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1 Introduction
The motion of small amplitude waves of a water layer with variable depth along the x-axis is
described by the equations of the shallow water theory

∂η

∂t
+

∂

∂x
[h(x)u] = 0,

∂u

∂t
+ g

∂η

∂x
= 0,

where η(x, t) is the vertical water surface elevation, u(x, t) is the depth-averaged water flow velocity
(also called wave velocity), h(x) is the unperturbed water depth and g is the gravity acceleration
(see Fig. 1). From now on, we assume without loss of generality that g = 1.
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Figure 1. Graphical description of the model.

The shallow water equations constitute a system of coupled PDEs of first order that can be
easily decoupled into a single wave equation for the surface displacement

∂2η

∂t2
− ∂

∂x

[
h(x)

∂η

∂x

]
= 0, (1.1)
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or for the water velocity
∂2u

∂t2
− ∂2

∂x2
[h(x)u] = 0. (1.2)

There is a considerable number of papers devoted to finding sufficient conditions on the bottom
profile h(x) to ensure the existence of travelling waves or other explicit solutions [1–7, 9, 10]. A
travelling wave is a special solution of the form q(x) exp i[ωt−Ψ(x)], where both q and Ψ are scalar
real-valued functions. In the related literature, q(x) is known as the amplitude of the travelling
wave, ω is the frequency and Ψ(x) is the phase, which is called non-trivial if it is non-constant. In
this paper, we are going to study the following inverse problem: given a prescribed amplitude q(x),
can we determine a suitable bottom profile h(x) allowing the equation to admit a travelling wave
with amplitude q(x)?

2 The inverse problem for water velocity

From now on, C+
T will denote the space of continuous scalar T -periodic functions with positive

values. In this section, we study the inverse problem for the water velocity. Given a fixed q ∈ C+
T ,

we wonder if there exists h ∈ C+
T such that Eq. (1.2) has a travelling wave

u(x, t) = q(x) exp i
[
ωt−Ψ(x)

]
. (2.1)

Inserting (2.1) into (1.2) and separating real and imaginary parts, we get the equations

(hq)′′ + ω2q − hqΨ′2 = 0, (2.2)
2(hq)′Ψ′ + hqΨ′′ = 0. (2.3)

From (2.3), we deduce that [(hq)2Ψ′]′ = 0, and (hq)2Ψ′ is a conserved quantity, which is actually an
energy flux, and it is in total analogy with the angular momentum in systems with radial symmetry.
This means that there exists α ∈ R such that[

h(x)q(x)
]2
Ψ′(x) = α, ∀x ∈ R. (2.4)

Now, we insert (2.4) into (2.2) and arrive to a single second order ODE

(hq)′′ + ω2q =
α2

(hq)3
. (2.5)

Recall that for this equation, the unknown is h(x), where q(x) is given. The main result of this
section is the following.

Theorem 2.1. There exists a solution h ∈ C+
T of (2.5) for any α 6= 0, ω 6= 0.

Proof. By introducing the change of variables y = hq into (2.5), we get the equation

y′′ + ω2q =
α2

y3
.

Now, the result is a direct consequence of [8, Theorem 3.12].
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3 The inverse problem for surface elevation
This section is devoted to studying the inverse problem for the surface elevation. Given a fixed
q ∈ C+

T , the problem is to find h ∈ C+
T such that Eq. (1.1) has a travelling wave of the form

η(x, t) = q(x) exp i
[
ωt−Ψ(x)

]
. (3.1)

Following the steps of the previous section, we insert (3.1) into (1.1) and separate real and imaginary
parts to obtain

(hq′)′ + ω2q − hqΨ′2 = 0, (3.2)
(hqΨ′)′ + hq′Ψ′ = 0. (3.3)

Now, the conserved quantity (energy flux) coming from (3.3) is

h(x)q(x)2Ψ′(x) = α, ∀x ∈ R.

Using this information in (3.2), we arrive to the equation

(hq′)′ + ω2q =
α2

hq3
. (3.4)

Again, the unknown is h and q is a prescribed function. Although this equation may look similar
to (2.5), they are indeed totally different. The fundamental difference is that now we have a first-
order differential equation, with the difficulty that q′ will change its sign, hence we are dealing
with a differential equation that is singular not only in the dependent variable h but also in the
independent variable x.

Theorem 3.1. Let us assume that q is a T -periodic and positive function of class C2 with a finite
number of critical points in [0, T ], all of them non-degenerate, that is, if q′(x) = 0, then q′′(x) 6= 0.
Then, there exists a threshold λ0 > 0 such that

(i) there exists a positive T -periodic solution h of (3.4) provided 0 < | α
ω2 | < λ0,

(ii) no positive T -periodic solution of (3.4) exists provided | α
ω2 | > λ0.

Moreover,
q5∗

4|q0|
< λ2

0 ≤ min
{ q5(b)

4|q′′(b)|
: q′(b) = 0, q′′(b) < 0

}
,

where
q∗

def
= min

{
q(x) : x ∈ [0, T ]

}
, q0

def
= min

{
q′′(x) : x ∈ [0, T ]

}
.

3.1 Sketch of Proof

We assume that q is a T -periodic and positive function of class C2 with a finite number of critical
points in [0, T ], all of them non-degenerate, that is, if q′(x) = 0, then q′′(x) 6= 0. Under this
assumption, we can divide the interval [0, T ] into subintervals [a, b] such that q′ is of a constant
sign on (a, b) and q′(a) = q′(b) = 0. Then, the substitution

u(x) =
(h(x)q′(x))2

2ω4
for x ∈ (a, b) (3.5)
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transforms (3.4) into the equation

u′(x) =
λ2q′(x)

q3(x)
− q(x) sgn(q′)

√
2u(x) for x ∈ (a, b), (3.6)

where λ = α/ω2.
At first we consider an interval [a, b] where

q′(a) = 0, q′(b) = 0, q′(x) > 0 for x ∈ (a, b), q′′(a) > 0, q′′(b) < 0. (3.7)

In such an interval, eq. (3.6) reads

u′(x) =
λ2q′(x)

q3(x)
− q(x)

√
2u(x) for x ∈ (a, b). (3.8)

For technical reasons, we embed this equation into

u′(x) =
λ2q′(x)

q3(x)
− q(x)

√
2|u(x)| sgnu(x) for x ∈ [a, b]. (3.9)

Obviously, non-negative solutions of (3.8) and (3.9) are the same.
A solution of (3.9) is understood in the classical sense, that is, a function u ∈ C1([a, b];R)

satisfying (3.9) for every x ∈ [a, b]. We will investigate the properties of a solution to (3.9) subject
to the initial condition

u(a) = 0. (3.10)

Lemma 3.1. There exists a unique solution u of the initial value problem (3.9), (3.10). Moreover,
if λ 6= 0, then

u(x) > 0 for x ∈ (a, b).

Lemma 3.2. Let λ 6= 0 and let u be the solution to (3.9), (3.10). Then, there exists one-sided limit

ℓa
def
= lim

x→a+

√
2u(x)

q′(x)
, (3.11)

it is finite, and ℓa is the unique positive root of the quadratic equation

x2 +
q(a)

q′′(a)
x− λ2

q3(a)q′′(a)
= 0. (3.12)

Lemma 3.3. Let u be a solution of (3.9) satisfying

u(x) > 0 for x ∈ (x0, b)

for some x0 ∈ (a, b) and u(b) = 0. Then, there exists one-sided limit

ℓb
def
= lim

x→b−

√
2u(x)

q′(x)
, (3.13)

it is finite, and ℓb is a root of the quadratic equation

x2 − q(b)

|q′′(b)|
x+

λ2

q3(b)|q′′(b)|
= 0. (3.14)

Lemma 3.4. There exists a threshold λab > 0 such that
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(i) if 0 < |λ| < λab, the unique solution u of (3.9), (3.10) satisfies u(b) = 0. Moreover, ℓa, ℓb
defined by (3.11) and (3.13) are respectively the unique positive root of (3.12) and the smaller
root of (3.14);

(ii) if |λ| = λab, the unique solution u of (3.9), (3.10) satisfies u(b) = 0. Moreover, ℓa, ℓb defined
by (3.11) and (3.13) are respectively the unique positive root of (3.12) and a root of (3.14);

(iii) if |λ| > λab, the unique solution u of (3.9), (3.10) satisfies u(b) > 0.

The case when

q′(a) = 0, q′(b) = 0, q′(x) < 0 for x ∈ (a, b), q′′(a) < 0, q′′(b) > 0

can be transformed by q̃(x) = q(−x) to the previous case.
The threshold λ0 is then a minimum of the thresholds λab that correspond to each subinterval

(a, b). Further, the change (3.5) is inverted by defining

h(x) =
ω2

√
2u(x)

|q′(x)|
for x ∈ (a, b), h(a) = ω2ℓa, h(b) = ω2ℓb,

on every subinterval (a, b). By construction, h is a positive absolutely continuous T -periodic func-
tion.

3.2 Estimation of the threshold λ0

Theorem 3.1 includes a general quantitative estimate of the threshold value λ0. In this subsection,
we develop a technique that permits a significant improvement of the estimates in concrete exam-
ples. Since λ0 is the minimum of the thresholds λab corresponding to each subinterval (a, b), we
only focus on estimating the latter. As in the previous subsection we formulate the results for the
case when (3.7) is valid.

Theorem 3.2. Let there exist positive constants λ1 and λ2 such that λ1 ≤ λ2, and let v, w ∈
AC([a, b];R) satisfy

v′(x) ≥ λ2
1q

′(x)

q3(x)
− q(x)

√
2|v(x)| sgn v(x) for a.e. x ∈ [a, b],

w′(x) ≤ λ2
2q

′(x)

q3(x)
− q(x)

√
2|w(x)| sgnw(x) for a.e. x ∈ [a, b],

v(a) ≥ 0 ≥ w(a), v(b) = 0 = w(b),

lim inf
x→b−

√
2|w(x)| sgnw(x)

q′(x)
> x1(λ2),

where x1(λ2) is the smaller root of (3.14) with λ = λ2. Then, the threshold λab admits the estimate

λ1 ≤ λab ≤ λ2. (3.15)

If we put

v(x)
def
=

(ℓ1(x)q
′(x))2

2
, w(x)

def
=

(ℓ2(x)q
′(x))2

2
for x ∈ [a, b],

then Theorem 3.2 yields the following assertion.
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Corollary 3.1. Let there exist positive constants λ1 and λ2 such that λ1 ≤ λ2, let q ∈ C2([a, b];R),
and let ℓ1, ℓ2 ∈ C1([a, b];R) satisfy

ℓi(x) > 0 for x ∈ [a, b] (i = 1, 2), (3.16)

ℓ1(x)
(
ℓ′1(x)q

′(x) + ℓ1(x)q
′′(x)

)
≥ λ2

1

q3(x)
− q(x)ℓ1(x) for x ∈ [a, b], (3.17)

ℓ2(x)
(
ℓ′2(x)q

′(x) + ℓ2(x)q
′′(x)

)
≤ λ2

2

q3(x)
− q(x)ℓ2(x) for x ∈ [a, b], (3.18)

ℓ2(b) > x1(λ2), (3.19)

where x1(λ2) is the smaller root of (3.14) with λ = λ2. Then, the threshold λab admits the estimate
(3.15).

3.3 A concrete example
Theorem 3.1 provides a general quantitative estimate for the threshold value λ0. However, such
an estimate can be improved for particular cases by a suitable construction of upper and lower
functions. To illustrate this idea, consider q(x) = 2− cosx for x ∈ [0, 2π]. Then local extremes of
q divide the interval [0, 2π] into two subintervals, in particular, we set T = 2π, x1 = 0, x2 = π,
x1 + T = 2π in order to apply Theorem 3.1. Then we have

q′(x) > 0 for x ∈ (0, π), q′(x) < 0 for x ∈ (π, 2π),

q′(0) = q′(π) = q′(2π) = 0, q′′(0) = q′′(2π) = 1, q′′(π) = −1.

Moreover, since q is symmetric with respect to π, we can easily conclude that the thresholds
corresponding to each subinterval has the same value, i.e., λ0 = λ0,π = λπ,2π. Thus, according to
Theorem 3.1, the threshold λ0 satisfies the inequalities

0.25 =
1

4
< λ2

0 ≤
243

4
= 60.75.

Let us see how to improve this estimate by constructing a specific couple of upper and lower
functions.

According to Corollary 3.1, it is sufficient to find suitable functions ℓ1(x) and ℓ2(x) that satisfy
(3.16)–(3.19). Obviously, we can start with positive constant functions. Then, if we put

λ2
1
def
= min

{
(ℓ21q

′′(x) + ℓ1q(x))q
3(x) : x ∈ [0, π]

}
,

λ2
2
def
= max

{
(ℓ22q

′′(x) + ℓ2q(x))q
3(x) : x ∈ [0, π]

}
,

we can easily verify that inequalities (3.17) and (3.18) with a = 0, b = π are fulfilled. Consequently,
if also (3.19) is fulfilled, then we can conclude that (3.15) holds.

Analyzing the function x 7→ (ℓ2q′′(x) + ℓq(x))q3(x) in detail, one can show that the optimal
values for constant functions ℓ1 and ℓ2 are

ℓ1 =
20

7
, ℓ2 =

5

2
.

Then, we get

λ2
1 =

540

49
≈ 11.020408163, λ2

2 =
3125

64
= 48.828125, x1(λ2) ≈ 0.835507015894,
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Figure 2: Numerically computed water depth function h(x) for an amplitude q(x) =
2− cosx of the travelling wave. We fixed ω = 1 and moved the energy flux parameter α.

9

Figure 2. Numerically computed water depth function h(x) for an amplitude q(x) =
2− cosx of the travelling wave. We fixed ω = 1 and moved the energy flux parameter α.

and we have the estimate
540

49
≤ λ2

0 ≤
3125

64
.

Let us pass to nonconstant functions ℓ1(x) and ℓ2(x). Then the choice

ℓi(x)
def
= ai + bi cosx+ ci sinx+ di sinx cosx for x ∈ [0, π] (i = 1, 2),

where

a1 = 4.265, b1 = 1.639, c1 = −1.075, d1 = −0.778,

a2 = 3.605, b2 = 1.025, c2 = −0.408, d2 = −0.222,

guarantees that ℓ1(x) and ℓ2(x) satisfy (3.16)–(3.19) with a = 0, b = π, λ2
1 = 26.4, and λ2

2 = 31.68.
Furthermore, note also that

ℓ1(π) < x2(λ1), x2(λ2) < ℓ2(π), (3.20)
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where x2(λi) is the greater root of (3.14) with λ = λi (i = 1, 2). Indeed,

ℓ1(π) = 2.626, x2(λ1) ≈ 2.62792828771, x2(λ2) ≈ 2.53762549442, ℓ2(π) = 2.58.

The condition (3.20) is stronger than (3.19) and allows strict inequalities in the threshold estimate.
Therefore, according to Corollary 3.1 we have

26.4 < λ2
0 < 31.68.

We conducted several numerical calculations to approximately solve the relevant equations and
determine the water depth function h(x) associated with the amplitude q(x) = 2 − cosx. The
results are illustrated in Fig. 2. Notably, as λ approaches the critical value λ0, a singularity arises
in h(x).
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