I I I

This is a quadratic function of ¢ with a positive leading coefficient and thus it must have a minimum.
Its derivative is

g (c) = —2/f(a:) dx + 2¢ p(I).
1

Hence

g'(c) =0 if and only if ¢ = M(lf)l/f(x) dz.

This is its stationary point, and the function g takes a minimum there. Therefore, it is also a
minimum of the function ||f — ¢||2. O
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4 Oscillations and H K? integral

In this section we introduce the notions of oscillation which is the key concept in the definition of
HKSP integral. Next definition is taken from [5, Definition 2.3].

Definition 4.1 (Oscillations). Let I C R be a bounded interval and p € [1,00]. We define the
p-oscillation of a measurable function f: I — R as

osey(f, 1) = (u(1)) "7 inf || f =l

Here and in what follows we set % =0if p=o0.

The following proposition is taken from [5, Proposition 2.6].

Proposition 4.1 (Oscillation and median relation). Let A € R be the median of the function f on
the bounded interval I C R and p € [1,00]. Then

oscy(f,1) < (u(I))"#[|f — Allp < 2'77 ose,(f, I).

In particular, for p =1 we get
osc1(f, 1) = (1) HIf = Allr- (4.1)

It implies that
inf [|f —clly = [l = Allx-
ceR

In other words, median coincides with p-median for p = 1.

Next, we will introduce the new definition of generalized Kurzweil integral based on minimiza-
tion of sum of p-oscillations instead of ordinary oscillations which leads to a wider class of integrable
functions.

Definition 4.2. We say that {[a;,b;],z;}]"; (n € N) is a tagged partition of the interval I C R
if the intervals [a;, b;] are non-overlapping, their union is I and x; € [a;, b;] for every i € {1,...,n}.

Definition 4.3. Let an arbitrary positive function § : [a,b] — RT be given. We say that the tagged
partition {[a;, b;], x;}1_, is o-fine if

[ai,bi] C (.%'Z - (5(.7}1),1'1 + (5(1‘2)) for all 7 e {1, - ,n}.

Definition 4.4 (Generalized Kurzweil integral). Let I C R be an interval, f, F' be functions
measurable on I. We say that F' is an indefinite HKP integral of a function f if for all € > 0 there
exists 0, : I — RT such that

Zoscp (F — flz) 2, [ai, b)) <e

i=1

holds for each é.-fine tagged partition {[a;, b;],x;}}"_; of the interval I.



REPORTS OF QUALITDE, Volume 3, 2024 155

5 Examples

Example 5.1. Next example shows that even if the p-median ¢(p) is determined uniquely for all
p €[1, 00], the function p — ¢(p) need not be monotone, in general. Indeed, for the function

A sinz if x € [0,7],
€Tr) =
sinz if x € (m,2n]

we have ¢(1) = ¢(00) = 0. On the other hand, ¢(2) is negative, as by Proposition 3.4 we have

27
1 1 /m
92) = — - (£ _9) <.
) 27r/f(m)dx 27r<2 ><0
0
1 if x € J, . . .
Example 5.2. Let f(z) = 0 if I where I C R is bounded interval and J C I its
I r € ,

subinterval.
It was shown in [3, Example 2.2.6] that the p-medians ¢(p) of this function are uniquely deter-
mined and they are explicitly given by the formula

c(p) = ((M(MI(\J;])>’711 + 1)71 for p € (1,00).

Notice that the limit of p-medians as p — 400 is indeed the arithmetic mean of essential suprema

and infima, i.e lim ¢(p) = § = ¢(00). Further, notice also that
p—+00

lim c¢(p) =1=¢(1) if p(J)>p(I\J) and lim c(p) =0=1c(1) if p(J) < p(l\J),
p—1+ p—1+
i.e. the limit of p-medians ¢(p) as p — 14 is indeed the median of f.
If (I'\ J) = p(J), then c(p) = % for all p € (1, 00], while the median of f is not unique as it
can be any number from the interval [0, 1].

c(p)

Figure 1. Graph of function ¢(p) in case £ ;{}‘;) =2

Example 5.3. Let
8 if x €]0,1],
flx)=<¢0 if x €(1,6],
—4 if x € (6,10].
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Then the p-median ¢(p) of f on [0, 10] is determined uniquely for any p € [1, 0], but no explicit
formula for ¢(p) is available. One can verify that ¢(1) = ¢(3) = 0, while ¢(2) < 0 and ¢(o0) > 0.
Thus, the function p — ¢(p) is not monotone. Notice that the arithmetic mean of suprema and
infima is c(co) = 2, while the integral mean value evaluates c(2) = —% .

For a given p > 1 let us denote again g(c) := || f—c||5. Obviously, g(c) = (8—c)P+5|c[P+4(4+c)?
and g is continuous [—4,8]. Furthermore, ¢'(c) = —p(8 — ¢)P~! + 5p|c|P~Lsgnc + 4p(4 + )P~ for
¢ # 0. One can verify that ¢’ is continuous and increasing on [—4,0) U (0, 8], while ¢'(—4) < 0,
g (8) > 0 and ¢'(0—) = ¢'(0+) = p(4? — 8~ 1)). In particular, for a given p € (1,00), there
is exactly one point ¢(p) € (—4,8) such that ¢’(c(p)) = 0. This defines implicitly the function
p +— ¢(p). In addition, g is decreasing on [—4, ¢(p)] and increasing on [¢(p), 8]. Finally, notice that
g'(0—) = ¢’(0+) = 0 if and only if 8°~! =47 i.e. if and only if p = 3, i.e. ¢(3) = 0.

c(p)

2 0 T 0 cap)

: bt
10

Figure 2. Graph of ¢(p)

6 Open problems

e (Uniqueness of p-median) Let I C R be a bounded interval and f € LP(I) for some p € (1, 00].
Is there a unique number ¢(p) € R such that

inf[|f —clp =1lf - c®)llp?

We have proved the uniqueness of p-medians if p > 1 for step function, analogously as in
Example 5.3, but still we don’t know if there is uniqueness in general for f € LP(I). If yes, it
would be interesting to investigate properties of function p — ¢(p).

o (Limits of p-medians) In Example 5.2 we have seen that for the function f considered there
the limit of p-medians ¢(p) as p — oo is ¢(c0) and the limit of ¢(p) as p — 1+ is the median
of f. The question is whether this is true in general.

o (Properties of p-medians) Is function p — ¢(p) continuous? Is it differentiable? Is it true that

lim ¢(p) =07
p—=1ly
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