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Nonlinear deterministic and stochastic integral equations of the Hammerstein type have a long
history. These equations are known to play a major role in classical problems of physics and
engineering. Due to the expansion of the scope of applications of integral equations, in particular,
to problems in biology and mathematical economics, various generalizations of the Hammerstein
equations are becoming increasingly popular in the literature.

We consider the following Hammerstein-type stochastic equation with singular and non-singular
kernels and nonlinear Volterra operators:

x(t) = κ(t) +
m∑
i=1

t∫
0

Ki(t, s)(Fix)(s) ds+
m∑
i=1

mi∑
j=1

t∫
0

Kij(t, s)(Gijx)(s) dBi(s), (1)

where x(t), κ(t) are random n-dimensional processes, Bi are jointly independent scalar Wiener
processes, Ki, Kij are deterministic Borel functions with values in the space of n×n-matrices, and
Fi and Gij are Volterra operators ensuring the dependence of solutions of the equations on the
prehistory. Here the first integral is the Lebesgue integral, and the second is the Itô integral. In
most formulations below, equation (1) is assumed to be defined on a finite interval [0, T ], but in
fact, all the results are also true for the semiaxis t ≥ 0.

Equation (1) covers many important classes of stochastic fractional differential and integral
equations. To see how a stochastically perturbed deterministic equation with fractional derivatives
can be converted into (1), consider the deterministic equation

(CDα
0+x)(t) = f(t, x(t)) (α > 0),

with the fractional Caputo derivative, see e.g. the monograph [6]. If this equation is perturbed by
the white noise Ḃ(t), then we obtain a formally written equation

(CDα
0+x)(t) = f(t, x(t)) + g(t, x(t))Ḃ(t)

or
dαx(t) = f(t, x(t)) dt+ g(t, x(t)) dB(t), (2)
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where dα is the fractional Caputo differential. In this case, the transition from (2) to a well-defined
integral equation (1) is based on the fractional integration formula

(CDα
0+x)(t) = f(t) =⇒ x(t) =

l−1∑
k=0

x(k)(0)tk

k!
+

1

Γ(α)

t∫
0

(t− s)α−1f(s) ds,

where Γ(α) =
∞∫
0

sα−1e−s ds – the Gamma function, and l = α if α ∈ N , and l = [α] + 1 if α /∈ N .

This formula allows us to move from the differential form (2) to the integral one:

x(t) =
l−1∑
k=0

x(k)(0)tk

k!
+

1

Γ(α)

t∫
0

(t− s)α−1f(s, x(s)) ds+
1

Γ(α)

t∫
0

(t− s)α−1g(s, x(s)) dB(s),

and then a solution of equation (2) is by definition understood as a stochastic process x(t) satisfying
this integral equation.

Another example of (1) are equations with fractional Wiener processes describing a popular
class of models primarily developed in connection with their applications in financial mathematics,
see, for example, [3], as well as numerous references cited in this monograph. An example is an
equation of the form

dx(t) = f(t, x(t)) dt+ g(t, x(t)) dBβ(t), (3)

where Bβ is a fractional Wiener process with the Hurst parameter β (0.5 < β < 1). Note that
without loss of generality we can assume thatBβ is written in the Riemann–Liouville form, since this
form differs from the standard one by a progressively measurable stochastic process with absolutely
continuous trajectories, which can therefore be included in the first term on the right-hand side
of the equation (3). This observation makes it possible to write the equation (3) as an integral
equation (1) using the well-known formula [3]

t∫
0

ξ(t) dBβ(t) =
1

Γ(β + 1/2)

t∫
0

ξ(s)(t− s)β−1/2 dB(t).

Then equation (3) can be rewritten in the integral form

x(t) = x(0) +

t∫
0

f(s, x(s)) ds+
1

Γ(α)

t∫
0

(t− s)α−1g(s, x(s)) dB(s),

where α = β + 1/2. By a solution of equation (3) we mean a stochastic process x(t) satisfying this
integral equation in order to avoid technical difficulties associated with integration over fractional
Wiener process [3].

The third important class of stochastic equations included in the general form (1) are equations
with multiple time scales

dx(t) =
m∑
i=1

fi(t, x(t)) (dt)
αi + g(t, x(t)) dB(t) (0 < αi < 1), (4)

which were introduced in [9]. Here (dt)αi are Jumarie-type differentials defining independent time
scales Ti(t) = tαi (see [9] for a more detailed description of these time scales). The transition from
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(4) to the integral equation (1) is based on the formula
t∫

t0

ξ(t)(dt)α = α

t∫
t0

ξ(s)(t− s)α−1 dt,

developed in [9], which again gives a special case of the equation (1):

x(t) = x(0) +

m∑
i=1

αi

t∫
0

(t− s)α1−1fi(s, x(s)) ds+

t∫
0

g(s, x(s)) dB(s).

By combining all these special cases, one can also obtain various mixed integral equations (1) with
singular kernels Ki, Kij of the form const(t − s)α−1 (0 < α < 1), and some further examples can
be found in Corollaries 1–6 below.

In what follows, we use the following constants that remain fixed:

- n ∈ N is the dimension of the phase space of the equation, i.e. the size of the solution vector
of the equation.

- m,mi ∈ N .

- i is the index satisfying the conditions 1 ≤ i ≤ m.

- j is the index satisfying the conditions 1 ≤ j ≤ mi.

- T > 0, p ≥ 2, q ≥ 1, qi ≥ 1, qij ≥ 1, αi > 0, αij > 1/2 – real numbers.

The following notations will also be used:

- R = (−∞,∞), R+ = [0,∞), R− = (−∞, 0).

- | · | – fixed norm in Rn and ∥ · ∥ – matrix norm consistent with the norm | · |.

- IA – indicator (characteristic function) of the set A.

- Bor(M) – σ-algebra of all Borel subsets of the metric space M .

- Ln
q – Lebesgue space of equivalence classes of n-dimensional functions on the interval [0, T ].

- B = (Ω,F , (F)t≥0, P ) is a stochastic basis, where Ω is the set of elementary events, F is the
σ-algebra of events on Ω, (F)t≥0 is a right-continuous non-decreasing flow of σ-subalgebras
of F , P is a probability measure on F , and all σ-algebras are complete with respect to this
measure.

- E is the mathematical expectation constructed with respect to the measure P .

- B(t) (t ∈ R+) – scalar standard Wiener process.

- Bi(t) (t ∈ R+) – scalar standard and jointly independent Wiener processes.

- knp – linear space of n-dimensional F0-measurable random variables χ satisfying the condition
E|χ|p <∞; the norm in knp is the p-th root of this variable.

- Dn
p is the linear normed space of all n-dimensional progressively measurable stochastic pro-

cesses x(·) on the interval [0, T ] satisfying the condition sup
0≤t≤T

E|x(t)|p <∞; the norm in Dn
p

is the p-th root of this quantity.
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Let J be the interval [0, T ] or the semiaxis R+. Recall that a stochastic process x(t, ω) (t ∈ J ,
ω ∈ Ω) whose restriction to the set [0, v]×Ω is Bor([0, v])⊗Fv-measurable for any v ∈ J , is called
progressively measurable (with respect to the stochastic basis B).
Definition 1. Let a Volterra operator V map stochastic processes from Dn

p to progressively mea-
surable processes and let there exist a linear bounded operator Q : Dn

p → Dn
p and a measurable

deterministic function Ψ(t) ≥ 0, t ∈ [0, T ], such that the inequality∣∣(V x)(t)− (V y)(t)
∣∣ ≤ Ψ(t)|(Q(x− y))(t)|

for all x, y ∈ Dn
p and µ-almost all 0 ≤ t ≤ T . Then we will say that the operator V satisfies the

generalized Lipschitz condition with the operator Q and the function Ψ.
The theorem below describes conditions of existence and uniqueness of the main equation (1).

Theorem 1. Let the following conditions be satisfied for the equation (1) on the interval [0, T ]:
(1) κ ∈ Dn

p .

(2) The operators Fi, Gij satisfy the generalized Lipschitz conditions with linear bounded operators
Qi, Qij : Dn

p → Dn
p and functions Ψi ∈ L1

qi, Ψij ∈ L1
2qij

, respectively.

(3) Fi0̂ ∈ Dn
p , Gij 0̂ ∈ Dn

p , where 0̂ is the zero element of Dn
p .

(4) Ci := sup
0≤t≤T

t∫
0

∥Ki(t, s)∥
qi

qi−1 ds <∞, Cij := sup
0≤t≤T

t∫
0

∥Kij(t, s)∥
2qij
qij−1 ds <∞.

Then this equation has a unique solution, belonging to the space Dn
p .

In what follows we apply Theorem 1 to several specific classes of stochastic fractional equations.
The interval on which the existence of solutions is proved is always assumed to be finite and equal
to [0, T ], and the solution on this interval belongs to the space Dn

p , but all the results below remain
valid for the semi-axis with obvious changes in the formulations.
Corollary 1. Let in the equation (1) Ki(t, s) = (t − s)αi−1, Kij(t, s) = (t − s)αij−1, and the
operators Fi, Gij satisfy conditions (2), (3) of Theorem 1, where

qi > max{α−1
i ; 1}, qij > max{(2αij − 1)−1; 1}.

Then for any κ ∈ Dn
p the equation (1) has a unique solution.

Corollary 1 is a far-reaching generalization of the corresponding results on fractional equations
with Caputo derivatives from [8] (for the finite-dimensional case) and [4]. In particular, it includes
random right-hand sides and random delays.

The two corollaries below deal with the initial value problem for equations with distributed and
random delays, respectively. Both types of initial value problems are special cases of the equation
(1), since, as shown below, they are reduced to this equation using the technique described in the
monograph [2].

Consider the equation

x(t) = x(0) +
m∑
i=1

t∫
0

(t− s)αi−1fi(s, (Hix)(s)) ds

+
m∑
i=1

mi∑
j=1

t∫
0

(t− s)αij−1gij(s, (Hijx)(s)) dBi(s) (t ∈ [0, T ]), (5)
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where fi(t, ω, v), gij(t, ω, v) – n-dimensional random functions that for each v ∈ Rnl are progres-
sively measurable in variables (t, ω) ∈ [0, T ]× Ω, and for P ⊗ µ-almost all (t, ω) are continuous in
v. The initial condition for (5) is defined by

x(s) = φ(s) (s ∈ R−), (6)

where φ is a given stochastic process on R−. By a solution of the problem (5), (6) x(t) (t ≤ T )
we mean an n-dimensional stochastic process whose restriction to the interval [0, T ] belongs to the
space Dn

p and which satisfies the initial condition (6).
Let us start with an equation that includes distributed delay.

Corollary 2. Let the following conditions be satisfied:

(1) φ – (Bor(R−)⊗F0)-measurable n-dimensional stochastic process.

(2) There exist measurable non-negative functions Ψi(t), Ψij(t) (t ∈ [0, T ]), Ψi ∈ L1
qi, Ψij ∈ L1

2qij
,

where qi > max{α−1
i ; 1}, qij > max{(2αij − 1)−1; 1}, for which P ⊗ µ-the inequalities

|fi(t, u)− fi(t, v))| ≤ Ψi(t)|u− v| and |gij(t, u)− gij(t, v))| ≤ Ψij(t)|u− v|

for any u, v ∈ Rnl and t ∈ [0, T ].

(3)

(Hiz)(t) =

t∫
−∞

dsRi(t, s)z(s), (Hijz)(t) =

t∫
−∞

dsRij(t, s)z(s),

where Borel functions Ri, Rij, defined on the set [0, T ] × (−∞, t] and taking values in the
space of (nl)× n-matrices, satisfy conditions

sup
0≤t≤T

Vart0Ri(t, · ) <∞, sup
0≤t≤T

Vart0Rij(t, · ) <∞,

sup
0≤t≤T

E

∣∣∣∣fi(t,
0∫

−∞

dsRi(t, s)φ(s)

)∣∣∣∣p <∞, sup
0≤t≤T

E

∣∣∣∣gij(t,
0∫

−∞

dsRij(t, s)φ(s)

)∣∣∣∣p <∞.

Then for any x(0) ∈ knp the problem (5), (6) has a unique solution.

The following corollary considers the initial value problem (5), (6) with random delays.

Corollary 3. Let conditions (1), (2) of Corollary 2 be satisfied, and let condition (3) be replaced
by condition

3A. (Hiz)(t) = (x(h1i (t)), . . . , x(h
l
i(t))), (Hijz)(t) = (x(h1ij(t)), . . . , x(h

l
ij(t))), where scalar stochas-

tic processes hki (t), hkij(t) (k = 1, . . . , l) satisfy the conditions h(t) ≤ t a.s. 0 ≤ t ≤ T ,
h−1(B) ∈ Bor([0, T ])⊗Fv for any v ∈ [0, T ] and any Borel set B ⊂ (−∞, v] and

sup
0≤t≤T

E
∣∣∣fi(t, φ(h1i (t))I{h1

i (t)<0}, . . . , φ(h
l
i(t))I{hl

i(t)<0}

)∣∣∣p <∞,

sup
0≤t≤T

E
∣∣∣gij(t, φ(h1ij(t))I{h1

ij(t)<0}, . . . , φ(h
l
ij(t))I{hl

ij(t)<0}

)∣∣∣p <∞.
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Then for any x(0) ∈ knp equation with random delays

x(t) = x(0) +

m∑
i=1

1

Γ(αi)

t∫
0

(t− s)αi−1fi
(
s, x(h1i (t)), . . . , x(h

l
i(t))

)
ds

+

m∑
i=1

mi∑
j=1

1

Γ(αij)

t∫
0

(t− s)αij−1gij
(
s, x(h1ij(t)), . . . , x(h

l
ij(t))

)
dBi(s) (t ∈ [0, T ])

has only one solution satisfying the equality (6).
Consider now equations with arbitrary homogeneous singular kernels.
Let

x(t) = κ(t) +
m∑
i=1

t∫
0

Ki(t− s)(Fix)(s) ds+

m∑
i=1

mi∑
j=1

t∫
0

Kij(t− s)(Gijx)(s) dBi(s) (t ∈ [0, T ]). (7)

Corollary 4. Let conditions (1)–(3) of Theorem 1 be satisfied, and condition (4) be replaced by
4A. The columns of the matrices Ki and Kij belong to the spaces Ln

qi(qi−1)−1 and Ln
2qij(qij−1)−1,

respectively.
Then equation (7) has a unique solution belonging to the space Dn

p .
Corollary 4 generalizes the main result of the paper [4].
Consider now equations including generalized fractional derivatives. They are represented by

(1) on the interval [0, T ], where
Ki(t, s) = ψ′

i(s)(ψi(t)− ψi(s))
αi−1 and Kij(t, s) = ψ′

ij(s)(ψij(t)− ψij(s))
αij−1, (8)

the functions ψi and ψij have continuous derivatives on [0, T ], and ψ′
i(t) > 0, ψ′

ij(t) > 0, t ∈ [0, T ].
Obviously, this equation is a stochastic generalization of equations with Caputo derivatives.
Corollary 5. Let the operators Fi, Gij satisfy conditions (2), (3) of Theorem 1, where

qi > max{α−1
i ; 1}, qij > max

{
(2αij − 1)−1; 1

}
.

Then for any κ ∈ Dn
p the equation (1), where Ki and Kij are defined by the formulas (8), has a

unique solution.
Corollary 5 generalizes the existence and uniqueness theorem from [1].
Finally, we consider equations including multifractional Wiener processes described by (1) on

[0, T ], where

Ki(t, s) =
1

Γ(θi(t))
(t− s)θi(t)−1 and Kij(t, s) = cij(θij(t))(t− s)θij(t)−1/2. (9)

Corollary 6. Let cij(u) (u > 0), θi(t), θij(t) (t ∈ [0, T ]) be Borel, bounded scalar functions, where
θi(t) ≥ αi, θij(t) ≥ δij > 0 for all t ∈ [0, T ]. Let, further, the operators Fi, Gij satisfy conditions
(2), (3) of Theorem 1, where

qi > max{α−1
i ; 1}, qij > max

{
(2δij)

−1; 1
}
.

Then for any κ ∈ Dn
p the equation (1), where Ki and Kij are defined by the formulas (9), has a

unique solution.
Such equations were considered in [5]. Corollary 6 does not formally generalize the result on

the existence of weak solutions for the equations offered in [5], but it does extend the existence and
uniqueness theorem to equations of a much more general form.

The proofs of the above results can be found in the paper [7].
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