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We consider the dynamical system

dS

dt
= (1− p)a− dS − βIS

1 + σIk
+ δV,

dE

dt
=

βIS

1 + σIk
− (d+ ε+ η)E,

dI

dt
= εE − (d+ τ)I,

dV

dt
= pa+ τI + ηE − (d+ δ)V,

(1)

which arises in an epidemiological model incorporating an incubation period and temporary immu-
nity. The population N is divided into four categories: susceptible (S), exposed (E), infected (I),
and vaccinated/recovered (V ). All parameters of system (1) are non-negative, and their biological
meanings are interpreted as follows: individuals are born at a rate a and enter the susceptible class
S, while a fraction of newborns is effectively vaccinated at a rate p. Susceptible individuals become
infected at a rate β. Temporary immunity (caused by an ideal vaccine, disease, or asymptomatic
infections) wanes at a rate δ. All individuals in every class experience the same natural mortality
rate d. Individuals in the exposed class E can transition to the infected class I at a rate ε, as well
as to the vaccinated/recovered class V at a rate η (due to the acquisition of natural immunity).
Infected individuals effectively recover at a rate τ , and the parameters σ and k will be described
below.

The SEIV S and SIRS models with various incidence rates have been studied in papers
[1–3,5–8,10]: in [2,5,6,8], the SEIV S models were analyzed using a geometric approach to estab-
lish asymptotic stability and global asymptoticity of equilibrium states depending on the control
reproduction number Rc. In [7], the geometric criterion for global asymptoticity was generalized.
In [1,3], diffusion effects of epidemic spread in a population were considered for the SIRS models.
In [10], an SIR model with a specific type of infectious force was examined.

Below, a new infectious force is considered

φ(I) :=
βI

1 + σIk
,

where the parameters σ and k account for inhibitory or psychological effects caused by public.
System (1) has an equilibrium point for any parameter values given by

Q0 = (S0, 0, 0, V0), S0 ≡
a((1− p)d+ δ)

d(d+ δ)
, V0 ≡

pa

d+ δ
,

which corresponds to the absence of infected individuals in the population.
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System (1) admits a biologically feasible region

D =
{
(S,E, I, V ) ∈ R4

+ : S 6 S0, V 6 V0, E 6 S0 + V0, I 6 S0 + V0, S + E + I + V 6 a

d

}
,

which is positively invariant. The control reproduction number, depending on the parameters of
the model, is defined as

Rc :=
εS0φ

′(0)

(d+ τ)(d+ ϵ+ η)
.

Definition. An equilibrium point x∗ is called:

- asymptotically stable if all solutions starting sufficiently close to it not only remain near x∗

for all time but also converge to x∗ as time tends to infinity;

- globally asymptotically stable if every solution, regardless of the initial condition, converges
to x∗ as time tends to infinity.

Theorem 1. The equilibrium point Q0 of system (1) is globally asymptotically stable if Rc 6 1 and
unstable if Rc > 1.

Proof. The local stability of Q0 is established using the next-generation operator method developed
in [9]. Using the notation from [9], the matrices F and V for the model take the form

F =

[
0 S0φ

′(0)
0 0

]
, V =

[
d+ ε+ η 0

−ε d+ τ

]
,

so that the control reproduction number for the model is given by

Rc = ρ(FV −1) =
εS0φ

′(0)

(d+ τ)(d+ ε+ η)
,

where ρ is the spectral radius of the matrix.
Following Theorem 2 in [9], we obtain the first part of the theorem statement.
The Lyapunov function is V (t) = E+ (d+ε+η)I

ε . Since φ′(I) ≤ φ(I)
I , this indicates the monotonic

non-increase of φ(I)
I for I > 0, so that

φ(I)

I
≤ lim

I→0+

φ(I)

I
= φ′(0).

Along the trajectories of system (1), the time derivative of V (t) can be computed as

dV (t)

dt
= I

(
S
φ(I)

I
− (d+ τ)(d+ ε+ η)

ε

)
≤ I

(
S0φ

′(0)− (d+ τ)(d+ ε+ η)

ε

)
= (Rc − 1)

(d+ τ)(d+ ε+ η)

ε
I ≤ 0.

Therefore, by LaSalle’s invariance principle [4] and the local stability of Q0, it follows that Q0 is
globally asymptotically stable in D when Rc ≤ 1.

Theorem 2. If Rc > 1, then system (1) has another equilibrium point Q∗ in the region D, distinct
from Q0, which is asymptotically stable.
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Proof. For system (1), the coordinates of the positive equilibrium are determined as follows:
0 = (1− p)A− dS − Sφ(I) + δV,

0 = Sφ(I)− (d+ ε+ η)E,

0 = εE − (d+ τ)I,

0 = pA+ τI + ηE − (d+ δ)V.

(2)

For convenience, let

θ1 :=
(d+ τ)(d+ ε+ η)

ε
and θ2 :=

(d+ τ)(d+ ε+ η + δ) + εδ

ε(d+ δ)
.

Using the third equation in (2), we obtain E = (d+τ)I
ε . Adding the first two equations and using

the last equation, we get
(1− p)A− dS − θ1I + δV = 0,

pA+ τε+
(d+ τ)η

ε
I − (d+ δ)V = 0.

(3)

Eliminating V from these equations leads to S = S0 − θ2I. Given S ≥ 0, we obtain I ≤ S0/θ2.
Using the second equation in (2), we obtain

Φ(I) := (S0 − θ2I)φ(I)− θ1I = 0, 0 < I ≤ S0

θ2
. (4)

The existence and uniqueness of the positive solution to equation (4) proceed in the following three
steps.

Step 1. Existence of a positive solution for Rc > 1. In fact, from

Φ′(I) = −θ2φ(I) + (S0 − θ2I)φ
′(I)− θ1

and since φ(0) = 0, we have

Φ′(0) = lim
I→0+

S0φ
′(I)− θ1 = θ1(Rc − 1),

which can be achieved. Given Rc > 1, it is easy to show that Φ(I) > 0 for sufficiently small values
of I, since Φ′(0) > 0, Φ(0) = 0, and Φ(S0/θ2) < 0. This means that at least one positive solution
to equation (4) exists. Let us denote this solution by I∗.

Step 2. It can be verified that the positive solution I∗ is unique for Rc > 1. Without loss of
generality, assume that another positive root, closest to I∗, exists and is denoted by I†. Then, the
inequality Φ′(I†) ≥ 0 follows from the continuity of Φ(I). Using the properties of the function φ,
we obtain:

Φ′(I†) = (S†)φ′(I†)− θ2φ(I
†)− (S†)φ(I†)

I†
< 0. (5)

This leads to a contradiction and confirms the uniqueness of I∗.

Step 3. We prove the absence of a positive root for (4) in the case Rc ≤ 1 by contradiction. Assume
that there exists a smallest positive root I+. Then, it is evident that Φ′(I+) < 0 according to
(5). Since Φ(0) = 0 and Φ′(0) ≤ 0, we have Φ(I) ≤ 0 for sufficiently small values of I. Thus, the
continuous function Φ(I) increases from a non-positive value to 0, which implies that Φ′(I+) ≥ 0,
leading to a contradiction.
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Therefore, from Steps 1–3, we conclude that model (1) has a unique endemic equilibrium point
Q∗ = (S∗, E∗, I∗, V ∗) if and only if Rc > 1, where S∗, E∗, V ∗ can be uniquely determined according
to the results derived above.

The Jacobian matrix of model (1) is given by

J =


−(d+ φ(I)) 0 −Sφ′(I) δ

φ(I) −(d+ ε+ η) Sφ′(I) 0

0 ε −(d+ τ) 0

0 η τ −(d+ δ)

 ,

so that the characteristic equation at the point Q∗ is given by

(χ+ d)
[
(χ+ d+ τ)(χ+ d+ ε+ η)(χ+ d+ δ + φ(I∗))+

+ δφ(I∗)(χ+ d+ τ + ε)− εS∗φ′(I∗)(χ+ d+ δ)
]
= 0. (6)

Clearly, χ1 = −d < 0. As for the remaining eigenvalues of the equation:

(χ+ d+ ε+ η)(χ+ d+ δ + φ(I∗)) + δφ(I∗)(χ+ d+ τ + ε) = εS∗φ′(I∗)(χ+ d+ δ). (7)

Case I. φ′(I∗) > 0. It is claimed that all eigenvalues of equation (7) have negative real parts.
Otherwise, there exists at least one eigenvalue χ̃ such that Re χ̃ ≥ 0. From this, it follows that

(d+ τ)(d+ ε+ η)

<

∣∣∣∣(χ̃+ d+ τ)(χ̃+ d+ ε+ η)
(
1 +

φ(I∗)

χ̃+ d+ δ

)
+ δφ(I∗)

χ̃+ d+ τ + ε

χ̃+ d+ δ

∣∣∣∣
= εS∗φ′(I∗) ≤ εS∗φ(I∗)

I∗
= (d+ τ)(d+ ε+ η). (8)

Therefore, each eigenvalue χ of equation (6) satisfies Reχ < 0.
Case II. φ(I∗) ≤ 0. Equation (7) can be reformulated as χ3 +H1χ

2 +H2χ +H3 = 0, where H1,
H2, and H3 are defined by the relations

H1 = h1 + h2 + h3, H2 = h1h2 + h1h3 + h2h3 + δφ(I∗)− εS∗φ′(I∗),

H3 = h1h2h3 + δφ(I∗)h4 − εS∗φ′(I∗)h5,

where

h1 = d+ τ, h2 = d+ ε+ η, h3 = d+ δ + φ(I∗), h4 = d+ τ + ε, h5 = d+ δ.

According to the Routh–Hurwitz stability criterion, the necessary and sufficient conditions for the
stability of Q∗ are:

(i) Hi > 0, i = 1, 2, 3;

(ii) H1H2 −H3 > 0.

It is evident that (i) holds, as hi > 0. Moreover, (ii) can be guaranteed by

H1H2 −H3 =
[
(h1 + h2 + h3)(h1h2 + h1h3 + h2h3)− h1h2h3

]
+ δφ(I∗)(h1 + h2 + h3 − h4)− εS∗φ(I∗)(h1 + h2 + h3 − h5) > 0.

By combining cases I and II, it can be concluded that Q∗ is locally asymptotically stable if and
only if Rc > 1.



REPORTS OF QUALITDE, Volume 3, 2024 69

References
[1] I. Astashova, V. Chebotaeva and A. Cherepanov, Mathematical models of epidemics in closed

populations and their visualization via web application phapl. WSEAS Transactions on Biology
and Biomedicine 15 (2018), no. 12, 112–118.

[2] L.-M. Cai and X.-Z. Li, Analysis of a SEIV epidemic model with a nonlinear incidence rate.
Appl. Math. Model. 33 (2009), no. 7, 2919–2926.

[3] V. Chebotaeva and P. A. Vasquez, Erlang-distributed SEIR epidemic models with cross-
diffusion. Mathematics 11 (2023), 18 pp.

[4] J. P. LaSalle, The stability of dynamical systems. With an appendix: “Limiting equations
and stability of nonautonomous ordinary differential equations” by Z. Artstein. In: Regional
Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1976.

[5] M. Y. Li and J. S. Muldowney, A geometric approach to global-stability problems. SIAM J.
Math. Anal. 27 (1996), no. 4, 1070–1083.

[6] J. Liu and T. Zhang, Global stability for a tuberculosis model. Math. Comput. Modelling 54
(2011), no. 1-2, 836–845.

[7] G. Lu and Z. Lu, Geometric approach to global asymptotic stability for the SEIRS models in
epidemiology. Nonlinear Anal. Real World Appl. 36 (2017), 20–43.

[8] G. P. Sahu and J. Dhar, Analysis of an SVEIS epidemic model with partial temporary immu-
nity and saturation incidence rate. Appl. Math. Model. 36 (2012), no. 3, 908–923.

[9] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic
equilibria for compartmental models of disease transmission. John A. Jacquez memorial vol-
ume. Math. Biosci. 180 (2002), 29–48.

[10] D. Xiao and S. Ruan, Global analysis of an epidemic model with a nonlinear incidence rate.
Math. Biosci., 2011 (to appear).


