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In the present report, on the finite interval ]a, b[ we consider the n-th order advanced ordinary
differential equation

u(n)(t) = f
(
t, u(τ1(t)), . . . , u

(n−1)(τn(t))
)

(1)
under the two-point nonlinear boundary conditions

φ
(
u(a), . . . , u(m−1)(a)

)
= c0, u(i−1)(b) = φi(u

(n−1)(b)) (i = 1, . . . , n− 1). (2)

Here n ≥ 2, m ∈ {1, . . . , n}, c0 is a positive constant, and f : ]a, b] × Rn → R, τi : [a, b] → [a, b]
(i = 1, . . . , n), φ : Rm → R, φi : R → R (i = 1, . . . , n−1) are continuous functions, R = ]−∞,+∞[ .
Moreover,

a ≤ t < τi(t) ≤ b for a ≤ t < b (i = 1, . . . , n), (3)
φ(0, . . . , 0) = 0, φ(x1, . . . , xm) → +∞ as (−1)i−1xi → +∞ (i = 1, . . . ,m), (4)

(−1)n−iφi(x)x ≥ 0 for x ∈ R (i = 1, . . . , n− 1). (5)

A solution of equation (1) is sought in the space of n-times continuously differentiable functions
defined in the interval ]a, b[ .

By u(a) and u(b) (by u(i)(a) and u(i)(b)) we denote, respectively, the right and the left limits
of the solution u (of the i-th derivative of u) at the points a and b.

A solution u of equation (1) is said to be a solution of problem (1), (2) if there exist one-sided
limits u(i−1)(a) (i = 1, . . . ,m), u(k−1)(b) (k = 1, . . . , n), and equalities (2) are satisfied.

A solution u is said to be a Kneser solution if

(−1)iu(i)(t)u(t) ≥ 0 for a < t < b (i = 1, . . . , n− 1).

In the case, where τ(t) ≡ t, two-point boundary value problems for equation (1) have long
attracted the attention of specialists, and most of them, namely, some problems with boundary
conditions of type (2), have been studied in sufficient detail (see [1–7] and the references therein).
As for the case of advance, i.e. when inequalities (3) hold, two-point boundary value problems for
equation (1), as far as we know, remains still unstudied.

The results below fill the above mentioned gap to some extent. They contain unimprovable
in a certain sense conditions guaranteeing, respectively, the solvability and unique solvability of
problem (1), (2) in the space of Kneser type functions. It should be noted that these conditions do
not restrict the growth order of the function f in the phase variables at infinity, and contain the
case where the function f has a nonintegrable singularity in the time variable at the point t = 0,
more precisely, the case, where

b∫
a

|f(t, x1, . . . , xn)| dt = +∞ for xi ̸= 0 (i = 1, . . . , n).
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To formulate the main results, we need to introduce the following notations.

f∗(t; r) = max
{
|f(t, x1, . . . , xn)| : 0 ≤ (−1)i−1xi ≤ r (i = 1, . . . , n)

}
for a < t ≤ b, r > 0,

f∗(t; δ, r) = min
{
|f(t, x1, . . . , xn)| : δ ≤ (−1)i−1xi ≤ r (i = 1, . . . , n)

}
for a<t≤b, r>δ>0,

φr(x) = min
{
φ(x1, . . . , xm−1, x) : 0 ≤ (−1)i−1xi ≤ r (i = 1, . . . ,m− 1)

}
for m > 1, r > 0, x ∈ R,

φr(x) = φ(x) for m = 1, r > 0, x ∈ R.

Theorem 1. If along with (3)–(5) the conditions

f(t, 0, . . . , 0) = 0, (−1)nf(t, x1, . . . , xn) ≥ 0 for a < t < b, (−1)i−1xi ≥ 0 (i = 1, . . . , n), (6)
b∫

a

(t− a)n−mf∗(t; r) dt < +∞ for r > 0 (7)

hold, then problem (1), (2) has at least one nonnegative Kneser solution.

Theorem 2. If along with (3), (5), (6) the conditions

φ(0, . . . , 0) = 0, φr(x) → +∞ for r > 0, (−1)n−1x → +∞, (4′)
b∫

a

(t− a)n−mf∗(t; δ, r) dt = +∞ for r > δ > 0

hold, then problem (1), (2) has no nonnegative Kneser solution.

From the above formulated theorems it follows

Corollary 1. Let conditions (3), (4′), (5), (6) hold and let for every constants r > 0 and δ ∈ ]0, r[
there exist a positive number ρ(r, δ) such that

f∗(t; r) ≤ ρ(r, δ)f∗(t; δ, r) for a < t < b. (8)

Then for problem (1), (2) to have at least one nonnegative Kneser solution, it is necessary and
sufficient that condition (7) to satisfied.

Remark 1. Conditions (6) and (8) are satisfied, for example, in the case, where

f(t, x1, . . . , xn) =

k∑
j=1

pj(t)fj(x1, . . . , xn),

where k is any natural number, pj : ]a, b] → R, fj : Rn → R (j = 1, . . . , k) are continuous functions
such that

(−1)npj(t) ≥ 0 for a < t < b (j = 1, . . . , k),

fj(0, . . . , 0) = 0 (j = 1, . . . , k),

min
{
fj(x1, . . . , xn) : δ ≤ (−1)i−1xi ≤ r (i = 1, . . . , n)

}
> 0 for r > δ > 0 (j = 1, . . . , k).
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Example 1. Consider the equation

u(n)(t) = p(t)h
(
|u(n−1)(τ(t))|

)
(9)

with the boundary conditions (2), where m ≤ n − 1, while p : ]a, b] → R, h : [0,+∞[→ R, and
τ : [a, b] → [a, b] are continuous functions, and

(−1)np(t) ≥ 0 for a < t < b,

b∫
a

(t− a)n−m|p(t)| dt < +∞,

b∫
a

|p(t)| dt = +∞, (10)

h(0) = 0, h(x) > 0 for x > 0,

+∞∫
δ

ds

h(s)
< +∞ for δ > 0. (11)

If along with (4), (5) the condition

a ≤ t < τ(t) ≤ b for a ≤ t < b (12)

is satisfied, then according to Theorem 1 problem (9), (2) has at least one nonnegative Kneser
solution. Assume now that all the above conditions are satisfied except of (12) instead of which we
have

τ(t) = t for a ≤ t ≤ a0, t < τ(t) ≤ b for a0 < t < b,

where a0 ∈ ]a, b[ . Show that in this case problem (9), (2) has no nonnegative Kneser solution.
Assume the contrary that there exists such a solution u. Then there are δ > 0 and t0 ∈ ]a, a0] such
that

0 < δ ≤ (−1)n−1u(n−1)(t) < +∞ for a < t ≤ t0.

On the other hand,
|u(n−1)(t)|′ = −|p(t)|h

(
|u(n−1)(t)|

)
for a < t ≤ t0.

Therefore,
|u(n−1)(t)|∫

δ

dx

h(x)
=

t0∫
t

|p(t)| dt for a < t ≤ t0,

which contradicts conditions (10) and (11).
The above constructed example shows that if instead of (3) for some a0 ∈ ]a, b[ the conditions

a ≤ t < τi(t) ≤ b for a ≤ t < b (i = 1, . . . , n− 1), τn(t) = t for a ≤ t ≤ a0,

t < τn(t) ≤ b for a0 < t < b

hold, then conditions (4)–(7) do not guarantee the existence of a nonnegative Kneser solution of
problem (1), (2).

To simplify the presentation, we will consider the question on the uniqueness of a solution of
problem (1), (2) in the case where the boundary conditions (2) have the form

m∑
i=1

αi|u(i−1)(a)|µi sgn(u(i−1)(a)) = c0,

u(j−1)(b) = βj |u(n−1)(b)|νj sgn(u(n−1)(b)) (j = 1, . . . , n− 1),

(2′)
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where

(−1)i−1αi ≥ 0, µi > 0 (i = 1, . . . ,m), αm ̸= 0,

(−1)n−jβj ≥ 0, νj > 0 (j = 1, . . . , n− 1).

Evidently, in this case the function

φ(x1, . . . , xm) ≡
m∑
i=1

αi|xi|µi sgn(xi)

satisfies conditions (4′), and the functions φj(x) = βj |x|νj sgn(x) (j = 1, . . . , n − 1) – conditions
(5).

We will say that the function f is locally Lipschitzian in the phase variables on the set
[a0, b]× Rn if for every r > 0 there exists ℓ(r) > 0 such that

∣∣f(t, x1, . . . , xn)− f(t, y1, . . . , yn)
∣∣ ≤ ℓ(r)

n∑
i=1

|xi − yi| for a0 ≤ t ≤ b,

n∑
i=1

(
|xi|+ |yi|

)
≤ r.

Theorem 3. Let along with (3), (7) the condition

f(t, 0, . . . , 0) = 0, (−1)nf(t, x1, . . . , xn) ≥ (−1)nf(t, y1, . . . , yn) ≥ 0

for a < t < b, (−1)i−1xi ≥ (−1)i−1yi ≥ 0 (i = 1, . . . , n)

hold. Let, moreover, there exist a0 ∈ ]a, b[ such that the function f is locally Lipschitzian in the
phase variables on the set [a0, b] × Rn. Then problem (1), (2′) has a unique nonnegative Kneser
solution.

Finally, we consider two nontrivial particular cases of equation (1):

u(n)(t) =
n∑

i=1

pi(t)fi
(
u(i−1)(τi(t))

)
, (13)

u(n)(t) =
n∑

i=1

pi(t)
∣∣u(i−1)(τi(t))

∣∣λi sgn
(
u(i−1)(τi(t))

)
, (14)

where pi : ]a, b] → R, fi : R → R (i = 1, . . . , n) are continuous functions, while λi (i = 1, . . . , n) are
constants.

Corollary 1 and Theorem 3 yield the following results.

Corollary 2. Let the functions τi (i = 1, . . . , n) satisfy inequalities (3), and let the functions pi
and fi (i = 1, . . . , n) be such that

(−1)n+i−1pi(t) ≥ 0 for a < t < b (i = 1, . . . , n), (15)
fi(0) = 0, (−1)i−1fi(x) > 0 for (−1)i−1x > 0 (i = 1, . . . , n).

Then for problem (13), (2′) to have at least one nonnegative Kneser solution, it is necessary and
sufficient that the conditions

b∫
a

(t− a)n−m|pi(t)| dt < +∞ (i = 1, . . . , n) (16)

to satisfied.
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Corollary 3. Let the functions τi and pi (i = 1, . . . , n) satisfy inequalities (3) and (15), and let fi
(i = 1, . . . , n) be locally Lipschitzian functions such that

fi(0) = 0, (−1)i−1fi(x) ≥ (−1)i−1fi(y) > 0 for (−1)i−1x ≥ (−1)i−1y > 0 (i = 1, . . . , n).

Then for problem (13), (2′) to have a unique nonnegative Kneser solution, it is necessary and
sufficient that conditions (16) be satisfied.

From Corollaries 2 and 3 it follow Corollaries 4 and 5, respectively.

Corollary 4. Let
λi > 0 (i = 1, . . . , n),

and let the functions τi, pi (i = 1, . . . , n) satisfy inequalities (3) and (15). Then for problem (14), (2′)
to have at least one nonnegative Kneser solution, it is necessary and sufficient that conditions (16)
be satisfied.

Corollary 5. Let
λi ≥ 1 (i = 1, . . . , n),

and let the functions τi, pi (i = 1, . . . , n) satisfy inequalities (3) and (15). Then for problem (14), (2′)
to have a unique nonnegative Kneser solution, it is necessary and sufficient that conditions (16) be
satisfied.
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