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We consider the system of differential equations{
y′1 = α1p1(t)φ2(y2),

y′2 = α2p2(t)φ1(y1),
(1)

where αi ∈ {−1, 1} (i = 1, 2), pi : [a, ω[→ ]0,+∞[ (i = 1, 2) are continuous functions, −∞ < a <
ω ≤ +∞, φi : ∆(Y 0

i ) → ]0;+∞[ (i = 1, 2) (∆(Y 0
i ) is a one-sided neighborhood of Y 0

i , Y 0
i equals

either 0, or ±∞) are twice continuously differentiable functions that satisfy the conditions

φ′
i(z) ̸= 0 when z ∈ ∆(Y 0

i ), lim
z→Yi

z∈∆(Y 0
i )

φi(z) = Φ0
i ∈ {0,+∞},

lim
z→Yi

z∈∆(Y 0
i )

φ′′
i (z)φi(z)

[φ′
i(z)]

2
= γi (i = 1, 2).

Such system of differential equations when φi(yi) = |yi|σi (i = 1, n) is called the system of dif-
ferential equations of Emden–Fowler type. While t ↑ ω, the asymptotic representations for its
non-oscillating solutions were established in [2,6]. When γi ̸= 1 (i = 1, 2), system (1) is the system
with regularly warying nonlinearities. Such system of differential equations had been investigated
in [4].

This work considers situation, when γ1 = 1, that means function φ1 is rapidly warying when
y1 → Y 0

1 [1,5]. In this situation, special case of system (1) is a two-term non-autonomous differential
equation with rapidly warying nonlinearity (see [3]).

A solution (yi)
2
i=1 of system (1), defined on the interval [t0, ω[⊂ [a, ω[ , is called Pω(Λ1,Λ2)-

solution, if functions ui(t) = φi(yi(t)) (i = 1, 2) satisfy the following conditions:

lim
t↑ω

ui(t) = Φ0
i , lim

t↑ω

ui(t)u
′
i+1(t)

u′i(t)ui+1(t)
= Λi (i = 1, 2).

Note that the second condition in the definition of Pω(Λ1,Λ2)-solution implies

2∏
i=1

Li = 1.

For system (1) in case, when Λi ̸= 0 (i = 1, 2), the necessary and sufficient conditions for the
existence of Pω(Λ1,Λ2)-solutions are established, as well as the asymptotic representation for these
solutions when t ↑ ω.
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In order to formulate the theorem, we introduce several auxiliary notations:

Ii(t) =



t∫
A1

p1(τ) dτ for i = 1,

t∫
A2

I1(τ)p2(τ) dτ for i = 2,

βi =

{
−Λ1, if i = 1,

−1, if i = 2,

where limits of integration Ai ∈ {ω, a} are chosen in such a way that corresponding integral Ii aims
either to zero, or to ∞ when t ↑ ω.

A∗
i =

{
1, if Ai = a,

−1, if Ai = ω
(i = 1, 2).

Theorem. Let Λi ∈ R\{0} (i = 1, 2) and γ1 = 1. Then for the existence of Pω(Λ1,Λ2) – solutions
of (1) it is necessary and, if algebraic equation

ν
[
ν + (1− γ2)Λ1

]
= 1

does not have roots with zero real part, it is also sufficient that for each i = 1, 2

lim
t↑ω

Ii(t)I
′
i+1(t)

I ′i(t)Ii+1(t)
= Λi

βi+1

βi

and following conditions are satisfied
A∗

iβi > 0 when Φ0
i = +∞, A∗

iβi < 0 when Φ0
i = 0,

sign
[
αiA

∗
iβi

]
= signφ′

i(z).

Moreover, components of each solution of that type admit the following asymptotic representation
when t ↑ ω

φi(yi(t))

φ′
i(yi(t))φi+1(yi+1(t))

= αiβiIi(t)[1 + o(1)], if i = 1,

φi(yi(t))

φ′
i(yi(t))φi+1(yi+1(t))

= αiβi
Ii(t)

I1(t)
[1 + o(1)], if i = 2.

References
[1] N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation. Encyclopedia of Mathe-

matics and its Applications, 27. Cambridge University Press, Cambridge, 1987.
[2] V. M. Evtukhov, Asymptotic representations of regular solutions of a two-dimensional system

of differential equations. (Russian) Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki
2002, no. 4, 11–17.

[3] V. M. Evtukhov and A. G. Chernikova, Asymptotic behavior of the solutions of second-order
ordinary differential equations with rapidly changing nonlinearities. (Russian) Ukraïn. Mat. Zh.
69 (2017), no. 10, 1345–1363; translation in Ukrainian Math. J. 69 (2018), no. 10, 1561–1582.

[4] V. M. Evtukhov and O. S. Vladova, On the asymptotics of solutions of nonlinear cyclic systems
of ordinary differential equations. Mem. Differ. Equ. Math. Phys. 54 (2011), 1–25.

[5] V. Marić, Regular Variation and Differential Equations. Lecture Notes in Mathematics, 1726.
Springer-Verlag, Berlin, 2000.

[6] D. D. Mirzov, Asymptotic properties of solutions of a system of Emden–Fowler type. (Russian)
Differentsial’nye Uravneniya 21 (1985), no. 9, 1498–1504.


