Antiperiodic in Time Boundary Value Problem for One Class of Nonlinear High-Order Partial Differential Equations

Sergo Kharibegashvili

Andrea Razmadze Mathematical Institute of Ivane Javakhishvili Tbilisi State University Tbilisi, Georgia E-mail: kharibegashvili@yahoo.com

In the plane of variables x and t consider a nonlinear high-order partial differential equation of the form

$$L_f u := \frac{\partial^2 u}{\partial t^2} - \frac{\partial^{4k} u}{\partial x^{4k}} + f(u) = F,$$
(1)

where f, F are given, while u is an unknown functions, k is a natural number.

For the equation (1) we consider the following antiperiodic in time problem: find in the domain D_T : 0 < x < l, 0 < t < T a solution u = u(x,t) of the equation (1) according to the boundary conditions

$$u(x,0) = -u(x,T), \quad u_t(x,0) = -u_t(x,T), \quad 0 \le x \le l,$$
(2)

$$\frac{\partial^{2} u}{\partial x^{i}}(0,t) = 0, \quad \frac{\partial^{2} u}{\partial x^{i}}(l,t) = 0, \quad 0 \le t \le T, \quad i = 0, \dots, 2k-1.$$
(3)

Note that to the study of antiperiodic and periodic problems for nonlinear partial differential equations, having a structure different from (1), is devoted numerous literature (see, for example, [1, 2, 4-8] and the literature cited therein). For the equation (1) with k = 1, antiperiodic problem, both in terms of time and space variables, is considered in the work [3].

Denote by $C^{2,4k}(\overline{D}_T)$ the space of functions continuous in \overline{D}_T , having in \overline{D}_T continuous partial derivatives $\frac{\partial^i u}{\partial t^i}$, $i = 1, 2, \frac{\partial^j u}{\partial x^j}$, $j = 1, \ldots, 4k$. Let

$$C_0^{2,4k}(\overline{D}_T) := \Big\{ u \in C^{2,4k}(\overline{D}_T) : \frac{\partial^i u}{\partial t^i}(x,0) = -\frac{\partial^i u}{\partial t^i}(x,T), \quad 0 \le x \le l, \quad i = 0,1; \\ \frac{\partial^j u}{\partial x^j}(0,t) = 0, \quad \frac{\partial^j u}{\partial x^j}(l,t) = 0, \quad 0 \le t \le T, \quad j = 0,\dots,2k-1 \Big\}.$$

Consider the Hilbert space $W_0^{1,2k}(D_T)$ as a completion of the classical space $C_0^{2,4k}(\overline{D}_T)$ with respect to the norm

$$\|u\|_{W_0^{1,2k}(D_T)}^2 = \int_{D_T} \left[u^2 + \left(\frac{\partial u}{\partial t}\right)^2 + \sum_{i=1}^{2k} \left(\frac{\partial^i u}{\partial x^i}\right)^2 \right] dx \, dt.$$

$$\tag{4}$$

It follows from (4) that if $u \in W_0^{1,2k}(D_T)$, then $u \in W_2^1(D_T)$ and $\frac{\partial^i u}{\partial x^i} \in L_2(D_T)$, $i = 2, \ldots, 2k$. Here $W_2^1(D_T)$ is the well-known Sobolev space consisting of the elements $L_2(D_T)$, having up to the first order generalized derivatives from $L_2(D_T)$. Remark 1. Let $u \in C_0^{2,4k}(\overline{D}_T)$ be a classical solution of the problem (1)–(3). Multiplying the both sides of the equation (1) by an arbitrary function $\varphi \in C_0^{2,4k}(\overline{D}_T)$ and integrating obtained equality over the domain D_T with taking into account that the functions from the space $C_0^{2,4k}(\overline{D}_T)$ satisfy the boundary conditions (2) and (3), we get

$$\int_{D_T} \left[\frac{\partial u}{\partial t} \frac{\partial \varphi}{\partial t} + \frac{\partial^{2k} u}{\partial x^{2k}} \frac{\partial^{2k} \varphi}{\partial x^{2k}} \right] dx dt - \int_{D_T} f(u)\varphi dx dt = -\int_{D_T} F\varphi dx dt \quad \forall \varphi \in C_0^{2,4k}(\overline{D}_T).$$
(5)

We take the equality (5) as a basis of definition of a weak generalized solution of the problem (1)–(3) in the space $W_0^{1,2k}(D_T)$. But for this, certain restrictions must be imposed on the function f so that the integral

$$\int_{D_T} f(u)\varphi \, dx \, dt \tag{6}$$

exists.

Remark 2. Below, from function f in the equation (1) we require that

$$f \in C(\mathbb{R}), \ |f(u)| \le M_1 + M_2 |u|^{\alpha}, \ \alpha = const > 1, \ u \in \mathbb{R},$$

$$(7)$$

where $M_i = const \ge 0$, i = 1, 2. As it is known, since the dimension of the domain $D_T \subset \mathbb{R}^2$ equals two, the embedding operator

$$I: W_2^1(D_T) \to L_q(D_T)$$

is linear and compact operator for any fixed q = const > 1. At the same time the Nemitskii operator $N : L_q(D_T) \to L_2(D_T)$, acting by formula Nu = f(u), where $u \in L_q(D_T)$, and function fsatisfies the condition (7) is bounded and continuous, when $q \ge 2\alpha$. Therefore, if we take $q = 2\alpha$, then the operator

$$N_0 = NI : W_2^1(D_T) \to L_2(D_T)$$

will be continuous and compact. Hence, in particular, we have that if $u \in W_2^1(D_T)$, then $f(u) \in L_2(D_T)$ and from $u_n \to u$ in the space $W_2^1(D_T)$ it follows $f(u_n) \to f(u)$ in the space $L_2(D_T)$.

Definition 1. Let function f satisfy the condition (7) and $F \in L_2(D_T)$. A function $u \in W_0^{1,2k}(D_T)$ is named a weak generalized solution of the problem (1)–(3) if the integral equality (5) holds for any function $\varphi \in W_0^{1,2k}(D_T)$, i.e.,

$$\int_{D_T} \left[\frac{\partial u}{\partial t} \frac{\partial \varphi}{\partial t} + \frac{\partial^{2k} u}{\partial x^{2k}} \frac{\partial^{2k} \varphi}{\partial x^{2k}} \right] dx dt - \int_{D_T} f(u)\varphi dx dt = -\int_{D_T} F\varphi dx dt \quad \forall \varphi \in W_0^{1,2k}(D_T).$$
(8)

Note that due to Remark 2 the integral (6) in the left-hand side of the equality (8) is defined correctly since from $u \in W_0^{1,2k}(D_T)$ it follows that $f(u) \in L_2(D_T)$, and since $\varphi \in L_2(D_T)$, then $f(u)\varphi \in L_1(D_T)$.

It is easy to see that if a weak generalized solution u of the problem (1)–(3) in the sense of Definition 1 belongs to the class $C_0^{2,4k}(\overline{D}_T)$, then it is a classical solution to this problem.

In the space $C_0^{2,4k}(\overline{D}_T)$ together with the scalar product

$$(u,v)_0 = \int_{D_T} \left[uv + \frac{\partial u}{\partial t} \frac{\partial v}{\partial t} + \sum_{i=1}^{2k} \frac{\partial^i u}{\partial x^i} \frac{\partial^i v}{\partial x^i} \right] dx \, dt \tag{9}$$

with the norm $\|\cdot\|_0 = \|\cdot\|_{W_0^{1,2k}(D_T)}$, defined by the right-hand side of the equality (4), let us consider the following scalar product

$$(u,v)_1 = \int_{D_T} \left[\frac{\partial u}{\partial t} \frac{\partial v}{\partial t} + \frac{\partial^{2k} u}{\partial x^{2k}} \frac{\partial^{2k} v}{\partial x^{2k}} \right] dx dt$$
(10)

with the norm

$$\|u\|_{1}^{2} = \int_{D_{T}} \left[\left(\frac{\partial u}{\partial t} \right)^{2} + \left(\frac{\partial^{2k} u}{\partial x^{2k}} \right)^{2} \right] dx dt,$$
(11)

where $u, v \in C_0^{2,4k}(\overline{D}_T)$.

The following inequalities

$$c_1 \|u\|_0 \le \|u\|_1 \le c_2 \|u\|_0 \quad \forall u \in C_0^{2,4k}(\overline{D}_T)$$

with positive constants c_1 and c_2 , not dependent on u, are valid. Hence due to (9)-(11) it follows that if we complete the space $C_0^{2,4k}(\overline{D}_T)$ with respect to the norm (11), then we obtain the same Hilbert space $W_0^{1,2k}(D_T)$ with the equivalent scalar products (9) and (10). Using this circumstance, one can prove the unique solvability of the linear problem corresponding to (1)-(3), when f = 0, i.e. for any $F \in L_2(D_T)$ there exists a unique solution $u = L_0^{-1}F \in W_0^{1,2k}(D_T)$ to this problem, where the linear operator

$$L_0^{-1}: L_2(D_T) \to W_0^{1,2k}(D_T)$$

is continuous.

Remark 3. From the above reasoning it follows that when the conditions (7) are fulfilled, the nonlinear problem (1)-(3) is equivalently reduced to the functional equation

$$u = L_0^{-1} \left[f(u) - F \right] \tag{12}$$

in the Hilbert space $W_0^{1,2k}(D_T)$.

As noted below, if the nonlinear function f is not required to fulfill other conditions in addition to (7), then the problem (1)–(3) may not have a solution. At the same time, if the additional condition

$$\lim_{|u| \to \infty} \sup \frac{f(u)}{u} \le 0 \tag{13}$$

is satisfied, an a priori estimate is proved for the solution of the functional equation (12) in the space $W_0^{1,2k}(D_T)$, from which, taking into account Remarks 2 and 3, the existence of a solution to the equation (12) follows, and, consequently, of the problem (1)–(3) in the space $W_0^{1,2k}(D_T)$ in the sense of Definition 1. Thus, the following theorem holds.

Theorem 1. Let the conditions (7) and (13) be fulfilled. Then for any $F \in L_2(D_T)$ the problem (1)–(3) has at least one weak generalized solution u in the space $W_0^{1,2k}(D_T)$ in the sense of Definition 1.

In turns out that in the case of the problem (1)-(3), the monotonicity of the function f one can ensure uniqueness of its solution.

Theorem 2. If the condition (7) is fulfilled and f is a non-strictly decreasing function, i.e.

$$(f(y) - f(z))(y - z) \le 0 \quad \forall y, z \in \mathbb{R},$$
(14)

then for any $F \in L_2(D_T)$ the problem (1)–(3) can not have more than one weak generalized solution in the space $W_0^{1,2k}(D_T)$ in the sense of Definition 1. From these theorems it follows the following theorem.

Theorem 3. Let the conditions (7), (13) and (14) be fulfilled. Then for any $F \in L_2(D_T)$ the problem (1)–(3) has a unique weak generalized solution u in the space $W_0^{1,2k}(D_T)$ in the sense of Definition 1.

As noted above, if no other conditions are imposed on the nonlinear function f in addition to the condition (7), then the problem (1)–(3) may not have a solution. Indeed, the following theorem holds.

Theorem 4. Let the function f satisfy the conditions (7) and

$$f(u) \le -|u|^{\gamma} \quad \forall u \in \mathbb{R}, \quad \gamma = const > 1, \tag{15}$$

and the function $F = \beta F_0$, where $F_0 \in L_2(D_T)$, $F_0 > 0$ in the domain D_T , $\beta = const > 0$. Then there exists a number $\beta_0 = \beta_0(F_0, \gamma)$ such that for $\beta > \beta_0$ the problem (1)–(3) can not have a weak generalized solution in the space $W_0^{1,2k}(D_T)$ in the sense of Definition 1.

It is easy to see that when the condition (15) is fulfilled, then the condition (13) is violated.

Acknowledgement

The work was supported by the Shota Rustavely National Science Foundation, Grant # FR-21-7307.

References

- S. Boussandel, Existence of solutions for nonlinear nonmonotone evolution equations in Banach spaces with anti-periodic boundary conditions. *Appl. Math.* 63 (2018), no. 5, 523–539.
- [2] W. Dimbour and V. Valmorin, Asymptotically antiperiodic solutions for a nonlinear differential equation with piecewise constant argument in a Banach space. Applied Mathematics 7 (2016), 1726–1733.
- [3] S. Kharibegashvili, Antiperiodic problem for one class of nonlinear partial differential equations. *Reports of QUALITDE* 2 (2023), 87–90.
- [4] T. Kiguradze, On periodic in the plane solutions of nonlinear hyperbolic equations. Nonlinear Anal. 39 (2000), no. 2, Ser. A: Theory Methods, 173–185.
- [5] T. Kiguradze, On bounded and time-periodic solutions of nonlinear wave equations. J. Math. Anal. Appl. 259 (2001), no. 1, 253–276.
- [6] T. Kiguradze, On doubly periodic solutions of nonlinear hyperbolic equations of higher order. Georgian Math. J. 14 (2007), no. 3, 457–469.
- [7] Q. Liu, Existence of anti-periodic mild solutions for semilinear evolution equations. J. Math. Anal. Appl. 377 (2011), no. 1, 110–120.
- [8] J. Liu, X. Song and L. Zhang, Existence of anti-periodic mild solutions to semilinear nonautonomous evolution equations. J. Math. Anal. Appl. 425 (2015), no. 1, 295–306.