The Inverse Problem for Periodic Travelling Waves of the Linear 1D Shallow-Water Equations

Robert Hakl

Institute of Mathematics, Czech Academy of Sciences Brno, Czech Republic E-mail: hakl@ipm.cz

Pedro J. Torres

Departamento de Matemática Aplicada & Modeling Nature (MNat) Research Unit., Universidad de Granada, Granada, Spain E-mail: ptorres@ugr.es

1 Introduction

The motion of small amplitude waves of a water layer with variable depth along the x-axis is described by the equations of the shallow water theory

$$\frac{\partial \eta}{\partial t} + \frac{\partial}{\partial x} [h(x)u] = 0, \quad \frac{\partial u}{\partial t} + g \frac{\partial \eta}{\partial x} = 0,$$

where $\eta(x, t)$ is the vertical water surface elevation, u(x, t) is the depth-averaged water flow velocity (also called wave velocity), h(x) is the unperturbed water depth and g is the gravity acceleration (see Fig. 1). From now on, we assume without loss of generality that g = 1.

Figure 1. Graphical description of the model.

The shallow water equations constitute a system of coupled PDEs of first order that can be easily decoupled into a single wave equation for the surface displacement

$$\frac{\partial^2 \eta}{\partial t^2} - \frac{\partial}{\partial x} \left[h(x) \frac{\partial \eta}{\partial x} \right] = 0, \qquad (1.1)$$

or for the water velocity

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2}{\partial x^2} \left[h(x) u \right] = 0.$$
(1.2)

There is a considerable number of papers devoted to finding sufficient conditions on the bottom profile h(x) to ensure the existence of travelling waves or other explicit solutions [1-7, 9, 10]. A travelling wave is a special solution of the form $q(x) \exp i[\omega t - \Psi(x)]$, where both q and Ψ are scalar real-valued functions. In the related literature, q(x) is known as the amplitude of the travelling wave, ω is the frequency and $\Psi(x)$ is the phase, which is called non-trivial if it is non-constant. In this paper, we are going to study the following inverse problem: given a prescribed amplitude q(x), can we determine a suitable bottom profile h(x) allowing the equation to admit a travelling wave with amplitude q(x)?

2 The inverse problem for water velocity

From now on, C_T^+ will denote the space of continuous scalar *T*-periodic functions with positive values. In this section, we study the inverse problem for the water velocity. Given a fixed $q \in C_T^+$, we wonder if there exists $h \in C_T^+$ such that Eq. (1.2) has a travelling wave

$$u(x,t) = q(x) \exp i \left| \omega t - \Psi(x) \right|. \tag{2.1}$$

Inserting (2.1) into (1.2) and separating real and imaginary parts, we get the equations

$$(hq)'' + \omega^2 q - hq\Psi'^2 = 0, \qquad (2.2)$$

$$2(hq)'\Psi' + hq\Psi'' = 0.$$
 (2.3)

From (2.3), we deduce that $[(hq)^2\Psi']' = 0$, and $(hq)^2\Psi'$ is a conserved quantity, which is actually an energy flux, and it is in total analogy with the angular momentum in systems with radial symmetry. This means that there exists $\alpha \in \mathbb{R}$ such that

$$[h(x)q(x)]^{2}\Psi'(x) = \alpha, \quad \forall x \in \mathbb{R}.$$
(2.4)

Now, we insert (2.4) into (2.2) and arrive to a single second order ODE

$$(hq)'' + \omega^2 q = \frac{\alpha^2}{(hq)^3}.$$
 (2.5)

Recall that for this equation, the unknown is h(x), where q(x) is given. The main result of this section is the following.

Theorem 2.1. There exists a solution $h \in C_T^+$ of (2.5) for any $\alpha \neq 0$, $\omega \neq 0$.

Proof. By introducing the change of variables y = hq into (2.5), we get the equation

$$y'' + \omega^2 q = \frac{\alpha^2}{y^3} \,.$$

Now, the result is a direct consequence of [8, Theorem 3.12].

3 The inverse problem for surface elevation

This section is devoted to studying the inverse problem for the surface elevation. Given a fixed $q \in C_T^+$, the problem is to find $h \in C_T^+$ such that Eq. (1.1) has a travelling wave of the form

$$\eta(x,t) = q(x) \exp i \left[\omega t - \Psi(x) \right]. \tag{3.1}$$

Following the steps of the previous section, we insert (3.1) into (1.1) and separate real and imaginary parts to obtain

$$(hq')' + \omega^2 q - hq\Psi'^2 = 0, \tag{3.2}$$

$$(hq\Psi')' + hq'\Psi' = 0. (3.3)$$

Now, the conserved quantity (energy flux) coming from (3.3) is

$$h(x)q(x)^2\Psi'(x) = \alpha, \ \forall x \in \mathbb{R}.$$

Using this information in (3.2), we arrive to the equation

$$(hq')' + \omega^2 q = \frac{\alpha^2}{hq^3}.$$
 (3.4)

Again, the unknown is h and q is a prescribed function. Although this equation may look similar to (2.5), they are indeed totally different. The fundamental difference is that now we have a first-order differential equation, with the difficulty that q' will change its sign, hence we are dealing with a differential equation that is singular not only in the dependent variable h but also in the independent variable x.

Theorem 3.1. Let us assume that q is a T-periodic and positive function of class C^2 with a finite number of critical points in [0,T], all of them non-degenerate, that is, if q'(x) = 0, then $q''(x) \neq 0$. Then, there exists a threshold $\lambda_0 > 0$ such that

- (i) there exists a positive T-periodic solution h of (3.4) provided $0 < |\frac{\alpha}{\omega^2}| < \lambda_0$,
- (ii) no positive *T*-periodic solution of (3.4) exists provided $|\frac{\alpha}{\omega^2}| > \lambda_0$.

Moreover,

$$\frac{q_*^5}{4|q_0|} < \lambda_0^2 \le \min\Big\{\frac{q^5(b)}{4|q''(b)|}: \ q'(b) = 0, q''(b) < 0\Big\},$$

where

$$q_* \stackrel{def}{=} \min\{q(x): x \in [0,T]\}, \quad q_0 \stackrel{def}{=} \min\{q''(x): x \in [0,T]\}.$$

3.1 Sketch of Proof

We assume that q is a T-periodic and positive function of class C^2 with a finite number of critical points in [0,T], all of them non-degenerate, that is, if q'(x) = 0, then $q''(x) \neq 0$. Under this assumption, we can divide the interval [0,T] into subintervals [a,b] such that q' is of a constant sign on (a,b) and q'(a) = q'(b) = 0. Then, the substitution

$$u(x) = \frac{(h(x)q'(x))^2}{2\omega^4} \text{ for } x \in (a,b)$$
(3.5)

transforms (3.4) into the equation

$$u'(x) = \frac{\lambda^2 q'(x)}{q^3(x)} - q(x)\operatorname{sgn}(q')\sqrt{2u(x)} \text{ for } x \in (a,b),$$
(3.6)

where $\lambda = \alpha / \omega^2$.

At first we consider an interval [a, b] where

$$q'(a) = 0, \quad q'(b) = 0, \quad q'(x) > 0 \text{ for } x \in (a,b), \quad q''(a) > 0, \quad q''(b) < 0.$$
 (3.7)

In such an interval, eq. (3.6) reads

$$u'(x) = \frac{\lambda^2 q'(x)}{q^3(x)} - q(x)\sqrt{2u(x)} \text{ for } x \in (a,b).$$
(3.8)

For technical reasons, we embed this equation into

$$u'(x) = \frac{\lambda^2 q'(x)}{q^3(x)} - q(x)\sqrt{2|u(x)|} \operatorname{sgn} u(x) \text{ for } x \in [a, b].$$
(3.9)

Obviously, non-negative solutions of (3.8) and (3.9) are the same.

A solution of (3.9) is understood in the classical sense, that is, a function $u \in C^1([a, b]; \mathbb{R})$ satisfying (3.9) for every $x \in [a, b]$. We will investigate the properties of a solution to (3.9) subject to the initial condition

$$u(a) = 0.$$
 (3.10)

Lemma 3.1. There exists a unique solution u of the initial value problem (3.9), (3.10). Moreover, if $\lambda \neq 0$, then

$$u(x) > 0 \text{ for } x \in (a, b).$$

Lemma 3.2. Let $\lambda \neq 0$ and let u be the solution to (3.9), (3.10). Then, there exists one-sided limit

$$\ell_a \stackrel{def}{=} \lim_{x \to a+} \frac{\sqrt{2u(x)}}{q'(x)}, \qquad (3.11)$$

it is finite, and ℓ_a is the unique positive root of the quadratic equation

$$x^{2} + \frac{q(a)}{q''(a)}x - \frac{\lambda^{2}}{q^{3}(a)q''(a)} = 0.$$
(3.12)

Lemma 3.3. Let u be a solution of (3.9) satisfying

$$u(x) > 0$$
 for $x \in (x_0, b)$

for some $x_0 \in (a, b)$ and u(b) = 0. Then, there exists one-sided limit

$$\ell_b \stackrel{def}{=} \lim_{x \to b-} \frac{\sqrt{2u(x)}}{q'(x)}, \qquad (3.13)$$

it is finite, and ℓ_b is a root of the quadratic equation

$$x^{2} - \frac{q(b)}{|q''(b)|} x + \frac{\lambda^{2}}{q^{3}(b)|q''(b)|} = 0.$$
(3.14)

Lemma 3.4. There exists a threshold $\lambda_{ab} > 0$ such that

- (i) if 0 < |λ| < λ_{ab}, the unique solution u of (3.9), (3.10) satisfies u(b) = 0. Moreover, l_a, l_b defined by (3.11) and (3.13) are respectively the unique positive root of (3.12) and the smaller root of (3.14);
- (ii) if $|\lambda| = \lambda_{ab}$, the unique solution u of (3.9), (3.10) satisfies u(b) = 0. Moreover, ℓ_a, ℓ_b defined by (3.11) and (3.13) are respectively the unique positive root of (3.12) and a root of (3.14);
- (iii) if $|\lambda| > \lambda_{ab}$, the unique solution u of (3.9), (3.10) satisfies u(b) > 0.

The case when

$$q'(a) = 0, \quad q'(b) = 0, \quad q'(x) < 0 \text{ for } x \in (a,b), \quad q''(a) < 0, \quad q''(b) > 0$$

can be transformed by $\tilde{q}(x) = q(-x)$ to the previous case.

The threshold λ_0 is then a minimum of the thresholds λ_{ab} that correspond to each subinterval (a, b). Further, the change (3.5) is inverted by defining

$$h(x) = \frac{\omega^2 \sqrt{2u(x)}}{|q'(x)|} \text{ for } x \in (a,b), \quad h(a) = \omega^2 \ell_a, \quad h(b) = \omega^2 \ell_b,$$

on every subinterval (a, b). By construction, h is a positive absolutely continuous T-periodic function.

3.2 Estimation of the threshold λ_0

Theorem 3.1 includes a general quantitative estimate of the threshold value λ_0 . In this subsection, we develop a technique that permits a significant improvement of the estimates in concrete examples. Since λ_0 is the minimum of the thresholds λ_{ab} corresponding to each subinterval (a, b), we only focus on estimating the latter. As in the previous subsection we formulate the results for the case when (3.7) is valid.

Theorem 3.2. Let there exist positive constants λ_1 and λ_2 such that $\lambda_1 \leq \lambda_2$, and let $v, w \in AC([a,b]; \mathbb{R})$ satisfy

$$\begin{split} v'(x) &\geq \frac{\lambda_1^2 q'(x)}{q^3(x)} - q(x)\sqrt{2|v(x)|} \, \operatorname{sgn} v(x) \ \text{for a.e.} \ x \in [a, b], \\ w'(x) &\leq \frac{\lambda_2^2 q'(x)}{q^3(x)} - q(x)\sqrt{2|w(x)|} \, \operatorname{sgn} w(x) \ \text{for a.e.} \ x \in [a, b], \\ v(a) &\geq 0 \geq w(a), \quad v(b) = 0 = w(b), \\ &\lim_{x \to b^-} \frac{\sqrt{2|w(x)|} \, \operatorname{sgn} w(x)}{q'(x)} > x_1(\lambda_2), \end{split}$$

where $x_1(\lambda_2)$ is the smaller root of (3.14) with $\lambda = \lambda_2$. Then, the threshold λ_{ab} admits the estimate

$$\lambda_1 \le \lambda_{ab} \le \lambda_2. \tag{3.15}$$

If we put

$$v(x) \stackrel{def}{=} \frac{(\ell_1(x)q'(x))^2}{2}, \quad w(x) \stackrel{def}{=} \frac{(\ell_2(x)q'(x))^2}{2} \text{ for } x \in [a,b],$$

then Theorem 3.2 yields the following assertion.

Corollary 3.1. Let there exist positive constants λ_1 and λ_2 such that $\lambda_1 \leq \lambda_2$, let $q \in C^2([a,b]; \mathbb{R})$, and let $\ell_1, \ell_2 \in C^1([a,b]; \mathbb{R})$ satisfy

$$\ell_i(x) > 0 \text{ for } x \in [a, b] \ (i = 1, 2),$$
(3.16)

$$\ell_1(x)\big(\ell_1'(x)q'(x) + \ell_1(x)q''(x)\big) \ge \frac{\lambda_1^2}{q^3(x)} - q(x)\ell_1(x) \text{ for } x \in [a,b],$$
(3.17)

$$\ell_2(x)\big(\ell_2'(x)q'(x) + \ell_2(x)q''(x)\big) \le \frac{\lambda_2^2}{q^3(x)} - q(x)\ell_2(x) \text{ for } x \in [a,b],$$
(3.18)

$$\ell_2(b) > x_1(\lambda_2),$$
 (3.19)

where $x_1(\lambda_2)$ is the smaller root of (3.14) with $\lambda = \lambda_2$. Then, the threshold λ_{ab} admits the estimate (3.15).

3.3 A concrete example

Theorem 3.1 provides a general quantitative estimate for the threshold value λ_0 . However, such an estimate can be improved for particular cases by a suitable construction of upper and lower functions. To illustrate this idea, consider $q(x) = 2 - \cos x$ for $x \in [0, 2\pi]$. Then local extremes of q divide the interval $[0, 2\pi]$ into two subintervals, in particular, we set $T = 2\pi$, $x_1 = 0$, $x_2 = \pi$, $x_1 + T = 2\pi$ in order to apply Theorem 3.1. Then we have

$$q'(x) > 0$$
 for $x \in (0,\pi)$, $q'(x) < 0$ for $x \in (\pi, 2\pi)$,
 $q'(0) = q'(\pi) = q'(2\pi) = 0$, $q''(0) = q''(2\pi) = 1$, $q''(\pi) = -1$.

Moreover, since q is symmetric with respect to π , we can easily conclude that the thresholds corresponding to each subinterval has the same value, i.e., $\lambda_0 = \lambda_{0,\pi} = \lambda_{\pi,2\pi}$. Thus, according to Theorem 3.1, the threshold λ_0 satisfies the inequalities

$$0.25 = \frac{1}{4} < \lambda_0^2 \le \frac{243}{4} = 60.75.$$

Let us see how to improve this estimate by constructing a specific couple of upper and lower functions.

According to Corollary 3.1, it is sufficient to find suitable functions $\ell_1(x)$ and $\ell_2(x)$ that satisfy (3.16)–(3.19). Obviously, we can start with positive constant functions. Then, if we put

$$\lambda_1^2 \stackrel{def}{=} \min \left\{ (\ell_1^2 q''(x) + \ell_1 q(x)) q^3(x) : x \in [0, \pi] \right\},\$$

$$\lambda_2^2 \stackrel{def}{=} \max \left\{ (\ell_2^2 q''(x) + \ell_2 q(x)) q^3(x) : x \in [0, \pi] \right\},\$$

we can easily verify that inequalities (3.17) and (3.18) with $a = 0, b = \pi$ are fulfilled. Consequently, if also (3.19) is fulfilled, then we can conclude that (3.15) holds.

Analyzing the function $x \mapsto (\ell^2 q''(x) + \ell q(x))q^3(x)$ in detail, one can show that the optimal values for constant functions ℓ_1 and ℓ_2 are

$$\ell_1 = \frac{20}{7}, \quad \ell_2 = \frac{5}{2}.$$

Then, we get

$$\lambda_1^2 = \frac{540}{49} \approx 11.020408163, \quad \lambda_2^2 = \frac{3125}{64} = 48.828125, \qquad x_1(\lambda_2) \approx 0.835507015894,$$

Figure 2. Numerically computed water depth function h(x) for an amplitude $q(x) = 2 - \cos x$ of the travelling wave. We fixed $\omega = 1$ and moved the energy flux parameter α .

and we have the estimate

$$\frac{540}{49} \le \lambda_0^2 \le \frac{3125}{64}$$

Let us pass to nonconstant functions $\ell_1(x)$ and $\ell_2(x)$. Then the choice

$$\ell_i(x) \stackrel{def}{=} a_i + b_i \cos x + c_i \sin x + d_i \sin x \cos x \text{ for } x \in [0, \pi] \quad (i = 1, 2)$$

where

$$a_1 = 4.265, \quad b_1 = 1.639, \quad c_1 = -1.075, \quad d_1 = -0.778, \\ a_2 = 3.605, \quad b_2 = 1.025, \quad c_2 = -0.408, \quad d_2 = -0.222,$$

guarantees that $\ell_1(x)$ and $\ell_2(x)$ satisfy (3.16)–(3.19) with $a = 0, b = \pi, \lambda_1^2 = 26.4$, and $\lambda_2^2 = 31.68$. Furthermore, note also that where $x_2(\lambda_i)$ is the greater root of (3.14) with $\lambda = \lambda_i$ (i = 1, 2). Indeed,

 $\ell_1(\pi) = 2.626, \quad x_2(\lambda_1) \approx 2.62792828771, \quad x_2(\lambda_2) \approx 2.53762549442, \quad \ell_2(\pi) = 2.58.$

The condition (3.20) is stronger than (3.19) and allows strict inequalities in the threshold estimate. Therefore, according to Corollary 3.1 we have

$$26.4 < \lambda_0^2 < 31.68.$$

We conducted several numerical calculations to approximately solve the relevant equations and determine the water depth function h(x) associated with the amplitude $q(x) = 2 - \cos x$. The results are illustrated in Fig. 2. Notably, as λ approaches the critical value λ_0 , a singularity arises in h(x).

References

- G. Bluman and S. Kumei, On invariance properties of the wave equation. J. Math. Phys. 28 (1987), no. 2, 307–318.
- [2] S. Churilov and Yu. Stepanyants, Long wave propagation in canals with spatially varying cross-sections and currents. *Nonlinear and modern mathematical physics*, 19–79, Springer Proc. Math. Stat., 459, *Springer, Cham*, 2024.
- [3] D. L. Clements and C. Rogers, Analytic solution of the linearized shallow-water wave equations for certain continuous depth variations. J. Austral. Math. Soc. Ser. B 19 (1975), no. 1, 81–94.
- [4] I. Didenkulovaa, E. Pelinovsky and Tarmo Soomere, Exact travelling wave solutions in strongly inhomogeneous media. *Estonian Journal of Engineering* 14 (2008), no. 3, 220–231.
- [5] I. I. Didenkulova, N. Zahibo and E. N. Pelinovsky, Reflection of long waves from a "nonreflecting" bottom profile. (Russian) *Izv. Ross. Akad. Nauk Mekh. Zhidk. Gaza* 2008, no. 4, 102–108; translation in *Fluid Dyn.* 43 (2008), no. 4, 590–595.
- [6] R. Grimshaw, D. Pelinovsky and E. Pelinovsky, Homogenization of the variable-speed wave equation. Wave Motion 47 (2010), no. 8, 496–507.
- [7] R. Hernández-Walls, B. Martín-Atienza, M. Salinas-Matus and J. Castillo, Solving the linear inviscid shallow water equations in one dimension, with variable depth, using a recursion formula. *Eur. J. Phys.* 38 (2017), Paper no. 065802.
- [8] A. C. Lazer and S. Solimini, On periodic solutions of nonlinear differential equations with singularities. Proc. Amer. Math. Soc. 99 (1987), no. 1, 109–114.
- [9] E. Pelinovsky and O. Kaptsov, Traveling waves in shallow seas of variable depths. Symmetry 14 (2022), Paper no. 1448, no. 7.
- [10] E. N. Pelinovsky and O. V. Kaptsov, Traveling waves in nondispersive strongly inhomogeneous media. Dokl. Phys. 67 (2022), 415–419.