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1 Introduction
Consider the second order differential equation(

a(t)ΦC(x
′)
)′
+ b(t)F (x) = 0, t ∈ I = [t0,∞), (1.1)

where the functions a, b are continuous and positive on I = [t0,∞), t0 ≥ 0, the function F is a
continuous function on R such that uF (u) > 0 for u ̸= 0, ΦR : (−1, 1) → R and ΦC : R → (−1, 1)
is the monotone homeomorphismus

ΦC(u) =
|u|p−2u

(1 + |u|p)(p−1)/p
, p > 1.

The operator ΦC is called generalized Euclidean mean curvature operator. In [4], qualitative
similarities between the linear equation

(a(t)y′)′ + b(t)y = 0 (1.2)

and equations (
a(t)ΦE(x

′)
)′
+ b(t)F (x) = 0 and

(
a(t)ΦM (x′)

)′
+ b(t)F (x) = 0,

are pointed out, where

ΦE(u) =
u√

1 + |u|2
and ΦM (u) =

u√
1− |u|2

.

Operator ΦC is called Euclidean mean curvature operator and ΦM Minkowski mean curvature
operator. Operator ΦE is a special case of ΦC . Similarly, ΦM is a particular case of the so called
generalized relativistic operator

ΦR(u) =
|u|p−2u

(1− |u|p)(p−1)/p
, p > 1.
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Curvature operators arise in studying some nonlinear fluid mechanics problems, in particular
capillarity-type phenomena for compressible and incompressible fluids, as well as in the relati-
vity theory when some extrinsic properties of the mean curvature of hypersurfaces are considered,
see [1,5,8–10] and the references therein. In particular, in [10], it is observed that, as for small val-
ues of the variable the classical acceleration operator is an approximation of ΦM and ΦE ; similarly,
the p-Laplacian operator Φp

Φp(u) = |u|p−2u, p > 1, (1.3)

can be viewed, again for small values of the variable, as an approximation of ΦR and ΦC . Under
suitable assumptions on the forcing term F , this similarity between the equation(

a(t)ΦR(x
′)
)′
+ b(t)F (x) = 0 (1.4)

and (
a(t)Φp(x

′)
)′
+ b(t)F (x) = 0

is highlighted in the search of periodic solutions, see [10], as well as in other different contexts,
concerning the oscillation or the nonoscillation, see [2, Theorem 2.1] and [5, Section 5]. Moreover,
in [5] also the existence of solutions x of (1.4) such that x(t)x′(t) < 0 on the whole interval I, is
considered, jointly with their convergence to zero as t → ∞. These solutions are usually called
global Kneser solutions. Moreover, their existence and asymptotic behavior have been investigated
by many authors for a large variety of equations, see, e.g. [11] and the references therein.

Our aim here is to complete the results in [5, Theorem 4.1], by studying the existence of global
Kneser solutions for (1.1). Further, also the decay of these solutions near infinity is examined.
These results illustrate also that an asymptotic proximity between equations with generalized mean
curvature operators and with the p-Laplacian continues to hold for Kneser solutions.

2 A fixed point result

The existence of global Kneser solutions to (1.1) is based on a fixed point result which originates
from [3]. It concerns operators T , which are defined in a Fréchet space by a Schauder’s quasi-
linearization device. Roughly speaking, this method reduces the solvability of the given problem
to the one of a possibly nonlinear problem, whose solutions have known properties. In particular,
this approach does not require the knowledge of the explicit form of the fixed point operator.
Moreover, it seems particularly useful when the problem is considered in a noncompact interval.
In this case, it permits us also to overcome difficulties, which may originate from the check of
topological properties of the fixed point operator, like the compactness, because they become a
direct consequence of suitable a-priori bounds.

More precisely, we start by reducing the problem to an abstract fixed point equation x = T (x),
where T is a possible nonlinear operator, defined in a subset of a suitable Fréchet space X. In
this approach, an important tool is played by a nice property that connects the operators ΦC and
ΦR. Indeed, when p = 2, the inverse of ΦE is ΦM and vice-versa. When p ̸= 2, denote by q the
conjugate number of p, that is

q =
p

p− 1
. (2.1)

Thus a standard calculation shows that if

v = ΦC(u) =
Φp(u)

(1 + |u|p)(p−1)/p
, (2.2)
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then the inverse Φ∗
C of ΦC is given by

u = Φ∗
C(v) =

Φq(v)

(1− |v|q)(q−1)/q
, (2.3)

that is Φ∗
C reads as ΦR where p is replaced by q. Indeed, from (2.2) we get

|v|p/p−1 = |u|p
(
1 + |u|p

)−1 or 1− |v|p/p−1 =
(
1 + |u|p

)−1
.

Thus
|u| = |v|1/(p−1)

(1− |v|p/(p−1))1/p

and so from (2.1) the equality (2.3) follows. In a similar way, the inverse Φ∗
R of ΦR is given by

Φ∗
R(v) =

Φq(v)

(1 + |v|q)(q−1)/q
.

Using these properties, we can define the fixed point operator in the following way. Let G :
I × R× R → R be the continuous function such that

G(t, µ, µ) = b(t)F (µ) for any (t, µ) ∈ I × R, (2.4)

that is F is the restriction to the diagonal of G. Setting y = a(t)ΦC(x
′), equation (1.1) can be

rewritten as the system
x′ = Φ∗

C

(y
a

)
, y′ = −bF (x), (2.5)

where, for sake of simplicity, the dependence on the variable t is omitted. Using (2.3), the system
(2.5) becomes

x′ =
(
aq − |y|q

)−(q−1)/q
Φq(y), y′ = −bF (x). (2.6)

Jointly with (2.6), consider the system

ξ′ =
(
aq − |v|q

)−(q−1)/q
Φq(η), η′ = −G(t, u, ξ), (2.7)

where the couple (u, v) belongs to a suitable set Ω ⊂ C(I,R2). If for any (u, v) ∈ Ω, the system
(2.7) has a unique solution (ξuv, ηuv) which belongs to a subset S ⊂ C(I,R2), defining T (u, v) =
(ξuv, ηuv) and the operator T has a fixed point in Ω, then it is easy to verify that the fixed point
(x̂, ŷ) of T , if any, is a solution of (2.5). In other words, the algebraic aspect of the approach,
consists in reducing our problem to one, whose solvability may be more easy. A special case, in
which this fact occurs, is when the function F satisfies

lim
u→0

F (u)

Φp(u)
= F0, 0 ≤ F0 < ∞. (2.8)

Indeed, by choosing as G the function G(t, u, x) = b(t)F̃ (u(t))Φp(x), where

F̃ (u) =
F (u)

Φp(u)
if u ̸= 0, and F̃ (0) = F0, (2.9)

a standard calculation shows that the system (2.7) is equivalent to the half-linear equation(
Av(t)Φp(ξ

′)
)′
+ b(t)F̃ (u(t))Φp(ξ) = 0, (2.10)

where
Av(t) =

(
ap/(p−1)(t)− |v|p/(p−1)(t)

)(p−1)/p
. (2.11)

For obtaining a fixed point of T , we use the quoted result in [3, Theorem 1.1] and the Tychonoff
fixed point theorem. The following holds.
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Theorem 2.1. Let S be a nonempty subset of the Fréchet space C(I,R2). Assume that there
exists a nonempty, closed, convex and bounded subset Ω ⊂ C(I,R2) such that, for any (u, v) ∈ Ω,
the system (2.7) has a unique solution (ξuv, ηuv) ∈ S. Let T be the operator Ω → S, given by
T (u, v) = (ξuv, ηuv). Assume that

(i1) T (Ω) ⊂ Ω;

(i2) if {(un, vn)} ⊂ Ω is a sequence converging in Ω and T ((un, vn)) → (ξ1, η1), then (ξ1, η1) ∈ S.

Then T has a fixed point (x̂, ŷ) ∈ Ω ∩ S and x̂ is a solution of (1.1).

An abstract fixed point theorem for equations involving a more general operator is given in [5,
Theorem 2.1]. The assumption (i2) is needed for proving the continuity of T . Indeed, as spite of
the fact that in many cases T turns out to be discontinuous, condition (i1) becomes necessary and
sufficient for the continuity T when T (Ω) is bounded, see [3]. Moreover, condition (i1) is verified if
there exists a closed subset S1 ⊂ S ∩ Ω such that for any (u, v) ∈ Ω the system (2.7) has a unique
solution (ξuv, ηuv) ∈ S1. As claimed, this fact illustrates how the compacteness of T can be a direct
consequence of a-priori bounds.

3 Kneser solutions
Here we prove the existence of global Kneser solutions to (1.1), which converge to zero as t → ∞.

Let q be defined by (2.1) and Φq(u) = |u|q−2u be q-Laplacian operator. We assume (2.8),

Ja =

∞∫
t0

Φq(a
−1(s)) ds < ∞, inf

t≥t0
Φq(a(t))

∞∫
t

Φq(a
−1(s)) ds = λ > 0, (3.1)

and
∞∫

t0

Φq

(
a−1(t)

t∫
t0

b(s) ds

)
dt < ∞ ,

∞∫
t0

b(t)Φp

( ∞∫
t

Φq(a
−1(s)) ds

)
dt < ∞. (3.2)

Choose 0 < c < λ and set

K = (1− cλ−1)(p−1)/p, MF = max
u∈[0,c]

F̃ (u), (3.3)

where F̃ is given in (2.9). Consider the half-linear equation(
Ka(t)Φp(z

′)
)′
+MF b(t)Φp(z) = 0. (3.4)

The following holds.

Theorem 3.1. Let (2.8), (3.1) and (3.2) be satisfied. If (3.4) is nonoscillatory and its principal
solution z0 is positive decreasing on I, then (1.1) has infinitely many global Kneser solutions, which
converge to zero as t → ∞.

The proof of Theorem 3.1 is similar to the one given in [5, Theorem 4.1] for proving the existence
of global Kneser solutions of (1.4), with some modifications. It is based on Theorem 2.1 and on some
comparison properties between principal solutions of half-linear equations. We start by recalling
these properties. The notion of principal solution, introduced in 1936 by Leighton & Morse for the
linear equation (1.2), has been extended to the half-linear equation(

a(t)Φp(x
′)
)′
+ b(t)Φp(x) = 0 (3.5)
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by Elbert & Kusano and independently by Mirzov, using the associated generalized Riccati equation,
see [7] for more datails. More precisely, if (3.5) is nonoscillatory, then a nontrivial solution x0 of
(3.5) is said to be the principal solution if for every nontrivial solution x of (3.5) such that x ̸= µx0,
µ ∈ R, the inequality

x′0(t)

x0(t)
<

x′(t)

x(t)
for large t

holds. The set of principal solutions of (3.5) is nonempty and principal solutions are determined
up to a constant factor. If x is a solution of (3.5), we denote its quasiderivative x[1] by x[1](t) =
a(t)Φα(x

′(t)). The following comparison property plays a crucial role in the proof of Theorem 3.1.

Lemma 3.1. Assume Ja < ∞. If (3.5) is nonoscillatory and its principal solution x0, starting at
x0(t0) = k > 0, is positive decreasing on I, then the principal solution y0 of any minorant of (3.5),
starting at y(t0) > 0, is positive decreasing on the whole interval I and satisfies the inequality

x
[1]
0 (t)

Φp(x0(t))
<

y
[1]
0 (t)

Φp(y0(t))
for any t ∈ I.

Now, we give a sketch of the proof of Theorem 3.1. Set H = Φq(K), where K is given in (3.3)
and, without loss of generality, suppose z0(t0) = cH . In view of (3.2) we have lim

t→∞
z0(t) = 0, see,

e.g., [5, Proposition 3.2]. Let Ω be the set

Ω =
{
(u, v) ∈ C(I,R2) : 0 ≤ u(t) ≤ (z0(t))

H , u(t0) = 0, −Φp(cλ
−1)a(t) ≤ v(t) ≤ 0

}
.

For any (u, v) ∈ Ω, the half-linear equation (2.10) is a minorant of (3.4). Thus, (2.10) is nonoscil-
latory and, from Lemma 3.1, its principal solution ηuv such that ηuv(t0) = c, is positive decreasing
on I. Moreover, we have for any t ∈ I

η
[1]
uv(t)

Φp(ηuv(t))
≤ Ka(t)Φp(z

′
0(t))

Φp(z0(t))
.

From this, using Ka(t) ≤ Av(t) ≤ a(t) and taking into account that z′0(t) < 0, with a standard
calculation we get

ηuv(t) ≤ (z0(t))
H . (3.6)

Let w0 be the principal solution of equation (a(t)Φp(w
′))′ = 0 such that w0(t0) = c, i.e.,

w0(t) = c

( ∞∫
t0

Φq(a
−1(s)) ds

)−1
∞∫
t

Φq(a
−1(s)) ds.

Again from Lemma 3.1, we obtain

−1

Φp(w0(t))
=

w
[1]
0 (t)

Φp(w0(t))
≤ η

[1]
uv(t)

Φp(ηuv(t))
.

From this, since ηuv(t) ≤ ηuv(t0) = c, we have

|η[1]uv(t)| ≤ Φp

(
c

( ∞∫
t

Φq(a
−1(s)) ds

)−1)

= a(t)Φp

(
c

(
Φq(a(t)

∞∫
t

Φq(a
−1(s)) ds

)−1)
≤ Φp(cλ

−1)a(t).
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From this and (3.6) we have (ηuv, η
[1]
uv) ∈ Ω. Using (3.2) and the same argument to the one given

in [5, Theorem 4.1], for any (u, v) ∈ Ω, the couple (ηuv, η
[1]
uv) is the only pair (ξ, ξ[1]) with ξ solution

of (2.10), that belongs to Ω. Let T be the operator T (u, v) = (ηuv, η
[1]
uv). By choosing S = Ω,

conditions (i1) and (i2) of Theorem 2.1 are verified. Thus, T has a fixed point, and the assertion
follows.

We close the paper with some comments.

(1) Theorem 3.1 requires that (3.5) is nonoscillatory and its principal solution starting at a
positive value at t0, is positive decreasing for any t ∈ I. To check this property, we may use the
generalized Euler equations (

tpΦp(x
′)
)′
+ p−pΦp(x) = 0, t ≥ t0 > 0 (3.7)

or
(tnΦp(x

′))′ +
(n− p+ 1

p

)p
tn−pΦp(x) = 0, p > 2, n > p− 1, t ≥ t0 > 0, (3.8)

see [5, Corollary 4.3 and (4.18)] and [6, Corollary 1], respectively. The principal solution of (3.7) is
φ(t) = t−p and that of (3.8) is φ(t) = t−p. Thus, using (3.7) and applying Lemma 3.1, equation (3.5)
is nonoscillatory and its principal solution starting at a positive value at t0, is positive decreasing
for any t ∈ I, if for t ≥ t0

Ka(t) ≥ tp and MF b(t) ≤ p−p.

Clearly, a similar result can be formulated by using (3.8).

(2) The proof of Theorem 3.1 yields also the rate of the decay to zero for global Kneser solutions
of (1.1). Indeed, using (3.2) and [5, Proposition 3.2], for any (u, v) ∈ Ω, the principal solution η

[1]
uv

satisfies lim
t→∞

|η[1]uv(t)| = ℓη, 0 < ℓη < ∞. From this, it is easy to obtain

ηuv(t) = O

( ∞∫
t

Φq(a
−1(s)) ds

)
for large t.

(3) Another interesting case in which Theorem 2.1 can be applied is when the function G in
(2.4) is

G(t, u, x) = b(t)F̃ (u(t))Φr(x), r ̸= p.

In this case the system (2.7) becomes equivalent to the generalized Emden–Fowler equation(
a(t)Φp(x

′)
)′
+ b(t)F (x) = 0.

Thus, the asymptotic behavior of solutions of (1.1) can be examined via properties of solutions of
a suitable Emden–Fowler type equation. This will be done in a forthcoming paper.
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