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In the plane of variables x and t consider a nonlinear high−order partial differential equation
of the form

Lfu :=
∂2u

∂t2
− ∂4ku

∂x4k
+ f(u) = F, (1)

where f , F are given, while u is an unknown functions, k is a natural number.
For the equation (1) we consider the following antiperiodic in time problem: find in the domain

DT : 0 < x < l, 0 < t < T a solution u = u(x, t) of the equation (1) according to the boundary
conditions

u(x, 0) = −u(x, T ), ut(x, 0) = −ut(x, T ), 0 ≤ x ≤ l, (2)
∂iu

∂xi
(0, t) = 0,

∂iu

∂xi
(l, t) = 0, 0 ≤ t ≤ T, i = 0, . . . , 2k − 1. (3)

Note that to the study of antiperiodic and periodic problems for nonlinear partial differential
equations, having a structure different from (1), is devoted numerous literature (see, for example,
[1, 2, 4–8] and the literature cited therein). For the equation (1) with k = 1, antiperiodic problem,
both in terms of time and space variables, is considered in the work [3].

Denote by C2,4k(DT ) the space of functions continuous in DT , having in DT continuous partial
derivatives ∂iu

∂ti
, i = 1, 2, ∂ju

∂xj , j = 1, . . . , 4k. Let

C2,4k
0 (DT ) :=

{
u ∈ C2,4k(DT ) :

∂iu

∂ti
(x, 0) = −∂iu

∂ti
(x, T ), 0 ≤ x ≤ l, i = 0, 1;

∂ju

∂xj
(0, t) = 0,

∂ju

∂xj
(l, t) = 0, 0 ≤ t ≤ T, j = 0, . . . , 2k − 1

}
.

Consider the Hilbert space W 1,2k
0 (DT ) as a completion of the classical space C2,4k

0 (DT ) with
respect to the norm

∥u∥2
W 1,2k

0 (DT )
=

∫
DT

[
u2 +

(∂u
∂t

)2
+

2k∑
i=1

(∂iu

∂xi

)2
]
dx dt. (4)

It follows from (4) that if u ∈ W 1,2k
0 (DT ), then u ∈ W 1

2 (DT ) and ∂iu
∂xi ∈ L2(DT ), i = 2, . . . , 2k.

Here W 1
2 (DT ) is the well-known Sobolev space consisting of the elements L2(DT ), having up to the

first order generalized derivatives from L2(DT ).
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Remark 1. Let u ∈ C2,4k
0 (DT ) be a classical solution of the problem (1)–(3). Multiplying the both

sides of the equation (1) by an arbitrary function φ ∈ C2,4k
0 (DT ) and integrating obtained equality

over the domain DT with taking into account that the functions from the space C2,4k
0 (DT ) satisfy

the boundary conditions (2) and (3), we get∫
DT

[∂u
∂t

∂φ

∂t
+

∂2ku

∂x2k
∂2kφ

∂x2k

]
dx dt−

∫
DT

f(u)φ dx dt = −
∫
DT

Fφ dx dt ∀φ ∈ C2,4k
0 (DT ). (5)

We take the equality (5) as a basis of definition of a weak generalized solution of the problem
(1)–(3) in the space W 1,2k

0 (DT ). But for this, certain restrictions must be imposed on the function
f so that the integral ∫

DT

f(u)φ dx dt (6)

exists.
Remark 2. Below, from function f in the equation (1) we require that

f ∈ C(R), |f(u)| ≤ M1 +M2|u|α, α = const > 1, u ∈ R, (7)

where Mi = const ≥ 0, i = 1, 2. As it is known, since the dimension of the domain DT ⊂ R2 equals
two, the embedding operator

I : W 1
2 (DT ) → Lq(DT )

is linear and compact operator for any fixed q = const > 1. At the same time the Nemitskii
operator N : Lq(DT ) → L2(DT ), acting by formula Nu = f(u), where u ∈ Lq(DT ), and function f
satisfies the condition (7) is bounded and continuous, when q ≥ 2α. Therefore, if we take q = 2α,
then the operator

N0 = NI : W 1
2 (DT ) → L2(DT )

will be continuous and compact. Hence, in particular, we have that if u ∈ W 1
2 (DT ), then f(u) ∈

L2(DT ) and from un → u in the space W 1
2 (DT ) it follows f(un) → f(u) in the space L2(DT ).

Definition 1. Let function f satisfy the condition (7) and F ∈ L2(DT ). A function u ∈ W 1,2k
0 (DT )

is named a weak generalized solution of the problem (1)–(3) if the integral equality (5) holds for
any function φ ∈ W 1,2k

0 (DT ), i.e.,∫
DT

[∂u
∂t

∂φ

∂t
+

∂2ku

∂x2k
∂2kφ

∂x2k

]
dx dt−

∫
DT

f(u)φ dx dt = −
∫
DT

Fφ dx dt ∀φ ∈ W 1,2k
0 (DT ). (8)

Note that due to Remark 2 the integral (6) in the left-hand side of the equality (8) is defined
correctly since from u ∈ W 1,2k

0 (DT ) it follows that f(u) ∈ L2(DT ), and since φ ∈ L2(DT ), then
f(u)φ ∈ L1(DT ).

It is easy to see that if a weak generalized solution u of the problem (1)–(3) in the sense of
Definition 1 belongs to the class C2,4k

0 (DT ), then it is a classical solution to this problem.
In the space C2,4k

0 (DT ) together with the scalar product

(u, v)0 =

∫
DT

[
uv +

∂u

∂t

∂v

∂t
+

2k∑
i=1

∂iu

∂xi
∂iv

∂xi

]
dx dt (9)
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with the norm ∥ · ∥0 = ∥ · ∥
W 1,2k

0 (DT )
, defined by the right−hand side of the equality (4), let us

consider the following scalar product

(u, v)1 =

∫
DT

[∂u
∂t

∂v

∂t
+

∂2ku

∂x2k
∂2kv

∂x2k

]
dx dt (10)

with the norm
∥u∥21 =

∫
DT

[(∂u
∂t

)2
+
(∂2ku

∂x2k

)2
]
dx dt, (11)

where u, v ∈ C2,4k
0 (DT ).

The following inequalities

c1∥u∥0 ≤ ∥u∥1 ≤ c2∥u∥0 ∀u ∈ C2,4k
0 (DT )

with positive constants c1 and c2, not dependent on u, are valid. Hence due to (9)–(11) it follows
that if we complete the space C2,4k

0 (DT ) with respect to the norm (11), then we obtain the same
Hilbert space W 1,2k

0 (DT ) with the equivalent scalar products (9) and (10). Using this circumstance,
one can prove the unique solvability of the linear problem corresponding to (1)–(3), when f = 0,
i.e. for any F ∈ L2(DT ) there exists a unique solution u = L−1

0 F ∈ W 1,2k
0 (DT ) to this problem,

where the linear operator
L−1
0 : L2(DT ) → W 1,2k

0 (DT )

is continuous.
Remark 3. From the above reasoning it follows that when the conditions (7) are fulfilled, the
nonlinear problem (1)–(3) is equivalently reduced to the functional equation

u = L−1
0 [f(u)− F ] (12)

in the Hilbert space W 1,2k
0 (DT ).

As noted below, if the nonlinear function f is not required to fulfill other conditions in addition
to (7), then the problem (1)–(3) may not have a solution. At the same time, if the additional
condition

lim
|u|→∞

sup
f(u)

u
≤ 0 (13)

is satisfied, an a priori estimate is proved for the solution of the functional equation (12) in the
space W 1,2k

0 (DT ), from which, taking into account Remarks 2 and 3, the existence of a solution to
the equation (12) follows, and, consequently, of the problem (1)–(3) in the space W 1,2k

0 (DT ) in the
sense of Definition 1. Thus, the following theorem holds.

Theorem 1. Let the conditions (7) and (13) be fulfilled. Then for any F ∈ L2(DT ) the problem (1)–
(3) has at least one weak generalized solution u in the space W 1,2k

0 (DT ) in the sense of Definition 1.

In turns out that in the case of the problem (1)–(3), the monotonicity of the function f one can
ensure uniqueness of its solution.

Theorem 2. If the condition (7) is fulfilled and f is a non-strictly decreasing function, i.e.

(f(y)− f(z))(y − z) ≤ 0 ∀ y, z ∈ R, (14)

then for any F ∈ L2(DT ) the problem (1)–(3) can not have more than one weak generalized solution
in the space W 1,2k

0 (DT ) in the sense of Definition 1.
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From these theorems it follows the following theorem.

Theorem 3. Let the conditions (7), (13) and (14) be fulfilled. Then for any F ∈ L2(DT ) the
problem (1)–(3) has a unique weak generalized solution u in the space W 1,2k

0 (DT ) in the sense of
Definition 1.

As noted above, if no other conditions are imposed on the nonlinear function f in addition to
the condition (7), then the problem (1)–(3) may not have a solution. Indeed, the following theorem
holds.

Theorem 4. Let the function f satisfy the conditions (7) and

f(u) ≤ −|u|γ ∀u ∈ R, γ = const > 1, (15)

and the function F = βF0, where F0 ∈ L2(DT ), F0 > 0 in the domain DT , β = const > 0. Then
there exists a number β0 = β0(F0, γ) such that for β > β0 the problem (1)–(3) can not have a weak
generalized solution in the space W 1,2k

0 (DT ) in the sense of Definition 1.

It is easy to see that when the condition (15) is fulfilled, then the condition (13) is violated.
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