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1 Introduction
The averaging method is a powerful tool for analyzing and solving optimal control problems, in
particular for systems described by differential equations and inclusions with rapidly oscillating
coefficients. It was originally developed and rigorously justified by Krylov and Bogolyubov for the
approximate analysis of oscillating processes in non-linear mechanics, and then further refined for
the control-related problems, see, e.g. a monograph by Plotnikov [10]. Motivated by the modern
control engineering applications, the averaging method has been recenlty applied to the solution of
optimal control problems for linear by control systems with rapidly oscillating coefficients on a finite
interval [9], and on the semi-axis [8]. The approximate solutions of the optimal control problems for
non-linear systems of differential inclusions with fast-oscillating parameters were investigated in [11]
and [3], for the cases of a finite interval and on the semi-axis, respectively. The optimal control
problem on the semi-axis for the Poisson equation with nonlocal boundary conditions was studied
in [4]. Further applications of the averaging method for parabolic systems with fast-oscillating
coefficients were considered in [5–7].

In the present paper, we use the averaging method for the investigation of the optimal control
problem for nonlinear parabolic differential inclusion with fast-oscillating (w.r.t. time variable)
coefficients on an infinite time interval. With this, we prove that the optimal control for the
problem with averaged coefficients can be considered as “approximately” optimal for the original
system.

2 Setting of the problem and the main results
Let Ω ⊂ Rn be a bounded domain. In a cylinder Q = (0,+∞)×Ω, we consider an initial boundary-
value problem for a parabolic inclusion

∂y

∂t
∈ Ay + f

( t

ε
, y(t, x)

)
+ g(y)u, (t, x) ∈ Q,

y
∣∣
∂Ω

= 0,

y
∣∣
t=0

= y0(x).

(2.1)

Here ε > 0 is a small parameter, f : R+×R+ → conv(R) is a given multivalued mapping, g : R → R,
q : Ω × R → R are given real-valued mappings, A is an elliptic operator which can be defined by
the rule:

Ay =
n∑

i=1

∂

∂xi

( ∂y

∂xi

)
,
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y is an unknown state function, u is an unknown control function, which are determined by re-
quirements

u ∈ U ⊆ L2(Q), (2.2)

J(y, u) =

∫
Q

e−γtq(x, y(t, x)) dt dx+ α

∫
Q

u2(t, x) dt dx −→ inf, (2.3)

where γ, α are positive constants.
We consider the problem of finding an approximate solution of (2.1)–(2.3) by transition to the

averaged coefficients. For this purpose, we assume that there exists f : R → R such that uniformly
w.r.t. y ∈ R there exists

distH

(
f(y),

1

T

T∫
0

f(s, y) ds
)
−→ 0, T → ∞, (2.4)

where distH(A,B) is Hausdorff metric between sets A and B, and integral of multivalued map we
consider in the sense of Aumann [1].

Let us consider the following optimal control problem
∂y

∂t
∈ Ay + f(y) + g(y)u, (t, x) ∈ Q,

y
∣∣
∂Ω

= 0,

y
∣∣
t=0

= y0(x),

(2.5)

u ∈ U ⊆ L2(Q), (2.6)

J(y, u) =

∫
Q

e−γtq(x, y(t, x)) dt dx+ α

∫
Q

u2(t, x) dt dx −→ inf . (2.7)

Under the natural assumptions on f , g, u, q we prove that the optimal control problem (2.1)–(2.3)
has a solution {y ε, u ε}, i.e. for every u ∈ U and for any solution yε of (2.1) with control u we have

J(y ε, u ε) ≤ J(yε, u).

Note that we can apply similar suggestions to problem (2.5)–(2.7).
Assume that {y, u} is a solution of (2.5)–(2.7). The main goal of the paper is to prove the

convergence
J(y ε, u ε) −→ J(y, u), ε → 0.

We suggest that the next assumptions for parameters of problem (2.1)–(2.3) are fulfilled.

Condition 2.1. Multi-valued function f : R+ × R+ → conv(R) is continuous and there exist
C,C1 > 0 such that

∀ t ≥ 0 ∀ y ∈ R ∥f(t, y)∥+ := sup
ξ∈f(t,x)

∥ξ∥R ≤ C + C1∥y∥R,

where ∥ξ∥R denotes the Euclidian norm of ξ ∈ Rn.

Condition 2.2. Function g : R → R is continuous function and there exists C2 > 0 such that

∀ y ∈ R ∥g(y)∥R ≤ C2.
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Condition 2.3. Function q : Ω× R → R is a Carathéodory function and there exists C3 > 0 and
functions K1 ∈ L2(Ω), K2 ∈ L1(Ω) such that

∥q(x, ξ)∥R ≤ C3∥ξ∥2R +K1(Ω), q(x, ξ) ≤ K2(x).

Condition 2.4. U ⊆ L2(Q) is closed and convex, 0 ∈ U .
Condition 2.5. γ > 2C2

1 + 1 + C2.
Condition 2.6. Uniformly w.r.t. y ∈ R there exists the limit (2.4).

For u ∈ U and y0 ∈ L2(Ω) we understand solution of (2.1) as a mild solution on every finite
time interval, i.e. y is a solution of (2.1) if y ∈ L2

loc(0,+∞;H1
0 (Ω)) ∩ L∞

loc(0,+∞;L2(Ω)) such that
∀T > 0, ∀φ ∈ H1

0 (Ω), ∀ η ∈ C∞
0 (0, T ) the following equality holds:

−
T∫
0

(y, φ)H · η′ dt+
T∫
0

(∇y,∇φ)H · η dt

=

T∫
0

(f(t), φ)H · η dt+
T∫
0

(g(y)u, φ)H · η dt, f(t) ∈ f
( t

ε
, y
)

and f ∈ L2
loc(0,+∞;L2(Ω)).

Here and after we denote by ∥ · ∥H and ( · , · )H the classical norm and scalar product in
H = L2(Ω), by ∥ · ∥V the classical norm in V := H1

0 (Ω), by V ∗ the dual space to V .
Note that due to Conditions 2.1, 2.2 and properties of the operator A for y from definition of

mild solution we have
∂y

∂t
∈ L2

loc(0,+∞;V ∗).

In the sequel we denote by Fε (or F) a set of all pairs {y, u}, where y is a solution of (2.1) (or
(2.5)) with control u.

The following Lemma gives us a result on solvability of the optimal control problem (2.1)–(2.3).
Lemma. Under Conditions 2.1–2.5 for every ε > 0 problem (2.1)–(2.3) has a solution {y ε, u ε},
that is

J(y ε, u ε) ≤ J(y, u) ∀ {y, u} ∈ Fε.

Note that the existence of a solution {y, u} of (2.5)–(2.7) can be proved following similar argu-
ments to the proof of the existence of {y ε, u ε} for problem (2.1)–(2.3).
Theorem. Suppose that Conditions 2.1-2.6 hold and, moreover, problem (2.5) has a unique solution
for every u ∈ U .

We assume additionally that ∀ η > 0 ∃ δ > 0 ∀ t ≥ 0 ∀ y, z ∈ R

∥y − z∥R < δ =⇒ dist(f(t, y), f(t, z)) < η.

Let {y ε, u ε} be a solution of (2.1)–(2.3). Then

J(y ε, u ε) −→ J(y, u), ε → 0,

and up to subsequence

y ε → y in L2(0,+∞;H),

u ε → u weakly in L2(0,+∞;H),

where {y, u} is a solution of (2.5)–(2.7).
These results are substantiated in [2].
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