
REPORTS OF QUALITDE, Volume 3, 2024 119

An Efficient Numerical Method For Solving Problem
for Impulsive Differential Equations with Loadings Subject

to Multipoint Conditions

Zhazira Kadirbayeva1,2
1Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan

2Kazakh National Women’s Teacher Training University, Almaty, Kazakhstan
E-mail: zhkadirbayeva@gmail.com

1 Introduction
Impulsive differential equations are a significant area of mathematical research, driven by their
ability to model real-world phenomena exhibiting sudden changes at specific moments. Such sys-
tems arise in various fields, including physics, biology, engineering, and economics, where abrupt
transitions, discontinuities, or shocks are inherent. These equations offer a robust framework to
capture behaviors like population explosions, mechanical shocks, or instantaneous changes in elec-
trical circuits [1, 6, 8].

The concept of “loadings” in impulsive differential equations introduces an additional layer of
complexity and applicability. Loadings can represent external influences or internal accumula-
tions that act on the system during the impulse events [7]. This perspective extends the classical
theory, enabling more comprehensive modeling of systems with cumulative or distributed effects
accompanying the impulses.

The study of impulsive differential equations with loadings bridges the gap between theoretical
advancements and practical applications. It explores existence, uniqueness, stability, and qual-
itative behavior of solutions while accounting for the dynamic interplay between impulses and
loadings. Such investigations are critical in optimizing real-world systems, predicting outcomes,
and controlling processes influenced by sudden changes and distributed forces [2, 5].

This paper focuses on developing numerical method for solving problem for impulsive differen-
tial equations with loadings subject to multipoint conditions. The objective is to provide numerical
algorithm for solving problem for impulsive differential equations with loadings subject to mul-
tipoint conditions. By doing so, it contributes to the growing body of knowledge that supports
both the theoretical understanding and practical use of impulsive systems in diverse scientific and
engineering domains.

2 Setting of the problem and the main results
In this paper, by means of the Dzhumabaev parameterization method [3], we investigate the fol-
lowing problem for impulsive differential equations with loadings subject to multipoint conditions

dx

dt
= A0(t)x+

m∑
i=1

Ai(t) lim
t→θi+0

x(t) + f(t), x ∈ Rn, t ∈ (0, T ), (2.1)

Bi lim
t→θi−0

x(t)− Ci lim
t→θi+0

x(t)
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= φi +
i−1∑
k=1

Dk lim
t→θk−0

x(t) +

i−1∑
k=1

Ek lim
t→θk+0

x(t), φi ∈ Rn, i = 1,m, (2.2)

G0x(0) +G1 lim
t→θ1+0

x(t) +G2x(T ) = d, d ∈ Rn. (2.3)

Here (n×n)-matrices Ai(t) (i = 0,m) and n-vector-function f(t) are piecewise continuous on [0, T ]
with possible discontinuities of the first kind at the points t = θi (i = 1,m). Bi, Ci (i = 1,m), Gj

(j = 0, 2), Dk and Ek (k = 1,m− 1) are constant (n × n)-matrices, and φi (i = 1,m) and d are
constant n vectors, 0 = θ0 < θ1 < · · · < θm < θm+1 = T .

Let PC([0, T ], θ,Rn) denote the space of piecewise continuous functions x(t) with the norm

∥x∥1 = max
i=0,m

sup
t∈[θi,θi+1)

∥x(t)∥.

A solution to problem (2.1)–(2.3) is a piecewise continuously differentiable vector function x(t)
on [0, T ], which satisfies the system of the differential equations with loadings (2.1) on [0, T ] except
the points t = θi (i = 1,m), the conditions of impulse effects at the fixed time points (2.2) and the
condition (2.3).

Definition. Problem (2.1)–(2.3) is called uniquely solvable, if for any function f(t) ∈
PC([0, T ], θ,Rn) and vectors d ∈ Rn, φi ∈ Rn (i = 1,m), it has a unique solution.

In this paper, we use the approach offered in [4] to solve the boundary value problem for
impulsive differential equations with loadings subject to the multipoint conditions (2.1)–(2.3).

The interval [0, T ] is divided into subintervals by points:

[0, T ) =
m+1⋃
r=1

[θr−1, θr).

Define the space C([0, T ], θ,Rn(m+1)) of systems functions x[t] = (x1(t), x2(t), . . . , xm+1(t)),
where xr : [θr−1, θr) → Rn are continuous on [θr−1, θr) and have finite left-sided limits lim

t→θr−0
xr(t)

for all r = 1,m+ 1, with the norm

∥x[ · ]∥2 = max
r=1,m+1

sup
t∈[θr−1,θr)

∥xr(t)∥.

Denote by xr(t) the restriction of the function x(t) to the r−th interval [θr−1, θr), i.e. xr(t) =
x(t) for t ∈ [θr−1, θr), r = 1,m+ 1, and introducing the parameters

λr = lim
t→θr−1+0

xr(t), r = 1,m+ 1,

and performing a replacement of the function ur(t) = xr(t) − λr on each interval [θr−1, θr), r =
1,m+ 1, we obtain the boundary value problem with parameters λr, r = 1,m+ 1:

dur
dt

= A0(t)(ur + λr) +

m∑
i=1

Ai(t)λi+1 + f(t), t ∈ [θr−1, θr), r = 1,m+ 1, (2.4)

ur(θr−1) = 0, r = 1,m+ 1, (2.5)

Bi lim
t→θi−0

ui(t) +Biλi − Ciλi+1 = φi +
i−1∑
k=1

Dk lim
t→θk−0

[
uk(t) + λk

]
+

i−1∑
k=1

Ekλk+1, i = 1,m, (2.6)
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G0λ1 +G1λ2 +G2λm+1 +G2 lim
t→T−0

um+1(t) = d. (2.7)

A solution to problem (2.4)–(2.7) is a pair (λ∗, u∗[t]), with elements

λ∗ = (λ∗
1, λ

∗
2, . . . , λ

∗
m+1) ∈ Rn(m+1),

u∗[t] =
(
u∗1(t), u

∗
2(t), . . . , u

∗
m+1(t)

)
∈ C([0, T ], θ,Rn(m+1)),

where u∗r(t) are continuously differentiable on [θr−1, θr), r = 1,m+ 1, and satisfying the system of
ordinary differential equations (2.4) and conditions (2.5)–(2.7) at λr = λ∗

r , j = 1,m+ 1.
Problem (2.1)–(2.3) is equivalent to problem (2.4)–(2.7). If the function x∗(t) is a solution to

problem (2.1)–(2.3), then the triple (λ∗, u∗[t]), where

λ∗ =
(
x∗(θ0), x

∗(θ1), . . . , x
∗(θm)

)
and

u∗[t] =
(
x∗(t)− x∗(θ0), x

∗(t)− x∗(θ1), . . . , x
∗(t)− x∗(θm)

)
,

is a solution to problem (2.4)–(2.7). Conversely, if the triple (λ̃, ũ[t]), with elements

λ̃ = (λ̃1, λ̃2, . . . , λ̃m+1), ũ[t] =
(
ũ1(t), ũ2(t), . . . , ũm+1(t)

)
,

is a solution to problem (2.4)–(2.7), then the function x̃(t) defined by the equalities

x̃(t) = ũr(t) + λ̃r, t ∈ [θr−1, θr), r = 1,m+ 1

and
x̃(T ) = λ̃m+1 + lim

t→T−0
ũm+1(t),

will be the solution of the original problem (2.1)–(2.3).
Let Φr(t) be a fundamental matrix to the differential equation

dx

dt
= A(t)x on [θr−1, θr], r = 1,m+ 1.

Then, the solution to the Cauchy problem (2.5), (2.6) can be written as follows

ur(t) = Φr(t)

t∫
θr−1

Φ−1
r (τ)A0(τ) dτ λr +Φr(t)

t∫
θr−1

Φ−1
r (τ)

m∑
i=1

Ai(τ) dτ λi+1

+Φr(t)

t∫
θr−1

Φ−1
r (τ)f(τ) dτ, t ∈ [θr−1, θr), r = 1,m+ 1. (2.8)

Substituting the right-hand side of (2.8) into the impulse conditions (2.6) and condition (2.7) at
the corresponding limit values, we obtain the following system of linear algebraic equations with
respect to parameters λr, r = 1,m+ 1:

BiΦi(θi)

θi∫
θi−1

Φ−1
i (τ)

{
A0(τ)λi +

m∑
j=1

Aj(τ)λj+1

}
dτ +Biλi − Ciλi+1
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−
i−1∑
k=1

Dkλk −
i−1∑
k=1

Ekλk+1 −
i−1∑
k=1

DkΦk(θk)

θk∫
θk−1

Φ−1
k (τ)

{
A0(τ)λk +

m∑
j=1

Aj(τ)λj+1

}
dτ

= φi −BiΦi(θi)

θi∫
θi−1

Φ−1
i (τ)f(τ) dτ +

i−1∑
k=1

DkΦk(θk)

θk∫
θk−1

Φ−1
k (τ)f(τ) dτ, i = 1,m, (2.9)

G0λ1 +G1λ2 +G2

[
I +Φm+1(T )

T∫
θm

Φ−1
m+1(τ)A0(τ) dτ

]
λm+1

+G2Φm+1(T )

T∫
θm

Φ−1
m+1(τ)

m∑
j=1

Aj(τ)λj+1 dτ = d−G2Φm+1(t)

T∫
θm

Φ−1
m+1(τ)f(τ) dτ. (2.10)

We denote the matrix corresponding to the left side of the system of equations (2.9), (2.10) by
Q∗(θ) and write the system in the form

Q∗(θ)λ = F∗(θ), λ ∈ Rn(m+1), (2.11)

where

F∗(θ) =



φ1 −B1Φ1(θ1)

θ1∫
θ0

Φ−1
1 (τ)f(τ) dτ

φ2 −B2Φ2(θ2)

θ2∫
θ1

Φ−1
2 (τ)f(τ) dτ +D1Φ1(θ1)

θ1∫
θ0

Φ−1
1 (τ)f(τ) dτ

...

φm −BmΦm(θm)

θm∫
θm−1

Φ−1
m (τ)f(τ) dτ +

m−1∑
k=1

DkΦk(θk)

θk∫
θk−1

Φ−1
k (τ)f(τ) dτ

d− Φm+1(t)

T∫
θm

Φ−1
m+1(τ)f(τ) dτ



.

Theorem. Let the matrix Q∗(θ) : Rn(m+1) → Rn(m+1) be invertible. Then the boundary value
problem (2.1)–(2.3) has a unique solution x∗(t) for any f(t) ∈ PC([0, T ], θ,Rn), d ∈ Rn, and
φi ∈ Rn, i = 1,m.

Solvability of the boundary value problem (2.1)–(2.3) is equivalent to the solvability of system
(2.11). The solution to system (2.11) is a vector λ∗, consisting of the values of solutions to problem
(2.1)–(2.3) at the initial points of subintervals, i.e., λ∗

r = x∗(θr−1), r = 1,m+ 1.
If λ∗ = (λ∗

1, λ
∗
2, . . . , λ

∗
m+1) solution to system (2.11) is known, then a solution to problem (2.1)–

(2.3) is determined by the equalities:

x∗(t) = Φr(t)Φ
−1
r (θr−1)λ

∗
r +Φr(t)

t∫
θr−1

Φ−1
r (τ)

m∑
j=1

Aj(τ) dτ λ
∗
j+1
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+Φr(t)

t∫
θr−1

Φ−1
r (τ)f(τ) dτ, t ∈ [θr−1, θr), r = 1,m+ 1, (2.12)

x∗(T ) = Φm+1(t)Φ
−1
m+1(θm)λ∗

m+1 +Φm+1(t)

T∫
θm

Φ−1
m+1(τ)

m∑
j=1

Aj(τ) dτ λ
∗
j+1

+Φm+1(t)

T∫
θm

Φ−1
m+1(τ)f(τ) dτ. (2.13)

Expressions (2.12) and (2.13) give the analytical form of solution to problem (2.1)–(2.3).
We offer the following algorithm for numerical solving of linear boundary value problem for

impulsive differential equations with loadings subject to the multipoint conditions (2.1)–(2.3).

1. Suppose we have a partition: 0 = θ0 < θ1 < · · · < θm < θm+1 = T . Divide each rth interval
[θr−1, θr], r = 1,m+ 1, into Nr parts.

2. Solve the following Cauchy problem for ordinary differential equations

dz

dt
= A0(t)z +Aj(t), z(θr−1) = 0, t ∈ [θr−1, θr], j = 0,m, r = 1,m+ 1,

dz

dt
= A0(t)z + f(t), z(θr−1) = 0, t ∈ [θr−1, θr], r = 1,m+ 1.

3. Construct the system of linear algebraic equations in parameters

Qh̃
∗(θ)λ = F h̃

∗ (θ), λ ∈ Rn(m+1),

and find its solution λh̃. As noted above, the elements of λh̃ = (λh̃
1 , λ

h̃
2 , . . . , λ

h̃
m+1) are the

values of an approximate solution to problem (2.1)–(2.3) at the left end-points of the subin-
tervals: xh̃r(θr−1) = λh̃

r , r = 1,m+ 1.

4. To define the values of an approximate solution at the remaining points of set {θr−1, θr},
r = 1,m+ 1, we solve the Cauchy problems

dx

dt
= A0(t)x+

m∑
j=1

Aj(t)λ
h̃
j+1 + f(t), x(θr−1) = λh̃

r , t ∈ [θr−1, θr], r = 1,m+ 1.

Thus, this algorithm allows us to find the numerical solution to problem (2.1)–(2.3).
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